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Abstract

Candidates for fundamental physical laws rarely, if ever, employ higher
than second time derivatives. Easwaran (2014) sketches an enticing
story that purports to explain away this puzzling fact and thereby
provides indirect evidence for a particular set of metaphysical theses
used in the explanation. I object to both the scope and coherence of
Easwaran’s account, before going on to defend an alternative, more
metaphysically deflationary explanation: in interacting Lagrangian
field theories, it is either impossible or very hard to incorporate higher
than second time derivatives without rendering the vacuum state un-
stable. The so-called Ostrogradski instability represents a powerful
constraint on the construction of new field theories and supplies a
novel, largely overlooked example of non-causal explanation in physics.
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1 Introduction: Why does F = ma?

Nature, it seems, has an affinity for low-order differential equations. The
various candidates for fundamental dynamical laws that fill physics textbooks
rarely, if ever, employ anything other than first or second time derivatives.
Newton’s second law, Maxwell’s equations, and the Einstein field equations
are all second-order. The Schrödinger and Dirac equations are first-order,
while the equations of motion derived from the standard model Lagrangian
are second-order. Some emergent laws contain higher time derivatives, but
these are ultimately thought to be explainable in terms of more fundamental,
low-order laws.1 The curious absence of high-order laws in the foundations of
physics is made all the more curious by the litany of problems that such laws
could potentially ameliorate.2 The source of this absence is an intriguing,
largely overlooked philosophical puzzle.

Easwaran (2014) sketches an enticing story that purports to resolve this
puzzle. The story has two primary components. The first is a reductionist
thesis according to which facts about velocity and acceleration are entirely
grounded in facts about differences in position at different times. The sec-
ond is a causal thesis according to which the laws of nature, plus present
facts about position and velocity (and possibly other quantities like charge),
causally determine facts about position at all times in the future. In con-
junction with several auxiliary assumptions about the nature of causation,
grounding, and the continuity of physical change, Easwaran argues that this

1In mechanical engineering, equations involving the third and fourth derivative of po-
sition, jerk and snap, are routinely employed to design everything from cams and motion
controllers to elevators and rollercoasters (Eager et al., 2016). In some approaches to
studying effective field theories it is common to add all higher-derivative terms consistent
with the symmetries of the theory (Weinberg, 1995, ch. 12.3).

2Adding higher derivative terms to gravitational theories can help render them renor-
malizable. High-order alternatives to general relativity have also been proposed to avoid
postulating dark energy. In particle physics, the Lee-Wick extension of the standard
model uses higher derivative terms to help stabilize the Higgs mass in the face of diver-
gent radiative corrections. Higher derivatives also arise naturally models of cosmic strings
and stringy black holes. See Simon (1990) for a survey of various applications of higher
derivative theories.
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package of metaphysical views can explain why the fundamental laws take
the low-order form that they do. In the absence of alternative explanations,
he suggests that this story provides us with reason to adopt both the reduc-
tionist and causal theses.

Easwaran’s paper is situated in the context of a broader debate about the
metaphysics of velocity and acceleration that stretches back to Russell (1903).
Several thinkers in this debate (Tooley, 1988; Arntzenius, 2000; Lange, 2005)
have argued that the reductionist and causal theses are in fact incompatible.
Easwaran’s position is noteworthy for clearly articulating a way to reconcile
them, as well as evincing positive support for their conjunction. In addition,
it supplies a novel example of a mixed causal/non-causal explanation, incor-
porating both grounding and causal relations, as well as meta-nomological
constraints in the sense of Lange (2016). If successful, it also supplies an
example of how metaphysical issues can percolate up to the physical level, a
situation where taking a stand on the metaphysical character of laws, causa-
tion, and quantities matters for physical explanation.

Alas, the story does not live up to all that it promises. On closer inspec-
tion, Easwaran’s explanation only accounts for why there cannot be both
low-order and high-order fundamental laws involving time derivatives of the
same quantities. Apart from an unconvincing appeal to the naturalness or
simplicity of low-order laws, no part of his story rules out a single set of
fundamental high-order laws. There is an alternative physical explanation
available that does not suffer from this significant limitation in scope and
remains more metaphysically agnostic — generic higher-order Lagrangian
field theories are energetically unstable. This instability, first discovered
by Ostrogradski (1850) provides the key to a more powerful, unified story
about the absence of high-order derivatives in the fundamental laws of nature.
Moreover, this alternative story is neutral with respect to the reductionist
and causal theses, leaving the scorekeeping in that metaphysical debate un-
changed.

In §2, I review Easwaran’s metaphysical explanation, drawing out some
of its chief limitations. In §3, I introduce the Ostrogradski theorem, before
using it to develop an alternative physical explanation in §4. In §5, I respond
to objections and draw several related conclusions about the type of non-
causal explanation offered by the Ostrogradski instability.
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2 Easwaran’s Metaphysical Explanation

Ockhamist considerations have long been cited in support of the reductionist
thesis. Insofar as we can define velocity and acceleration in terms of suitable
limits of ratios of spatiotemporal distances, we should reduce these derivative
quantities to positional quantities. In Easwaran’s preferred formulation, facts
about velocities and accelerations are entirely grounded in facts about posi-
tions at different times. The standard mathematical procedure for defining
derivative quantities takes an open, 2-sided limit.3 Following this procedure,
velocity and acceleration are revealed to be what Arntzenius (2000) calls 2-
sided neighborhood properties. Facts about the velocity and acceleration of
an object at t are not grounded in fundamental facts about the object at t,
but rather in facts about the position of the object in the interval (t−δ, t+δ),
for any δ > 0.

If velocity and acceleration are 2-sided neighborhood properties, the re-
ductionist thesis immediately comes into conflict with the causal thesis. Usu-
ally motivated by an anti-Humean conception of laws as entities that generate
future states from present states, the causal thesis says that the laws of na-
ture, plus present facts about position and velocity (and possibly charges),
causally determine facts about position at all times in the future.4 If velocity
is a 2-sided neighborhood property, it is partially grounded in facts about
positions at times in the future. Assuming that causes must precede their
effects, velocity cannot causally determine facts about positions at all times
in the future.5

3Formally, the velocity, vt, is usually defined as the quantity (if any) that satisfies

∀(ε > 0) ∃(δ > 0) ∀t′
(
|t′ − t| < δ →

∣∣∣x′t − xt
t′ − t

− vt
∣∣∣ < ε

)
,

where t′ ranges over all times and xt and x′t are the positions at t and t′.
4Easwaran leaves the notion of “causal determination” largely open. He does assume

that it is irreflexive and that it interacts with grounding in a transitive and temporally
oriented manner. Most notably, his assumption of universal forward causation requires
that if A partly causally determines B, then there is a set SA of sufficient grounds for A
and a set SB of sufficient grounds for B such that no member of SA is temporally later
than any member of SB .

5This argument is too quick. Making it precise requires attention to subtleties sur-
rounding the interaction between limits, causal determination, and grounding. There may
well be other objections to Easwaran’s story lurking in the shadows here. But for present
purposes, the details do not matter.
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To circumvent this difficulty, the causal reductionist can define velocity
as the past derivative of position, using an open, 1-sided limit approaching t
from the past.6 This turns velocity into a past neighborhood property : facts
about the velocity of an object at t are grounded in facts about the position
of the object in the interval (t− δ, t), for any δ > 0. Consequently, velocities
at t are rendered suitable candidates to be causes of future positions. So far,
so good, but Lange (2005) argues that trouble looms when we try to bring
acceleration into the picture.

On a broadly causal interpretation of the laws of Newtonian physics,
Lange proposes the following natural chain of dependence: forces cause ac-
celeration, which cause changes in velocity, which cause changes in posi-
tion. Forces in turn are grounded in the present masses, positions, charges,
and possibly velocities of objects. If this is true, acceleration cannot be ei-
ther a past-neighborhood or two-sided neighborhood property without the
specter of retrocausation arising. It must be a future-neighborhood prop-
erty, grounded in fundamental facts over the interval (t, t + δ). This can be
achieved by defining acceleration as the future derivative of velocity, using
an open, 1-sided limit approaching t from the future.7 But if acceleration is
a future neighborhood property, it cannot be a cause of changes in velocity,
a past neighborhood property. Lange concludes that the causal reductionist
position is untenable.

Easwaran proposes an alternative, more complicated chain of dependence
that evades this conclusion: forces cause accelerations, which are future
neighborhood properties grounded in facts about future positions and veloc-
ities. Positions and velocities are not caused by accelerations, but rather by
whatever causes accelerations. Velocities are past neighborhood properties,
and are causes of future positions. As in Lange’s view, forces are grounded
in the present masses, positions, charges and possibly velocities of objects.8

6The past velocity, vpt , is defined as the quantity (if any) that satisfies

∀(ε > 0) ∃(δ > 0) ∀t′, t′′
(

(t− δ < t′, t′′ < t)→
∣∣∣xt′ − xt′′
t′ − t′′

− vpt
∣∣∣ < ε

)
.

7The future velocity, vft , is defined as the quantity (if any) that satisfies

∀(ε > 0) ∃(δ > 0) ∀t′, t′′
(

(t′′ < t+ δ, t < t′)→
∣∣∣xt′ − xt′′
t′ − t′′

− vft
∣∣∣ < ε

)
.

8Easwaran actually argues that fundamental forces will not be velocity dependent,
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Identifying velocity with the past derivative of position and acceleration as
the future derivative of velocity, causal reductionists can have their cake and
eat it too.

Easwaran’s proposal comes with an unexpected bonus. In order to fit the
various pieces of this puzzle together consistently, the possible forms that
the laws of physics can take are significantly constrained. He leverages these
constraints into an explanation for why physics only makes use of first and
second time derivatives.

Consider a law of the form,

ẍ = F (x, ẋ,m, c) , (1)

where F is a function that depends (possibly trivially) on the present posi-
tions, velocities, masses, and charges. (Newton’s second law has this form.)
Assuming the initial value problem is well-posed and has a unique solution,
this law, along with the present state (xt, ẋt,mt, ct), determines the state
at all other times t′. On Easwaran’s picture, this mathematical fact is in-
terpreted in causal terms: together, the present state and the law causally
determine future states. In order for this to make sense, the present values
of position, velocity, mass, and charge must be entirely grounded in facts
about the present and past, while acceleration is entirely grounded in facts
about the future. As long as velocity is a past derivative, and acceleration is
a future derivative, all of this works out nicely.

Easwaran asks us to consider adding an additional law of the form,

x(3) = Y (x, ẋ, ẍ,m, c) , (2)

that sets the third time derivative of position, jerk, equal to some funda-
mental force-like quantity, Y . The causal interpretation of (1) demands that
acceleration must be a future derivative and velocity a past derivative, but
the same interpretation of (2) requires jerk to be a future derivative and
both acceleration and velocity to be past derivatives. So acceleration must
be both a past and future neighborhood property, which cannot be.

In general, if a fundamental law causally determines the future by setting
the nth temporal derivative of some quantity q, the present value of q along
with its first n− 1 derivatives must be grounded in the present and past. It

but nothing in his argument turns on this restriction, so I will ignore it for the sake of
generality.
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follows that the first n − 1 derivatives have to be past derivatives while the
nth derivative is a future derivative. Thus on Easwaran’s causal reductionist
view, there cannot be multiple fundamental laws that causally determine the
future by setting the present value of different order derivatives of the same
fundamental quantity on pain of contradiction.

Next, Easwaran appeals to the causal topology of time to explain why
there are low-order dynamical laws in the first place. If there are, there
cannot also be higher-order dynamical laws by the above argument. At this
stage, though, the story becomes rather sketchy. Assuming that there is no
causation at temporal distance and that fundamental quantities change con-
tinuously in time, it follows that the fundamental laws must involve both past
and future neighborhood properties. Easwaran contends that derivatives are
the simplest, most natural type of neighborhood property, “perhaps there is
some alternative, but any other neighborhood property appears to be just as
complicated” (p. 857). So the demands of causal topology render laws involv-
ing both past and future derivatives especially natural. A second-order law
like (1) sets a second future derivative and uses a first past derivative as part
of the initial conditions. A first-order law, like the Schrödinger equation, sets
a first future derivative, and as long as some other aspect of the law involves
a past neighborhood property, continuity is preserved. After canvasing these
two cases, Easwaran abruptly concludes,

these appear to be the two simplest ways to get the appropriate
causal connections in both directions, and it is striking that the
best candidate laws are of these forms. The causal reductionist
view described above can give an explanation of this feature of
the laws. (p. 857)

If so, it is an explanation of rather limited scope. While the view rules out
multiple fundamental dynamical laws of different order, nothing, apart from
the simplicity of first-order and second-order equations tells against a sin-
gle higher-order dynamical law or a set of higher-order dynamical laws of the
same order. When physicists contemplate the prospect of modifying the Ein-
stein field equations or extending the standard model with by adding higher
derivative terms, they are typically not considering adding new high-order
laws to preexisting low-order ones, they are looking to completely replace
them.

Even if it can be argued that general Ockhamist considerations favor low-
order theories, there are other countervailing virtues that speak in favor of
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high-order theories. For example, adding higher-order derivative terms to
gravitational theories can render them renormalizable (Stelle, 1977). Max-
imality arguments favored by effective field theorists call for (in principle)
adding as many terms to a Lagrangian as allowed by the theory’s symmetries
(Weinberg, 1995, ch. 12.3). There is active interest in searching for viable
high-order theories in particle physics (Grinstein et al., 2008), string theory
(Moura and Schiappa, 2006), and classical gravitational physics (Woodard,
2007). Such searches are not limited by the broad Ockhamist considerations
that Easwaran alludes to, nor are they limited by commitment to the causal
reductionist position he defends. If writing down consistent high-order theo-
ries were as simple as introducing slightly more complex equations or adopt-
ing a different metaphysical view of laws, we should expect textbooks to be
filled with toy examples of such theories (especially given their theoretical
utility). The fact that they are not, cannot be explained by Easwaran’s story,
and strongly suggests that something else is going on.

There is a further, deeper worry that threatens to undermine even the
limited success of Easwaran’s explanation. The causal interpretation of laws
like (1) and (2) presupposes that the corresponding initial value problem is
well-posed and has a unique solution.9 Easwaran glosses over this point (I
have tried to restore it to its proper place in the argument here), but once
this seeming technicality is acknowledged, it becomes unclear exactly what
situation we are being asked to imagine when we add equation (2) to equa-
tion (1). If equation (1) is sufficient to determine the future state by itself,
and velocity, acceleration, and jerk are treated as reducible, then equation
(2) appears to be epiphenomenal. Even if equation (2) is also sufficient to
determine the future state by itself, the causal reductionist is hard-pressed
to explain why there are two fundamental laws and a case of causal overde-
termination, rather than a single law.

This leaves two plausible situations we might be intended to consider:
only (2) is sufficient to determine the future state, or (1) and (2) are jointly
sufficient (but neither alone is sufficient). In either of these cases, though,
since (1) does not causally determine the future state, there is no longer any
obvious reason to give (1) Easwaran’s preferred causal interpretation where
the term on the right side causes the term on the left side. Either (2) is

9This condition might be relaxed for indeterministic theories where the laws and present
state determine a probability distribution over future states. If the initial value problem
is not well-posed, there is no such probability distribution. This is arguably a minimal
requirement to talk about causal determination in any extended sense.
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the only fundamental causal law, or we can combine (1) and (2) into a sin-
gle fundamental causal law by substituting F (x, ẋ,m, c) for ẍ in equation
(2). In both cases, the future state depends on initial data consisting of
(xt, ẋt, ẍt,mt, ct), and so the natural causal reading is to interpret velocity
and acceleration as past derivatives and jerk as a future derivative, caused
by the force-like term Y . While we must give up on the idea that accel-
erations are caused by the force term F , in a theory where (1) no longer
causally determines the future, this idea is unmotivated. If so, the first half
of Easwaran’s story evaporates, leaving only the unconvincing Ockhamist
argument in favor of low-order theories.10

This objection is not necessarily decisive. It may be possible to provide
motivation along the following lines: given a high-order law that causally
determines the future, if it is possible to factor out a lower-order equation
like (1), and if the force term, F , plays a certain kind of explanatory or
predictive role in the theory (e.g., if there exist possible manipulations on F
that alter ẍ in the sense of Woodward 2003), then we should interpret (1) as
expressing a causal relation between F and ẍ, even if (1) does not causally
determine the future. It should be noted that the success of this maneuver
will sensitively depend on the details of the functions, F and Y , and will
not always be available. Moreover, it must still account for why a causal
interpretation of (1) is preferable to an interpretation on which acceleration
is grounded in the functional relation between position, velocity, mass, and
charge expressed by F . Regardless, the objection puts additional pressure
on a causal reductionist story already on the ropes. It would be preferable
all-things-considered to have an alternative explanation not subject to these
concerns. Fortunately, there is such a story in the offing.

3 The Ostrogradksi Theorem

The key to this alternative story lies in a deep no-go result for certain types
of high-order Lagrangian theories.

Theorem (Ostrogradski).11 If a non-degenerate Lagrangian, L(q, . . . , q(n)),
depends on the nth derivative of a single configuration variable q, with n > 1,

10Moreover, nothing prevents opponents of causal reductionism from appealing to the
same vague Ockhamist argument, nullifying the view’s explanatory advantages.

11The theorem is usually attributed to Ostrogradski (1850), who did pioneering work on
the Hamiltonian formulation of higher-order theories, however it is unclear if he recognized
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then the energy function in the corresponding Hamiltonian picture is un-
bounded from below.

Our goal in this section will be to unpack this theorem, closely following the
elegant derivation presented in Woodard (2007). Although the result directly
extends to field theories, for ease of presentation in this section, we will focus
on discrete Lagrangians.12 Similarly, we will suppress tensor indices. The
argument extends directly to configuration spaces of arbitrary dimension.
The variable, q, may be interpreted as spatial position in some theories, but
the same methods apply to any arbitrary configuration variable.

Suppose that L(q, q̇) only depends on q and q̇, as typically assumed in
textbook presentations of Lagrangian mechanics. Extremizing the action
yields the familiar second-order Euler-Lagrange equations of motion:

∂L
∂q
− d

dt

∂L
∂q̇

= 0 . (3)

Non-degeneracy is a technical condition requiring the determinant of the
Hessian matrix to be non-vanishing,

det
[∂2L
∂q̇2

]
6= 0 . (4)

Non-degeneracy ensures that ∂L
∂q̇

depends on q̇ and that (3) has a well-posed
initial value problem with a unique solution. It also entails that we can
rewrite the equations of motion in Newtonian form,

q̈ = F (q, q̇) , (5)

where the force function, F , depends on the inverse of the Hessian matrix.
The state at any time is determined by initial data (q0, q̇0).

Non-degeneracy also entails that the Legendre transform is a local dif-
feomorphism between TQ and T ∗Q. We can therefore use it to translate

it as a no-go result for higher-order field theories. The first work to do so appears to be
Pais and Uhlenbeck (1950).

12For field theories, the Lagrangian is replaced by a Lagrangian density over a continuum
of configuration variables indexed by spacetime region. The variational problem can be
solved for each variable separately and the Ostrogradski theorem applies to each degree
of freedom. As explained in §4, because there are so many coupled unstable degrees of
freedom, this results in a serious physical problem for higher-order field theories.
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between the Lagrangian and Hamiltonian descriptions of the system in a
well-defined manner.13 This translation identifies two canonical coordinates,

Q := q P :=
∂L
∂q̇

, (6)

and a Hamiltonian function,

H := P q̇ − L , (7)

that satisfies Hamilton’s equations and acts as the generator of time trans-
lations.

Suppose instead that we are given a higher-order Lagrangian L(q, q̇, q̈)
that depends on q, q̇, and q̈. Extremizing the action yields fourth-order
equations of motion:

∂L
∂q
− d

dt

∂L
∂q̇

+
d2

dt2
∂L
∂q̈

= 0 . (8)

In this context, non-degeneracy requires that

det
[∂2L
∂q̈2

]
6= 0 . (9)

This entails that we can rewrite the equations of motion in a higher-order
version of Newtonian form,

q(4) = F (q, q̇, q̈, q(3)) , (10)

13Since the Legendre transform is only guaranteed to be a local diffeomorphism, one
might worry that the corresponding translation scheme will not establish complete physical
equivalence between the Lagrangian and Hamiltonian pictures. This may well be, but one
of the important physical properties that is preserved is the boundedness of the energy.
Presentations of the Ostrogradski theorem typically begin with the Lagrangian picture
and translate into the Hamiltonian picture since the latter is a more familiar setting for
analyzing the energy spectrum, but if we want, we can stay on the Lagrangian side and
derive the Ostrogradski instability directly for the Lagrangian energy function,

EL := (L∆ − 1)L ,

where L∆ is the Lie derivative with respect to the canonical Liouville vector field ∆ :=
q̇ ∂/∂q̇ which generates dilations long the fibers of TQ. EL is a constant of motion
and corresponds to the generator of time translations. For non-degenerate Lagrangians,
the Legendre transform maps EL onto the corresponding Hamiltonian function, so EL is
unbounded iff the Hamiltonian is.
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and the state at any time is determined by initial data (q0, q̇0, q̈0, q
(3)
0 ). Trans-

lating via the Legendre transformation identifies four canonical coordinates,

Q1 := q Q2 := q̇ P1 :=
∂L
∂q̇
− d

dt

∂L
∂q̈

P2 :=
∂L
∂q̈

, (11)

and a Hamiltonian,
H := P1q̇ + P2q̈ − L , (12)

that satisfies Hamilton’s equations and acts as the generator of time trans-
lations.14

At first glance, equations (7) and (12) are remarkably similar. In partic-
ular, both depend linearly on the canonical momenta. Since the momenta
can take arbitrary negative values, it seems that both (7) and (12) will be
unbounded from below. But careful consideration of the constraints imposed
by non-degeneracy reveals that they have strikingly different properties. In
both cases, non-degeneracy entails that the definitions of the canonical co-
ordinates, (6) and (11), can be inverted. In the first case, this means that q̇
can be rewritten as a function of P and Q, and the Hamiltonian (7) takes
the form:

H = Pf(P,Q)− L . (13)

So if f(P,Q) has a suitable form, the linear dependence on P can be removed
and the Hamiltonian is bounded from below. In the second case, it is q̈ that
can be rewritten as a function of Q1, Q2, and P2, and the Hamiltonian (12)
takes the form:

H = P1Q2 + P2f(Q1, Q2, P2)− L . (14)

As before, the linear dependence on P2 can be removed if f(Q1, Q2, P2) has a
suitable form, but the linear dependence on P1 cannot be removed. Thus the
higher-order Hamiltonian (14) is unbounded from below. This is the source
of the Ostrogradski instability.

14See Miron et al. (2002) for a systematic treatment of the relevant technical machin-
ery for Lagrangians depending on time derivatives of arbitrary order, L(q, . . . , q(n)). The
generalized Lagrangian state space, TnQ, is the n-osculator bundle over configuration
space. The dual Hamiltonian phase space is defined as T ∗nQ := Tn−1Q × T ∗Q. If the
Lagrangian is non-degenerate, the Legendre transform is a local diffeomorphism between
these two spaces and maps the generalized Lagrangian energy function onto the corre-
sponding Hamiltonian.
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In the general case, given a non-degenerate Lagrangian L(q, . . . , q(n)), the
Euler-Lagrange equations are given by,

n∑
i=0

(
− d

dt

)i ∂L
∂q(i)

= 0 , (15)

the Legendre transform identifies 2n canonical coordinates,

Qi := q(i−1) Pi :=
n∑

j=i

(
− d

dt

)j−i ∂L
∂q(j)

, (16)

and the Hamiltonian has the form,

H :=
n∑

i=0

Piq
(i) − L . (17)

Non-degeneracy entails that q(n) can be written as a function of Q1, . . . , Qn

and Pn, and so the Hamiltonian is linear in the first n− 1 momentum coor-
dinates,

H := P1Q2 + . . .+ Pn−1Qn + Pnf(Q1, . . . Qn, Pn)− L . (18)

Thus adding higher-derivative terms increases the number of phase space
dimensions in which the Hamiltonian is unbounded.

The argument sketched here relies directly on the assumption of non-
degeneracy. If the Lagrangian is degenerate, the determinant of the Hessian
matrix vanishes, and greater care must be taken to define the proper Leg-
endre transformation. In this context Pons (1989) extends the Ostrogradski
theorem, showing that the relevant Hamiltonians will naively contain linear
momentum terms just like (18). The catch is that degenerate theories neces-
sarily include additional constraints which can reduce the number of physical
phase space dimensions and cancel out these linear terms. This opens up a
possible avenue for evading the no-go result which will be explored in the
next section.

4 A Physical Explanation

The Ostrogradski theorem reveals a linear momentum dependence present in
any non-degenerate higher-order Lagrangian theory. It is tempting to jump
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from the fact that the Hamiltonian is unbounded to the conclusion that such
theories must be physically pathological, but that would be too quick. If the
Ostrogradski Hamiltonian (18) describes a closed system, it is a constant of
the motion, and therefore the total energy, even if negative, is conserved. So
the problem cannot be simply that the energy decays in such theories. If
the system interacts with another system, then problems can certainly arise
— while the total energy remains constant, the subsystems could be excited
to arbitrarily negative (or positive) energy. Such runaway solutions have
been explored in the context of classical particle mechanics, where there are
various strategies for eliminating or taming them (Simon, 1990). While the
jury is still out, it is far from clear that runaways render a theory unphysical.

There is, however, a broad class of theories where the Ostrogradski insta-
bility is a serious defect: interacting field theories of both the classical and
quantum variety. Woodard (2007, 2015) sketches a general argument that
any field theory with a Hamiltonian like (18) has an unstable vacuum state.
It is customary to view a free scalar field theory as a system of coupled har-
monic oscillators, φ(x), at each spacetime point. Each oscillator obeys the
second-order equations of motion,

φ̈+ ω2φ = 0 , (19)

where ω is the frequency. Pais and Uhlenbeck (1950) consider the simplest
higher-order generalization of this case, a system of coupled oscillators obey-
ing fourth-order equations of motion:

1

ω2
φ(4) + φ̈+ ω2φ = 0 . (20)

For both equations of motion we can decompose solutions into positive and
negative frequency modes. The Hamiltonian for (19) is quadratic in the mo-
mentum variable, and thus bounded from below. As a result, both frequency
modes carry positive energy. The Hamiltonian for (20), in contrast, suffers
from the Ostrogradski instability and is linear in one momentum variable.
Consequently, positive frequency modes carry positive energy, and negative
frequency modes carry negative energy. Woodard argues that this is a generic
feature: solutions to the equations of motion for field theories with Hamilto-
nians like (18) will be sums of positive and negative energy modes.

In a free theory, this is unproblematic. The positive and negative energy
modes of each oscillator do not couple, and the field configuration is stable.
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In an interacting theory, however, coupling between the positive and negative
energy modes entails that any apparently stable field configuration can decay
further by producing positive and negative energy excitations. Moreover, be-
cause there are so many ways for such decays to occur, they are entropically
favored. There is one way for the system to remain stable and an infinite
number of ways for it to decay into pairs of excitations with arbitrarily posi-
tive and negative energy. And multiple decays are favored over single decays.
Woodard concludes:

[. . . ] such a system instantly evaporates into a maelstrom of pos-
itive and negative energy particles. Some of my mathematically
minded colleagues would say it isn’t even defined. I prefer to
simply observe that no theory of this kind can describe the uni-
verse we experience in which all particles have positive energy
and empty space remains empty. (p. 413)

Woodard’s argument gives us a physical reason to reject a large class of
higher-order theories. In axiomatic approaches to quantum field theory, vac-
uum stability is guaranteed by the spectrum condition, which rules out Os-
trogradski Hamiltonians. In general relativity, various energy conditions,
weak, strong, dominant, play a similar role. Although rarely made explicit in
classical field theory, vacuum stability is a plausible constraint on physical
possibility, prima facie. Even if vacuum stability is not treated as a con-
straint, we can still appeal to Woodard’s more anthropic line of reasoning.
No field theory with an Ostrogradksi Hamiltonian could possibly describe a
stable world like ours.15

15Is this really explanatory? That depends on what we take the explanandum to be. If
we are puzzled about the absence of higher-order theories in physics textbooks, then a de-
flationary epistemic explanation seems perfectly adequate. It may turn out that no deeper
meta-law or principle requires the vacuum to be stable. Nonetheless, the world could not
be remotely like what we observe if it were described by a higher-order Lagrangian field
theory. Compare this to the question, why do the laws of physics involve interactions?
No deeper meta-law or principle rules out free field theories, but the world could not be
remotely like what we observe if there were no interactions. (In fact, the Ostrogradksi
instability reveals that free field theories are more like our actual laws than higher-order
field theories in some sense.) Both explanations have a similar (weak) anthropic charac-
ter, though the Ostrogradski explanation is far less trivial. We expect that the broadly
observable features of the world will be sensitive to the presence or absence of interactions.
It is genuinely surprising to discover that they are even more sensitive to the presence or
absence of higher derivatives.
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Several remarks are in order. First, Woodard’s stability argument relies
on the assumption that the theories in question are field theories, at least
to good approximation. It is because there is such a vast number of cou-
pled oscillators that decays into positive and negative energy modes are so
likely. The same entropic reasoning does not apply to a lone pair of coupled
oscillators, but the argument still goes through for effective field theories
approximated by a sufficiently large number of oscillators.16 Second, the
argument relies on the Lagrangian character of the laws. It is because the
equations of motion are derived by extremizing a Lagrangian that the Hamil-
tonian must be linear in certain momentum variables. In principle, nothing
rules out the possibility of a higher-order field theory whose equations of mo-
tion do not have this character. (Insofar as we can view such a field theory
as a system of coupled oscillators, however, they cannot be Pais-Uhlenbeck
oscillators (20), the simplest, most natural higher-order generalization of the
simple harmonic oscillator.) Third, although quantization can help stabilize
certain systems like the hydrogen atom, it will not help eliminate the Os-
trogradski instability. The instability of the classical model of the Hydrogen
atom comes from the ability to position the electron (with fixed momentum)
arbitrarily close to the nucleus. Such configurations represent a tiny corner
of phase space and quantization effectively excises this corner. In contrast,
the Ostrogradski instability arises from a linear momentum dependence in
nearly half of the phase space dimensions. Quantization cannot excise such
a large quadrant of phase space.

Assuming that nature is described by a Lagrangian field theory, the only
way to avoid the Ostrogradksi instability is to declare a large sector of phase
space off limits. This requires introducing constraints that reduce the effec-
tive dimensionality of phase space, thereby rejecting the original assumption
that the Lagrangian is non-degenerate. Degenerate theories are not uncom-
mon. Any Lagrangian theory with gauge symmetries or odd-order equations
of motion will be degenerate. But not just any degenerate Lagrangian will
work. The degeneracy must give rise to enough constraints of just the right
sort, tuned in just the right way, to excise the entire unstable momentum

16There is an important caveat here. In some cases it is possible for an ultraviolet cutoff
to stabilize the momentum sector, in which case higher derivative terms can be consistently
added to effective field theories. See Eliezer and Woodard (1989) for a development of
this idea. Since the cutoff does not apply to the underlying exact theory, however, the
Ostrogradksi instability remains a constraint on the fundamental physical laws, as long as
they describe sufficiently many coupled degrees of freedom.
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sector.
Constraints are given by vanishing functions of phase space coordinates.

In the constrained Hamiltonian formalism (Henneaux and Teitelboim, 1992),
constraints are separated into a hierarchy, primary, secondary, tertiary, etc.,
depending on how they are generated. If a Lagrangian is degenerate, the
conjugate momenta identified by the Legendre transform are not independent
of each other. Primary constraints arise from the definition of these momenta.
Secondary constraints then arise from requiring the primary constraints to be
preserved under the dynamics. Tertiary constraints arise from requiring the
secondary constraints to be preserved under the dynamics, and so on. The
constraint surface is the submanifold of phase space where all constraints in
the hierarchy are satisfied. Non-trivial secondary or higher constraints are
needed in order for the dimension of the constraint surface to be smaller
than the original phase space. The hierarchy can be further divided into two
classes. The first class includes any constraint whose Poisson bracket with
all constraints vanishes on the constraint surface. The second class includes
all other constraints. These have a non-vanishing Poisson bracket with at
least one other constraint on the constraint surface.

Constraints can either arise naturally as the generators of gauge symme-
tries or be inserted into the theory by hand. Either way, viewed as limits
on physical possibility, they can reduce the effective dimensionality of phase
space. Starting with a degenerate higher-order theory, one must first cal-
culate the full hierarchy of constraints. Plugging the constraints into the
original Lagrangian and extremizing yields the physical equations of motion
on the constraint surface. At this stage two important questions arise: is the
reduced theory stable, and is it still a high-order theory?

Since the Ostrogradski Hamiltonian (18) is unstable in n− 1 momentum
dimensions, at least n − 1 secondary or higher constraints are needed to
excise the entire unstable sector. Furthermore, Pons (1996) proves that the
Lagrangian for the reduced dynamics is non-degenerate iff the original theory
has only first-class constraints. So if a degenerate theory has only first-class
constraints and the reduced dynamics are high-order, the original version
of the Ostrogradski theorem applies and the theory remains unstable. So
a necessary condition for the removal of the Ostrogradksi instability is the
existence of at least some second-class constraints and n − 1 secondary or
higher constraints.

Motohashi et al. (2016) and Klein and Roest (2016) explore a number
of instructive cases where it is possible to fully remove the Ostrogradski in-
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stability. The simplest examples are degenerate Lagrangians of the form
L(q̈, q̇, q, ẋ, x), describing the coupling of a fourth-order system with configu-
ration variable q, to a non-degenerate second-order system with configuration
variable x. They show that a necessary and sufficient condition for avoiding
the Ostrogradski instability in this case is the following:

∂2L
∂q̈2

∂2L
∂ẋ2
−
( ∂2L
∂ẋ∂q̈

)2
= 0 , (21)

which expresses the vanishing of the determinant of the generalized Hessian
matrix. (21) is equivalent to the existence of a second-class primary con-
straint,

Ξ := P2 − f(Q2, Q1, Px, Qx) ≈ 0 , (22)

where P1, P2, Q1, Q2 and Px, Qx are the canonical coordinates associated with
the fourth-order and second-order system respectively, and ≈ 0 means that
the function vanishes on the constraint surface. Requiring {Ξ,H} ≈ 0 gen-
erates a secondary constraint that reduces the phase space dimension by
one, eliminating the unstable momentum sector. When all the dust settles,
though, the reduced equations of motion are only second-order.

These examples can be generalized by considering Lagrangians of the form
L(q̈i, q̇i, qi, ẋ, x), describing the coupling of multiple fourth-order systems with
configuration variables qi, i = 1, . . . , k, to a non-degenerate second-order sys-
tem. For instance, the qi might represent k coupled Pais-Uhlenbeck oscilla-
tors in a model of an effective fourth-order field theory. In this case, the
analogue of (21) is no longer sufficient for avoiding the Ostrogradski insta-
bility. It does give rise to k primary constraints, Ξi, analogous to (22), but
these are no longer guaranteed to generate a sufficient number of secondary
(or higher) constraints needed to eliminate the k unstable dimensions from
phase space. Motohashi et al. prove that a sufficient (if rather strong) condi-
tion is the vanishing of all Poisson brackets of the primary constraints with
each other, {Ξi,Ξj} ≈ 0. If so, the theory is rendered stable, but once again
the reduced equations of motion are second-order.

These examples show that constructing a stable, high-order Lagrangian
theory is a delicate balancing act. The constraints are entered by hand and
tuned to have a particular functional dependence with each other.17 To date,

17A necessary condition for stability is det{Ξi,Ξj} ≈ 0 (Motohashi et al., 2016), so at
least this much cancelation is required.
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no examples have been constructed where the constraints arise from the ac-
tion of a natural-looking gauge group. Nor have the techniques been extended
to field theories; in the continuum limit, i → ∞, and the task of tuning all
of the primary constraints becomes even more daunting.18 Moreover, in all
such examples, the reduced equations of motion are ultimately second-order.
They are not really higher-derivative theories at all.

Perhaps there are ways to construct genuine high-order interacting field
theories from degenerate Lagrangians that we have not yet discovered. Or
perhaps there is a generalization of the Ostrogradski theorem ruling out all
such theories as pathological.19 Although our understanding remains partial
at this stage, all current evidence points towards the idea that stable high-
order theories are extremely difficult, if not impossible, to construct. To sum
up: if nature is described by an interacting Lagrangian field theory with
a stable vacuum, then higher than second-order equations of motions are
either impossible or very special, requiring just the right interplay between
constraints to eliminate the Ostrogradski instability without reducing the
dynamics to second-order laws.

5 Laws, Meta-Laws, and Non-Causal Expla-

nation

We have good reason to believe that our world is described (to close approx-
imation) by Lagrangian field theories. The Ostrogradski theorem reveals
that higher than second time derivatives cannot easily be incorporated into
this theoretical framework, if at all. This tells against any set of fundamen-
tal high-order laws, not just mixtures of high-order and low-order laws like
Easwaran’s explanation. Even if it turns out to be possible to exploit the
degeneracy loophole to construct stable high-order field theories, it appears
inevitable that such theories will have artificially tuned constraints, render-

18Valencia Villegas (2017) makes some progress towards generalizing the approach of
Motohashi et al. to high-order scalar field theories. His analysis reveals that there are a
number of additional unexpected complications that arise for stabilizing such theories. For
example, if a high-order field system is coupled to a low-order field system, Ostrogradski
stability requires a lower bound on the coupling parameter, α > 1/m, where m is the mass
of the low-order field.

19Motohashi et al. (2016) sketch one such argument, but it is based entirely on their
strong sufficient condition for stability, {Ξi,Ξj} ≈ 0, and therefore not entirely satisfactory.
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ing them less natural than low-order laws. This represents a significant im-
provement over the vague appeal to simplicity in Easwaran’s explanation.
In addition, the Ostrogradski explanation better tracks scientific practice.
Physicists are actively interested in the viability of high-order field theories
and they view the Ostrogradski instability as a significant no-go result to
contend with in this arena. Along with renormalizability, it represents one
of the most powerful, general theoretical constraints on the construction of
new field theories (Simon, 1990; Woodard, 2015). In contrast, Easwaran’s
story relies on contentious metaphysical principles that do not play a ma-
jor role as theoretical constraints in scientific practice. The Ostrogradksi
story is therefore a more appealing explanation from a broadly naturalistic
standpoint.

Prima facie, the Ostrogradski explanation is compatible with both the
causal and reductionist theses, as well as their negations. Insofar as La-
grangian mechanics employs standard tools from differential geometry, it is
plausible that there are various points where the argument in §3-4 presup-
poses that velocity, acceleration, and higher time derivative quantities can
be defined by appropriate limits. But nothing in the explanation turns on
viewing such derivative quantities as either neighborhood properties or in-
stantaneous properties. Similarly, while the contours of the explanation may
shift depending on the background view of laws, nothing about it commits us
to one view over another. On Humean views, the explanandum is a fact about
the best system summarizing the categorical facts. Like any fact about the
laws, the absence of high-order time derivatives is ultimately explained by the
underlying mosaic of categorical facts. What the Ostrogradski explanation
then shows is how certain structural patterns in this mosaic depend on other
structural patterns. The best system cannot include high-order equations of
motion if it is also stable, Lagrangian, and field-theoretic.20 On non-Humean
views, the explanandum is a fact about a certain species of modal facts.
Whether these modal facts are primitive (e.g., Maudlin 2007), or reducible
to other non-categorical facts (e.g., Cartwright 1999, Lange 2009), the Os-
trogradski explanation reveals how they cannot involve higher than second
time derivatives while also retaining their stable Lagrangian field-theoretic
character.

One might object that Lagrangian laws themselves are incompatible with

20Whether the field-theoretic character of the laws is a categorical or non-categorical
fact will depend on the particular version of Humeanism under consideration.
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the causal thesis. The worry is that although we can derive causal equations
of motion from Lagrangian principles, fundamentally speaking, Lagrangian
laws determine the evolution of the system by the principle of extremal ac-
tion, requiring boundary conditions in both the future and the past. There
are two things to say in response. First, it is not clear that an interpretation
of Lagrangian mechanics that treats the action principle as fundamental is
necessarily incompatible with the causal thesis. As Easwaran presents it, the
thesis is silent about how exactly the laws and present state “causally deter-
mine” future states. One feasible option is that the action principle grounds
the space of possible dynamical histories, then the actual present state causes
future states subject to this modal constraint. Another option is that the
action principle grounds the equations of motion, and these along with the
actual present state jointly cause future states. While the fundamental laws
may not be considered causes of future states on either of these readings, it
is unclear if the causal thesis is actually committed to this claim (or should
be).

Second, one can opt for an interpretation of Lagrangian mechanics where
the equations of motion, rather than action principles, are viewed as more
fundamental. Different Lagrangian functionals can give rise to the same
equations of motion, and physicists typically interpret such Lagrangians as
physically equivalent.21 From this angle, action principles simply look like a
convenient starting point to derive dynamical laws expressed by differential
equations with a particular form. This idea can be developed into an elegant,
coordinate-free formulation of Lagrangian mechanics utilizing the intrinsic
geometric structure of tangent bundles (de León and Rodrigues, 1989). In
this framework action principles play a secondary role, and there is no trouble
reconciling Lagrangian laws with the causal thesis.

It is perhaps unsurprising that the Ostrogradski explanation remains ag-
nostic about the metaphysical principles that drive Easwaran’s explanation.
Even if we doubt that there is a sharp dividing line between physical and
metaphysical hypotheses, the inputs into the Ostrogradski theorem have his-
torically been treated as the former, part of the raw data that philosophical
theories about laws and explanation endeavor to capture. The theorem ex-

21It is well-known that Lagrangians related by point transformations give rise to the
same equations of motion, but there are more general symmetries hiding in the Lagrangian
formalism. For example, the transformation sending L → L + θ̂, where θ̂ is the natural
function on TQ defined by a closed 1-form on Q, is always a symmetry of the Euler-
Lagrange equations.

21



poses a very general problem with high-order Lagrangian theories that is
independent from the deeper metaphysical hypotheses that Easwaran em-
ploys. This is a further Ockhamist advantage, the Ostrogradski explanation
commits us to less metaphysical baggage.22

There are a number of lingering questions. How metaphysically defla-
tionary is the story sketched in §3-4? Is it really explanatory? If so, exactly
what kind of explanation does it provide? In order to help answer these ques-
tions, we turn to two important ideas in the recent philosophical literature
on non-causal explanation.

The first idea is a non-causal generalization of central themes from Wood-
ward’s interventionist account of causal explanation. Woodward (2003) ar-
gues that causal explanations aim to answer counterfactual “what-if-things-
had-been-different” questions (w-questions, for short) by citing how one vari-
able changes under possible interventions on other variables in a causal
model. On Woodward’s account, interventions are causal processes that sur-
gically change the value of a variable, shielding that variable from other
influences so that the change is only due to the intervention itself (an ide-
alized experimental manipulation). Successful explanations identify features
of the causal model that make a difference to whether or not the explanan-
dum occurs. Such causal difference makers will be invariant under a range
of possible interventions on the system in question. As many proponents of
non-causal explanation have noted, the causal modeling framework and the
interpretation of interventions as causal processes play a rather minor role
in Woodward’s account of explanation. In any sort of model or theory, if
it is possible to isolate modular variables and surgically change their values
by purely mathematical or conceptual interventions, we can coherently trace
chains of counterfactual dependence between them. On this generalized in-
terventionist view, non-causal explanations aim to answer w-questions just
like causal explanations. The difference is that the relevant variables need
not be part of a causal model, and the explanans involves citing how one

22If the reductionist and causal theses turn out to be true, but not metaphysically
necessary (a possibility Easwaran leaves open), then this also translates into a certain scope
advantage. The Ostrogradski explanation covers possible worlds where the metaphysical
character of the laws is different, unifying a diverse set of cases not covered by Easwaran’s
explanation. Of course, if his explanation were successfully patched up, it would apply
to causal reductionist worlds with both Lagrangian and non-Lagrangian laws, unifying
a different set of cases outside of the scope of the Ostrogradski explanation. So this
advantage alone would not be decisive.
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variable changes under possible non-causal interventions on other variables,
identifying invariant non-causal difference makers.23

The second idea is Lange’s influential analysis of non-causal explanations
involving constraints and meta-laws. Lange (2009, 2016) argues that just as
the laws of nature can be viewed as modal constraints governing the non-
nomic categorical facts, there are more abstract modal constraints that gov-
ern the laws themselves. These may include mathematical, conceptual, and
metaphysical constraints, as well as meta-laws, metaphysically contingent
laws about laws. General symmetry principles as among the best candidates
for the latter. The conservation of energy can be explained by the fact that
the laws of nature are time-translation invariant. On Lange’s telling, this
is a meta-law; even if the laws described different forces or types of matter,
they would still be time-translation invariant. The explanatory credentials
of meta-laws come from their greater-than-physical grade of necessity. In
general, we appeal to more necessary modal constraints to explain less nec-
essary constraints, but not vice versa. Lange goes on to defend a unified
non-Humean view of laws and meta-laws, but we need not follow him down
this path. The ability to accommodate the explanatory role of constraints
and meta-laws is arguably a desideratum for any successful account of laws
and explanation.24

The story sketched in §3-4 can be viewed most directly as a non-causal
explanation in the generalized interventionist sense discussed above. It iso-

23For examples of views in this direction, see Bokulich (2011), Saatsi and Pexton (2012),
Rice (2015), and Reutlinger (2016). It is also a major theme in many of the essays in
Reutlinger and Saatsi (2018).

24This is somewhat contentious. Humeans might worry that their concept of laws can-
not naturally accommodate meta-laws, leading to skepticism about the latter. (Humean
meta-laws would be part of the best system summarizing the nomic facts, but it is unclear
exactly what such a summary should look like.) Similarly, non-Humeans like Maudlin who
view laws as primitive modal facts about temporal evolution might be skeptical of meta-
laws that are not obviously dynamical. If the Ostrogradski explanation relies on meta-laws,
then the story may require taking a stand on the metaphysics of laws and meta-laws after
all. Perhaps, but this skepticism can be resisted. Meta-laws can be interpreted as very gen-
eral kinematic constraints consistent with non-Humean views like Maudlin’s, while Yudell
(2013) sketches a possible strategy for extending the Humean account. Furthermore, as
we will go on to see, there is a deflationary reading of the Ostrogradski explanation avail-
able on which the constraints are mathematical and conceptual necessities rather than
meta-laws. Interpreting certain inputs into the Ostrogradski theorem as meta-laws may
modally strengthen the explanation (and this may come with certain metaphysical costs),
but the deflationary reading can be adopted by every party in the debate.
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lates independent features of the laws of nature and explores changing these
features via conceptual and mathematical interventions to answer a range
of different w-questions. How would things be different if the laws contain
higher than second time derivatives? How would they be different if the
Lagrangian is degenerate, or if the laws are not Lagrangian at all? In the
process, we have identified certain non-causal factors — the laws are La-
grangian, field-theoretic, describe non-trivial interactions, and have a stable
vacuum solution — that make a difference to whether or not the equations of
motion can include higher-derivative terms. Moreover, these difference mak-
ers are invariant under a broad range of interventions changing the particular
form of the Lagrangian, which forces and interactions are present, the matter
content of the fields, and the background spacetime structure.

The story can also be cast as a constraint explanation in Lange’s sense,
although exactly which constraints are operative is subject to debate. On a
minimalist reading, the Ostrogradski theorem acts as a mathematical con-
straint. In conjunction with certain conceptual constraints pertaining to
the physical interpretation of the mathematics, the argument in §4 yields
a necessary conceptual truth: if an interacting non-degenerate Lagrangian
field-theory has a stable vacuum state, then it cannot include higher than
second time derivatives. (Making this rigorous will require showing that
Woodward’s informal argument in §4 can be turned into a deductively valid,
mathematically precise argument.) If it turns out that there is a generaliza-
tion of the Ostrogradski theorem covering degenerate Lagrangians, then there
is a broader conceptual truth of this type that we should appeal to instead.
If not, and it turns out that stable degenerate theories are possible but fine-
tuned, then the explanation takes on a different character altogether. The
mathematical and conceptual constraints do not rule out high-order theories
tout court, but render them less likely or less natural than low-order theories
in some sense requiring further elaboration. (Making this precise will require
a choice of topology on the space of Lagrangian field theories allowing for
the definition of a suitable probability measure or a more general measure
characterizing generic theories.)

This reading reveals a pattern of mathematical and conceptual constraints
which supports a deflationary resolution to our puzzle. Physicists are inter-
ested in stable, interacting Lagrangian field theories, and it is either very
hard or impossible for such theories to have higher-order equations of mo-
tion. Insofar as we have reason to believe that our world is described by
such theories, we have reason to believe that the laws cannot include higher
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than second time derivatives. But is there a deeper sense in which the laws
must have this form? There are more robust readings available on which
one or more of the assumptions in the Ostrogradski theorem are interpreted
as meta-laws. Just as the laws are held fixed under a suitably broad range
of counterfactual suppositions about the categorical facts, the meta-laws are
held fixed under a suitably broad range of counterfactual suppositions about
the laws. Even if the laws were different, they would still be constrained by
the meta-laws.

A strong case can be made that the Lagrangian character of the laws is
itself a meta-law. In practice, physicists consider all sorts of counterfactual
variations of the laws while holding their Lagrangian character fixed. (It
is rare to find mention of non-Lagrangian laws at all.) Like Hamiltonian
mechanics, Lagrangian mechanics represents an extremely fruitful, unified
framework for constructing a range of wildly different theories that nonethe-
less share important structural commonalities. These structural properties
have survived multiple scientific revolutions that have otherwise radically re-
shaped our view of what the laws of nature might look like. Moreover, they
are the sort of frameworks that allow us to ask well-posed counternomic ques-
tions in the first place. How would things be different if the laws included
higher than second time derivatives? That is simply too broad of a question
to have a determinate answer. But if the laws are Lagrangian, then we can
say something more definite about the form that these higher-derivative laws
might take, and in certain circumstances rule them out.

Lange (2009) contrasts meta-laws with byproducts of the laws, properties
of the laws that hold in virtue of whatever the laws happen to be. Byproducts
do not constrain the laws, they are explained by the laws. For instance, it
seems that we should appeal to the laws to explain why nature has non-
trivial interactions. This feature is most plausibly interpreted as a byproduct.
Similarly, the non-degeneracy assumption is likely a byproduct, although one
which appears to be an eliminable part of the explanation. The situation for
the stability and field-theoretic assumptions are less clear. Although stability
is often viewed as an axiom for field theories, it need not be interpreted
as a constraint on physical possibility. Instead, it can be interpreted as a
constraint on epistemic possibility in line with Woodard’s preferred reading
of the no-go argument in §4. Unstable field theories cannot describe universes
like ours where “all particles have positive energy and empty space remains
empty.” In this case, it is more natural to view stability as a byproduct
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explained by the laws rather than a constraint.25 But a strong argument that
unstable field theories are physically pathological could tip the scales in the
other direction. It is similarly unclear that the laws must be field-theoretic
in any modal sense other than epistemic. The plethora of non-field theories
in both classical and quantum physics suggests not. On the other hand,
physicists often view Lagrangian field theory as a sub-framework within the
broader Lagrangian framework. Interpreting field-theoretic assumptions as
meta-laws might be coherently motivated by metaphysical arguments against
action at a distance or by more localized concerns such as the need to unify
quantum mechanics and relativity.26

As before in the debate over laws, the contours of the explanation offered
by the Ostrogradski instability might shift depending on how these ques-
tions are answered. Even if none of the main assumptions turn out to be
meta-laws, though, the minimalist reading provides a compelling deflation-
ary explanation. A wholesale skeptic about meta-laws can still acknowledge
the explanatory force of the mathematical and conceptual constraints en-
tailed by the Ostrogradski theorem. In addition, it appears that any ver-
sion of the story sketched in §3-4 will have a residual anthropic component.
Nothing forces the laws to have non-trivial interactions, but in worlds like

25There is a worry here. If stability is explained by the form of the laws, then we cannot
appeal to it to explain the lack of higher derivatives in the equations of motion without
getting the order of explanation backwards. From this perspective, it is the form of the
laws, including the absence of higher derivatives, that explains stability, not vice versa.
Although the outlook here is unclear, I think the Ostrogradski story remains explana-
tory, regardless. If both vacuum stability and the absence of high-order derivatives are
byproducts, there may simply be no determinate fact about grounding relations between
them. In this case stability along with the relevant mathematical/conceptual constraints
can explain the lack of higher derivatives, or vice versa. Note that the derivations are
not symmetric: stability entails that there are no higher derivatives, but the fact that
there are no higher derivatives does not entail stability unless the Lagrangian has the
right form to eliminate the linear dependence on P in equation (13). Even if we interpret
stability as partly grounded in the absence of higher derivatives, and therefore only the
second derivation turns out to be metaphysically explanatory, then the minimalist reading
of the Ostrogradski story still plausibly offers a type of epistemic explanation: given our
evidence, including the fact that our world is stable, the fundamental laws cannot include
higher derivatives. Indeed, if stability is a byproduct partly grounded in the absence of
higher derivatives, I suspect that this is the only sort of explanation for the absence of
high-order laws that can be given.

26A number of informal arguments (see, for example, Weinberg 1995, ch. 1) suggest
that any interacting relativistic quantum theory must be a field theory, but so far these
arguments have not been made rigorous.
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ours where there are interactions, additional constraints apply. The debate
is over the character of these constraints and the extent of this residual an-
thropic component. Are the central assumptions in the Ostrogradski theorem
meta-laws or byproducts? Future investigation into this question, as well as
into extensions of the theorem for degenerate Lagrangians, stand to enrich
the philosophical literature on non-causal explanation and further illuminate
why physics really uses second derivatives.
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