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Abstract

This is an essay about general covariance, and what it says (or doesn’t say) about
spacetime structure. After outlining a version of the dynamical approach to spacetime
theories, and how it struggles to deal with generally covariant theories, I argue that we
should think about the symmetry structure of spacetime rather differently in generally-
covariant theories compared to non-generally-covariant theories: namely, as a form of
internal rather than external symmetry structure.
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1. Introduction

This essay is about the feature of general relativity from which the hole argument
springs: namely, general covariance. Famously, Einstein took the general covariance
of the theory to express its commitment to a notion of “general relativity”, i.e., of the
equivalence of all states of motion (just as the special covariance of special relativity
expressed the equivalence of all inertial motion). In general, philosophers have been
unpersuaded by Einstein’s claim, pointing to two problems in particular: the fact that
general-relativistic spacetimes have a covariant derivative operator, and hence the re-
sources to distinguish between inertial and non-inertial motion; and the fact that other
theories (e.g. special relativity) can also be given a generally covariant formulation,
which suggests that general covariance per se cannot be a physically significant feature
of a theory.
In this paper, I want to do two things. First, I want to retrace why one might think

that general covariance signals something like a commitment to the general relativity
of motion, by drawing on the so-called “dynamical approach” to spacetime structure.
Second, I argue that in trying to resolve the problems posed by this way of approaching
general covariance, we are naturally led to a somewhat different way of analysing the
symmetry structure of spacetimes: namely, an analysis of it as a form of “internal”
symmetry structure.
To this end, the paper proceeds as follows. Section 2 introduces the notion of an

external symmetry. Section 3 lays out (one approach to) the dynamical approach to
spacetime theories. Section 4 applies these ideas to General Relativity, thereby il-
lustrating the problem with trying to apply these ideas to generally covariant theories.
Section 5 concerns how spacetime symmetries can be thought of as internal symmetries.
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Section 6 concludes, by considering the question of how to distinguish spatiotemporal
from non-spatiotemporal structure.

2. External Symmetries

Let us start with an example: the theory of Maxwell electromagnetism on Minkowski
spacetime. Models of this theory consist of a two-form Fab and a vector field Ja on
Minkowski spacetimeM (i.e. a flat affine space equippedwith aMinkowski metric ηab),
satisfying the equations

∇[aFbc] = 0 (1a)

ηabηcd∇aFbc = Jd (1b)

where ∇ is the flat affine connection on Minkowski spacetime, ηab is the inverse
Minkowski metric, and square brackets indicate antisymmetrisation on indices. Note
that here (and throughout this paper) I use Latin letters as abstract indices: so, for in-
stance, Ja is a vector field, not the components of that field in some coordinate system.
An external transformation of this theory is just a diffeomorphism from spacetime

points to spacetime points. Note that any such diffeomorphism naturally induces a
transformation from one model to another, since tensor fields may be pushed forward
under diffeomorphisms.1 We can now define an external symmetry of this theory as
a diffeomorphism f : M → M which maps models of the theory to other models:
denoting the pushforward under f of a tensor field T by f∗T , f is an external sym-
metry if (Fab, J

a) satisfies (1) just in case (f∗Fab, f∗J
a) does. For example, an arbitrary

spatiotemporal translation is a symmetry of this theory; a time-dependent rotation is
not.2
Thus, our definitions are as follows: an external transformation is a diffeomorphism

on spacetime, and an external symmetry is an external transformation which preserves
the solutions of the theory. Note, however, that these definitionswork because of a rather
special feature of the theory above: that any diffeomorphism of Minkowski spacetime
naturally induces a transformation of the fields (i.e., from (Fab, J

a) to (f∗Fab, f∗J
a)). In

general, there are theories for which this is not the case.
Consider, for example, U(1) gauge theory. Amodel of this theory consists of a section

1For details of the pushforward operation on tensor fields, see e.g. (Malament, 2012, §1.5).
2Note that ηab is not acted upon by the diffeomorphism, since it is considered part of the Minkowski
spacetime rather than as a field (we will soon see what happens if it is instead treated as a field).
Compare (Pooley, 2017)’s “final version” of diffeomorphism invariance.
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ψ of a U(1) fibre bundle E (with, say, base space B), and a connection D on that same
bundle. For readers not familiar with the fibre-bundle formalism,3 a U(1) fibre bundle
is a structure consisting of a collection of “fibres”, each of which is a one-dimensional
complex vector space equippedwith a unitary inner product; one suchfibre is associated
to each point of B. Consequently, given two fibres associated to distinct points of B,
there is no privileged way of identifying the points of one fibre with those of the other.4
Let π : E → B be the projection map; i.e., the map which takes any point in any fibre to
the base-space point to which that fibre is associated.

A section of the bundle maps each point of B to a point in the fibre associated to it,
and a connection identifies the points in a given fibre with the points in infinitesimally
nearby fibres.5 If we now suppose that we are given a diffeomorphism f : B → B of the
bundle’s base space, then that does not tell us how to transform a section or connection
into another section or connection. For instance, given a section ψ, we want to say that
its pushforward under f is the section f∗ψ such that for all x ∈ B, f∗ψ(f(x)) = ψ(x);
but since f∗ψ(f(x)) and ψ(x) live in different fibres (respectively, the fibres associated
with f(x) and x), this equality does not make sense.
In this context, therefore, we cannot define an external transformation as (just) a

diffeomorphism on the base space: we must define it instead as a bundle automorphism.
A bundle automorphism is a pair of maps α : E → E and β : B → B such that
β ◦ π = π ◦ α, i.e., such that the following diagram commutes:

E E

B B

α

π π

β

In a context such as this, one usually defines the internal transformations to be the
vertical bundle automorphisms: i.e., those bundle automorphisms such that β = IdB .
That makes it tempting to define the external transformations to be the non-vertical
bundle automorphisms. Note, however, that doing so would mean that the external
transformations do not form a group; for this reason, it strikes me as better to identify
the external transformations with the bundle automorphisms, whether vertical or non-

3Introductions to fibre bundles for philosophers may be found in (Weatherall, 2016, Appendix 1) or
(Healey, 2007, Appendix B).

4Cf. Maudlin (2007).
5That is, with the points whose associated base-space points are infinitesimally close to the original fibre’s
base-space point. Note that this doesn’t typically yield an identification of arbitrary points of fibres with
one another: unless the connection is “flat”, the identification between finitely separated fibres will be
path-dependent.
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vertical (which, admittedly, has the consequence that internal transformations become
a subspecies of external transformations).
I raise this issue only to warn the reader that care is needed in speaking of external

transformations in the context of a general gauge theory. For the purposes of this
essay, however, we can put this issue aside, by limiting our attention to those fibre
bundles in which any diffeomorphism on the base space is uniquely associated with a
bundle automorphism. The paradigm examples are tensor bundles (i.e., fibre bundles
whose fibre at each point is the set of tensors of a given rank). In a tensor bundle, any
diffeomorphism on the base space is naturally associated with a bundle automorphism
of the tensor bundle: namely, the pushforward. Thus, it is because the data for our
Maxwell theory consisted of sections of tensor bundles (i.e., a section Ja of the tangent
bundle and a sectionFab of the rank-(0, 2)-tensor bundle) that we could identify external
transformations with diffeomorphisms on the base space. More generally, we can make
this identification provided that we are workingwith so-called natural bundles: a natural
bundle is a fibre bundle which is associated to the rth-order frame bundle, for some
finite r.6 Crucially, in a natural bundle E π→ B every diffeomorphism f : B → B of the
base space is associated with a bundle automorphism f# : E → E.7

The above constitutes what I’ll call the coordinate-free approach to thinking about
external symmetries: given some theory set on a natural bundle, an external transfor-
mation is a diffeomorphism of the base space, and an external symmetry is an external
transformation which maps models of the theory to other models. In the example of
Maxwell electromagnetism, the external symmetries are precisely the automorphisms
ofMinkowski spacetime (i.e., the external symmetries are the Poincaré transformations).
In general, though, the external symmetry groupmay be larger than the automorphism
group of the base space.
For example, consider the theory of Newtonian electromagnetism.8 In this theory, the

base space is Newtonian spacetime: the space T ×X , where T is a one-dimensional Eu-
clidean space and X is a three-dimensional Euclidean space (recall that a Euclidean
space is an affine space whose associated vector space carries a Euclidean inner prod-
uct).9 The kinematically possible models are also given by a two-form Fab and vector
field Ja, albeit on Newtonian rather than Minkowski spacetime; and the dynamically

6See Kolář et al. (1993), and especially chapter 12, for an exposition of the theory of natural bundles.
7Cf. the notion of an induction in Curiel (2017).
8This theory is discussed in (Earman, 1989, §3.5) and (Friedman, 1983, §III.5).
9Note that this simpler definition of Newtonian spacetime (which I learned from David Wallace) still
captures the relevant structure: the persistence of points of absolute space is represented by the
projection πX : T ×X → X (i.e. two points (t, x) and (t′, x′) of Newtonian spacetime correspond to
the same persisting points of absolute space just in case x = x′).

5



possible models are those which satisfy the same equations (1) (where ηab is the inverse
of the Minkowski metric definable from Newtonian spacetime).10 For this theory, the
external symmetries are still the Poincaré transformations (on Newtonian spacetime
this time), but the automorphisms of the base space are the Newton transformations (a
strict subgroup of the Poincaré transformations).11
It is widely held that in cases such as this, the fact that the external symmetry group

outstrips the automorphism group of the base space shows there to be something
deficient about the theory: that is, that this shows the theory to contain “surplus
structure”. Exactly how this “symmetry-to-reality” argument goes, and what kind of
response is appropriate, are matters of controversy. Since the details of that controversy
are not relevant to our purposes, I pass over them here.12

3. The Dynamical Approach

In a slogan, thedynamical approach to spacetime structureholds that (external) dynamical
symmetries are prior to spacetime structure.13 This slogan raises two immediate questions.
The first is what this slogan means. The second is what this slogan could possibly
mean, given the story laid out above. If the symmetries of the dynamics are prior to
the structure of spacetime, then that suggests that we must specify the dynamics before
specifying the spacetime. But that looks straightforwardly impossible. Without first
specifying a spacetime, how are we supposed to write down the dynamical equations
of the theory? For instance, the equations (1) contain terms such as ∇ or ηab. Without
commitment to a spacetime adequate to define those terms, what are they supposed to
refer to?14
The way out, however, is to recognise that there is an alternative way to be neutral

aboutwhat spacetime structure one is committed to. On the approachoutlined in section
2, one is neutral about spacetime structure by starting with a manifold, and building it
up from there. On thedynamical approach,wewill be neutral about spacetime structure
by starting with a coordinate system, and cutting down from there. This will presuppose

10Let δTab be the Euclidean metric on T , δXab be the Euclidean metric on X , and any vector ξa over T ×X
decompose as (ξaT , ξ

a
X). Then we may define ηab by ηabξaζb := δTabξ

a
T ζ

b
T − δXabξaXζbX .

11See Barrett (2015).
12For readers who are interested in these controversies, see Friedman (1983), Earman (1989), Saunders

(1993), Caulton (2015), Dewar (2017), as well as the papers in Brading and Castellani (2003) and
references therein.

13The primary text for the dynamical approach is Brown (2005); but see also Brown (2001), Brown and
Pooley (2006), Read et al. (2018), and Brown and Read (2018).

14Cf. Norton (2008).
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that the spacetime structure is some substructure of R4, but not which substructure.
(Note that these two strategies correspond, respectively, to Riemannian and Kleinian
ways of characterising geometrical structure.)15 Wallace (2017) provides an extended
defence of the use of coordinate-basedmethods in the context of spacetime theories; the
below is closely modelled on Wallace’s treatment.
For a spacetime theory given in coordinates, we take as given 4 independent variables

(t, x, y, z) and some number q of dependent variables.16 In addition, we specify transfor-
mation rules for the dependent variables, associating every diffeomorphism f : R4 → R4

with a smooth map f# : R4 × Rq → Rq. For example, one might specify that four
dependent variables v0, v1, v2 and v3 are to transform “as a (four-)vector”: that means
that a transformation xµ 7→ x̃µ of R4 is to be accompanied by the (R4-dependent) trans-
formation

vµ 7→ ∂x̃µ

∂xν
vν . (2)

Note that I use Greek letters (µ, ν, α, β, etc.) as non-abstract indices.
The transformation rules are there to encode the nature of the changes to the in-

dependent variables under coordinate changes, and hence to determine the geometric
character of the objects being described.17 This corresponds to thinking of such trans-
formations as “passive” transformations. But we also use the transformation rules to
do “active” transformations, by telling us how to move such objects around on the
manifold. Thus, given a transformation f : R4 → R4, any function φ : R4 → Rq can be
transformed into the pushforward f∗φ, defined (for any x ∈ R4) by

(f∗φ)(f(x)) = f#(x, φ(x)) . (3)

It is straightforward to show that, if the variables vµ transform as a vector (i.e. have (2)
as their transformation rule), then (3) is the standard definition for the pushforward of
a vector field.
We take the dynamics of the theory to be given by some set of differential equations

over the dependent variables (with respect to the independent variables); a model of
the theory is a solution to these equations. As before, an external transformation f is
an external symmetry if it preserves the dynamics: i.e., if for any function φ : R4 → Rq,
φ is a model (solution) if and only if f∗φ is a dynamically possible model.

15Norton (1999) gives a detailed account of how these strategies feature in the work of Klein and Riemann.
16For a broader discussion of symmetries in the context of coordinate-based theories, see Olver (1986).
17This corresponds to the older way of thinking about geometric objects, prior to the introduction of

natural bundles in Nĳenhuis (1972). For more on this tradition, see Schouten and Haantjes (1937) and
Nĳenhuis (1952); for more modern overviews, see (Anderson, 1967, chap. 1) and Pitts (2012).
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For example, consider the coordinate-based version of Maxwell electromagnetism.
This theory has ten independent variables: the six independent components of the
antisymmetricmatrixFµν , and the four components Jµ (whereGreek lower-case indices
such as µ, ν, α, β range from 0 to 3). The transformation rules are the following: a
transformation xµ 7→ x̃µ transforms Fµν to F̃µν and Jµ to J̃µ according to18

F̃µν =
∂xα

∂x̃µ
∂xβ

∂x̃ν
Fαβ (4a)

J̃µ =
∂x̃µ

∂xα
Jα (4b)

The dynamical equations for this theory are

∂[αFβγ] = 0 (5a)

ηαµηβν∂αFµν = Jβ (5b)

where ηµν is the inverse of the matrix of coefficients

ηµν =


1 if µ = ν = 0

0 if µ 6= ν

−1 otherwise

(6)

As with the coordinate-free version (1) of this theory, the (external) dynamical sym-
metries are the Poincaré transformations: in this context, we characterise the Poincaré
transformations as those transformations xµ 7→ x̃µ such that ∂x̃µ/∂xα is constant and
SO(3, 1)-valued, i.e. such that

∂x̃µ

∂xα
∂x̃ν

∂xβ
ηαβ = ηµν . (7)

To be clear, the fact that this is the symmetry group of the theory is not supposed to be
obvious from the mere statement of the theory’s equations: in general, working out the
symmetry group of some dynamical equations is a difficult and strenuous task.19

Now, note that we have identified the symmetries of this theory without explicitly

18Of course, these are just the expected transformation rules for a rank-(0, 2) tensor and a vector. But
the rules are not to be thought of as manifestations of the fact that we are representing (independently
defined) geometric objects in coordinates; rather, the rules are constitutive of those objects. This is why
I specify the rules explicitly.

19See (Brown, 2005, chap. 4) for some of the history of how the symmetry group of Maxwell’s equations
was determined.
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committing to a specific structure for spacetime. Thus, we can take the dynamical
approach to be a prescription for extracting spacetime content from a theory: namely,
that the spatiotemporal commitments of a theory are exactly those aspects of R4 which
are invariant under the dynamical symmetry group. Note that this is, in a certain sense,
more radical than the symmetry-to-reality inference. The proposal here is not merely
that there is something virtuous about theories in which the spacetime symmetries and
external symmetries are in tune (and something vicious about theories in which they
are not); rather, the proposal is that what it is for something to be a spacetime symmetry
is, in effect, for it to be an external symmetry—because what it is for something to be
spacetime structure is for it to be an invariant of R4 under external symmetries.20

Thus, for example, the theory of Maxwell electromagnetism (i.e. the differential
equations (5), supplemented by the appropriate transformation rules), is committed
to Minkowski spacetime: for Minkowski spacetime is exactly the structure of R4 in-
variant under Poincaré transformations.21 However, it can seem a little as though we
have obtained a reductio of the dynamical approach: surely it doesn’t follow just from
Maxwell’s equations that spacetime has a Minkowskian structure, rather than a New-
tonian (or Galilean) one? After all, the view that spacetime had a non-Minkowskian
structure certainly persisted after the acceptance of Maxwell’s equations—that is what
made Einstein’s postulation of special relativity such a profound scientific achievement!
Furthermore, this view led to concrete empirical predictions: predictions which were
refuted by (inter alia) the Michelson-Morley experiment, but need not have been. Surely
if Michelson and Morley had not got a null result, we would have learnt that spacetime
was not Minkowskian, the validity of Maxwell’s equations notwithstanding?

The answer is that, as per usual, whatwas empirically testedwere not the bare theories
themselves, but the conjunctions of those theories with certain auxiliary hypotheses. In
this example, the auxiliary hypotheses concerned the behaviour of rigid mechanical
objects. In particular, pre-relativistic physics assumed that if a rigid rod’s equilibrium
state when at rest with respect to the ether is such as to occupy a region of lengthL, then
its equilibrium state when in motion with respect to the ether is still to occupy a region
of length L. In other words, what was refuted by the Michelson-Morley experiment

20See also Myrvold (2017) and Acuña (2016) for further discussion and defence of the idea that the claim
“spacetime symmetries are dynamical symmetries” is analytic. AsMyrvold (§5) discusses, it is not clear
to what extent Brown (2005) should be interpreted as supporting this way of reading the dynamical
approach (although Brown and Read (2018) declare themselves sympathetic).

21The sense inwhichMinkowski spacetime is a substructure ofR4 is just that all the structure of the former
can be defined in terms of the structure of the latter: that is, one can define the Minkowski metric in R4

by ηµνξµζν := ξ0ζ0 − ξ1ζ1ξ2ζ2 − ξ3ζ3.
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was not merely electrodynamics set upon Newtonian spacetime,22 but that theory plus
a number of assumptions about how Newtonian spacetime bore on the mechanics of
rigid bodies. In the terms of the dynamical approach, this amounts to assuming that the
dynamics of rigid bodies are governed by dynamics exhibiting Galilean symmetry, not
Lorentz symmetry. As a consequence, the combined theory, including electromechanical
coupling, exhibited Newtonian symmetry (since the Newton group is the common
subgroup of the Lorentz and Galilei groups).23 This illustrates the sense in which, on
the dynamical approach, spacetime structure is associated with universality: the nature
of spacetime depends upon the totality of all dynamical interactions.
Finally, note that this approach to determining spacetime structure also puts the co-

variance of the dynamics in contact with relativity of motion. If we apply the dynamical
approach, then we will be led to a spacetime in which physically significant facts must
be invariant under the covariance group of the dynamics. Where that covariance group
includes time-dependent spatial transformations, then it follows that the only physi-
cally significant aspects of the motion of a body are those which are invariant under
such transformations. Thus, in the case of special-relativistic theories, we find that the
velocity of a body cannot be of absolute physical significance, since it is not invariant
under the Poincaré symmetries of the theory: in other words, we determine that the
theory obeys a principle of special relativity.24

4. General covariance

Let us now try applying this story to the case of General Relativity. One immediate
complication is that General Relativity allows for much more exotic possibilities for the
global structure of spacetime than do others—in particular, it allows that spacetime
may not be homeomorphic to R4. To sidestep this, let’s just do local General Relativity:
i.e. the theory concerned with general-relativistic spacetime structure on subregions of
spacetime, where those subregions are homeomorphic to R4. So, as per usual on the
dynamical approach, we takeR4 itself as our base space. We then takeGeneral Relativity
as a theory with 20 dynamical variables, expressed as the (independent) components
of the symmetric matrices gµν and Tµν , where gµν is non-degenerate and of signature

22Contra Friedman (1983), Earman (1989).
23Barrett (2015)
24For more discussion of the relationship between symmetries and relativity principles, see Brown and

Sypel (1995).
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(1, 3); their transformation rules are

g̃µν =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ (8a)

T̃µν =
∂xα

∂x̃µ
∂xβ

∂x̃ν
Tαβ (8b)

The dynamical equations are just the Einstein field equations,

Rµν −
1

2
Rgµν = 8πTµν (9)

where

Rαβ := 2∂[ρΓ
ρ
β]α + 2Γρλ[ρΓ

λ
β]α (10a)

R := gαβ(∂[γΓγβ]α + Γδα[βΓγγ]δ) (10b)

Γαβγ :=
1

2
gαµ(∂γgµβ + ∂βgµγ − ∂µgβγ) (10c)

with gµν being the inverse matrix to gµν .
We now note that the theory (9) is covariant under arbitrary smooth coordinate trans-

formations: that is, it is generally covariant (in at least one sense of that phrase). So, ap-
plying the reasoning above, we conclude that the spacetime structure for general relativ-
ity is the structure invariant under the group of all smooth coordinate transformations—
to wit, the manifold structure.25 It also follows that the relativity principle associated
to the theory is seemingly one of general relativity, insofar as no aspects of motion (save
for continuity and differentiability) are invariant under the theory’s covariance group:
so no such aspect of motion can be of absolute physical significance.
Correspondingly, no differences between solutions related by such a transformation

are of physical significance. In particular, this means that if (gµν , Tµν) and (g̃µν , T̃µν) are
a pair of solutions to (9) related by such a transformation that goes to the identity on
the boundary of R4,26 then they should be interpreted as representing the same state of
affairs—even if we stipulate that the same coordinate system is being used to interpret
both solutions. And this is, of course, precisely the solution to the hole argument as that
problem was faced by Einstein (to wit, in terms of coordinates rather than differential

25By “manifold structure”, I mean the structure of a differentiable manifold (i.e., a set equipped with a
compatible charts).

26The stipulation that the coordinate system go to the identity as we approach the boundary is necessary
becausewe are, after all, only treating some subregion of spacetime. Formore discussion of the subtleties
here, see Belot (2017).
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geometry).27
But, the happy resolution of the hole argument notwithstanding, this is still a prob-

lematic case for the story told in §3.28 This is so for two (interrelated) reasons. First,
there is very good reason to think that the spacetime structure of General Relativity is
not captured merely by the manifold structure, but rather by the metric gab: it is this
structure, after all, that has chronometric significance (i.e., which is associated most
directly with the behaviour of rods and clocks). Putting the point in terms of mo-
tion rather than spacetime structure, the problem is that (as many commentators since
Einstein have pointed out) General Relativity does not enact any kind of principle of
general relativity of motion, given that the theory distinguishes between inertial and
non-inertial trajectories.29
Second, a wide variety of theories can be stated in a generally covariant form: in fact,

for almost all the spacetime theories we know of, there is an equivalent theory which
is generally covariant.30 For example, the electromagnetic theory considered earlier can
be expressed in generally covariant form as follows:

∇[αFβγ] = 0 (11a)

gαµgβν∇αFµν = Jβ (11b)

Rαβγδ = 0 (11c)

But this threatens to undermine the possibility of §3’s ontological reduction (of space-
time to dynamics): how can the dynamical symmetry group of a theory be a guide to
spacetime structure, if that group can be made arbitrarily large? Andwemost naturally
regard a generally covariant formulation of a theory as being just that—a different for-
mulation of the same theory. But that suggests that the spatiotemporal commitments
of a theory are not invariant under reformulation, i.e., that the theory itself (as opposed
to its various formulations) has no spatiotemporal commitments per se.31

27See Norton (1989) for further discussion.
28This need not be a criticism of the dynamical approach per se, insofar as the dynamical approach could

perhaps be adapted to generally covariant theories (by, for instance, dropping the claim of ontological
reduction): see (Brown, 2005, chap. 5) and (Knox, 2017, §3).(I thank an anonymous referee and James
Read for pressing this point.)

29cf. Norton (1999).
30This observation, of course, goes back to Kretschmann (1917).
31Alternatively, one could argue that the theory’s spatiotemporal commitments should be the intersection

of the commitments of its various formulations. But it’s not clear to me what the motivation for this
move would be, beyond a vague appeal to supervaluationist semantics; and in any event, the effect
of such a prescription will be to claim that any theory with a generally covariant formulation is—at
most—committed to spacetime being a manifold.
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5. Internal Lorentz transformations

The resolution of this problem, I suggest, lies in the following straightforward observa-
tion: that making a theory generally covariant involves treating spacetime structures as
dynamical fields. All I mean by this is that in the generally covariant version, we in-
troduce extra dependent variables to codify (what we would previously have identified
as) spacetime structure, and add new dynamical equations to ensure that this structure
behaves in the appropriate fashion. (So, for instance, I don’t mean that the spacetime
structure is “dynamical” in the Anderson-Friedman sense of varying from one model
to the next.) In the generally covariant electromagnetic theory (11), for example, our
new dynamical variables are the components gµν , and the new dynamical equation is
the condition (11c).
But this means that it would be extraordinary to expect information about the space-

time structure to be encoded in the external symmetries of the theory. If spacetime
is now being represented as a dynamical field, then we should expect the relevant
symmetries to be internal symmetries. So first, let us briefly review what an internal
symmetry is. As mentioned in section 2, in the context of the fibre-bundle formalism an
internal transformation is a vertical bundle automorphism. In the context of coordinate-
based theories of the kind discussed in section 3, an internal transformation is a map
χ : R4 → (Rq → Rq): specifically, we associate a diffeomorphism Rq → Rq to every
point of R4. Either kind of transformation induces a transformation on dynamical data
(i.e. on sections and connections, or on functions from R4 to Rq); and as before, an
internal transformation is a symmetry just in case it maps dynamically possible models
to dynamically possible models.
This suggests a way in which we might be able to maintain the dynamical approach

even for generally covariant theories: rather than (analytically) identifying the space-
time symmetries with the external symmetries, we identify them instead with (some
appropriate subset of) the internal symmetries.32 As a first pass at implementing this
idea, suppose that we consider linear transformations of gαβ : specifically, those of the
form

gαβ 7→Mµ
αM

ν
β gµν (12)

whereMµ
α is a matrix whose components are functions ofR4. Now, gαβ (at any point in

the base space) is a real, nondegenerate symmetricmatrix (equivalently, a nondegenerate
symmetric bilinear form onR4). Thus, there exists a group of matrices of the formMµ

α ,

32How to pick out the appropriate subset will be addressed in section 6.
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such that for any matrix in the group,Mµ
αMν

β gµν = gαβ :33 this group will, as a group,
be the Lorentz group O(1, 3).34 So we could consider transformations whose action
at each point is given by such a matrix, which evidently will preserve solutions to
equations in which gαβ features (assuming we don’t change anything else).
However, this is a little delicate. For one thing, wemight be perturbed by the fact that

“applying” such a transformation is, in some sense, a misnomer: all that we have in fact
done is left every solution well alone. More seriously, though, we need to spell out the
sense in which a transformation like this “preserves the dynamics”. The problem is that
that means reassuring ourselves that we are applying the same transformation to every
solution, and seeing if that transformation maps solutions to solutions. Now, the latter
part is fine, since every solution (and non-solution) is invariant under this transforma-
tion. However, the above transformation is not solution-independent: the prescription
was to find, for each solution (gαβ, . . . ) a specific transformation Mµ

α such that gαβ is
preserved. But that kind of fine-tuning is against the spirit of a dynamical symmetry;
to assess whether a certain transformation preserves the dynamics, we need to be able
to apply one and the same transformation to different models of the dynamics.35 More-
over, note that this second problem isn’t that we somehow under-specified things: in
general, a transformation which preserves gαβ on one solution will not preserve it on
another.
However,we cando things slightlydifferently, by reformulatingour theory somewhat.

Consider again a specific gαβ . At any given point xµ ∈ R4, Sylvester’s law of inertia tells
us that we can find a matrix eΘ

α , where 0 ≤ Θ ≤ 3, such that

gαβ = eΘ
α e

Ω
β ηΘΩ (13)

where ηΘΩ is the diagonal Minkowski matrix we previously labelled as ηµν (in (6)).
The reason to use uppercase Greek letters (e.g. Θ,Ω) as indices arises from the trans-
formation law for eΘ

α . Clearly, we want a transformation law that will preserve the

33Trivially, of course, whatever gαβ were this claim would be true for the group {δαβ }. But the existence
of a nontrivial group of transformation matrices, under which gαβ is invariant, reflects important facts
about gαβ .

34I say “as a group” because thematrices themselveswill not be the “Lorentzmatrices”Λµν one sometimes
meets in introductions to special relativity: those are the real-valued matrices which preserve the
coefficients ηµν , i.e., which preserve the diagonalised form of the metric. But as discussed below, there
are transformations which transform between ηµν and gµν ; these same transformations will transform
between Λµν andMµ

ν , constituting a group isomorphism between the two sets of matrices.
35Without a proviso of this sort, we would end up counting arbitrary permutations of the space of models

as dynamical symmetries (cf. Belot (2013)’s “Fruitless Definition” of symmetry).
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transformation law (8a) for themetric gαβ . Since ηΘΩ is a fixedmatrix,36 and so invariant
under coordinate transformations, the transformation rule for eΘ

α under the coordinate
transformation xµ 7→ x̃µ must be

ẽΘ
α =

∂xµ

∂x̃α
eΘ
µ (14)

The use of an uppercase Greek index also enables us to stipulate—without risk of
ambiguity—that the inverse matrix to eΘ

α is eαΘ (so eΘ
α e

α
Ω = δΘ

Ω , and eαΘeΘ
β = δαβ ).

We can now interpret the generally covariant electromagnetic theory (11) as equations
for the dynamical variables eΘ

α , Fµν and Jα. This theory has the following (internal)
dynamical symmetry:

eΘ
α 7→ ΛΘ

Ωe
Ω
α (15)

where ΛΘ
Ω is an SO(3, 1)-valued function of R4: that is, it is a map R4 → R16 such that

at any point p ∈ R4,
ΛΘ

Ω(p)ΛΞ
Υ(p)ηΘΞ = ηΩΥ (16)

The reason that (15) is a symmetry of (11) is straightforward: the metric gαβ is invariant
under the transformation (15) (and as a result, so are the structures derived from it
such as ∇). Of course, it also follows that the other theories we have formulated in
terms of a Lorentzian metric (and associated connection), such as (9), will admit the
transformation (15) as a symmetry.

Let us now askwhat kind of surplus structure the symmetries of these theories reveal.
First, we should take a moment to analyse the implications of the general covariance
of these theories: what does that imply about the geometric structures being employed
here? As is well-known, gαβ can be interpreted as the components of a metric tensor,
and Tαβ as the components of a tensor. But it is worth saying something about the fields
eΘ
α . Given the coordinate transformation (14), we should interpret each eΘ

α (for each
value of Θ, i.e. for Θ = 0, 1, 2, or 3) as representing a covector field eΘ

a ; and we should
interpret each eαΘ as representing a vector field eaΘ.
We then turn to the internal symmetry. The internal symmetry maps a quadruple

of covector fields (e0
a, e

1
a, e

2
a, e

3
a) into a quadruple of covector fields (ẽ0

a, ẽ
1
a, ẽ

2
a, ẽ

3
a). To

give a geometrical interpretation that incorporates this symmetry, it’s easiest to think
about the effect of the transformation when we imagine “feeding” the covector fields an
arbitrary vector field Xa: the effect of the transformation is then a map

eΞ
aX

a 7→ ΛΞ
Θe

Θ
aX

a (17)

36It is a “confined object” in the sense of Pitts (2006).
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At eachpoint p, this is exactly the actionof a linear transformation in avector spacewhich
we can callVp: that is, we aremotivated to interpret eΞ

aX
a|p as the components of a vector

eIaX
a|p ∈ Vp (switching fromnon-abstract uppercaseGreek indices to abstract uppercase

Roman indices).37 Moreover, since the symmetries are all Lorentz transformations, Vp
is equipped with a Minkowski inner product ηIJ—i.e., it is a Minkowski vector space.
In turn, this implies interpreting the set of covectors eΞ

a |p as the components of a map
from TpM to Vp. And finally, we interpret the set of fields eΞ

a as the components of a
bundle section eIa: namely, a section of the bundle T ∗M⊗E, whereE is the (Minkowski)
vector bundle with standard fibre V . By analogous reasoning, we interpret eaΘ as the
components of a section eaI of TM ⊗ E∗.

From this perspective, then, General Relativity or generally covariant Maxwell elec-
tromagnetism are theories whose spacetime structure is given by a section of T ∗M ⊗E:
using such a section eIa, one can define a metric on the base space gab := ηIJe

I
ae
J
b , define

the Levi-Civita connection from that, and then proceed as normal. Thus, what we have
effectively done here is to recover a (well-known) motivation for the so-called “tetrad”
formulation of a relativistic theory: it lets us capture the Lorentz symmetry of generally-
covariant relativistic theories.38 Although I don’t have the space to discuss this here,
it is straightforward to extend this kind of analysis to pre-relativistic theories, so as to
capture their Galilei symmetry in an analogous tetrad formalism.39

However, there’s a worry that this is just giving with the one hand and taking away
with the other. We’ve picked up this symmetry because of our decision to express the
metric field gαβ in termsof eΘ

α : there is anunderdetermination inwhich eΘ
α expresses gαβ ,

an underdetermination which is exactly tracked by (15). Haven’t we just manufactured a
gauge symmetry?
In particular, consider an arbitrary fibre bundle—say, the U(1) bundle discussed in

§2. We could, of course, introduce a copy of this bundle, with a “monad field” linking
the two (i.e., playing the same role that the tetrad field plays in linking the tangent
bundle with E). If we then take the unitary inner product to reside on the fibres of the
new bundle, with such an inner product being induced on the fibres of the old bundle
via the monad field, then there will (of course) be an underdetermination of the latter
inner product by the former: if I apply a U(1) transformation to the monad field, then

37My use of uppercase indices for internal vector spaces follows Weatherall (2016).
38Formore on the tetrad formalism, see Rovelli (2004) andWallace (2015). Read et al. (2018) offer an alterna-

tive analysis of how to get at the Lorentz symmetry of a generally-covariant theory, by seeking to show
that minimally coupled dynamical equations will be invariant under (only) Poincaré transformations.
However, they are using a somewhat different sense of “invariant”: see Appendix A.

39For discussion of and references on the tetrad formalism applied to Newton-Cartan theory, see Read and
Teh (2018).
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the induced inner product stays numerically identical. But it is hard to believe that we
have really gained any new insight through this rigmarole; what is different about the
analysis above?
The difference, put simply, is that the tetrad field is not merely linking one fibre

bundle with another: it is linking a fibre bundle with the tangent bundle.40 This means
that it is a necessary step in analysing spacetime symmetries as internal symmetries
(unlike the case of the U(1) gauge theory, where the original bundle was perfectly apt
for internal transformations). To explain this fully, we need to say a little more about
why the tangent bundle is not just any old bundle. There are two perspectives from
which we can make the point: the intrinsic geometric perspective utilised in section 2,
and the coordinate-based perspective used in section 3.
From the geometric perspective, the difference is that the tangent space (and the

tensor bundle more generally) enters into special relationships with material on the
manifold, and those relationships will not be preserved by “internal” transformations
of the tangent bundle. For example, if we apply such a transformation to a vector field,
then the integral curves of the new vector field (if they exist) will not be the same as the
old. Similarly, if a one-form field is the exterior derivative of a function f , its transform
will (in general) not be the exterior derivative of f : indeed, its transformed version may
well not be the exterior derivative of any function whatsoever. For example, on the
punctured plane R2 \ {0}, we could transform the one-form dar into the one-form daθ;
and the latter, its formal name notwithstanding, is not an exact one-form.
From the coordinate-based perspective, the difference is that our freedom to choose

internal coordinates is independent of our freedom to choose external coordinates.
Sure, we could (in principle) choose coordinates such that the inner product on our
U(1) gauge bundle has to be represented by a set of coefficients, rather than being
encoded by the natural inner product on C—but why would we bother? (Note that
there is an advantage to being coordinate-free, but essentially no advantage to being
coordinate-general, in the context of internal structure.)

By contrast, our choice of tangent coordinates is uniquely fixed by our choice of
external coordinates. That means that we are far more constrained in whether we can
find tangent coordinates with nice properties, or rather, in whether we can find tangent
coordinateswith nice properties over any finite region. Riemann normal coordinates are
important because they yield tangent coordinates with nice properties at a point—but in
general, that’s the best we can do. By contrast, internal coordinates can be chosen so as
to be nice over neighbourhoods. (Note that even internal coordinates can’t be chosen so

40Cf. Weatherall (2016).
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as to be nice globally, in general: e.g. one can’t give global coordinates for the Möbius
strip. But they can be locally nice: this is essentially what is expressed by the condition
of local triviality on fibre bundles.)
Either of these perspectives draws out the difference between our tetrad field and the

monad field. The monad field sets up a pointwise isomorphism between two internal
vector bundles; this means that it doesn’t give us any new or helpful resources for
analysing the structure of that bundle, since we were already able to apply vertical bun-
dle automorphisms to theU(1) bundle. The tetrad field, by contrast, sets up a pointwise
isomorphism between the tangent bundle and an internal vector bundle (the bundle we
calledE earlier). One cannot apply (nontrivial) vertical bundle automorphisms directly
to the tangent bundle, on pain of disrupting the relationships between vector fields
(sections of the tangent bundle) and their integral curves; one cannot change tangent
coordinates without changes to the external coordinates. However, we can apply verti-
cal bundle automorphisms to the auxiliary bundle E (provided we make appropriate
compensating changes to eIa, so that those changes do not “feed through” into the tan-
gent bundle); and we can always use internal coordinates for E in which its Lorentzian
inner product is expressed by the fixed matrix ηΘΩ, even as we change the external
coordinates (provided we make appropriate compensating changes to eΘ

µ , so that the
external coordinate changes do not “feed through” to the coordinates on the auxiliary
bundle).
The challenge with which we began this section ran as follows: according to the

dynamical approach, the symmetries of the dynamics should reveal the structure of
spacetime; yet this idea seemed to trivialise in generally covariant theories, since their
external symmetry group is the full diffeomorphism group. We have now seen that if
we turn our attention to internal symmetries, we can “rediscover” a nontrivial symmetry
structure which is naturally taken as expressing the spacetime structure. In the non-
generally-covariant electromagnetic theory of §2, it was the symmetries captured by (7)
which picked out the spacetime commitments of the theory; in the generally-covariant
electromagnetic theory (11), it is the symmetries captured by (15) which do so. Hence,
there is good reason for advocates of the dynamical approach to broaden their gaze
so that it includes internal symmetries as much as external symmetries—and, in the
context of generally covariant theories, to think that spacetime structure is expressed by
the former rather than the latter.
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6. Identifying spacetime structure

However, there is still one issue that needs addressing. Suppose that we carry through
the above analysis. At the end, we are left with some fields, residing on a four-
dimensionalmanifold. Some of these fields (such as gab) are spatiotemporal in character;
some of them (such as Fab) are not. Whatmakes it the case that gab is a part of the “struc-
ture of spacetime”, in a way that Fab is not? Previously, we could have said: because the
spacetime structure is whatever substructure of R4 is invariant under external symme-
tries; but now that we are taking spacetime structure to be a species of internal structure,
this answer will no longer do. Having severed the link between external symmetries
and spacetime structure, we must find some other way to determine how spacetime
structure is distinguished from other forms of physical structure: equivalently, given
the story we have told, we must determine how the spacetime symmetries are to be
identified within the broader class of internal symmetries to which they now belong.
I don’t have a definitive answer to this question; it is too large a topic to be set-

tled here. All I’ll do here is sketch a potential answer, based on Knox’s “spacetime
functionalism”—just to show that the advocate of the dynamical approach does have
resources to draw upon in answering it. The spacetime functionalist holds that a certain
kind of physical structure is spacetime in virtue of playing the role of spacetime. The
best-known candidate for spacetime’s functional role is Knox’s view, that “the spacetime
role is played by whatever defines a structure of local inertial frames”.41 The idea here
is that the characteristic spatiotemporality of the metric arises via the role of the Strong
Equivalence Principle, formulated by Brown as follows:

There exist in the neighbourhood of each event preferred coordinates, called
locally inertial at that event. For each fundamental non-gravitational inter-
action, to the extent that tidal gravitational effects can be ignored, the laws
governing the interaction find their simplest form in these coordinates. This
is their special relativistic form, independent of spacetime location.42

By way of reminder, locally inertial coordinates (also referred to as Riemann normal
coordinates) at p are coordinates such that in those coordinates, (i) gµν = ηµν and (ii)
Γρµν = 0.43 Note that the caveat “insofar as tidal forces can be ignored” is important:
41Knox (2017). Note that as Robertson (2018) observes, almost any theoretical quantity could be taken to be

functionally defined by its total role in that specific theory; the hard (and interesting) project is finding
smaller functional roles that are present in distinct theories, and so let us identify physical quantities
across theories.

42(Brown, 2005, p. 169)
43The existence of such coordinates is related to the considerations raised in section 5: if ξµ are Riemann
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as Read et al. (2018) discuss, laws containing curvature terms will not reduce to the
special-relativistic laws in locally inertial coordinates (since derivatives of the metric
tensor of order higher than one will, in general, not vanish in such coordinates).
However, this proposal deserves unpacking a little more. What is it about these co-

ordinates that makes the nomenclature “locally inertial” appropriate? It that it cannot
merely be the fact that they are Riemann normal coordinates, since that will not gen-
eralise to other spacetime contexts (in a pre-relativistic spacetime, for instance, where
spacetime structure is not encoded in a metric tensor). More subtly, it cannot just be
that these are coordinates in which the connection coefficients vanish and the spacetime
tensors take a diagonal form; although this would cover pre-relativistic spacetimes, it
presupposes that we can identify which terms in our field equations are to be inter-
preted as “connection coefficients”, which is just the question of how to distinguish
spatiotemporal from non-spatiotemporal structure.44
Fortunately, Knox has provided an analysis or definition of what inertial frames are:45

1. Inertial frames are frames with respect to which force free bodies move
with constant velocities.

2. The laws of physics take the same form (a particularly simple one) in
all inertial frames.

3. All bodies and physical laws pick out the same equivalence class of
inertial frames (universality).

As Knox discusses, the application of this definition to general relativity is a delicate
matter (the above is intended, in the first instance, as a definition of inertial frames
in Newtonian and special-relativistic theories). But it fits well with the analysis given
above, since it helps us answer the question: why is the tetrad field necessary? The
tetrad field serves (among other things) to establish a pointwise isomorphism between
the Minkowski vector bundle and the tangent bundle. (When it is being thought of
in this form, one often refers to the tetrad field as a “solder form”, as it “solders” the

normal coordinates for p, and xµ are our original coordinates, then the matrix given by the value at
p of ∂ξµ/∂xα will diagonalise the metric in the manner of equation (13). But the presence of inertial
coordinates is stronger than the possibility of such a diagonalisation, for two reasons: (a) diagonalising
amounts to a choice of basis at each point, with no requirement that it be a coordinate (or “holonomic”)
basis; (b) inertial coordinates have the further property that the connection coefficients vanish.

44In the context of Newtonian gravitation, for instance, Knox (2014) argues that the local inertial frames are
the free-fall frames, and hence that the spacetime structure is encoded in the curved Newton-Cartan
connection rather than the flat Galilean connection: in other words, that the connection coefficients are
not the Galilean coefficients Γρµν , but rather the Newton-Cartan coefficients Γρµν + tµνh

ρσ∇σφ (where φ
is the gravitational field).

45(Knox, 2013, p. 348)
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Minkowski vector bundle to the tangent bundle.) But why is this needed? What would
be insufficient about a theory of a connection on a Minkowski vector bundle? I claim
that a part of the answer (at least) lies in the fact that such a theory would be unable to
draw any distinction between natural and unnatural motion: as with any other theory
of a connection on a fibre bundle, a connection on a Minkowski vector bundle does not
pick out certain curves as privileged geodesics.
Ironically, this means that in most of the theories above, we do not immediately

have the resources to identify spacetime structure—since most of these are merely field
theories, having only field equations rather than equations of motion. On this account,
it is only when they are supplemented by equations of motion (Newton’s Second Law,
the geodesic equation, force laws, etc.) that we get an understanding of how the theory
constrains the motion of bodies, and hence of what structures are playing the spacetime
role.46

This is not the only approach one could take to identifying spacetime structure, of
course. For example, Read et al. (2018) focus on the metric’s chronogeometric role,
and argue that this is grounded in the local coincidence of the dynamical and metrical
symmetries (although see Appendix A for some concerns about their analysis). Or, one
could look to historical approaches to the question “what is space?” for inspiration: for
instance, the work of Helmholtz or Weyl on the so-called Problem of Space (Raumprob-
lem).47 Even within spacetime functionalism, one need not subscribe to Knox’s specific
claim that the functional role of spacetime is the fact that it characterises inertial frames.48
All I have sought to show here is that there exists at least one way of determining what
represents spacetime that is compatible with the argument of §5.

7. Conclusion

To summarise, the dialectic of this paper runs as follows:

• On a standard way of thinking about external symmetries—as automorphisms of
bundles—the dynamical approach’s central slogan (that dynamical symmetries

46That said, there are ways in which one can see the role of spacetime structure in the field equations
as being what gives rise to such equations of motion (Weatherall, 2017): one can use a variational
analysis to ground a certain kind of conservation condition, and then employ that condition to prove an
appropriate equation of motion. The best-known example of this kind of construction is the geodesic
theorem in GR, but one can similarly prove a geodesic theorem in Newtonian theories (Weatherall,
2011), and the Lorentz force law in electromagnetism (Geroch and Weatherall, 2017).

47von Helmholtz (1896), Weyl (1923); for contemporary discussion, see Bernard (2018), Scholz (2016), or
Eisenthal (2015).

48Lam and Wüthrich (2018)
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are prior to spacetime symmetries) appears not so much false as incoherent.

• We can resolve this by (followingWallace (2017)) workingwith a coordinate-based
theory in the first instance, and thinking of the dynamical approach as telling us
which bits of the mathematics are merely artefacts of the coordinates.

• But even this understanding of the dynamical approach turns out to founder on
generally covariant theories: it appears to recommend that any such theory is
committed merely to spacetime having the structure of a manifold.

• This problem can be resolved by treating Lorentz symmetry—and spacetime sym-
metrymoregenerally—asa species of internal symmetry, associated to anauxiliary
vector bundle (soldered to the tangent bundle by the tetrad field).

• Finally, the question of how spacetime structure is to be distinguished from other
forms of internal structure is (or at least, could be) answered byKnoxian spacetime
functionalism.

None of this is to claim that there might not be other ways of understanding the dynam-
ical approach, or of carrying out elements of what I’ve canvassed here. In particular,
my treatment of the last point has been very programmatic; I hope to discuss this issue
more fully in future work.

8. Acknowledgments

I’m very grateful to the participants in the conference “Thinking About Space and
Time” (University of Bern) for their comments and questions, and to James Read and
two anonymous referees for comments on earlier drafts.

A. Covariance, invariance, and transformations

(Read et al., 2018, Appendix A) seek to show that “minimally coupled dynamical equa-
tions in GR manifest local Poincaré symmetry, when written in normal coordinates at
any p ∈M .” Here, I critically review their proof.
Read et al. begin by assuming that any minimally coupled dynamical equation in GR

is of the form
O1 +O2 + · · ·+Om = 0 (18)

where each Oi is either:
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• a tensor;

• a partial derivative of a tensor; or

• a partial derivative of a connection coefficient.

The reason to exclude (undifferentiated) connection coefficients—according to Read
et al.—is that we are assuming the equation (18) is written in normal coordinates, in
which (at the point p under consideration) connection coefficients vanish. However, this
already risks introducing confusion. There is, I claim, a significant difference between an
equation involving a partial derivative, and an equation involving a covariant derivative
whose connection coefficients happen to be zero, even though the formal expression of these
two equations will be the same. Specifically, two such equations will involve different
transformation rules, and hence will have different invariance properties.
To see this, consider the two equations

∇µJν = 0 (19)

and
∂µJ

ν = 0 (20)

and suppose that we are in a flat space to which our coordinates are adapted, such that
∇µJν = ∂µJ

ν (since Γρµν = 0). It follows that the two equations pick out exactly the
same class of solutions. However, if we apply a coordinate transformation

xµ 7→ x̃µ (21)

then we transform∇µJν as a rank-(1, 1) tensor, but transform ∂µJ
ν as the partial deriva-

tive of a components of a vector. This means that our two equations are transformed
into

∂x̃α

∂xµ
∂xν

∂x̃β
∇̃αJ̃β = 0 (22)

and
∂x̃α

∂xµ
∂̃α

(
∂xν

∂x̃β
J̃β
)

= 0 (23)

respectively. The first of these is equivalent to ∇̃αJ̃β = 0 (in the sense of having the same
solutions), and so equation (19) is invariant under the coordinate transformation; but
the second is not equivalent to ∂̃αJ̃β = 0, and so equation (20) is not invariant under the
coordinate transformation. Another way of seeing what’s going on here is to observe
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that equation (19) is more fully expressed as

∂µJ
ν + Γνµρ = 0 (24)

and although Γνµρ takes the value zero, its transformation rulemeans that the coordinate
transformation (21) will (in general) transform it away from zero—in just such a way,
of course, as to cancel out the extra terms arising from the transformation of ∂µJν .
Equation (20), on the other hand, has no connection coefficients figuring at all (whether
zero-valued or not); so such coefficients cannot step out from the shadows to guarantee
invariance, in the way they do for equation (19).
What thismeans is thatwe should include connection coefficients on the list of possible

ingredients for our equation: although such coefficients might be zero in the coordinate
system we start with, if we are assessing which coordinate transformations preserve
the form of the equations, we need to check that they will preserve the vanishing
of those connection coefficients! Fortunately, adding them to the list of ingredients
doesn’t make a significant difference to Read et al.’s next observation: that for affine
coordinate transformations, all the ingredients transform tensorially. Recall that an
affine coordinate transformation is a transformation of the form

xµ 7→ xµ = Mµ
ν x

ν + aµ , (25)

whereMµ
ν and aµ are constant. Note that

∂xµ

∂xν
= Mµ

ν (26)

and
∂xµ

∂xν
= M µ

ν (27)

where M µ
ν is the inverse to Mµ

ν (i.e. is the matrix such that Mα
µM

µ
β = δαβ ). As

is well-known, connection coefficients transform tensorially under affine coordinate
transformations (since thenon-tensorial part of the transformation rule features a second
partial derivative). In the interests of space, I do not reproduce Read et al.’s proof that
partial derivatives of tensors or partial derivatives of connection coefficients transform
tensorially under affine transformations.
However, they then proceed to say

We have found that each of the Oi featuring in any minimally coupled dy-
namical equation in GR, written in normal coordinates at a point p ∈ M , is
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covariant—i.e., transforms tensorially—under affine coordinate transforma-
tions. However, wehave yet to show that all such equations are invariant—i.e.
take the same form—under affine coordinate transformations. In fact, this
is in general not the case.

Prima facie, this claim is somewhat surprising. For consider again the expression (18).
In order for the left-hand-side to be well-formed, each Oi must have the same index
structure: i.e., they must have the same free covariant and contravariant indices (where
a “free index” is one that has not been contracted with another index). But if two terms
have the same index structure, then when they are transformed tensorially, they will
pick up the same partial derivative terms; owing to the linearity of tensor calculus these
terms can then be uniformly multiplied away, as we did in observing that equation (22)
is equivalent to ∇̃αJ̃β = 0. And note that the presence of bound indices (those which
have been contracted) doesn’t make any difference: if we have an expression of the form

T ...µ......µ... (28)

then applying the tensorial transformation rule yields

Mµ
αM

β
µ T̃ ...α......β... = δβαT̃

...α...
...β... = T̃ ...µ......µ... (29)

and so such indices “cancel out”.
Read et al. argue that this doesn’t hold, in general, “due to the potential contraction

of indices in some terms with respect to the metric” (p. 11). As an example, they give
(in my notation)

∂νF
µν = Jµ (30)

They argue that the affine transformation (25) transforms this (again, usingmy notation)
into

Mµ
αM

ν
βM

γ
ν ∂γF

αβ
= Mµ

αM
ν
βM

σ
γ ηνσ∂

γ
F
αβ

= Mµ
αJ

α (31)

and that this latter equation is only equivalent to (30) ifMν
βM

σ
γ ηνσ = ηαβ ; i.e., ifMµ

ν

is a Lorentz transformation (and hence, (25) a Poincaré transformation).
Now, this last assertion is correct in the sense that the right-hand equality in (31) is,

indeed, only equivalent to (30) if Mµ
ν is a Lorentz transformation. But the left-hand

equality also only holds ifMµ
ν is a Lorentz transformation: that’s the only way to use η

to raise or lower indices and convertMµ
ν intoM ν

µ .49 And if we look at the leftmost term

49Assuming that this is how the left-hand equality is meant to be justified.
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in equation (31), we observe that—just as our general discussion of contracted indices
would lead us to expect—we have a matrix term Mν

β and its inverse M γ
ν ; cancelling

these out, we see that (30) transforms into

Mµ
α∂βF

αβ
= Mµ

αJ
α (32)

and (32) is equivalent to (30). Thus, the supposed counterexample is invariant under
arbitrary affine transformations (not just Poincaré transformations).
Indeed, it seems to me that we have good grounds to expect equations formed from

minimal coupling to be invariant under arbitrary coordinate transformations (not just
affine transformations)—i.e. to be generally covariant. The reason why the above proof
was limited to affine transformations is that, in general, partial derivatives and con-
nection coefficients will transform non-tensorially, and hence we will get “extra” terms
showing up in the transformed equation—terms which will prevent the transformed
equation from being equivalent to the original. But if partial derivatives and connection
coefficients show up together, then it may be that the extra terms from the one cancel out
the extra terms from the other, and we do get invariance under (non-affine) coordinate
transformations.
The condition under which such cancellations happen is, of course, that the partial

derivatives and connection coefficients in the equation are such as to form a covariant
derivative—indeed, the whole point of covariant differentiation is that the result of
applying a covariant derivative to a tensor is, itself, another tensor (as reflected in the
transformation (22)). But now consider Read et al.’s definition of minimal coupling
(pp. 2–3):

Minimally coupled dynamical equations for matter fields in GR are con-
structed from dynamical equations for matter fields featuring coupling to a
fixed Minkowski metric field ηab and no curvature terms, by replacing all
instances of ηab with a generic Lorentzian metric field gab, and replacing all
instances of the torsion-free derivative operator compatible with ηab with
the torsion-free derivative operator compatible with gab.

Thus, on the face of it, one would expect a minimally coupled dynamical equation to
consist of tensors and covariant derivatives of tensors (with respect to the torsion-free
derivative operator compatible with gab)—that is, tensors and tensors. And clearly, if
all the terms Oi in (18) are tensors (with the same index structure), then (18) will be
invariant under arbitrary coordinate transformations.
The above, I claim, is the standard argument for the claim that generally covariant

26



equations—including those obtained throughminimal coupling—to be invariant under
arbitrary (smooth) coordinate transformations. However, there is adifferent analysis one
can give. 50 Suppose that our dynamical equation features themetric; very schematically,
we give it the form

· · · gµν · · · = 0 (33)

Now, if we have written this equation in normal coordinates, then gµν = ηµν , where
ηµν denotes the matrix of coefficients (6). What is it for this expression to “retain the
same form” under a coordinate transformation, from xµ to x̃µ? First answer: it is for it
to be (or to be equivalent to) an equation with the same syntactic structure, albeit with
tildes over everything; schematically, the form is preserved if (33) is transformed into
something (equivalent to)

·̃ · ·g̃µν ·̃ · · = 0 (34)

(A non-schematic example is given by the comparison of (30) with (32).) This first
answer is the answer that the argument above assumed, and so this is the sense in
which its conclusion holds.
Second answer: it is for it to have the same syntactic structure, and for certain simplifying

identities to continue to hold. In the case at hand, this will mean that the form is preserved
if (33) is transformed into something equivalent to (34), and—in addition—g̃µν = ηµν . In
defence of this answer, one can argue that part of what makes the normal-coordinate
form the “simplest” form is that writing the equation out in components would be
considerably simpler if the metric diagonalises than if it does not; and it is in this sense
that a transformation away from normal coordinates makes the equation into one with
a less simple form, and so ipso facto one with a different form.51
Evidently, if we require this second (stronger) sense of invariance, then any equation

featuring the metric will be invariant only under coordinate transformations which are
Poincaré in form, i.e. where

∂x̃α

∂xµ
∂x̃β

∂xν
ηαβ = ηµν , (35)

since it is only these equations which preserve the metric’s being diagonal.
Thus, the question becomes which of these two senses is more appropriate. The

problemwith the latter sense is that it risks overgenerating, and will lead us to underes-
timate the size of a theory’s symmetry group. In the context of electromagnetic theory
on curved spacetime, for example, there will exist at any point Riemann normal coordi-

50The remarks below draw heavily on correspondence with James Read.
51This paraphrases an argument put to me by Read (in correspondence).
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nates with respect to which Jµ = (ρ, 0, 0, 0). Adopting those coordinates will simplify
the dynamical equations, just as the adoption of Riemann normal coordinates does; and
such equations will be preserved only under spatial translations and rotations. This
suggests that on the stronger sense of invariance just canvassed, the equations of elec-
tromagnetism turn out to be invariant only under theNewton group of transformations.
This seems to me a reason to prefer the former, weaker, notion of invariance.
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