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Abstract

It has been debated whether the wave function of the universe is
ontic or nomological in a quantum theory in which the wave function
is real, such as Bohm’s theory. In this paper, I argue that a natural
way to explain the result of a protective measurement is to admit
that the wave function is ontic, representing a concrete physical entity.
The ontic view of the wave function satisfies the principle of locality
for product states, as well as the causal closure principle, while the
nomological view of the wave function violates the principle of locality
for product states, and it can hardly satisfy the causal closure principle
either.

In any case, the most hidden of all variables, in the pilot wave picture,
is the wavefunction, which manifests itself to us only by its influence
on the complementary variables. (Bell, 1987)

no experiment can directly reveal the quantum state of any system:
our only clues to the quantum state are inferences from the behavior
of the Primary Ontology. (Maudlin, 2013)

It has been suggested that the wave function of the universe is not ontic,
representing a concrete physical entity, but nomological, like a law of nature
(Diirr, Goldstein and Zanghi, 1997; Allori et al, 2008; Goldstein, 2017).
On this view, there are only particles in three-dimensional space in Bohm’s
theory, and mass density distribution in GRWm theory, and flashes in GRWf
theory, etc. In this paper, I will argue that when explaining the result of a
protective measurement, the nomological view of the wave function violates
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the principle of locality for product states, and it can hardly satisfy the
causal closure principle either, while the ontic view of the wave function
can solve these issues in a natural way; it satisfies both the causal closure
principle and the principle of locality for product statesE

Let’s first see a familiar example in classical mechanics. Suppose in an
isolated lab there are a particle with charge () trapped in an uncharged box
and a test electron. The test electron is shot along a straight line near the
box, and then detected on a screen after passing by the box. According to
Newton’s laws of motion and Coulomb’s law, the deviation of the trajectory
of the test electron is determined by the charge of the measured particle,
as well as the distance between the electron and the particle. If there were
no charged particle in the box, the trajectory of the electron would be a
straight line as denoted by position “0” in Figure 1. Now, the trajectory of
the electron will be deviated by a definite amount as denoted by position
“1” in Figure 1.
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Figure 1: Scheme of a measurement of the charge of a classical particle

The question is: What makes the test particle deviate from its free
trajectory? According to the causal closure principle, the deviation of the
test electron as a physical effect must be due to a physical cause. Obviously,
the cause is that the measured particle has a charge ) in its position in
the box, which has the efficacy to deviate the test electron from its free
trajectory. If there is no charge in the box, then the deviation of the test

!Note that Humeanism about laws already violates the causal closure principle, which
says that all physical effects have physical causes, since there are no necessary connections
such as causes and effects on this view. I will not discuss this view in this paper. Besides,
primitivism about laws is compatible with my conclusion that the wave function represents
a physical entity, since it admits the law such as the universal wave function in Bohm’s
theory as part of the fundamental ontology (Maudlin, 2007). In this sense, primitivism
about laws does not belong to the nomological view of the wave function. I will not discuss
it either in this paper.



electron as a physical effect, if it still exists, will have no cause. In this case,
the causal closure principle will be violated, and the theory will be plagued
by an explanatory deficiency problem.

Now let’s consider a similar example in quantum mechanics. Suppose
in an isolated lab there are a quantum system with charge @) trapped in an
uncharged box and a test electron. The quantum system is in the ground
state ¥1(x) in the box. The test electron, whose initial state is a Gaussian
wavepacket narrow in both position and momentum, is shot along a straight
line near the box. The electron is detected on a screen after passing by
the box. Suppose we make an adiabatic-type protective measurement of
the charge of the system in the boxE| Then, according to the Schrédinger
equation with an external Coulomb potential, the deviation of the trajectory
of the electron wavepacket is determined by the modulus squared of the
ground state of the measured system multiplied by the charge of the system,
namely | (z)[?Q, as well as the distance between the electron wavepacket
and the box. Moreover, the ground state of the measured system does not
change during the measurement. If there were no charged quantum system
in the box, the trajectory of the electron wavepacket would be a straight line
as denoted by position “0” in Figure 2. Now, the trajectory of the electron
wavepacket will be deviated by a definite amount as denoted by position “1”
in Figure 2.

Figure 2: Scheme of a protective measurement of the charge of a quantum
system

2The conditions for making such an adiabatic-type protective measurement are: (1)
the measuring time of the electron is long enough compared to i/AE, where AE is the
smallest of the energy differences between the ground state and other energy eigenstates,
and (2) at all times the potential energy of interaction between the electron and the system
is small enough compared to AE (Aharonov and Vaidman, 1993; Aharonov, Anandan and
Vaidman, 1993; Gao, 2015, 2017).



Then, what makes the electron wavepacket deviate from its free trajec-
tory? According to the causal closure principle, the deviation of the electron
trajectory as a physical effect must be due to a physical cause. Then, if the
wave function is real, representing a realistic property of a quantum system
(Pusey, Barrett and Rudolph, 2012), it will be natural to assume that the
cause is that the measured system has a physical property |41 (x)|?Q in each
position z in the box, which by definition has an efficacy to deviate the test
electron from its free trajectory. This is similar to the classical situation.
We may call this property charge distribution, whose density is |¢1(z)|?Q
in each position z. If the deviation as a physical effect has no cause, then
the causal closure principle will be violated, and the theory will be plagued
by an explanatory deficiency problem.

This argument can be generalized to an arbitrary wave function. For
a quantum system with charge @ whose wave function is ¥ (x) at a given
instant, we can make a protective measurement of the charge of the system
in a small spatial region V having volume v near position . This means to
protectively measure the following observable:

(1)

A= Q, ifzeV,
o, ifxgV.

The result of the measurement is

(4) = Q /V () Pdo. ()

By the same reasoning as above, the causal closure principle requires that
the measured system has a charge Q [, [¢)(x)|?dv in region V' (when the wave
function is real), which has the efficacy to move the pointer of the meter
and yield the result of the protective measurement. Then when v — 0
and after performing measurements in sufficiently many regions V', we can
find that the measured system has a charge distribution in the whole space,
and the charge density in each position x is |¢(2)|?Q. Similarly, we can
protectively measure another observable B = /- (AV + VA). The causal
closure principle requires that the measured system also has an electric flux
distribution in space, and the electric flux density in each position x is
Jo(w) = $E [ () Vib(w) — (@) Vi ()] []

Since these two real densities can constitute the complex wave function,
this also means that the wave function of the measured system v (z) repre-
sents the state of a physical entity which exists in the whole space where the
wave function is nonzero (during an arbitrarily short time interval when the
protective measurement can be made). Moreover, if the measured system
has charge @), the physical entity will have a charge density |¢(2)|?Q in each
position x in space, as well as an electric flux density as given above.

3These results can also be generalized to a many-body system (see Gao, 2017).



Now an intriguing question arises: Must the cause of the moving of the
pointer or the physical property |1 (z)|?Q be a property of a physical entity
existing in position z? It seems that the answer may be negative. It is
in principle possible that an empty space can also deviate the nearby test
electron from its free trajectory, if only there is a physical entity existing
elsewhere, and it can excert a nonlocal influence on the test electron, which is
determined by its physical property |1 (z)|?Q. Let’s consider this possibility
more carefully.
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Figure 3: Scheme of a protective measurement of the charge of a quantum
system in Bohm’s theory

Take Bohm’s theory as a typical example. For the sake of simplicity,
suppose in a universe there are only a measured system with charge @,
trapped in a two-box protective potential, a test electron and a detecting
screen (see Figure 3). The wave function of the measured system at the
initial instant is 1 (z) = a1 (x) + Wpa(x), where 91 (x) and 2(x) are two
normalized wave functions respectively localized in their ground states in
two small identical boxes 1 and 2, and |a|? + |[b|> = 1. A test electron,
whose initial state is a Gaussian wavepacket narrow in both position and
momentum, is shot along a straight line near box 1 and perpendicular to
the line of separation between the two boxes. The electron is detected on a
screen after passing by box 1. Suppose the separation between the two boxes
is large enough so that a charge @ in box 2 has no observable influence on
the electron. Then if the system is in box 2, namely |a|?> = 0, the trajectory
of the electron wavepacket will be a straight line as denoted by position “0”
on the screen. If the system is in box 1, namely |a|? = 1, the trajectory of the
electron wavepacket will be deviated by a maximum amount as denoted by
position “1” on the screen. When we make a protective measurement of the
charge of the system in box 1 for the superposition 1 (x), the trajectory of the



electron wavepacket is determined by the expectation value of the charge of
the system in box 1, and thus it will be deviated by an intermediate amount
as denoted by position “|a|>” between “0” and “1” on the screen.

According to the nomological interpretation of Bohm’s theory, the wave
function of this universe being a product state is nomological, and there are
only a measured particle and a test particle (besides the box and screen
particles) in the universe. Moreover, during the protective measurement,
the measured particle has been at rest in a position in the boxes, since
the measured system stays in the same energy eigenstate throughout the
process. Then, by the same reasoning as before, the causal closure principle
requires that the measured particle has a physical property represented by
|a|?@Q (namely the modulus squared of the wave function of the measured
system in box 1 multiplied by the charge of the system), which by definition
enables it excert a nonlocal influence on the test electron to deviate it from
its free trajectory. The nonlocality of the influence is more obvious when
the measured particle is in box 2, being far away from the test particle. The
question is: Does this kind of nonlocal influence exist in Bohm’s theory? If
it does not exist, then the theory will violate the causal closure principle.

Let’s see the main non-Humean view of laws, dispositionalism (Esfeld
et al, 2014). On this view, there are only particles which have both posi-
tions and disposition, and the universal wave function represents a holistic
disposition of all particles in the universe which determines their motion.
In the above example, since the universal wave function is a product state,
the holistic disposition is separable, and the measured particle and the test
particle have their respective dispositions represented by their wave func-
tions. In particular, the wave function of the measured system represents
the disposition of the measured particle that determines only its own mo-
tion, letting it be at rest in a position in the two boxes, and the disposition
is realized only in this position and not in all other positons including box
1. Moreover, the measured particle has no properties other than position
and this disposition. Thus, according to the Bohmian dispositionalism, the
measured particle has no influences, either local or nonlocal, on the test par-
ticle, and the deviation of the trajectory of the test particle has no cause.
This means that this view violates the causal closure principle.

There is a deeper reason why the Bohmian dispositionalism fails to ex-
plain the deviation of the trajectory of the test particle during a protective
measurement. It is that this view does not consider the usual interactions
between quantum systems. Entanglement is indeed important to explain
some strange quantum phenomena, but it certainly cannot explain all inter-
actions between quantum systems. The interaction between the measured
system and the measuring system during a protective measurement is irrel-
evant to entanglement, since the wave function of the composite system has
been a product state throughout the measurement. Moreover, it is obvious
that the interactions between objects in the emergent classical world are



not relevant to entanglement in general. Such interactions include EM and
gravitational interactions, and they are represented by the potential terms in
the Schrodinger equation. In the above example of protective measurement,
the interaction between the measured system and the measuring system is
part of the EM interactions, the electrostatic interaction. The motion of the
test particle also depends on the value of @) of the measured system besides
its wave function, e.g. when () = 0 the motion of the test particle is not
deviated from its free trajectory.

Even if we consider entanglement such as the universal wave function
being an entangled state, the EM and gravitational interactions are also
important since they determine the evolution of the entangled state over
time. In fact, if there were no such interactions, the entangled state could not
even be formed in the first place. It seems that the Bohmian dispositionalism
only emphasizes the entangled nature of the universal wave function being
a holistic disposition of all particles in the universe, but ignores the usual
interactions that form the entangled universal wave function and further
determine its evolution over time. It is the ignorance of usual interactions
that makes this view fail to explain the deviation of the trajectory of the test
particle in the above example and thus violate the causal closure principle.

Can the Bohmian dispositionalism avoid the violation of the causal clo-
sure principle by adding the nonlocal influences? The answer seems negative.
First of all, the existence of such nonlocal influences violates the principle
of locality for product states, which says that the interactions between two
systems being in a product state are local. In fact, all realist quantum the-
ories in which the wave function does not represent a physical entity will
violate the principle of locality for product states. On the other hand, the
principle of locality for product states requires that the wave function rep-
resents a physical entity (when it is real). According to this principle, since
the interaction between the measured system and the meter in position x
is determined by |1 (z)]?Q during the above protective measurement, this
quantity must represent a property of a physical entity existing in position
x (during the measuring period which may be arbitrarily short). If other-
wise there exists only a physical entity being in another position, then the
interaction between the entity and the meter will be nonlocal, violating the
principle of locality for product states. Although there exists nonlocality for
entangled states in quantum mechanics, and the above violation of locality
for product states is not inconsistent with experience, it is still in want of a
reasonable explanation.

Next, even if the violation of locality for product states is permitted
and the required nonlocal influences may exist, the origin of the nonlocal
influences can hardly be explained, and the theory will also have various
unnatural features. Let me restate why the measured particle must have a
physical property which enables it excert a nonlocal influence on the test
electron in the above example. According to the Bohmian laws of motion,



the motion of the test particle is determined by both the wave function
of the measured system in box 1 and the charge of the measured system.
Concretely speaking, it is determined by the term |a|?Q. Thus, the cause
of the deviation of the trajectory of the test particle should be a physical
property described by this mathematical term (when the wave function is
real). Since the ontology of the Bohmian dispositionalism consists only in
particles, this property must be a property of the measured particle being
at rest in a position in box 2 (see Figure 3). This means that the measured
particle must have a physical property described by |a|>Q, maybe called
charge, which enables it exert a nonlocal influence on the test particle.

However, endowing the measured particle in box 2 (not another physical
entity in box 1) with such a charge property seems very unnatural. The
reason is as follows. First, the charge endowed to the measured particle
cannot be shielded. When using a Faraday shield for box 2, the influence on
the test particle still exists and does not change. But when using a Faraday
shield for box 1, the influence on the test particle no longer exists. Next,
since there is only the measured particle which influences the test particle,
if the degree of the influence depends on a distance, then it seems that the
distance must be the distance between the measured particle and the test
particle. There is only a distance relation between them after all; there are
no other particles interacting with the test particle, and in particular, there
is no particle or another physical entity existing in box 1. But the degree
of the influence is determined not by the distance between the test particle
and the measured particle, but by the distance between the test particle
and box 1 where the modulus squared of the wave function of the measured
system is |a|?. Third, the influence is always a repulsion relative to box 1
and its direction is always along the line extending from box 1. But it may
be a repulsion or an attraction relative to the measured particle in box 2,
depending on the initial position of the test particle; if the initial position
of the test particle is between the two boxes, then the influence will be an
attraction relative to the measured particle. Morover, the direction of the
influence is independent of the measured particle in box 2. Fourth, although
the assumed influence exerted by the measured particle is nonlocal, it has a
time delay determined by the distance between the test particle and box 1
in the relativistic domain, where the EM interactions are mediated by fields
propagating with the speed of light.

In fact, all features of the influence relate to box 1 and not to the mea-
sured particle in box 2. No matter where box 2 and the measured particle
are, how they move, whether the measured particle annihilates with another
anti-particle, and what form the wave function of the measured system in
box 2 is, and so on, if only box 1 keeps unchanged, the influence will keep
unchanged. On the other hand, even if there is no any change in the region
of box 2 and the measured particle, if only there is a change in box 1, such as
the size of the box being enlarged very slowly, which may influence the wave



function of the measured system in box 1, then the influence will change.

Finally, all these strange features can be explained in a natural way
when assuming that the physical property described by |a|?@Q is not a charge
property of the measured particle, but a charge property of another physical
entity which exists in box 1 where the modulus squared of the wave function
of the measured system is |a|?. Similarly, there is also a physical entity
existing in box 2 where the modulus squared of the wave function of the
measured system is |b|?. This reaffirms my previous conclusion that the
wave function of the measured system (x) represents a physical entity
extending in space, including both boxs 1 and 2, where the wave function is
nonzero. Certainly, what the physical entity really is poses another deeper
issue (see Gao, 2017; Hubert and Romano, 2018 for a recent analysis). I will
analyze this issue in future work.

To sum up, I have argued that in a quantum theory in which the wave
function is real, such as Bohm’s theory, a natural way to explain the result
of a protective measurement is to admit that the wave function is ontic,
representing a concrete physical entity. The ontic view of the wave function
satisfies both the causal closure principle and the principle of locality for
product states. While the nomological view of the wave function, such as
the Bohmian dispositionalism, violates the principle of locality for product
states, as well as the causal closure principle. Although adding nonlocal
influences between systems being in a product state may avoid the violation
of the causal closure principle, the origin of these influences can hardly be
explained, and the revised theory also has various unnatural features.
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