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1. Introduction

One of the central philosophical debates prompted by general relativity concerns the
status of the metric field. A number of philosophers have argued that the metric field
should no longer be regarded as part of the background arena in which physical fields
evolve; it should be regarded as a physical field itself. Earman and Norton write,
for example, that the metric tensor in general relativity ‘incorporates the gravitational
field and thus, like other physical fields, carries energy and momentum’.1 Indeed,
they baldly claim that according to general relativity ‘geometric structures, such as the
metric tensor, are clearlyphysical fields in spacetime’.2 On such aview, spacetime itself—
considered independently of matter—has no metrical properties, and the mathematical
object that best represents spacetime is a bare topological manifold. As Rovelli puts
the idea: ‘the metric/gravitational field has acquired most, if not all, the attributes
that have characterized matter (as opposed to spacetime) from Descartes to Feynman...
it is perhaps more appropriate to reserve the expression spacetime for the differential
manifold, and to use the expression matter for everything which is dynamical, carries
energy and so on; namely all the fields including the gravitational field.’3
Others, however, have strongly resisted this view, arguing that the paradigm spatio-

temporal properties are precisely the metrical properties. Thus Tim Maudlin has writ-
ten:

1(Earman and Norton, 1987, p. 519)
2(Earman and Norton, 1987, p. 519)
3(Rovelli, 1997, pp. 193-194)
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...qua differentiable manifold, abstracting from the metrical (and affine)
structure, space-time has none of the paradigm spatio-temporal proper-
ties. The light-cone structure is not defined; past and future cannot be
distinguished; distance relations do not exist. Spatio-temporal structure is
metrical structure.4

In resisting the adoption of a bare-manifold account of spacetime Maudlin has been
joined by Carl Hoefer, who has argued that the mere fact that the metric field appears
to carry energy does not imply that it should be regarded as a physical field.5 More
specifically, Hoefer argued that the complexities arising from the fact that gravitational
stress-energy is represented by a pseudo-tensor cannot bemerely brushed aside, and that
there are good reasons to be skeptical of any quick inferences based on the existence of
gravitational energy in this context.6

This debate—between bare-manifold and manifold-plus-metric accounts of spacetime—
touches on the long-standing philosophical problem of how mathematics represents
the world. In the context of geometry, the most immediate aspect of this problem is the
“Problem of Space”: the problem of determining which abstract geometrical structures
are candidate physical geometries, i.e., candidate descriptions of physical space. It is only
since the advent of non-Euclidean geometries that this problem has emerged, or could
even be stated. For most of its history, of course, geometry was just Euclidean geometry,
understood as the systematic description of spatial structure (‘themost ancient branch of
physics’, as Einstein once put it).7 Hence it was only after the existence of non-Euclidean
geometries was grudgingly accepted that it became possible to ask: which geometry
actually describes space? By the end of the nineteenth century (aswe summarize below)
consensus formed around the following answer: the candidate physical geometries are
the constant curvature geometries; the geometries in which congruence relations can
represent the free mobility of rigid bodies.

However, this “classical” solution to the Problem of Space was unequivocally under-
mined by general relativity—the theory of spacetime that employs precisely the kind
of variably curved geometry that the philosophers of the nineteenth century thought
they had ruled out. In this paper, we explore the new solution to the Problem of Space
advanced by HermannWeyl, drawing especially on the account Weyl gave of this prob-

4(Maudlin, 1988, p. 87; emphasis added)
5Cf. Hoefer (1996)
6For further discussion of the controversies over gravitational energy, see Curiel (2017), Read (2018), and
Dewar and Weatherall (2018).

7Einstein (1921)
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lem in a series of lectures delivered in Barcelona in 1922.8 Weyl had an exceptionally
nuanced understanding of the novel conception of spacetime implicit in general rela-
tivity, and our concrete goal in what follows is to show that an important insight made
available by Weyl’s work is the unearthing of a “middle way” between bare-manifold
and manifold-plus-metric accounts of spacetime.

2. The Classical Solution

The classical solution to the Problem of Space is, in effect, the fruits of the cumulative
effort of those who engaged with the problem in the second half of the nineteenth
century. The formulation of the Problem of Space in this context is often referred to as
the Helmholtz (or Helmholtz/Lie) space problem, but as Helmholtz himself pointed out it
had already been treated substantially byRiemann. Helmholtz’s resultswere rigorously
reworked and extended by Sophus Lie, who brought to bear the full power of his theory
of continuous transformation groups.9 Poincaré also grappled with the Problem of
Space, and although his philosophical stance differed significantly from Helmholtz’s,
he clearly regarded the problem as more-or-less solved once Lie had put Helmholtz’s
arguments on a sufficiently rigorous footing.10
The essential idea that emerged in this period was that the geometrical notion of

congruence represented the possibility of the free mobility of rigid bodies. Treating
such free mobility as a basic fact (and recognising the role that this fact seemed to play
in the practice of measurement quite generally), a limited class of geometries could be
specified as candidate descriptions of physical space. In particular, it was argued that
only in constant curvature geometries were there suitable congruence relations between
geometric figures to represent the free mobility of rigid bodies.
The close connection between congruence relations of geometrical figures and con-

stant curvature was provedmost rigorously by Lie who considered the properties of the
real, finite-dimensional transformation groups that correspond to classical congruence
relations, but it is also easy to understand the basic point intuitively. Helmholtz dis-
cussed the example of the non-constant curvature of an egg-shaped surface, observing

8Weyl (1923a)
9For Riemann and Helmholtz, the problem at hand was one in which physics and mathematics neces-
sarily intertwined. In contrast, Lie treated the problem as the purely mathematical one of rigorously
characterizing distinct classes of geometrical structures. The articulation of the range of mathematical
possibilities was developed also by Klein, Clifford and Killing: see Scholz (2016), p. 5 for a summary of
this work.

10Poincaré remarked, ‘I differ from [Helmholtz and Lie] in one point only, but probably the difference is
in the mode of expression only and at bottom we are completely in accord’ (Poincaré, 1898, p. 40).
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that a figure such as a triangle would have different internal angles if it were drawn near
the pointed end of the egg, compared to if it were drawn near the base.11 Similarly, two
circles with the same radius would not in general have the same circumference. Thus
sliding any such figure up or down the surface would not be possible unless it were
flexible enough to change its dimensions as it moved. In the general case: in any space
of varying curvature (with zero degrees of symmetry), a truly rigid figure—one that
could not alter its dimensions without breaking—would not be able to be moved at all.
In thisway,Helmholtz, andPoincaré after him, argued that geometries ofnon-constant

curvature are not feasible candidates for describing physical space at all. Their reasoning
depended on the premise that constructing a physical geometry depends essentially
on the use of rigid bodies. According to Helmholtz, this is a generalization of the
requirement thatmaterial measuring instruments (rulers, compasses, and the like)must
maintain their dimensions if they are to fulfill their function.12 Helmholtz argued that if
therewere no rigid bodies, and hence noway of comparing spatialmagnitudes, it would
not be possible to construct any kind of physical geometry. Hence variably curved
geometries, which lack the relevant congruence structure, cannot provide a useful
description of physical space (for even ifwe lived in such a space, so the thought goes, we
would not be able to construct a geometrical description of it). ThusHelmholtz declared:
‘all original spatial measurement depends on asserting congruence and therefore, the
system of spatial measurement must presuppose the same conditions on which alone
it is meaningful to assert congruence’.13 Poincaré, for his part, said of variably curved
geometries that they could ‘never be anything but purely analytic, and they would not
be susceptible to demonstrations analogous to those of Euclid’.14
This, then, was the classical solution to the Problem of Space: a geometrical structure

could describe spatial structure only insofar as it could represent the free mobility of
rigid bodies. Combined with Lie’s work, this postulate of free mobility implied a clear
demarcation of candidate physical geometries from two directions. First, candidate
physical geometries could only be constant curvature geometries. Second, the metric
function must satisfy a generalized Pythagorean Theorem, i.e. the element of length
must be given by the square root of a quadratic differential form.
However, the development of relativity—particularly general relativity—broke the

back of this purported solution to the Problem of Space. One obvious change due
to relativity was the new way in which space and time were welded together into

11Cf. Helmholtz (1971)
12Cf. (Helmholtz, 1971, p. 63)
13(Helmholtz, 2007, p. 49)
14(Poincaré, 1952, p. 103)
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spacetime, but the more immediately significant change was actually the threat to the
notion of a rigid body. Already in special relativity it became clear that perfectly
rigid bodies were simply incompatible with the theory.15 But it was only with the
advent of general relativity that the classical solution to the Problem of Space was
definitively undermined, for it is general relativity that employs precisely the variably
curved geometrical structure that Helmholtz and Poincaré had exiled from the class of
candidate physical geometries. As Scholz has put the matter, general relativity ‘posed,
of course, amuch greater challenge to the characterization of the Problem of Space. Free
mobility of finitely extended rigid figures became meaningless in the general case.’16

3. Weyl’s Problem of Space

In the wake of general relativity it is evident that the classical demarcation of candidate
physical geometries is too restrictive—clearly, an adequate demarcation must include
variably curved geometries too. This is the context in which Weyl sought to justify
a new and broader conception of physical geometry. On Weyl’s view, the possibility
of describing physical space in geometrical terms depends only on the possibility of
infinitesimal comparisons of lengths and angles. This still allows for the construction
of practically rigid bodies, so that, as long as circumstances are not too hostile, we can
still survey the meso-scale structure of space in the way that Helmholtz and others
envisaged. But Weyl’s solution also leaves room for the possibility of describing the
geometry of a region of space encompassing such strongly varying gravitational fields
that surveying it with rigid measuring instruments would be impossible.

An important upshot of Weyl’s approach to the Problem of Space is a distinction
between the nature of the metric field, on the one hand, and the orientation of the metric
field frompoint to point, on the other. The former iswhat determines the relative lengths
of vectors at an arbitrary point, whilst the latter is what determines the relative lengths
and angles of finitely separated vectors. Weyl uses this distinction to attribute the local
metric properties to space itself, whilst attributing the non-local metric properties to
the contingent distribution of matter and energy. In brief, rather than starting with
the classical postulate of free mobility, Weyl starts with what he calls the ‘foundational
fact of infinitesimal geometry’17—the idea that the notion of congruent transport (the
transformation that preserves length) uniquely determines a notion of affine transport

15For amore detailed discussion of the impact of special relativity on the notion of rigid bodies, see (Scholz,
2016, pp. 6-8).

16(Scholz, 2016, p. 9)
17(Weyl, 1923b, p. 124), quoted at more length below.
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(the transformation that preserves parallelism). Weyl then proves that this foundational
fact provides the basis for a new demarcation of physical geometries. According to
Weyl, the candidate physical geometries are just the geometries with a Pythagorean-
Riemannian “nature”; the geometries whose metrics have an infinitesimal Pythagorean
form.
It seems thatWeyl first became interested in the Problem of Space when he was called

upon to edit Riemann’s 1868 Habilitationsvortrag for republication, for which he also
provided a commentary.18 In theHabilitationsvortrag, Riemann gives the length of a line
element as the square root of a quadratic form in the differentials, but remarks that this
is merely the simplest case of a wider range of possibilities:

The next simplest case would probably comprise those manifolds in which
the line element may be expressed by the fourth root of a differential ex-
pression of the fourth degree. To be sure, the investigation of this more
general kind would not require any essentially different principles, but it
would be rather time-consuming and would shed relatively little new light
on the theory of space (especially as the results are not geometrically express-
ible); I therefore restrict myself to those manifolds where the line element
is expressed by the quadratic root of a differential expression of the second
degree.19

Weyl expresses Riemann’s observation as follows: if the interval at point P is expressed
as a function of the differentials, ds = fP (dx1, . . . , dxn), then ‘fP will be required to be
a homogeneous function of the first degree, in the sense that upon multiplication of the
arguments dxi by a common real proportionality factor ρ, the function fP is multiplied
by |ρ|.’20 An example of such a function is the familiar Pythagorean function:√

(dx1)2 + (dx2)2 + · · ·+ (dxn)2 (1)

Up to a choice of coordinates, any function given as a square root of some positive-
definite quadratic form can be expressed in the form (1) (i.e. if f2P , at each point P ,
is a positive-definite quadratic form, then all the various fP can be obtained from
the function (1) by linear transformations of the variables). However, (1) is not the

18Riemann and Weyl (1919)
19(Riemann and Weyl, 1919, p. 9); (Riemann and Jost, 2013, p. 35)
20(Riemann and Weyl, 1919, p. 26). In modern terminology, a homogeneous function is one for which
f(λv) = λf(v), whereas a functionwith the property thatWeyl describes (being such that f(λv) = |λ|v)
is described as absolutely homogeneous. In what follows, wewill use ‘homogeneity’ in the samemanner
as Weyl (i.e. as a term for what is now called absolute homogeneity).
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only homogeneous function of the first degree, and so the question arises: why use
this function to define intervals, rather than any others? Riemann himself offered no
satisfactory justification for why the expression for the square of the line element should
be a quadratic form, and hence it was a signature achievement of the classical solution
to the Problem of Space to show that, if every physical geometry must represent the free
mobility of rigid bodies, every physical geometry must have a Pythagorean metric. But
when general relativity undermined the classical solution to the Problem of Space, this
justification for the Pythagorean form of the metric vanished with it.
Thus, if we follow Weyl and say that the nature of a (Weylian) metric is given by

specifying the expression for the line element, then the problem at hand is to justify
the Pythagorean nature in particular. Weyl’s solution to this problem begins from his
generalisation of Riemannian geometry.21 In a Riemannian space (M, g), where M is
a manifold and g is a metric, whether two tangent vectors v ∈ TpM and w ∈ TqM

(for finitely separated points p and q ofM ) are parallel is not—in general—determined
absolutely, but only relative to the choice of apath connecting p and q. This becomesmost
apparent if we introduce the concept of an affine connection following Levi-Civita.22. An
affine connection establishes the parallelism-facts amongst the vectors in infinitesimally
separated tangent spaces; it is only in the special case of a flat affine connection, however,
that these can be extended to establish absolute (i.e. path-independent) parallelism-facts
between vectors in finitely separated tangent spaces.23
For Weyl, Levi-Civita’s work presented a profound insight into the structure of Rie-

mannian geometry. But he soon recognised that it pointed to away inwhichRiemannian
geometry was not as local as it could be. Although Riemannian geometry does away
with an absolute notion of distant parallelism, it retains an absolute notion of distant
length-comparison: there is a always a definite answer to the question whether vectors
v ∈ TpM and w ∈ TqM are the same length or not, even for finitely separated p and q.
More generally, for any two tangent vectors, there is some fact of the matter about their
lengths, and hence about their length-ratio.
In aiming for a truly local geometry, then, our first move should be to do away with

the structure of Riemannian geometry which permits such comparisons. Consider a
pair of conformally equivalentmetrics onM : that is, metrics gab and g′ab such that for some

21Weyl (1918a), Weyl (1918b).
22 (Levi-Civita, 1917)
23Both Levi-Civita andWeyl took the term ‘affine connection’ to refer exclusively to symmetric (i.e. torsion-

free) affine connections. We will have cause, however, to consider nonsymmetric affine connections in
section 4, so we will use the term ‘affine connection’ to refer to the broader class of such connections
(whether symmetric or nonsymmetric).
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positive, nowhere-vanishing scalar field λ : M → R,

g′ab = λgab . (2)

A conformal structure onM is an equivalence class of conformally equivalent metrics; a
conformalmanifold is amanifold equippedwith a conformal structure.24 AsWeyl remarks,
in a conformal geometry the inner product of two vectors (in the same tangent space)
is ‘not absolute, but rather determined only up to an arbitrary non-zero proportionality
factor‘.25
Conformal manifolds do not permit distant length-comparisons: we can only deter-

mine the length-ratio between two vectors if they are drawn from the same tangent
space. But in the passage to conformal manifolds, we have removed more structure
than we wished to. For the analogy to parallelism (in Riemannian geometry) to hold,
we don’t want determinations of length-ratio between distant vectors to be impossible:
we just want them to be relative to a choice of path. Equivalently, we want there to
be (absolute) facts about the length-ratios of infinitesimally separated vectors, just not
about the length-ratios of finitely separated vectors.
Wemust therefore restore the kind of structure thatwill let usmake such comparisons,

i.e., something analogous to an affine connection but for lengths rather than directions:
‘a concept of transfer of the length unit from a point P to its immediate neighbours‘.26 Let us
refer to such a standard of length transfer as a length connection.27 By transferring an
(arbitrarily chosen) length unit from one point to another, we can compare the lengths
of vectors in the tangent spaces at the two points, and the length connection operates
in such a way that this length-ratio is independent of the choice of unit. Thus, in
Weylian geometry, length-comparisons of distant vectors is once again possible but—in
general—only relative to a path. As is the case for affine connections, things may work
out such that the value of the integral is path-independent; in this case, we say that the
length connection is flat, and the geometry is that of a Riemannian manifold up to an
arbitrary global choice of length-scale. We will refer to a conformal structure together

24There is a natural sense, using the language of category theory, in which a conformal manifold is less
structured than a Riemannian manifold. Let the category of Riemannian manifolds have isometries
as arrows (and Riemannian manifolds as objects), and let the category of conformal manifolds have
conformal maps as arrows (and either conformal manifolds or Riemannian manifolds as objects). Then
there is a functor from the category of Riemannian manifolds to the category of conformal manifolds
which is faithful and essentially surjective, but not full: i.e., which “forgets only structure”, in the
terminology of (Baez and Shulman, 2010, §2.4).

25(Weyl, 1918b, p. 396)
26(Weyl, 1918b, p. 397)
27Note that this term, now standard in the literature, is not used by Weyl himself, who speaks instead of a

metrische Zusammenhang, literally: “metrical connection”.
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with a length connection as a Weylian metric, and a manifold equipped with a Weylian
metric as aWeylian manifold.
Returning to our main theme, the groundwork for Weyl’s solution to the Problem of

Space was laid already in his 1919 discussion:

Given the fundamental significance for the construction of geometry which,
following recent investigations . . . , attaches to the basic affine concept [affine
Grundbegriff ] of the infinitesimal parallel transport of a vector, the question
in particular arises, whether themanifolds of the Pythagorean class of spaces
[i.e., those inwhich the line element canbegiven in thePythagorean form (1)]
are the only ones which permit the establishment of this concept, and which
correspondingly possess not only ametric, but also an affine connection. The
answer is most likely affirmative, but a proof has so far not been rendered.28

As already noted, it is this idea which drives Weyl’s solution to the Problem of Space.
More specifically, the key insight is that only the Pythagorean kind of spaces have the
feature that they are associated with a unique concept of parallel transport. As is well-
known, for a given Riemannian metric there is a unique symmetric affine connection
compatible with it; compatible, that is, in the sense that parallel-transported vectors re-
tain their length.29 This result extends to Weylian manifolds: given aWeylian manifold,
there is a unique compatible affine connection.30
This fact—the uniqueness of the affine connection, given the metrical structure—was

greatly striking to Weyl, and something he put great emphasis on:

And now we come to that fact, already anointed above as the foundational
fact of infinitesimal geometry, which brings the construction of geometry to a
wonderfully harmonious conclusion. In a metrical space, there is one and
only one way to formulate the concept of parallel transport so that . . . this
postulate is fulfilled: upon parallel transport of a vector, the interval determined
by it should also remain unchanged. Thus, the principle of infinitesimal interval-
or length-transfer, which underlies metrical geometry, automatically brings
with it a principle of direction transfer; a metrical space naturally carries an affine
connection.31

28(Riemann and Weyl, 1919, p. 27)
29(Malament, 2012, Lemma 1.9.1)
30(Folland, 1970, Theorem 2)
31(Weyl, 1923b, p. 124)
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At the heart of Weyl’s solution to the Problem of Space is a demonstration that, among
themuch broader class of spaces obtained by allowing the line element to be an arbitrary
homogeneous function of the differentials, only the Pythagorean spaces (i.e. theWeylian
manifolds) will satisfy the following condition: ‘whatever quantitative configuration
(within the scope of the nature of the metric) the metric field may have assumed, it
invariably and uniquely determines the affine connection.‘32

4. Weyl’s solution

We turn now to a reconstruction of (part of) Weyl’s argument. We follow the treatment
given in (Weyl, 1923a): the text of a series of lectures on the Problem of Space which
Weyl gave in the spring of 1922 in Barcelona and Madrid. There are some significant
differences between the way in which Weyl carries out the argument here, compared to
the way it is presented in his other work;33 moreover, this text has not been translated,
and so we hope that the discussion here can help bring these ideas to a wider audience.
Weyl reaches his solution via a group-theoretic analysis. Given an n-dimensional

Weylian manifold, of whatever nature, let us say that a linear automorphism g of the
tangent space at P is congruent if it preserves the interval: that is, if for any vector ξ at P ,
fP (g(ξ)) = fP (ξ). Since the composition of two congruent automorphismswill similarly
be a congruent automorphism, as will the inverse of any congruent automorphism, the
collection of all congruent automorphisms of P ’s tangent space will form a group: let us
refer to this group as the congruence group at P . For example, if fP is the Pythagorean
function (1), then the congruence group will be the orthogonal group O(n).34
Note that in general, the congruence group is not sufficient to determine the nature

of the metric. For example, the 4-norm and the 6-norm on R2, i.e. the functions

||(x, y)||4 := (x4 + y4)1/4 (3)

and
||(x, y)||6 := (x6 + y6)1/6 (4)

respectively, have the same congruence group: the group consisting of right-angle

32(Weyl, 1923a, pp. 46–47)
33In particular, it does not involve the so-called “Postulate of Freedom”: see Appendix A for discussion.
34Weyl uses the term ‘Drehungsgruppe’ for what we are calling the congruence group, which would

more literally be translated as ‘rotation group’; however (as Coleman and Korté (2001) note), the term
‘rotation group’ is nowadays almost exclusively used to refer to the groups O(n) or SO(n).
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rotations and reflections about the x- and y-axes.35 Nevertheless, if the tangent space
at P has O(n) as its congruence group, then the nature in question is Pythagorean (i.e.
is given by a positive-definite quadratic form) at P . So if Weyl can find conditions
which guarantee that each tangent space hasO(n) as its congruence group, then he will
have succeeded in showing that only manifolds with a Pythagorean nature satisfy those
conditions.36
In the seventh of his Barcelona lectures, Weyl argues that if we postulate uniqueness

of parallel transport, then the congruence group’s Lie algebra (i.e., the collection of
infinitesimal congruent automorphisms)37 must be of dimension n(n − 1)/2, and must
satisfy a certain kind of antisymmetry condition (stated in more detail below). In the
eighth and final lecture, Weyl sketches a proof that these conditions entail that the
congruence group is the orthogonal group O(n), and shows this by explicit calculation
for the case n = 2; a complete proof (for the case of arbitrary dimensions) is provided
in the appendices.38

Weyl begins his argument by discussing the relationship between the metrical and
the affine structure, i.e., between the transport of lengths and the transport of vectors.
Recall that the length connection provides uswith a uniqueway of transferring a length-
unit from a point P to another point P∗ in P ’s immediate neighbourhood, and hence of
determiningwhether vectors ξ atP and ξ∗ atP∗ are the same length. In light of this, let us
follow Weyl by saying that a linear isomorphism ξ ∈ TPM → ξ∗ ∈ TP∗M is a congruent
transport just in case it preserves the lengths of vectors: i.e., if the length of ξ relative
to a given length-unit at P is the same as the length of ξ∗, relative to the transferral
of that length-unit (using the length connection). Note that this is independent of the
length-unit chosen at P .

At this stage we are restricting our attention to infinitesimal congruent transports:
choosing some coordinate system around P , we are interested in those congruent trans-

35Coleman and Korté (2001) make the same observation.
36Coleman and Korté (2001) castigate much of the literature for failing to appreciate that Weyl’s task

concerned singling out the Pythagorean nature from the broader class of possible natures for the
metric, not that of singling out O(n) from the broader class of congruence groups (see, in particular,
(Coleman and Korté, 2001, §§4.6–4.7)). However, it is not clear to us that this difference is as significant
as they suggest, given that singling out the desired congruence group is a sufficient condition for
singling out the desired nature of the metric.

37Weyl does not use the term “Lie algebra”, but he notes that a collection of infinitesimal linear operations
will form a linear family closed under the Lie bracket (again, not named as such): see (Weyl, 1923a,
p. 50).

38A reconstruction of this second part of Weyl’s solution, though certainly of value, is beyond the scope of
this paper. The aspect of Weyl’s proof is notoriously involved: Weyl describes himself as first having
worked it out ‘not through contemplation of the sense of the above-mentioned conditions, but rather
only through mathematical acrobatics’ (Weyl, 1922b, p. 120).
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ports ξ 7→ ξ∗ for which
ξi∗ = ξi + dξi (5)

Since congruent transports are linear, it follows that dξi = −Λi
kξ

k.39 Let us say that
the Λi

k are the coefficients of the congruent transport. Now, without yet specifying the
dimensionality of the manifold, suppose that P∗ is at the point (ε, 0, 0, . . . , 0). If we
let Λi

1k be the coefficients of the congruent transport from P to P∗, and Λi
2k be the

coefficients of a congruent transport from P to the point (0, ε, 0, . . . , 0), then (for any
α, β ∈ R)we can show thatαΛi

k1+βΛi
k2 are the coefficients of a congruent transport from

P to the point at (αε, βε, 0, . . . , 0). Hence, once n congruent transports Λi
kr have been

chosen, there is uniquely fixed a congruent transport to any point in P ’s infinitesimal
neighbourhood. As Weyl puts it:

. . . the formula,
dξi = −Λi

krξ
k(dx)r (6)

supplies a system of infinitesimal congruent transports to the totality of points
P ′ = (dx1, dx2, . . . , dxn) of the neighbourhood of P .40

Weyl’s argument then runs as follows. Take a point P0 in our manifold M , and
introduce some coordinate system around it. Take as given the congruence group G0

at P0 (but not the congruence group at any other point).41 Now let Λi
kr be an arbitrary

collection of n3 numbers. For every point P in the infinitesimal neighbourhood of P0,
we can define a linear isomorphism from TP0M to TPM by (6). Since every vector
determines a length-unit (the one according to which that vector is of unit length), we
can use this to define a length-unit transfer from P0 to P , i.e. a length connection.
Moreover, if we let the congruence group G at P be defined as the image of G0 under
this linear isomorphism, then the isomorphism will be congruence-preserving, and
hence Λ will represent a system of infinitesimal congruent transports.
Now that we have a length connection and congruence groups on the infinitesimal

neighbourhood of P0, any infinitesimal congruent transport from P0 to P may be ob-
tained from a given such transport by composition with some infinitesimal congruent
transformation.42 Consequently, any system of infinitesimal congruent transports may

39The minus sign is a matter of convention.
40(Weyl, 1923a, p. 48) Note that we have slightly altered Weyl’s notation to fit with that of this essay.
41That is, we do not fix the action of the congruence group at other points; we know, from the fact that

the nature of the metric is everywhere the same, that the congruence group at any other point will be
isomorphic to G0.

42I.e. an element of G’s Lie algebra.

12



be obtained from our original system (that encoded by the Λi
jk) by specifying n such

infinitesimal congruent transformations: one for each of the n linearly independent co-
ordinate displacements dxr. If we let Ai

kr be the infinitesimal congruent transformation
associated to dxr, then the action of such a transformation on an arbitrary vector ξ at P
is given (in terms of components) by:

ξi 7→ ξi −Ai
krξ

k(dx)r (7)

It is at this point that we impose the postulate mentioned above, ‘that among all these
systems of infinitesimal congruent transports, a unique one is to be found which is
simultaneously a possible system of parallel displacement’.43 It follows that there is a
unique array of Ai

kr which will bring about such a system of parallel transport. Using
the Christoffel symbols now ubiquitous in general relativity, a parallel transport can be
represented by Γi

jk, subject only to the symmetry requirement that Γi
jk = Γi

kj . We can
then stateWeyl’s postulate as follows: given any Λi

jk, there is a unique system of parallel
transport Γi

jk and a unique system of infinitesimal congruent transformations Ai
jk such

that
Λi
jk = Γi

jk −Ai
jk (8)

From this, Weyl proceeds to draw the following conclusions. First, if the dimension-
ality of the congruence group G (and hence, of its Lie algebra g) is N , then since every
Λi
jk (with n3 independent parameters) corresponds to a unique Γi

jk (n2(n + 1)/2 inde-
pendent parameters) and Ai

jk (nN independent parameters), then n3 = n2(n+1)
2 + nN ;

that is,
N =

n(n− 1)

2
(9)

Second, note that if Ai
jk = Ai

kj , then Λi
jk will represent a system of parallel transport,

which must therefore be identical with that represented by Γi
jk—from which it follows

thatAi
jk = 0. So the family of theAi

jk has the feature that they are symmetric (Ai
jk = Ai

kj)
only if they all vanish. These two conclusions are the conditions on the congruence
group’s Lie algebra which—as discussed above—will lead us to the conclusion that the
congruence groupmust be the orthogonal group (by an argument that we forebear from
reconstructing here).
It bears emphasising how strikingWeyl’s achievement here is. Not only has he shown

how the Problem of Space may be reframed in the light of general relativity; he has
also shown that a satisfactory solution may be arrived at by the requirement that one’s

43(Weyl, 1923a, p. 49)

13



standard of length-comparison uniquely fixes one’s standard of direction-comparison.
It should also be stressed that Weyl’s analysis is independent of his unorthodox geo-
metrical background, insofar as Riemannian geometry is (up to an arbitrary choice of
global scale) a special case of Weylian geometry.
In the wake of general relativity, it is evident that something fundamental has shifted

in the implicit assumptions built into our practices of describing space geometrically.
Weyl’s solution to the Problem of Space offers an insight into precisely this fundamental
shift. For Weyl, the possibility of describing space in geometrical terms depends only
on the possibility of an idealized observer at a point, “freely mobile” in the sense of
being free to rotate at that point and start moving in any direction. Although such
an observer can compare the dimensions of (infinitesimal) bodies in her immediate
vicinity—that is determined only by the nature of space itself—what she might go on to
discover about the larger-scale structure of space as she explores larger regions of it is
left maximally unconstrained.44 Weyl sums up this new conception of space, implicit in
general relativity as he understood it, with the following vivid metaphor:

Euclidean spacemaybe compared to a crystal, built up of uniformunchange-
able atoms in the regular and rigid unchangeable arrangement of a lattice;
Riemannian space to a liquid, consisting of the same indiscernible unchange-
able atoms, whose arrangement and orientation, however, are mobile and
yielding to forces acting upon them.45

5. The status of the metric field

Let us return to a consideration of what Weyl’s work can contribute to the relatively
recent debate over the status of the metric field. Recall that, on the one hand, because in
general relativity the metrical field incorporates the gravitational field, some (including
Earman, Norton and Rovelli) have argued that the metric tensor should be regarded as
representing a physical field, akin to the electromagentic field. On such a view, it is
the bare topological manifold, absent any metrical properties, that should be regarded
as representing spacetime itself. On the other hand, others (including Maudlin and
Hoefer) have argued that metrical structure remains at the heart of paradigmatic spatio-
temporal structure.

44For the curious reader, it is this Weylian notion of an idealized observer, free to rotate and move in any
direction, that inspired the title for this paper. (Thanks to StephenMackereth for the reminder that this
title was, in fact, his idea.)

45(Weyl, 2009, p. 88)
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In considering howWeyl himself might have responded to this debate, the following
statement seems unequivocal:

. . . it is not correct to say that space or the world is in itself, prior to any
material content, merely a formless continuous manifold in the sense of
analysis situs; the nature of the metric is peculiar to it in itself, only the
mutual orientation of the metrics at various points is contingent, a posteriori
and dependent on the material content.46

Thus, Weyl contrasts the nature of the metric—which, as we have seen, has its character
fixed by the relationship between affine and metrical structure—with the orientation of
the metric, encapsulating the remaining degrees of metrical freedom:

Thus one sees how the nature of themetric can be the same at every location,
even while its quantitative determination, the—so to speak—mutual orien-
tation of the metric at different points, is still very changeable and capable
of continuously varying configurations. Thus, from this standpoint, the a
prioristic essence of space (defined by the nature of the metric) . . . is divorced
from the mutual orientation of the metric at the different points, which is a
posteriori, i.e., contingent and naturally dependent on material content . . . 47

For present purposes, Weyl’s distinction between the a priori and a posteriori serves to
indicate the metrical properties that he attributes to space itself as contrasted with the
metrical properties he attributes to the particular distribution of matter and energy. The
fact that Weyl explicitly states that empty space is not ‘merely a formless continuous
manifold’ would seem to place him squarely against the view advanced by Earman,
Norton and Rovelli. But in fact Weyl’s analysis allows for a distinction that none of the
more contemporary protagonists have in view whilst capturing motivations from both
sides. On the one hand, there is the awkwardness of regarding the dynamical aspects
of the metric as attributable to space itself; on the other hand, there is the fact that a
bare manifold seems genuinely insufficient to represent anything we would recognize
as space. But Weyl’s distinction between the nature and orientation of the metric field
provides a way to retain the idea that space is intrinsically metrical without thereby
being forced to attribute all the dynamical aspects of the metric field to space itself.48

46(Weyl, 1922b, p. 117)
47(Weyl, 1922a, p. 216)
48One question we are left with here is whether the ‘mutual orientation of the metric from point to point’

should be regarded as in some sense akin to a physical field, and, if so, how. See Appendix B for a
(partial) attempt at an answer.
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Weyl thus provides a “middle way” between bare-manifold and manifold-plus-metric
accounts of spacetime, arguing that only the localmetrical properties—properties which
are independent of the variable distribution of matter and energy—are attributable to
space itself.
One thing that emerges from the debate over the status of themetric field is that, in the

wake of general relativity, we lack a principledmeans of identifyingwhichmathematical
structures represent features of space. By contrast, this was something that the figures
of the nineteenth century had available to them: the classical solution to the Problem of
Space provided a justification for why a particular collection of mathematical structures
(the constant curvature geometries) could play this particular representational role.
Once the classical solution became untenable, however, this justification went with
it. Weyl’s new solution to the Problem of Space thus offers a new justification for
whyanenlarged collectionofmathematical structures—differentialmanifolds equipped
with an infinitesimal Pythagorean-Riemannian metric—are candidate descriptions of
physical space.
Throughout this paper, we have been treatingWeyl’s solution to the Problem of Space

independently of his broader philosophical commitments. The fact that it is possible
to do so points to the fundamental nature of the Problem itself. This is evident from
the fact that, philosophical differences notwithstanding, there was broad agreement on
the classical solution to the Problem of Space prior to general relativity. Poincaré, for
example, could accept Helmholtz’s solution to the Problem of Space whilst disagreeing
withHelmholtz’s claim that the value of the curvature of space would be determined by
experiment. (For Poincaré, famously, the choice amongst constant curvature geometries
was a matter of pure convention.) In a similar way, it is open to us to accept Weyl’s new
solution to the Problem of Space (and the insight into the conception of space implicit in
general realtivity that Weyl offers) independently of Weyl’s own broader philosophical
commitments.49
Weyl’s argument seeks to show that reflection upon the concept of (physical) metrical

structure—in particular, upon the required relationship between metrical structure and
affine structure—provides a justification for the Pythagorean nature of the metric. This
provides a different argument for regarding the metric as encoding spatial structure,
beyond merely noting that certain “paradigimatically spatial” properties depend upon
it. In Weyl’s analysis the sine qua non of physical geometry is that it realises a concor-
dance between parallelism and congruence, and so the physical geometries are those

49For a detailed discussion of the philosophical commitments framing Weyl’s approach to the Problem of
Space, especially Weyl’s interest in Husserlian phenomenology, see Ryckman (2005), §6.
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whose infinitesimal metrical structures uniquely determine affine structures over finite
distances.50 It is with this kind of insight in view that we urge that engaging with the
Problem of Space remains important, not merely as providing a different answer to
the question of what represents space, but rather as a means of shedding light on the
question of what it is to represent space.

Acknowledgments

Our thanks to audiences at the 2015 Irvine-Pittsburgh-Princeton conference inPrinceton,
the 2015 meeting of the British Society for the Philosophy of Science in Manchester, and
the 2019 Early Career Workshop in History and Philosophy of Physics in Pittsburgh.
Thanks also to Gal Ben Porath, Stephen Mackereth, and an anonymous referee for their
help in improving this paper. Special thanks to John Dougherty for contributing to this
project across its various iterations and in particular for his detailed comments on an
earlier draft.

A. The ‘Postulate of Freedom’

In our reconstruction of Weyl’s solution, we foundedWeyl’s argument on only one pos-
tulate, rather than two. In this, we diverge from themore standard view in the literature,
namely that Weyl’s proof is based upon both a Postulate of Coherence (essentially the
uniqueness postulate used in our discussion), and a Postulate of Freedom:51 the pos-
tulate that any arbitrary collection Λi

kr of n3 numbers represents a possible system of
congruent transport. Now, this claim features in our reconstructions of Weyl’s proof—
but as an observation about the geometry, not as an independently stated postulate. It is
widely accepted that this is the correct logical status to give to the Postulate of Freedom:
since the work of Scheibe (1957), it is standard to describe the (so-called) Postulate of
Freedom as a theorem rather than a postulate.52 But what of its historical status? That
is, did Weyl consider this to be a theorem or an independent postulate?
We submit that on this matter, Weyl changed his mind—but that the version given

here represents his more mature view. Our reconstruction above follows the line of

50It is worth noting that this requirement also ensures that inertial structure can be identified unambigu-
ously: this suggests a connection between Weyl’s work and Knox’s analysis of spacetime as whatever
plays the functional role of determining inertial frames Knox (2017).

51See, for instance, Hawkins (2000), Scholz (2001), and Coleman and Korté (2001).
52See e.g. Scheibe (1988), (Scholz, 2001, p. 92). Coleman and Korté (2001) are an exception, seemingly

because of how strongly they reject Scheibe’s interpretation of the Problem of Space.
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thought given in Weyl (1923a), in which Weyl only ever refers to one postulate (not
two), in which the “freedom of the metric” features as a preliminary observation, not a
positive statement:

I come now to the synthetic part in the Kantian sense. It is necessary to
precisely formulate the postulate suggested earlier, which shall determine
the kind of rotation group which is characteristic for the actual world. First,
the freedom guaranteed to it! The free deformability of the metrical field is
available to such a degree that for a given rotation group at P0, the metrical
connection of this point with the points in its surroundings can always be
so formed that the equation

dξi = −Λi
krξ

k(dx)r

with arbitrarily given coefficients Λi
kr, represents a system of infinitesimal con-

gruent transport of the tangent space at P0. Second, the positive part of
the postulate: however this metrical connection of P0 with the points in its
surroundingsmay have been formed, among the possible systems of parallel
displacements of the tangent space there is always a unique one which is
simultaneously a system of infinitesimal congruent transport; the metrical
connection uniquely determines the affine.53

This is in sharp contrast to the version of this argument given elsewhere by Weyl,
where—indeed—the postulates of freedom and coherence are distinguished from one
another and separately stated. But that treatment represents an earlier phase of Weyl’s
thought: this discussion occurs first in the fourth edition of Raum, Zeit, Materie (Weyl,
1921), whichhehad completedbyNovember 1920 (thedate given in thepreface, wherein
he refers to ‘a deeper group-theoretic formulation‘ of the Problem of Space as one of the
major changes from the third edition); here, he succeeded in deriving the conditions on
the Lie algebra, but not in showing that these conditions sufficed to uniquely identify
the orthogonal group (except in the cases of two or three dimensions). A few months
later, he had succeeded in completing the proof, for the case of arbitrary dimension: the
proof was submitted in April 1921 (published as (Weyl, 1922b)), and Weyl discussed
the result in a lecture of September 1921 (the text of which was published as (Weyl,
1922a)).54 All of these papers treat the Postulate of Freedom as a separate postulate, but
all of them are prior to Weyl’s delivery of the Spanish lectures (in spring 1922).

53(Weyl, 1923a, p. 49)
54This timeline is based upon (Hawkins, 2000, §11.2).
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That said, it is true that Weyl also distinguished the two postulates in the fifth edition
of Raum, Zeit, Materie, which was completed in autumn 1922. However, he finished
preparing the text of the lectures (involving their translation from French and Castilian
back into German, and the inclusion of appendices completing the proof) in April
1923.55 Moreover, he appears to consider this text to supersede both (the treatment of
the Problem of space in) the fifth edition, and the paper Weyl (1922b):

I think of this littlemonographprimarily as an expansion of the book “Raum,
Zeit, Materie” (5th ed., Julius Springer 1923). The deeper understanding
of the problem of space, drawing on group theory, was there only briefly
touched upon . . . ; that is made good upon here. . . .

For the inclusion of a complete proof of that main group-theoretic result,
which the problem of space leads us onto, I decided in the first instance
. . . to simplify the first proof (Mathematische Zeitschrift 12, p. 114) to a great
extent.

For these reasons, it seems to us appropriate to take the one-postulate version of the
argument as more reflective of Weyl’s considered opinion.

Incidentally, there is an interesting question of the extent to which the published
1923 text reflects the lectures as they were delivered: in his preface, Weyl refers to
the text as ‘containing [the lectures] almost verbatim’, but also remarks that the eighth
lecture ‘has had to undergo a sweeping revision.’ Light could perhaps be shed on
this matter if the projected Catalan version of the lectures had been published by the
Institut d’EstudisCatalans, aswas apparentlyplanned (andhappened for similar invited
lecturers, e.g. Levi-Civita (1922)); however, it appears that this never came to fruition.56
The document list for the Weyl archive at the ETH Zurich57 does not appear to list notes
for these lectures; it does, however, mention correspondence between Weyl and the
Institut d’Estudis Catalans, and between Weyl and Esteban Terradas (who had invited
Weyl to Barcelona, and who edited the series in which the book would have appeared),
which could perhaps offer an account of why the Catalan book was never published.

55(Weyl, 1923a, p. III)
56There is no reference to such a volume in the Weyl bibliography of Newman (1957), nor in the catalog of

the Institut d’Estudis Catalan (Institut d’Estudis Catalans, 1997).
57Handschriften und Autographen der ETH-Bibliothek (1995)
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B. The nature of the metric as background object

As discussed in §3, the kind of homogeneous function used to express the norm at each
tangent space specifies the nature of the metric: that is, if the interval is expressed in
some coordinate system by the homogeneous function f , then the metric as nature (f)

(where (f) is the equivalence class of f under arbitrary linear transformations). How
do we capture the nature of a metric in more coordinate-free terms?
To this end, let us start by considering what it would be for two conformal manifolds

to be of the same nature. If two conformal manifolds both have nature (f), then for
any points p ∈ M and p′ ∈ M ′, there exist coordinate systems U → Rn and U ′ → Rn

(where p ∈ U and p′ ∈ U ′) such that the intervals at p and p′ are both expressed by f .
But it then follows that there is a linear bĳection h : TpM → Tp′M

′ which preserves
congruence. Conversely, if there exists such a map h, then given a coordinate system
around p in which f expresses the interval at p, we can push forward the coordinate
basis on TpM to Tp′M ′ under h, and then find a coordinate system around p′ for which
the pushed-forward basis is the coordinate basis; by construction, this basis will be one
relative to which the interval at p′ is expressed by f . Thus, two metrics are of the same
nature if and only if there is a congruence-preserving map from a tangent space in one
to a tangent space of the other.
Following this line of thought, we can represent the nature of the metric as follows.

Suppose that we begin with an n-dimensional manifold M . Consider a fibre bundle
which is isomorphic, qua vector bundle, to the tangent bundle TM ; this bundle is dis-
tinguished from the tangent bundle by the fact that there is no privileged identification
of points in the bundle with directional derivatives on the manifold. Now letW be the
result of equipping this fibre bundle with a faithful action ofO(n) on each fibre (soO(n)

is the structure group of W ). Let us (tendentiously) say that W is a natured manifold.
Any conformal manifold can be regarded as a natured manifold, by letting the action
of O(n) on any tangent space be the group of congruence-preserving maps; and by the
argument above, two conformal manifolds will be isomorphic qua natured manifolds
just in case they are of the same nature. So the name is appropriate, and we can think
ofW as a manifold equipped with a nature.
To turn W into a conformal manifold, we need to specify (in a smoothly varying

fashion) a pointwise linear bĳection e : W → TM . Such a field e is known as a solder
form or vielbein: in the context of general relativity, it is often called a tetrad field.58
As before, to move from a conformal manifold to a Weyl manifold, we require also a

58See Weatherall (2016) for discussion of solder forms in general relativity.
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length connection. Thus, on this reading, the nature of the metric is expressed in the
congruence-structure of an auxiliary internal bundle; the orientation is captured by a
tetrad field and a length connection.
We are not the only ones to have suggested that unpackingWeyl’s distinction between

nature and orientation might be associated with the vielbein formalism: for example,
Ryckman makes the following suggestive remarks:

The coordinate systems of the local group are defined in the tangent space
over eachpoint: each one is an orthonormal frame called a tetradwhich is free
to rotate independently of the tetrads over the other points. . . . The effects
of gravity are “restored” by a connection (here, the gravitational potential)
which reconciles the local laws on various points. This is the distinction
pointed to byWeyl in a purely mathematical context between the nature and
the orientation of the metric . . . 59

This suggests, in contrast to our reading, that the nature of the metric be identified with
the tetrad field (together with the internal metrical structure), rather than just the internal
metrical structure: this would amount to identifying the nature of the metric with the
conformal structure, and the orientation with the (length) connection.

In defence of our reading, we note not only that it is the most natural fit with Weyl’s
definition of nature in terms of equivalence classes of homogeneous functions, but also
that it fits best with Weyl’s insistence on the fixed and a priori character of the nature.
We touched upon this already, but it is helpful to consider how Weyl introduces the
distinction between nature and orientation in the 5th edition of Raum-Zeit-Materie:

Thenatureof themetric signifies the aprioristic essence of space in itsmetrical
aspect; it is one, thus it is also absolutely determined and does not partake
of the irrevocable vagueness of those which occupy a variable place in a
continuous scale. What is not determined through the essence of space,
but rather is a posteriori (i.e. contingent, intrinsically free, and capable of
arbitrary virtual changes), is the mutual orientation of the metrics at different
points . . . 60

With regards to this distinction, it is surely more natural to place conformal structure on
the a posteriori side, given that Weylian manifolds (including Riemannian manifolds)

59(Ryckman, 1999, p. 596). It may be noted that Ryckman identifies a tetrad as a frame field, i.e., a choice
of basis at each point, rather than as a pointwise linear isomorphism between an internal bundle and
the tangent bundle. The two definitions are equivalent if a preferred frame field for the internal bundle
is chosen.

60(Weyl, 1923b, pp. 102–103)
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can have very different conformal structures—as Weyl was surely aware, having intro-
duced the conformally invariantWeyl curvature inWeyl (1918b). By contrast, the nature
as we have characterised it is a local invariant in the following sense: given any two
Weylianmanifolds, expressed invielbein formas (π : W →M, e) and (π′ : W ′ →M ′, e′),
for any p ∈M and p′ ∈M ′, there are neighbourhoods U 3 p and U ′ 3 p′ such that there
is an O(n)-bundle automorphism φ : W |U →W ′|U ′ .
Phrased in these terms, the distinction that Weyl articulates as the a priori versus a

posteriori properties of space starts to sound like a rather more familiar distinction in
the contemporary literature on spacetime theories: the Anderson-Friedman distinction
between absolute and dynamical structures.61 To formulate this distinction, Friedman
first introduces the concept of d-equivalence: given a pair of models 〈M,Φ1, . . . ,Φn〉 and
〈M,Ψ1, . . . ,Ψn〉 of some space-time theory T , Φi and Ψi are d-equivalent just in case
‘for every p ∈M , there are neighbourhoods A, B of p, and a transformation h : A→ B,
such that Ψi = hΦi on A ∩B.’62 Then,

A geometrical object Φi is an absolute object of a space-time theory T just in
case for any two models 〈M,Φ1, . . . ,Φn〉 and 〈M,Ψ1, . . . ,Ψn〉 of T , Φi and
Ψi are d-equivalent.63

As is well-known, general relativity admits no absolute objects in this sense. But there is
a natural way of modifying Friedman’s definition of d-equivalence to apply to theories
with internal bundles. Given a pair of bundles with fields (π : E →M,Φ1, . . . ,Φn) and
(π : E → M,Ψ1, . . . ,Ψn), let us say that Φi and Ψi are b-equivalent if for every p ∈ M ,
there are neighbourhoods A,B of p, and a bundle automorphism h : E|A → E|B , such
that Ψi = hΦi on E|A ∩ E|B ; we can then define an absolute object as one which is
b-equivalent across any pair of models, rather than d-equivalent.
Hence, if wewrite anyWeylian geometry as (π : E →M,N, e) (whereN is the nature,

i.e. the action of O(n) on each fibre) then it follows from the observation above that for
any models (π : E → M,N ′, e′), N and N ′ are b-equivalent; and hence, that the nature
of the metric is an absolute object in (a natural analogue of) Friedman’s sense. So this
analysis shows that, even in light of the great conceptual changes wrought by general
relativity upon our concepts of space, something fixed and absolute remains. As Weyl
puts it:

61Although this terminology is standard, it is not clear towhat extent Anderson’s concept of absolute object
(as described in (Anderson, 1967, §4.3)) coincides or overlaps with Friedman’s (introduced below): for
discussion, see Pitts (2006).

62(Friedman, 1983, p. 58)
63(Friedman, 1983, p. 60)
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One sees that the Riemannian viewpoint does not abnegate the existence of
an aprioristic element in spatial structure; only the boundary between the a
priori and the a posteriori is shifted.64

With this inview, let us returnoncemore to thedebate overwhat represents spacetime.
We have seen that the nature of the metric may be understood as a form of structure
which goes beyond that of the bare manifold, but is nevertheless absolute or a priori;
it in this sense that it represents an intermediate level of structure between the metric
and manifold. That said, it will not succeed in doing the kinds of things that Maudlin
or Hoefer argued above that space(time) structure should do. If one is given a manifold
with a nature, then there is no way to compute the length of a curve from one point to
another; one needs a vielbein field in order to be able to do that. So those who take the
metric to be spatiotemporal in character will be unlikely to be persuaded that the (mere)
nature of the metric represents spacetime.
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