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Abstract In this article, it is argued that the Gibbs-

Liouville theorem is a mathematical representation of

the statement that closed classical systems evolve de-

terministically. From the perspective of an observer of

the system, whose knowledge about the degrees of free-

dom of the system is complete, the statement of de-

terministic evolution is equivalent to the notion that

the physical distinctions between the possible states of

the system, or, in other words, the information pos-

sessed by the observer about the system, is never lost.

Thus, it is proposed that the Gibbs-Liouville theorem is

a statement about the dynamical evolution of a closed

classical system valid in such situations where infor-

mation about the system is conserved in time. Fur-

thermore, in this article it is shown that the Hamilton

equations and the Hamilton principle on phase space
follow directly from the differential representation of

the Gibbs-Liouville theorem, i.e. that the divergence of

the Hamiltonian phase flow velocity vanish. Thus, con-

sidering that the Lagrangian and Hamiltonian formula-

tions of classical mechanics are related via the Legendre

transformation, it is obtained that these two standard

formulations are both logical consequences of the state-

ment of deterministic evolution, or, equivalently, infor-

mation conservation.
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1 Determinism and information

In classical mechanics, it is a fundamental assumption

that the evolution of a system is deterministic in both

directions of time, i.e. both into the future and into the

past. Deterministic evolution of a system mean that it is

possible, with absolute certainty, to say that any given

state of the system evolved from a definite single state

in the past and will evolve into a definite single state in

the future. There cannot be any ambiguity in the evolu-

tionary history of a system. In figure 1 examples of de-

Fig. 1 Deterministic and non-deterministic evolution of a
physical system.

terministic and non-deterministic evolution are shown.

Evolution 1 represent deterministic motion both into

the future and into the past. Consider e.g. state B. It is

known with certainty that the previous state was A and



2 Andreas Henriksson

that the next state will be C. Evolution 2 and 3, on the

other hand, represent non-deterministic motions. Along

evolution 2, it is known with certainty that state A will

evolve into stateB but it is uncertain whether it evolved

from state X or Y . Hence, it is deterministic into the

future but non-deterministic into the past. Evolution

3 is deterministic into the past but non-deterministic

into the future. The reason for this is that it is impos-

sible to say which of the states Y and B the state A

will evolve into. The assumption of deterministic evolu-

tion thus imply that nowhere on phase space can states

converge or diverge, see figure 2.

Fig. 2 A violation of the assumption of deterministic evolu-
tion imply that system trajectories would cross each other on
phase space, here at point (q0, p0). In other words, nowhere
on phase space can states converge or diverge.

Systems that appear to evolve non-deterministically

give rise to the appearance of irreversible processes in

nature. The reason for this is that if a system start

out in a given state, e.g. state X in evolution 2, and

evolve as X → A → B → C → D, it is not nec-

essarily the case that the system end up at the same

initial state X by reversing the motion of the system in

time. It might be that, upon time-reversal, the system

evolve as D → C → B → A → Y . An example of a

seemingly irreversible process is the sliding of a block

of cheese along a table. Due to friction the block will

always come to rest, apparently independent on the ini-

tial condition of the block. Thus it appear as though the

multitude of possible initial states for the block, given

by the possibility of sending off the block with differ-

ent initial speeds, all converge to the same final state

where the block is at rest. Knowing the final state of

the system does not help in predicting the initial state

of the system. Therefore, the experiment with sending

off the block of cheese seem to represent an evolution

which is non-deterministic into the past.

The origin for the apparent violation of reversibil-

ity in physical processes is not due to a fundamental

character in physical laws, but rather it is due to the

ignorance of the observer. The observer has not taken

into account all the details of the system. Degrees of

freedom for the system has been ignored. In the case of

the sliding block of cheese, it is the individual motion

of atoms in the block and table which has been ignored.

Assuming that all degrees of freedom for the block and

table are followed in perfect detail as the block slide on

the table it is clear that each unique initial state will

give rise to a unique final state where the distinction

between the final states are given by the distinct final

position and velocity of each atom in the block and

table.

In general, there are three sources for apparent vi-

olations of reversibility. It might be that microscopic

degrees of freedom has been ignored, as is the case for

the sliding block. Or it might be that the system is

simply too big that it is not feasible to keep track of

all the degrees of freedom. Or it might be that the sys-

tem interact in complicated ways with an environment,

whose degrees of freedom are difficult to take into ac-

count. In any case, if all the properties of a system is

known to infinite precision, at any given time, the evo-

lution of the system is reversible. On phase space, the

time-reversed evolution of the system would follow the

same trajectory as when evolving forward in time, with

the difference that p→ −p.

A direct consequence of the assumption of deter-

ministic evolution is that distinctions between physical

states never disappear. If there is an initial distinction
between states, this distinction will survive throughout

the entire motion of the system. That distinctions be-

tween states seem to disappear as time unfold is merely

a consequence of the difficulty for an observer to keep

perfect track of the motion of all particles. In the case

of the sliding block, for a human observer, the distinc-

tion between individual motions of atoms in the block

and table are too small to measure and therefore it ap-

pear as though two distinct initial states, characterized

by distinct initial speeds, which are easy to measure,

converge to the same final state, i.e. that the block is

at rest. In conclusion, the assumption of deterministic

evolution can equivalently be stated as follows.

The distinction between physical states of a closed sys-

tem is conserved in time.

Due to the conservation of distinction between phys-

ical states, any set of states which lie in the interior

of some volume element on phase space will remain in-
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terior of this volume element as the system evolve in

time.

If a system is followed, as it evolve in time, in per-

fect detail by an observer, it mean that the observer has

perfect and complete knowledge about all the degrees

of freedom of the system, i.e. the observer know, with

infinite precision, the exact position and momenta of all

particles within the system. In such an ideal scenario,

the observer has no problem to see the distinction be-

tween states of the system. The amount of knowledge,

or information, about the system possessed by the ob-

server, at any instant of time, is complete. Since the

ideal observer never loose track of the system, the dis-

tinction between states is never lost. In other words, the

knowledge, or information, that the observer has about

the system is not lost as the system evolve in time.

If, however, as is the case in practical reality, the

observer has a limited ability to track the motion of in-

dividual particles, the observer do not possess complete

information about the system. Even worse, the observer

may, as is usually the case for complicated systems with

many degrees of freedom, find it more and more difficult

to track the system as time unfold. In such a scenario,

the amount of information about the system, possessed

by the observer, decrease with time. In other words,

from the perspective of the ignorant observer, informa-

tion about the system is lost. However, it is important

to emphasize that this apparent loss of information is

entirely due to the ignorance of the observer. If all the

degrees of freedom were tracked with infinite precision,

information would never be lost.

In the case of the sliding block of cheese, the ob-

server has lost information about the system. This is

because the system was known to exist in one of two

distinct initial states, obtained by measuring the initial

speed of the block, whereas it is not possible to dis-

tinguish between the two final states. Thus, the loss of

distinction between states imply that information has

been lost. In conclusion, the conservation of distinction

between states can equivalently be stated as an assump-

tion of information conservation:

The information contained within a closed system is

conserved in time.

Thus, in conclusion, the assumption that classical sys-

tems evolve deterministically, i.e. that the state of the

system is perfectly predictable both into the future and

back to the past, is equivalent to the statement that

an observer of the system possess complete informa-

tion about the system, and assuming that the system

is closed, this amount of information is never lost. In

the next section, it is argued that the Gibbs-Liouville

theorem is a mathematical representation of the state-

ment of information conservation.

2 The Gibbs-Liouville theorem

Consider an arbitrary region Ω on phase space, with

volume VΩ and infinitesimal volume element dqdp. That

information is conserved within Ω put two requirements

on the flow of states. First, the total number of states,

N , within Ω is constant in time,

dN

dt
= 0 (1)

In other words, there can be no net increase or decrease

in the number of states within Ω. Secondly, the set of

N states is unique and stay the same for all times. The

second requirement is needed to avoid the possibility

that states are created and destroyed at the same rate at

different locations on phase space. This is fulfilled if the

density of states on phase space, ρ(q, p, t), is constant

in time,

dρ

dt
= 0 (2)

When these two conditions are met, states on phase

space cannot converge or diverge. Such a flow of states

is referred to as an incompressible flow.

The number of states N is related to the density of

states ρ(q, p, t) by

N =

∫
VΩ

ρ(q, p, t)dqdp (3)

The first condition thus become

dN

dt
=

d

dt

∫
VΩ

ρ(q, p, t)dqdp

=

∫
VΩ

(
dρ

dt
+ ρ ∇ · v

)
dqdp

= 0 (4)

where

∇ =

(
∂

∂q
,
∂

∂p

)
(5)

is the differential operator on phase space, and

v = (q̇, ṗ) (6)

is the velocity by which states flow on phase space. Since

information should be conserved independently on the

size of Ω, the integrand in equation 4 must vanish for

arbitrary volumes VΩ , i.e.

dρ

dt
+ ρ ∇ · v = 0 (7)

This is the continuity equation for the flow of states on

phase space. It say that the number of states is locally
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conserved. This can be seen more explicitly by rewriting

it as follows. The total time derivative of the density of

states is

dρ

dt
=
∂ρ

∂t
+
∂ρ

∂q
q̇ +

∂ρ

∂p
ṗ (8)

=
∂ρ

∂t
+ (∇ρ) · v (9)

Using the product rule

∇ · (ρv) = (∇ρ) · v + ρ∇ · v (10)

the continuity equation is rewritten as

∂ρ

∂t
+ ∇ · (ρv) = 0 (11)

The term ∇·(ρv) represent the net flow of states through

Ω, i.e. the difference between the outflow and inflow of

states. The continuity equation state that if there is a

net outflow of states, i.e. if

∇ · (ρv) > 0 (12)

then the density of states within Ω decrease with time,

i.e.

∂ρ

∂t
= −∇ · (ρv) < 0 (13)

If there is a net inflow of states, i.e. if

∇ · (ρv) < 0 (14)

then the density of states within Ω increase with time,

i.e.

∂ρ

∂t
= −∇ · (ρv) > 0 (15)

In order for the flow of states on phase space to

satisfy the principle of conservation of information, the

density of states must be constant in time. From the

continuity equation it is thus obtained that the diver-

gence of the flow velocity must vanish, i.e.

∇ · v = 0 (16)

In conclusion, if the divergence of the flow velocity van-

ish, the flow of states on phase space is incompressible

and hence information is conserved. This is the mathe-

matical representation, in differential form, of the prin-

ciple of information conservation. It can be restated in

terms of volumes on phase space. Consider a group,

any group, of N states on phase space. Due to the in-

compressibility of the flow of states on phase space,

with each state having a volume dV , the total volume

V =
∑N
j=1 dVj = N ·dV of the group of N states remain

constant in time as they flow on phase space. This con-

clusion is the Gibbs-Liouville theorem [1][2]. The con-

tinuity equation is the Gibbs-Liouville equation for the

density of states on phase space.

3 Hamilton’s equations

The vanishing divergence of the flow velocity, written

out explicitly in terms of the velocity components q̇ and

ṗ, become

∂q̇

∂q
+
∂ṗ

∂p
= 0 (17)

For this condition to hold, the velocity components

must both be related to a function H(q, p) on phase

space given by the Hamilton equations [8],

q̇ =
∂H
∂p

(18)

ṗ = −∂H
∂q

(19)

Thus, given the function H(q, p), the flow of the sys-

tem in time is determined by how H(q, p) change on

phase space. In this sense, H(q, p) is said to be the gen-

erator for the motion in time of the system. The flow

of the system on phase space is then referred to as a

Hamiltonian flow.

4 The Hamiltonian and Lagrangian

The Hamilton equation 18 correspond to the integral

equation

H(p) =

∫
dp q̇(p) (20)

The momentum p and speed q̇ are assumed to be in one-

to-one correspondence. This mean that for each value

of q̇ there is a unique value for p, and vice versa. The

function H(p) is then geometrically interpreted as the

unique area under the q̇(p)−graph, bounded by (0, p)

and (0, q̇(p)), see figure 3. Due to the one-to-one cor-

Fig. 3 The areas under q̇(p) and ṗ(q) graphs define the
Hamiltonian and Lagrangian, respectively.

respondence between p and q̇ it is possible to define a
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related area, L(q̇), given by the unique area under the

p(q̇)−graph,

L(q̇) =

∫
dq̇ p(q̇) (21)

This integral equation correspond to the differential

equation1

dL(q̇)

dq̇
= p (22)

The total area of the rectangle bounded by (0, p) and

(0, q̇) is given by

L(q̇) +H(p) = p · q̇ (23)

It is possible to include a dependence on the generalized

coordinate q under the constraint that any q−dependent

terms in the functions H and L cancel such that the to-

tal area is q−independent. Thus, in general, the func-

tions H and L, referred to as the Hamiltonian and the

Lagrangian, respectively, satisfy the so-called Legendre

transformation,

L(q, q̇) +H(q, p) = p · q̇ (24)

where

L(q, q̇) =

∫ q̇

0

dq̇ p(q̇)− U(q) (25)

H(q, p) =

∫ p

0

dp q̇(p) + U(q) (26)

The function U(q) is referred to as the potential energy

of the system. The requirement that the total area is

q−independent cause the Lagrangian and Hamiltonian

to have a relative sign difference for their potential en-

ergy.

5 Principle of stationary action

The Hamilton equations

−∂H
∂q
− ṗ = 0 (27)

q̇ − ∂H
∂p

= 0 (28)

is the local, differential, representation of the principle

of information conservation on phase space. A global,

or integral, representation can be obtained by consider-

ing the entire evolutionary path from some initial time

ti to some final time tf where the Hamilton equations

are integrated over time2. For this purpose, multiply

1 In the Lagrangian formulation of classical mechanics, this
differential equation is the defining equation for the momenta
conjugate to the generalized coordinate.
2 For the derivation of an integral representation on config-

uration space starting from Newton’s second law of motion,
see chapter 10 in reference [9].

the Hamilton equations with two independent arbitrary

functions of time, δq(t) and δp(t), representing, respec-

tively, small displacements in q and p on phase space,

in the following manner,(
−∂H
∂q
− ṗ
)
δq(t) = 0 (29)(

q̇ − ∂H
∂p

)
δp(t) = 0 (30)

The displacements δq(t) and δp(t) are pictured as slight

variations of the physical path on phase space, i.e.

q(t)→ q(t) + δq(t) (31)

p(t)→ p(t) + δp(t) (32)

Equations 29 and 30 are equivalent to the Hamilton

equations since they hold for arbitrary variations. The

fact that it is necessary to introduce two displacement

functions is due to the independence of the state pa-

rameters q and p. The boundary conditions are given

by

δq(ti) = δq(tf ) = 0 (33)

δp(ti) = δp(tf ) = 0 (34)

i.e. the variations vanish at the initial and final times.

Integrating the Hamilton equations over time from ti
to tf give, to leading order in the variations,∫ tf

ti

dt

[(
−∂H
∂q
− ṗ
)
δq(t) +

(
q̇ − ∂H

∂p

)
δp(t)

]
= 0(35)

Integration by parts and recalling the boundary condi-

tions give

0 =

∫ tf

ti

dt

[
∂(q̇p−H)

∂q
− d

dt

∂(q̇p−H)

∂q̇

]
δq(t)

+

∫ tf

ti

dt

[
∂(q̇p−H)

∂p
− d

dt

∂(q̇p−H)

∂ṗ

]
δp(t)

=

∫ tf

ti

dt δ (q̇p−H)

= δ

∫ tf

ti

dt (q̇p−H)

= δ

∫ tf

ti

dt L

= δA (36)

where

A ≡
∫ tf

ti

dt L (37)

is the action of the system. This is Hamilton’s formu-

lation of the principle of stationary action, or shortly,

Hamilton’s principle. It is a global representation of in-

formation conservation, i.e. a statement on the entire

evolutionary path which must be satisfied if the system
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is to adhere to the principle of information conserva-

tion.

Since the Hamilton principle can be derived from

the Hamilton equations, which in turn is an immediate

consequence of the requirement that the divergence of

the Hamiltonian flow velocity vanish, it should be pos-

sible to obtain the Hamilton principle directly from the

requirement that ∇ · v = 0 is invariant under the dis-

placements δq(t) and δp(t). Given that the variations

are small, the flow velocity v can be expanded as a

Taylor series about the state (q, p) where terms that

are of quadratic, or higher, order in the variations δq

and δp can be ignored. The infinitesimal change in v

thus become

δv = v(q + δq, p+ δp)− v(q, p) = δq
∂

∂q
v + δp

∂

∂p
v(38)

The divergence of the flow velocity transform as

∇ · v→∇ · (v + δv) = ∇ · v + ∇ · δv (39)

If ∇ · δv 6= 0, information is not conserved for the de-

viated path. Therefore, it is required that

∇ · δv = 0 (40)

which is equivalent to

δ (∇ · v) = 0 (41)

This statement is for a blob of volume dV which enclose

the single state (q, p). Information conservation should

hold for all varied states along the evolutionary path

of the system, from the initial state (qi, pi), at time ti,

to the final state (qf , pf ), at time tf . Thus, the above

statement should be integrated over all blobs of volume

dV along the path, i.e. the integration is over a tube,
with volume V , whose interior define the region of ex-

tended phase space where the principle of information

conservation is fulfilled. Thus,

δ

∫ tf

ti

dt

∫
V

dV ∇ · v = 0 (42)

Applying the divergence theorem∫
V

dV ∇ · v =

∫
∂V

dS · v (43)

give

δ

∫ tf

ti

dt

∫
∂V

dS · v = 0 (44)

The integrand dS · v represent the density of the net

Hamiltonian flow out of the tube. The surface area el-

ement dS is given by

dS = dS n (45)

where n = (p, q) is the normal vector to the surface

of the tube, i.e. n give the direction in phase space

in which the system has to flow if it is to eventually

reach a region where the principle of conservation of

information no longer hold. Thus, with v = (q̇, ṗ), the

integrand become

(p, q) · (q̇, ṗ) = pq̇ + qṗ (46)

Using that q =
∫
dq and the Hamilton equation ṗ =

−∂H∂q , the integrand can be written as

pq̇ −
∫
dq
∂H
∂q

= pq̇ −
∫
dH = pq̇ −H (47)

Equivalently, the integrand could have been written as

qṗ+H (48)

by using that p =
∫
dp and the other Hamilton equation

q̇ = ∂H
∂p . However, the form pq̇ − H is the preferred

choice due to the fact that it is equal to the Lagrangian

L. Thus,

δ

∫ tf

ti

dt

∫
dS L = 0 (49)

The equality must hold independently on the surface

area of the tube, i.e. the principle of information con-

servation should hold true independently on the number

of states in which the system can exist. Therefore, the

integration over the surface area can be taken outside

of the infinitesimal variation, giving that

δ

∫ tf

ti

dt L = 0 (50)

which is, again, Hamilton’s principle.
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