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Abstract

This paper suggests a fresh look at gauge symmetries, with the aim of drawing a clear

line between the a priori theoretical considerations involved, and some methodological

and empirical non-deductive aspects which are often overlooked. The gauge argument is

primarily based on a general symmetry principle expressing the idea that a change of math-

ematical representation should not change the form of the dynamical law. In addition, the

ampliative part of the argument is based on the introduction of new degrees of freedom

into the theory according to a methodological principle that is formulated here in terms

of correspondence between passive and active transformations. To demonstrate how the

two kinds of considerations work together in a concrete context, I begin by considering

spatial symmetries in mechanics. I suggest understanding Mach’s principle as a similar

combination of theoretical, methodological and empirical considerations, and demonstrate

the claim with a simple toy model. I then examine gauge symmetries as a manifestation of

the two principles in a quantum context. I further show that in all of these cases the rela-

tional nature of physically significant quantities can explain the relevance of the symmetry

principle and the way the methodology is applied. In the quantum context the relevant

relational variables are quantum phases.
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1 Introduction

The effectiveness of symmetry considerations in contemporary physics remains puzzling even
after a century filled with remarkable achievements. The heart of the matter, it seems to many,
is the far-reaching role played by theoretical and mathematical considerations in justifying the
way laws are formulated. This exceptional emphasis on a priori considerations appears to leave
little room, if any, for understanding the form of the laws based on properties of the physical
world.

The ghosts in the title of this paper refer to the metaphor used by Eugene Wigner to explain
the concept of gauge. Wigner ([1964]) compared gauge fields to ghosts that are artificially
placed in a physical theory. A change in the coordinates of the ghost does not change the phys-
ical situation. Thus the introduction of the ghost creates a formalism in which every physical
situation has many equivalent descriptions differing only in the location of the ghost. Gauge
symmetries are analogous to the indifference of the theory to the location of the ghost.

Nevertheless, the concept of gauge has gradually become a cornerstone of modern physics,
as a symmetry requirement that determines the form of the fundamental laws of interaction and
introduces force-carrying particles (O’Raifeartaigh [1997]). The common Wignerian concep-
tion of gauge as an artificial matter of mere representation or convention appears to conflict with
its major consequences (Teller [1997]; Martin [2003]). The confusion caused by this conflict is
often reflected in the way gauge is presented in textbooks, where, for example, the existence of
force-carrying particles and their properties is deduced from the freedom ‘to choose one phase
convention in Paris and another in Batavia’(Quigg [2013]).

This conflict is the basis of several related foundational questions regarding gauge symme-
tries that have been raised by different thinkers (Brown [1999]; Teller [2000]; Lyre [2000];
Redhead [2003]; Ben-Menahem [2012]). Most of these worries involve the “gauge principle”
(also referred to as the gauge argument), namely, the introduction of an interaction into a theory
of a free field by imposing the demand that a global symmetry would hold as a local symmetry.

This paper presents the gauge principle as the result of three elements. The first is a general
symmetry principle. The second is an ampliative step where additional degrees of freedom are
introduced into an existing theory which does not satisfy the symmetry principle, so as to create
a new theory that does. There is nothing a priori in this step; it requires empirical input. The
third element that turns out to be essential for understanding the gauge principle is the structure
of quantum theory.

The symmetry considerations used in gauge theories are presented as a manifestation of
a general symmetry principle that is also found in other contexts in physics. Sec. 2 takes
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advantage of the clarity and simplicity of spatial degrees of freedom in classical mechanics to
formulate this general symmetry principle and demonstrate how it can give rise to arguments
about the construction of theories.

It turns out that this symmetry principle is only satisfied in theories that take all relevant
degrees of freedom into account. When a successful theory does not satisfy this principle,
we suggest seeing this as a sign that its scope has to be extended. Subsection 2.2 formulates
a methodological principle that guides the construction of an extended theory, and presents
Mach’s principle as a manifestation of this methodology. Section 3 uses a concrete toy model
to demonstrate the relation between the symmetry principle and the methodological principle.
Section 4 presents the gauge argument as a manifestation of the two principles in a quantum
context.

Furthermore, it is demonstrated that in the cases studied the relational nature of fundamental
dynamical quantities could be the fact in the world that makes the symmetry principle rele-
vant and the argument successful. This account of gauge symmetries therefore supports the
relational approach to gauge recently presented by Rovelli ([2014]).

Section 5 concludes by connecting the presented account to the philosophical discussion
regarding the gauge principle, and also discusses the implications of the account given here
for the issues of the interpretation of gauge symmetries and the possibility of observing them
directly.

2 Spatial Symmetries and Their Methodological Role

Symmetry considerations based on the invariance properties of the dynamics are a powerful
tool for constructing theories as well as for interpreting them. The goal of this section is to
motivate and formulate a symmetry principle and a methodological principle. In both cases the
starting point is arguments related to the debate about the ontology of space. Substantivalists
consider coordinate systems as a representation of physical space, an actual physical object.
Relationists, in contrast, consider them as no more than an auxiliary mathematical structure that
allows for a convenient description of the spatial relations between material objects, which they
consider as the actual physical quantities. Subsections 2.1-2.2 present several key arguments
(of both sides) in terms of transformations and symmetries, and generalize to formulate the two
principles. Subsection 2.3 further elaborates on the role of frames of reference.

2.1 A symmetry principle

There are infinitely many ways to label points of space by coordinates. The different coordi-
nate systems are connected by coordinate transformations. Some coordinate transformations
may be regarded as nothing more than a change of description, a replacement of one mathe-
matical representation of the set of possible physical situations with a different mathematical
representation of the same set.

3



Guy Hetzroni Gauge and Ghosts

Which transformations should be regarded as a change of representation is a matter of one’s
ontological commitments. For example, consider a form of Leibnizian relationism according to
which the only meaningful physical variables are relative distances between physical objects.
The spatial symmetry group that is entailed by this view is the set of transformations which do
not change the values of these relations, namely arbitrary rotations and translations

~r → A (t)~r + ~R (t) . (2.1)

(Here A (t) and ~R (t) are a time-dependent orthogonal matrix and a vector in space respec-
tively.)1 Coordinate transformations that preserve the postulated spatial structure, and are
therefore regarded as a change of representation, would be referred to as spatial symmetries.
Similarly, coordinate transformations that preserve space-time structure would be referred to as
space-time symmetries2.

Earman ([1989]) suggested the following symmetry principle: any space-time symmetry of
a theory is a dynamical symmetry of the theory. General covariance in general relativity is an
ultimate manifestation of the principle. Indeed, the general principle of relativity was presented
by Einstein (for example in Einstein [1919]) along the same lines. Einstein’s justifications, as
well as Earman’s arguments for the principle, are fundamentally a priori in nature.

This symmetry principle can be similarly employed to argue about Newtonian mechanics.
The actual spatial symmetry group of Newton’s laws of motion is the Galilean group

~r → A0~r + ~R0 + ~vt. (2.2)

It allows for fixed rotations and translations (characterized by a fixed orthogonal matrix A0 and
a fixed vector R0), and boosts at some constant velocity ~v. This group is significantly smaller
than the spatial relationist group (2.1). Adopting a relationist view of space thus leads to a
violation of the symmetry principle. A transition to a rotating reference frame, for example,
while preserving all relative displacements, changes the form of the laws of motion through the
introduction of centrifugal forces. Therefore the transition cannot be regarded as a change of
representation, in contrast to the relationist stance.

This argument against relationism can easily be seen as a version of Newton’s bucket argu-
ment, one that is expressed in terms of passive rotations. The original argument was used by
Newton ([1999]) to support substantivalism. Once the postulated ontology includes absolute
space, a transformation of the coordinates of the objects (such as the above rotation) does not
stand for a change of representation, but for a change in the absolute motion of the objects

1A different form of relationism, which considers the physical variables to be relative distances together with
relative velocities, entails a smaller symmetry group; in this case rotations have to be excluded and A (t) above
becomes fixed in time.

2An extensive discussion of space-time symmetries and their relation to space-time structure is given by
Pooley ([2013]). For simplicity we focus below on the spatial part of the transformations and avoid the temporal
part whenever possible.
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with respect to absolute space. The fact that it alters the dynamical law is therefore not surpris-
ing (and is not a violation of the principle). This version of the argument is a straightforward
application of the symmetry principle.

Wigner ([1964]) has described electromagnetic gauge symmetry as a similar connection be-
tween change of representation and the dynamical law: ‘two different descriptions of the same
situation should develop, in the course of time, into two descriptions which also describe the
same physical situation’. Wigner’s view, according to Martin ([2003]), significantly contributed
to the modern textbook presentation of the gauge principle. Nakahara ([2003]), for example,
formulates it simply as ‘physics should not depend on how we describe it’.

In order to formulate a general principle, we generalize from Earman’s principle for space-
time symmetries using the concepts of kinematics and dynamics. The term kinematics is used
here in a broad sense to refer to the representation of the possible states of a system accord-
ing to a given physical theory. A kinematical symmetry is an automorphism of the kinematical
structure3. Kinematical symmetries are therefore passive transformations, a change in the math-
ematical labels of the different physical states postulated by the theory. In contrast, dynamical
symmetries are transformations of the values of the dynamical variables, under which the form
of the dynamical law remains invariant.

Using the above definitions we formulate a general symmetry principle.

Symmetry principle: Every kinematical symmetry of a theory should also be a
dynamical symmetry.

The above passive version of Newton’s bucket argument, Einstein’s general principle of rela-
tivity and the textbook version of the gauge argument, can all be regarded as expressions of this
principle.

2.2 A methodological principle

There are different ways to apply the above symmetry principle. In this subsection we formulate
a methodological principle that supports the construction of theories that satisfy it. We start by
describing Mach’s analysis of Newton’s bucket experiment in terms of transformations and
symmetries, and generalize from this example.

The passive version of Newton’s bucket argument given in the previous subsection is based
on a comparison of two descriptions of one situation. The original bucket argument by Newton,
in contrast, was based on a comparison of two different physical situations: a vessel of water
at rest, vs. the vessel after it has gradually been rotated from rest to a state of uniform angular
velocity. The argument against relationism is based on noting that in both cases there is no
relative motion between the water and the bucket, while the shape of the surface of the water
turns out to be different. The outcome is thus not determined by the relative motions between

3This definition is a special case of the definition given by Redhead ([2003]) to passive symmetries, and is
also close to Healey’s ([2009]) definition of “theoretical symmetries”.

5



Guy Hetzroni Gauge and Ghosts

the components of the system. It has to be determined by the motion with respect to something
else, which Newton believes to be absolute space.

Mach’s (1883, [1919]) famous reply was that the bucket experiment ‘simply informs us, that
the relative rotation of the water with respect to the sides of the vessel produces no noticeable
centrifugal forces, but that such forces are produced by its relative rotation with respect to
the mass of the earth and the other celestial bodies’ (p. 232). He therefore suggests to replace
Newton’s laws of motion with modified laws that would be constructed to reflect this postulated
origin of centrifugal forces.

According to the Machian view, the transformation (2.1) is, indeed, no more than a change
of representation. The reason that it is not a symmetry of Newtonian mechanics is that the latter
theory is an approximate description of small subsystems of the universe. Thus, the description
of the bucket and the water in terms of Newtonian mechanics does not take into account the
influence of some relevant objects (the celestial bodies). The full symmetry would only be
revealed by the more fundamental dynamical law, which would take into account all of the
relevant degrees of freedoms.

In order to characterize Mach’s suggestion in terms of transformations we shall have to con-
sider active transformations. The basic definition of active transformations is transformations
that map the set of possible states to itself, thus replacing one physical configuration with a
different configuration (and are therefore, generally, non-symmetries).4

Newtonian mechanics is not invariant under passive rotation. In the transition from describ-
ing a mechanical system using one spatial frame of reference to a description using a second
frame of reference that is rotating with respect to the first, the form of the equations of motions
change due to pseudo-force terms. The Machian step postulates an interaction between the
described system and external objects; when the system is actively rotated with respect to the
external objects, the system experiences an actual force, identical in its form to the pseudo-force
in the passive case.

Obviously, there is no a priori guarantee that the world would behave like that. In Mach’s
case, he did not even formulate a theory of such interaction. What he did show is that modifying
the dynamical law in this way, would result in a truly relationist theory, a theory in which (2.1)
is indeed a symmetry transformation. In other words, we start from a theory that violates the
symmetry principle, and construct a theory that satisfies it by postulating the existence of active
transformations that alter the dynamics in a particular way.

4A major source of the common confusion between passive and active transformations is that in many cases
active transformations take the same mathematical form as passive ones. Furthermore, in some cases it would be a
matter of interpretation whether a given transformation of the variables is active or passive. For example, someone
who believes in the existence of Newtonian absolute space would interpret a fixed translation ~r → ~r + ~R0 as an
active transformation of all material objects with respect to absolute space (every object is now in a different part
of space, therefore the physical state has changed). But if absolute space does not exist, this transformation is just
a passive transformation of the coordinates. In many other cases the transformation would be observable, and its
active nature would be apparent. A simple example is the translation of a physical system with respect to other
material objects.
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The active transformation, in this case, is not a change in the state of the original system,
but rather a change in the state of the entire universe. More precisely, a change in the relations
between the system (the bucket and the water) and external objects (the celestial bodies). The
relevant active transformations are therefore only defined given the identification of a “system”
and some “external object”. Such a partition is natural in the case of transition from Newtonian
mechanics of localized mechanical systems to a possible Machian theory of the universe. The
crux here is the postulated correspondence of every passive transformation of the system, to an
active transformation of the system with respect to the external object.

Provided the empirical success of Newton’s laws of motion, and that their spatial symmetry
group is the Galilei group (2.2), we have encountered two strategies for satisfying the symmetry
principle. The first is the introduction of unobservable Newtonian absolute space, thus reducing
the kinematical symmetry group to the desired group. The second is the Machian step which
extends the dynamical symmetry group by introducing additional degrees of freedom. Clearly,
the latter strategy is the one that is more likely to yield empirically testable predictions5. The
Machian step and the gauge argument, we shall claim, both apply the following methodological
principle, relevant when a theory successfully describes a given physical system, but does not
satisfy the symmetry principle.

Methodological principle: For every kinematical transformation of the system,
postulate the existence of an active transformation of the system with respect to
an external object, that induces a change of an identical form in the dynamics.

This methodological step is an amplification of the scope of the theory: from a theory that
describes a given system, to a broader theory that describes the coupling of that system to
something external.

This methodology is somewhat different from Mach’s original intention, and also from var-
ious other meanings that are attributed to the term Mach’s principle (see Barbour and Pfister
[1995], p. 530). In particular, the holism which exists in a Machian universe is not a necessary
feature of relational theories, nor is it necessary for our purposes. It is enough that the relations
between parts of a system and some external object are physically relevant.

Any successful application of the methodological principle would have to take empirical
input into account. The methodological principle conjectures the existence of relevant physical
degrees of freedom that the original theory did not take into account. Empirical knowledge of
the world is then required in order to associate these theoretical additional degrees of freedom
with actual physical objects (such as celestial bodies). The new theory which describes the
coupling of the original system to these objects can then be put to further empirical tests.

Note that even when a given theory does not satisfy the symmetry principle, it is possible
that some kinematical symmetries would happen to be dynamical symmetries as well. The

5Symmetry considerations were indeed useful for the construction of Machian theories of mechanics. The
most famous ones are those by Barbour and Bertotti ([1977], [1982]). See also Huggett and Hoefer ([2018])
Section 8.2 for a brief discussion of their empirical testing.
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corresponding active transformations would therefore induce no change in the dynamical law.
These transformations change the state of the given system with respect to its environment,
while at the same time preserving the dynamics of the system. We shall refer to these symme-
tries as active symmetries (see a similar definition by Brading and Brown [2004]). For example,
Passive Galilean boosts (2.2) are dynamical symmetries of Newtonian mechanics. The corre-
sponding active transformations put a given system in motion with respect to its environment
as described by the famous ship experiment (Galilei [1967]). In this example the transformed
system is a ship, first at rest with respect to the shore, and then sailing at a constant velocity.
This transformation is a symmetry since the dynamics of the ship (describing the motion of
objects on board with respect to the ship) is not affected by the change.

2.3 A ghost in classical mechanics

The controversy regarding the nature of space shows that classical mechanics is inherently
haunted by a ghost of the same kind as described by Wigner. Here the ghost is the frame of
reference. It does not correspond to a directly observable physical object, and it can be moved
around without changing the physical situation. Newton’s substantivalist way of dealing with
the ghost is to let it take on a life of its own, in the form of absolute space. In contrast,
Leibnizian relationism attempts to exorcise the ghost, if not from the formalism then at least
from the ontology. It is very likely that this motivation was shared by Mach when he suggested
that accelerations are defined with respect to all the masses in the universe.

The suggested understanding of Mach’s principle as an instance of the presented method-
ological principle is somewhat different. The presence of the ghost in the Newtonian formalism
in an indication of the existence of a relevant physical object ignored by the theory. Instead of
eliminating the ghost, Machian thinking first lets it take on a life of its own, this time in the
form of an observable physical object with dynamical properties of its own. This object, the
“celestial bodies”, defines the frames of reference in which Newton’s laws hold (at least as an
approximation).

It is important to note that sometimes a frame of reference is just a frame of reference, a
formal auxiliary component and nothing more. A theory which employs such a frame of refer-
ence would essentially have kinematical symmetries, which reflect the equivalence of different
choices of frame of reference. In this case the kinematical symmetries would all correspond
to dynamical symmetries, and the symmetry principle would be satisfied. This is an indication
that the ghost is harmless, and can be let alone.

3 A Toy Theory

Newtonian mechanics does not satisfy the symmetry principle presented in Section 2. We begin
this section by presenting a simple toy theory that does. The theory is inspired by the ‘minimal
prototype of a gauge theory’ by Rovelli ([2014]) and closely resembles it. We will then show
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how the symmetry principle together with the methodological principle can help physicists,
who live in the universe described by the theory but only have partial knowledge of it, discover
this theory.

Consider a one-dimensional universe in which N + 1 point particles are moving and interact-
ing with each other. Let us assume that it is a truly relationist universe: the dynamical variables
are relations ai j, each corresponding to a pair of particles. Their possible values define the
configuration space. Their temporal derivatives are denoted ȧi j. In this simple one-dimensional
universe it is also possible to choose N + 1 real position variables xi such that for all i and j we
get ai j = xi − x j.

Kinetic energy here would be defined for every pair of particles. For the i-th and j-th parti-
cles, with masses of mi and m j, the kinetic energy is:

Ti j

(
ȧi j

)
=

1
2

mim j

m
ȧ2

i j, (3.1)

with m denoting a universal mass constant. This kind of kinetic energy deserves to be called
an interaction, as it is not inherently different from the way particles interact through potential
energy that depends on their relative distance V

(
ai j

)
. For now we also assume that the masses

of all the particles are identical mi = m for all i. The Lagrangian is therefore obtained by
summing over the pairs of particles:

L0 =
∑
j<i

[
1
2

mȧ2
i j − Vi j

(
ai j

)]
(3.2)

=
∑
j<i

[
1
2

m
(
ẋi − ẋ j

)2
− Vi j

(
xi − x j

)]
. (3.3)

The variables xi correspond to the positions of the particles in relation to an arbitrary frame
of reference. Unlike in Newtonian mechanics, this frame of reference does not provide an ab-
solute notion of acceleration. The Lagrangian (3.3) is invariant under arbitrary time-dependent
translation of the frame of reference:

xi → xi − λ (t) . (3.4)

Clearly, this symmetry does not describe a property of the world. It originates in the way
the world is represented in the theory using an artificial frame of reference, a ghost in the
kinematics with no dynamical role. This symmetry merely expresses the trivial equivalence of
(3.2) and (3.3), the possibility of eliminating some of the mathematical structure of (3.3). It is
a kinematical symmetry, as well as a symmetry of the dynamical law. The symmetry principle
is thus satisfied. The symmetry exists because of the way we represent the system. This choice
of representation is no more than a matter of convention and convenience. No physical object
is hiding behind this ghost, and no new physical knowledge can be obtained through it.
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The equations of motion derived from (3.3) are:

ẍi −
1
N

∑
j,i

ẍ j =
1

Nm
∂

∂xi

∑
j,i

V
(
xi − x j

)
. (3.5)

Unlike the Newtonian absolute notion of acceleration, the acceleration of a particle in this
theory is measured in relation to the center of mass of all other particles. This point, together
with the invariance (3.4), distinguishes this theory from Newtonian mechanics.

Nevertheless, the physics of some subsystems in this universe could be approximately New-
tonian. To see this let us add an object of mass M that is external to the system. This object can
be thought of as a representation of the totality of “celestial bodies” surrounding the system, or
just a relevant external object that interacts with the system’s particles. The relation ci ≡ xi − X

denotes the spatial relation between the i-th particle and the external object. For simplicity we
assume that there is no interaction between the particles and the external object other then the
kinetic coupling. The New Lagrangian is therefore:

L1 = L0 +
∑

i

[
1
2

Mċ2
i

]
=

∑
j<i

[
1
2

m
(
ẋi − ẋ j

)2
− Vi j

(
xi − x j

)]
+

∑
i

[
1
2

M
(
ẋi − Ẋ

)2
]
.

(3.6)

The equation of motion for xi is similar to (3.5), but the acceleration is now measured in
relation to the new center of mass:

ẍi −

∑
j,i mẍ j + MẌ

M0
=

1
M0

∂

∂xi

∑
j,i

V
(
xi − x j

)
, (3.7)

with M0 = Nm + M.
To see the relevance of this example, let us take the perspective of physicists who live and

conduct their experiments within the N + 1 particle system. They may be unaware of the
existence of any external object, or of its coupling with the system, so the variable X will not
appear in their theories. They would find that the law of motion takes a simple form in some
preferred frames of reference (we know that these are the ones in which Ẍ = 0). In these frames
of reference the physicists would find that their observations are explained by the law:

ẍi −

∑
j,i mẍ j

M0
=

1
M0

∂

∂xi

∑
j,i

V
(
xi − x j

)
. (3.8)

(If the second term is negligible this law becomes completely Newtonian. If some accelerations
are sufficiently large, however, the second term may become significant and the physicists could
discover it with their experiments.)

While the equations of motions (3.8) only contain the variables {xi}, they are not invariant
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under the general time-dependent transformation of the variables (3.4). The kinematical sym-
metry is now not a dynamical symmetry. In a general frame of reference an extra term has to
be added, the Machian version of a pseudo-force. (From the way (3.7) transforms under (3.4)
it can be obtained that this force is equal to − M

M0
λ̈, where λ (t) defines the transformation from

a reference frame in which (3.8) holds.)
The ghost frame of reference which haunts the theory (3.8) is thus more than a matter of

harmless convention. The fact that the dynamical symmetries are a small subset of the kine-
matical symmetries is the indication of that. This violation of the symmetry principles is the
starting point of the methodology suggested here. Its goal is to replace the theory which does
not satisfy the symmetry principles with a new theory that does satisfy them and also has greater
predictive power.

At this point the physicists who apply (3.8) can follow the methodological principle. For
every passive transformation of the form (3.4), they postulate an active transformation of the
same form. It is easy to see that the active transformation does not change the internal relations
that describe the system. The change that is induced by this active transformation must be a
change in the state of the system with respect to an external object. In the simplest case the
external object would correspond to a single dynamical variable X. The transformation (3.4) is
an active transformation of the system with respect to the external object if the positions xk of
the particles with respect to the arbitrary frame of reference are replaced by their position with
respect to the external object:

xk → xk − X (3.9)

Indeed, this step generates (after some algebra) the correct equations of motion (3.7). This
method therefore allows the physicists to obtain the law for the interaction of the particles that
can be directly observed, with an external object.

In order to formulate a complete theory, observations and experiments are still required.
Observations are required in order to associate the theoretical degree of freedom X with some
physical objects. Experiments would allow measurement of the mass M.

Finally, we note that the passive transformation for the extended theory is an extension of
(3.4) that is applied to both the system and the external object, and maintains the relations
between them:

xi → xi − λ (t) X → X − λ (t) . (3.10)

This example is to show that if the universe were simple and Machian, then applying Mach’s
principle would closely resemble the way the gauge principle is applied. In both cases an
interaction-free theory whose dynamical symmetry group is smaller than the kinematical sym-
metry group is extended to take an additional physical object into account, together with its
dynamical properties. The extended theory has an extended symmetry which is now both kine-
matical and dynamical.
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4 Quantum Theory and Gauge Symmetries

4.1 The representations of a quantum system

Let us consider a quantum system which remains in a pure state at all times. Quantum theory
postulates that the possible states of the system correspond to points in a projective Hilbert
space. This state space can be represented using different bases of the Hilbert space. For every
two bases there is a unique unitary transformation which connects them.

Given an orthonormal basis
{
|ϕ j〉

}
of the Hilbert space, each state |ψ〉 can be characterized by

the coefficients
{
c j

}
of the expansion |ψ〉 =

∑
j c j|ϕ j〉. The unitary transformation Uba defines a

passive transformation from a representation in one basis
{
|ϕ(a)

j 〉
}

to a representation in another
basis

{
|ϕ(b)

j 〉
}

in the sense that it defines a transformation matrix T (Uab) which transforms the
values of the coefficient used to represent any state in the first basis to the coefficients that
would be used to represent the same state in the second basis. The matrix elements are given
by T jk (Uba) ≡ 〈ϕ(a)

j |U
†

ba|ϕ
(a)
k 〉 = 〈ϕ(b)

j |ϕ
(a)
k 〉 and the transformation is:

c(b)
j =

∑
k

T jk (Uba) c(a)
k . (4.1)

The bases used to represent a system are not internal to it. A physically meaningful basis
consists of the eigenstates of an Hermitian operator which represents an actual measurement
that can be performed on a system by an external apparatus. When we say, for example, that
the spin state of an electron is | ↑〉, we are making a statement about the relation between the
direction of the spin of the electron and an external physical object which defines the z axis.

Any operator B̂ can be represented in terms of the basis states: B̂ =
∑

jk b jk|ϕ j〉〈ϕk|. A full
passive transformation of the representation of the quantum state together with the state of the
reference objects is a change of representation |ϕ j〉 → U |ϕ j〉 and 〈ϕk| → 〈ϕk|U† that is applied
to all appearances of the basis states. As a direct consequence, all quantum states and operators
transform:

|ψ〉 → U |ψ〉 B̂→ UB̂U†. (4.2)

Any unitary transformation U also defines an active transformation which changes the state
of a given system: |ψ〉 → U |ψ〉, an unitary transformation that is applied to a given state. It
represents an active change in the physical state of the system in relation to the reference which
defines the operators. This transformation can be equivalently written in the Heisenberg picture
as a transformation B̂→ UB̂U† of the operators, rather than of the state |ψ〉.

4.2 Relative variables: Quantum phases

In the example given in Sec. 3 it is manifestly clear how the relational nature of the variables
gives rise to the multitude of representations and therefore to symmetry transformations. The
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goal of this subsection is to show how the multitude of representations of quantum systems and
the transformations between them that were presented in the previous subsection also manifest
the relational nature of fundamental physical variables: quantum phases.

To begin with, we note that it is the relational nature of quantum phases that distinguishes
them from any classical analogue. A classical sinusoidal traveling wave on a string is described
by the function: ψ1 (x, t) = A sin (k (x − ct) + φ1). Once a particular point is marked as the
origin, and a particular moment of time is denoted t = 0, the phase φ is well-defined (up to
addition of an integer number of 2π). An interference pattern would appear when this wave
encounters a second wave: ψ2 (x, t) = A sin (−k (x + ct) + φ2). The phase difference φ1 − φ2

determines the resultant pattern (which points on the string would be nodes and anti-nodes).
This phase difference however, does not represent a fundamental relation: each of the two
phase factors φ1 and φ2 represents an independent quantity that can be understood as a relation
between the wave on the string and the spatio-temporal frame of reference. The phase factor φ1,
for example, could have been measured from the form of the corresponding traveling wave even
in the case where it is the only wave on the string, and there is no interference at all. The same
holds for the classical two-dimensional analogue, the double slit interference experiment, in
which the wave from each source (or slit) can be described by a phase factor that is measurable
prior to any interference.

The case is very different in quantum mechanics. While quantum phases are responsible for
the wave-like behavior of quantum particles in interference experiments, the absolute phase
attributed to an individual wave-packet has no meaning in the theory and cannot be measured.
If in a quantum double-slit experiment, for example, only one slit is open, then it is meaningless
to talk about the value of the phase of the wave-function that propagates though the slit, and it is
impossible to measure it. The relative phase between the two slits makes a difference only once
interference has taken place. That is why it is justified to say that the phase is a fundamental
relation which describes the quantum particle. It is an internal relation between the different
components of the wave function, not a relation between a particular component and some
reference frame imposed by an external observer.

Nevertheless, we commonly find it more convenient to refer to quantum phase relations
as differences between two phase factors, represented by numbers on the real axis. But in
the quantum case this convention should be seen as a matter of mere convenience. This is
reflected by the phase shift symmetry of the theory. Namely, the quantum states |ϕ〉 and eiφ|ϕ〉

are commonly assumed to represent the same physical state for all values of φ.
Each physical state therefore has infinitely many (normalized) representations because the

formalism uses absolute values to represent a relational property. This seems similar to the
classical example of Section 3. The interesting difference stems from the quantum notion of
superposition of basis-states. What do we get if we apply the transformation |ϕ〉 → eiφ|ϕ〉 to
the basis-states of a quantum system? The answer is that we get no more and no less than the
unitary transformations described in the previous subsection.

13
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Given an arbitrary basis
{
|ϕ j〉

}
, it is easy to see that a phase transformation of the basis-states:

|ψ〉 =
∑

j

c j|ϕ j〉 →
∑

j

eiφ jc j|ϕ j〉 ≡ U |ψ〉 (4.3)

is, by definition, unitary (U†U = 1). Furthermore, for every unitary transformation U there
is a basis

{
|ϕ(U)

j 〉
}

j
in which it is diagonal and takes the form (4.3). In terms of passive trans-

formations, that means that every change of representation (from one basis to another) can be
described as phase transformation of the basis-states of a particular basis.

Yet, quantum phases are meaningful physical variables. The two superpositions |ΨA〉 =

c1|ψ1〉+ eiφAc2|ψ2〉 and |ΨB〉 = c1|ψ1〉+ eiφBc2|ψ2〉 (with complex coefficients c2, c2 and real φA ,

φB +2πn) represent different physical states. A temporal evolution in which |ΨA〉 is transformed
into |ΨB〉 changes the observed properties of the system. This change is described by the theory
with respect to some external reference. The external reference defines the meaning of the
operators by identifying the basis-states with elements that are external to the system, such as
points on a screen or the direction of an external field. The unitary temporal evolution of a
quantum system can always be described as such an active transformation — a shift between
the relative components of the state in some preferred basis. This basis consists, of course, of
the eigenstates of the Hamiltonian.

4.3 Gauge transformations

Unitary transformations induce relative phases between the states of a particular basis. If this
basis is the position-basis, the transformation is a gauge transformation. This understanding of
gauge transformations together with the principles and methodology presented in Sec. 2 will
be used in this section to understand the simplest example of a gauge theory: the coupling of a
quantum particle to a classical electromagnetic field.

Consider a quantum particle whose state is described by a wave function ψ
(
~x, t

)
= 〈~x|ψ (t)〉

(ignoring the spin degree of freedom). A transformation of the form (4.2) which is diagonal in
position-basis is a passive local phase transformation. The transformation is a formal replace-
ment of the position-basis eigenstates with eigenstates that only differ by phase defined by an
arbitrary smooth function Λ (x, t):

|x〉 → |x′〉 = U |x〉 = eiΛ(x,t)|x〉. (4.4)

The observable quantities remain unchanged as long as the replacement is consistently applied
to all appearances of the basis states. The values of the wave function do change, as well as the
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form of the operators, in particular the momentum operators:

ψ (x, t)→ ψ′ (x, t) = 〈~x′|ψ (t)〉 = e−iΛ(x,t)ψ (x, t) , (4.5)

pi → p′i = U piU† = pi − ωi
(
~x, t

)
, (4.6)

with ωi
(
~x, t

)
= ~ ∂

∂xi
Λ (x, t). This transformation of the momentum operators is not an addi-

tional requirement. It expresses the same replacement of basis states, and is obtained by a
straightforward calculation using (4.2).

Hence, when it comes to local phase transformations, a significant physical variable does
depend on the choice of representation: the momentum operator. Dirac had noticed this and
pointed out that ‘by a suitable change in the phase factors, the function [Λ][...] can be made
to vanish and [the] equations [pi = −i~∂/∂xi] are made to hold’ (Dirac [1958], p. 93, brackets
indicate adjustment of notation). While this is true from the point of view of anyone whose
primary interest is to obtain predictions from the Schrödinger equation, we regard it as an
important clue for the right way of extending the scope of the theory. The way the momentum
operator transforms under the kinematical symmetry (4.4) indicates that this transformation is
not a dynamical symmetry. The Schrödinger equation changes its form:

i~
∂

∂t
ψ (x, t) =

∑
i p2

i

2m
ψ (x, t)→ i~

∂

∂t
ψ (x, t) =

∑
i
(
pi − ωi

(
~x, t

))2

2m
ψ (x, t) . (4.7)

According to the methodological principle, an extended invariant theory may be constructed
in which a transformation of the same form would describe an active change in the state of the
particle with respect to some external degrees of freedom. In the simplest case these additional
degrees of freedom constitute a classical field. A transformation of the form (4.6) can be re-
garded as an active transformation with respect to the field if the field couples to the momentum
operators. This coupling is achieved by the substitution

pi → pi − ωi
(
~x, t

)
. (4.8)

This expression should not be confused with the transformation (4.6). The ω’s that appear
in the two expressions as well as the arrows represent very different things. In (4.6) we simply
express the momentum operator in a different basis of the Hilbert space. The notation p′ stands
for the same momentum operator of the system, which is expressed in the RHS of (4.6) in terms
of its effect on the “old” basis states. Its components therefore satisfy the known momentum
commutation relations:

[
p′i , p′j

]
= 0. These commutation relation hold under the condition:

∂ωi
∂x j
−

∂ω j

∂xi
= 0 (see Bohm et al. [2013], pp. 22-3). This condition is automatically satisfied by

the definition ωi
(
~x, t

)
= ~ ∂

∂xi
Λ (x, t).

The transformation (4.8), in contrast, means that in order to understand the way the particle
may interact with other physical objects, we attempt to extend our theory by replacing the
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appearance of the momentum in the dynamical law with a relation between the momentum and
an external field. In this case, the success of the attempt is not guaranteed by the mathematics;
it has to be verified by experiment.

In order to do so, the field ω has to be recognized as some particular physical field. Indeed,
if we identify the field ω as proportional to the magnetic vector potential ~A, and use the charge
of the particle q as a coupling constant such that ~ω =

q
c
~A, then we get the well established

Schrödinger equation for a charged particle under electromagnetic influence. The extended
particle + potential system is invariant under the passive gauge transformation (4.4)-(4.6) when
it is accompanied by q

c
~A → q

c
~A + ~∇Λ. The replacement of the gauge-dependent momentum

variable with an invariant variable representing the relation between the system and the field
thus extends the kinematical symmetry of the particle to the larger particle and field system,
making it a dynamical symmetry as well.

In this case the components of the momentum operator of the particle ~p commute, but there
is no a priori reason to assume that so would the components of the combination pi − ωi

(
~x, t

)
.

They don’t commute in any point of space in which we have a magnetic field. Furthermore,
the identity ωi

(
~x, t

)
= ~ ∂

∂xi
Λ (x, t), which in the passive case is satisfied by definition (since we

begin with a well-defined single-valued transformation), can no longer be met in the presence
of a magnetic flux. The immediate consequence is the appearance of measurable non-integrable
phase factors.

With this understanding of gauge, the meaningful physical variable appears to be
(
~p − q

c
~A
)
,

which is interpreted as the relation between the momentum of the particle and the field. The
interpretation of this relation as a physical quantity opens the door to an interpretation of elec-
tromagnetism that differs from the common approaches (Belot [1998]). The dependence of the
coupling of the particle and the field on this relation is analogous to the way the inertia in the
example given in Section 3 depends on the relation (xi − X).

Due to the relational nature of quantum phases, the choice of a spatial frame of reference
only determines position-basis-states up to a phase factor at each point. There are therefore
infinitely many ways to define a basis in which the state of the particle can be represented. The
law governing the dynamics of the particle under the external influence is obtained by replacing
the momentum operator with the relation between the momentum and an external field. This
method allows us to correctly guess the form of the dynamical law which describes the effect
of the interaction on the particle.

5 The Gauge Argument

5.1 The gauge argument: What makes it work?

The formal replacement ∂µ → Dµ ≡ ∂µ + i q
~c Aµ, of partial derivatives with gauge-covariant

derivatives, is known to successfully introduce the electromagnetic influence into the free par-
ticle Schrödinger equation i~∂tψ = − ~

2

2m∇
2ψ, as well as into the Dirac equation for a spin-half
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particle
(
i~γµ∂µ − mc

)
Ψ (x) = 0. Textbooks attribute this replacement to the requirement of lo-

cal gauge covariance, the requirement that the global phase transformation remains a symmetry
of the dynamics when it is replaced by a local (coordinate-dependent) transformation. This is
the simplest application of the gauge principle, first applied by Yang and Mills ([1954]), and by
now well-known for its major role in the derivation of the dynamics of elementary interactions
and the properties of force carriers.

The gauge principle is commonly justified by the freedom to change convention or a frame
of reference. The roots of this view go back (see Martin [2003]) to Wigner ([1964, 1967]), who
presented gauge transformations as a passive invariance property of some particular dynamical
laws of interaction (in contrast to the geometric symmetries which hold for relations between
events). A gauge field that is introduced in this manner takes the formal role of a connection
on a principal bundle representing the internal degree of freedom over space-time manifold.
Namely, it is a mathematical structure which gives meaning to the notion of “the same phase”
in different locations.

Teller ([1997]) noted the mystery posed by the gap between the understanding of gauge
as a matter of labeling, linguistic conventions, and its ‘dramatic repercussions’ as a concept
which imposes the introduction of new physical fields into the equations. Furthermore, Brown
([1999]) noted that the requirement for local gauge covariance can only explain a flat connec-
tion. It cannot explain the interaction that acts on the particle through the curvature. Neither
can it account for the other direction of the interaction, namely the action of the particle on
the field. Lyre ([2000]) extended this criticism: ‘[I]n order to obtain the full Dirac-Maxwell
theory we need a truly physical principle. Otherwise, there remains a âĂIJmissing linkâĂİ —
at least from the foundational point of view.’ Without an additional physical principle, there is
no reason for identifying the connection that appears in the gauge covariant derivative with a
particular physical field, nor can the requirement for gauge covariance dictate the existence of
such a field (Healey [2007]). With no such principle available, the best way to understand the
gauge principle is heuristically (Martin [2002]).

This paper attempts to address these worries on two levels. The first is an account of the
methodology. The gauge argument, as presented here, does set off from the view of gauge
transformations as a change of description that transforms one quantum-theoretical represen-
tation of a physical state into another representation. This passive view motivates the attempt
to look for a dynamical law which is invariant under the transformations, and to modify exist-
ing theories whose laws are not gauge-invariant. The gauge argument is thus described as a
combination of theoretical symmetry principle and a methodological step motivated by it.

As long as no reference is made to some contingent property of the world, the account is
not sufficient for resolving the aforementioned worries. On the second level, therefore, we
claim that the success of the gauge argument is anchored in the relational nature of the physical
quantities described by gauge-dependent variables. This physical view of gauge is based on the
account by Rovelli ([2014]): ‘Gauge invariance is not just mathematical redundancy; it is an
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indication of the relational character of fundamental observables in physics. These do not refer
to properties of a single entity. They refer to relational properties between entities: relative
velocity, relative localization, relative orientation in internal space, and so on.’ This relational
nature is exploited by the methodological principle suggested here, which is based on active
transformations that change the relation between the system and an external object. The orig-
inal interaction-free theory is expressed in terms of gauge dependent dynamical variables that
represent relations between a physical field and a mathematical connection, a generalization
of the concept of a frame of reference. The methodological step replaces these variables with
gauge invariant variables that are naturally interpreted as relations between two physical fields.
The result is a theory whose dynamics and empirical content are gauge invariant; the symmetry
principle that was violated by the interaction-free theory, is now satisfied.

To understand the gauge principle in this light we must distinguish between two distinct
questions: (i) Why is the theory of interacting fields invariant under certain transformations,
whereas the theory of the free field is not? (ii) Why are the relevant transformations local
(coordinate dependent)?

Our answer to the first question is that a theory that disregards relations between the system
it describes and other relevant physical objects cannot reveal a complete picture of the symme-
tries. In a Machian universe, the invariance of the laws to passive rotations is only revealed in
the theory of the whole universe, since the relations between all pairs of objects are relevant.
The physical properties of a field depend on its relations to other fields. A gauge transformation
that acts on two fields such as:

ψ (xµ)→ eiΛ(xµ)ψ (xµ) Aµ → Aµ +
~c
q
∂µΛ (5.1)

is a passive transformation of the coupled system. It acts on both fields and maintains the
physical relations between them (similar to the transformation (3.10) on the system itself and
the object to which it is coupled). In contrast, the transformation ψ (xµ) → eiΛ(xµ)ψ (xµ) (or
an equivalent transformation of the operators in the Heisenberg picture) actively changes the
relation between ψ and Aµ and is therefore not a symmetry transformation of the theory of ψ.
In the same way, (3.4) is not a symmetry of (3.6), and an active rotation of the bucket and the
water is not a symmetry transformation in Newtonian mechanics.

As for the second question, this account suggests that the relevant symmetry is local due to
the quantum structure of the world. Quantum theory identifies different locations as different
components of the superposition. The relational nature of the phase is expressed in the assump-
tion that |ϕ〉 and eiφ|ϕ〉 can represent the same physical state. The assumption is valid regardless
of whether the actual state is |ϕ〉 or a superposition of |ϕ〉 and other states. Eigenstates of po-
sition are no exception. Indeed, the relevance of the quantum structure of the world to gauge
theories was already recognized when both quantum mechanics and the very idea of gauge
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were newly born (London [1927]; Weyl [1929])6.
Formally, a passive local phase transformation is a change of the connection form of the

principal U(1) bundle over space-time manifold. The methodological principle implies that
every such transformation is postulated to correspond to an active transformation of the state
with respect to an external physical field. The entity with respect to which phases are shifted
is now a physical field, instead of a mathematical connection. Passive phase transformations
cannot change gauge invariant quantities that characterize the bundle, such as local curvature
and holonomies. The possible active transformations, in contrast, are not restricted in this
way as the state of the field is arbitrary and dynamically changing. There are therefore active
transformations that have no passive parallel. They reflect new phenomena generated by the
interaction, ones that cannot be described by the interaction-free theory. These phenomena, as
was noted by Brown ([1999]), are indeed not a consequence of the requirement for local gauge
covariance. The role of this requirement is methodological: it guides the construction of the
correct mathematical object (connection) that can be generalized to a mathematical description
of the field that describes the interaction.

5.2 Interpretation and observability of gauge symmetries

The question of whether gauge symmetry transformations can be observed has been debated
among several thinkers (Kosso [2000]; Brading and Brown [2004] ,Healey [2009]; Greaves
and Wallace [2014]; Friederich [2014]). The question, formulated by Kosso, concerns direct
observability. For an experiment to be considered a direct observation of a symmetry transfor-
mation two facts have to be independently verified empirically. First, we must verify that the
given transformation has indeed taken place, that something has changed in the world. Second,
we must also verify that the transformation is an invariance, meaning that the same laws apply
to the new situation. In large part the debate revolves around the question, also discussed be-
low, of whether the version of the double-slit experiment presented by ’t Hooft ([1980]) can be
regarded as an observation of gauge symmetry.

Kosso’s definition means that as long as gauge transformations are regarded as no more
than passive changes of the mathematical representation, it is meaningless to discuss direct
observations of them. Observability requires a notion of an active change in the world.

In the different examples discussed in this paper, there are several cases in which a passive
transformation has a parallel active transformation. For example, it is agreed that Galileo’s ship
experiment is the active parallel of a passive uniform boost. But what exactly does that mean?

Our answer to this question is different from the common approach. I propose that a passive
transformation of a theory that describes a certain physical situation can only correspond to an
active transformation in a theory that describes a different, extended, situation. We start from

6The main reason that the idea of gauge is now considered distinct from quantum theory is probably its
applicability to interactions between classical fields. Yet, this applicability can be due to the underlying quantum
nature of the physical objects that the classical fields represent.
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a passive transformation applied within a theory which describes a given system that does not
interact with anything external. The theory (3.3) of the N + 1 particles is one example, and
the Schrödinger theory of an isolated quantum particle in a pure state is another. To obtain a
theory with the corresponding active transformation, two steps must be taken. First, the exis-
tence of an external object is postulated. Second, the original system is represented in a frame
of reference that is defined in some way by the system’s relation to the external object. Thus
a change in the relation between the external object and the system corresponds to a change of
the frame of reference in which the original system is represented, and a correspondence is es-
tablished between each passive symmetry (of the theory describing the system) and a particular
active transformation (which may or may not be a symmetry of the theory that describes the
system together with the external object). This definition requires some preferred isomorphism
between the possible relations of the system and the external object, and the possible represen-
tations of the system. In the toy Machian theory described in Section 3, for example, this can
be achieved by fixing the origin to the external object, so that the absolute coordinate of each
of the particles of the original system reflects its distance from the external object.

Take, for example, a single-slit experiment in which single electrons go through a slit of
narrow width and form a diffraction pattern on the other side. The propagation of the wave
function through the slit is described by the Schrödinger equation. A global phase transforma-
tion is a kinematical symmetry, since it is a replacement of the same physical state (a point on
the projective Hilbert space) with another representation of the same state. It is also a dynami-
cal symmetry, as the Schrödinger equation is invariant under global phase transformations. The
active version of this symmetry can be observed. To do this we can open a second slit through
which the wave function propagates, and use the wave packet coming through the second slit
as an “external object” (as suggested by Greaves and Wallace [2014], but not as in the original
suggestion of ’t Hooft [1980]). In the region close enough to the first slit there is no overlap with
the wave-packet propagating through the second slit, and it can be observed (through repeated
experiments) that in this region inserting the phase shifter makes no observable change. But in
a region further away from the two slits the form of the interference pattern between the two
wave-packets depends on the presence of the phase shifter. Thus the phase shift is observable,
and the invariance of the isolated wave to the phase shift is observable as well.

This analysis therefore leads to an agreement with Greaves and Wallace that this experiment
can be regarded as a direct analogue of Galileo’s ship. However, the symmetry that we claim
that is observed is the active parallel of the global phase transformation symmetry, not the local
one.7 The phase shifter acts globally on the entire original “system” (the single slit).8

7Similarly, an analogous analysis would lead to the conclusion that Faraday’s cage experiment should be
regarded as a direct observation of global gauge transformation.

8Friederich ([2014]) provides a detailed account, similarly concluding that adopting the framework provided
by Greaves and Wallace ([2014]) does not lead to their conclusion that local gauge symmetries are observable.
According to Friederich, the phase shifter in ’t Hooft’s beam splitter experiment can be seen as changing the state
of the environment, rather than the state of the wave-function that passes through the slit. Friederich’s analysis thus
shows that in the analysis of the experiment in Greaves’ and Wallace’s framework, it is underdetermined whether
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Before we turn to consider the question of the observability of local phase transformations
and gauge transformations, it is instructive to go back to the toy model presented in Section 3
and ask whether the symmetry of the model, the arbitrary change of frame of reference, is di-
rectly observable in the same sense that invariance to global phase transformation is observable
through the double-slit experiment. The answer turns out to be negative. Equation (3.5) is the
equation of motion of the system. It is invariant under an arbitrary change of frame of refer-
ence (3.4). Yet, as we have seen, when we add an external object, equation (3.5) is no longer
valid. The active parallel of (3.4), in which the relation between the system and its environment
changes, is not a symmetry transformation. For this reason, even after the physicists in the ex-
ample have discovered the full, correct equation of motion of their universe (3.7), and even if
they can directly measure the environment variable X (t), there can be no direct observation of
the symmetry. Indeed, the physicists would notice that all their observations can be accurately
predicted with a law that is invariant under (3.10). But despite this indirect evidence, there will
be no “Galilean ship” type of experiment for this symmetry. This should come as no surprise,
since clearly, from the way the model was constructed, this symmetry is in itself not a property
of the world, but only of the way it is represented.

The same model does contain a different symmetry transformation that can be observed. It
is of course the Galilean boost x → x + vt. Not only it is a kinematical and dynamical sym-
metry (since it is a special case of the general symmetry), but it is also an active symmetry.
The internal dynamics of the system (equation 3.8) does not change under the transformation
xi → xi + vt that would be applied to all of the particles. The reason this transformation is a
directly observable symmetry is simply that the equations of motion do not explicitly depend
on velocity. Similarly, the global phase transformation can be observed in the double-slit ex-
periment because the Schrödinger equation of a particle depends on the local phase gradient,
not on the phase difference between spatially separated wave packets.

Local phase transformations are not observable symmetry transformations for the same rea-
son that a non-Galilean boost is not an observable symmetry transformation in our toy theory.
In both cases the active parallel — the transformation that is applied to a subsystem — is
generally not a symmetry transformation at all.

The relevant transformation that is a symmetry transformation is the full gauge transforma-
tion (5.1). None of the examples brought in the papers cited above can be regarded as an active
version of this transformation that is applied to a system with respect to another system. Clearly,
a spatial separation of the world into a region which is transformed and a region which is not
leaves us with a special case of (5.1), and can therefore not be regarded as an active version of
it. Local gauge transformations can therefore not be subjected to a direct observation.

The present paper thus supports the accepted view that a gauge transformation of the elec-
tromagnetic potentials together with the quantum wave-function does not imply any physical

it is the state of the system that changes or the state of the environment. Our claim above, stating that what actually
changes is the relation between the system and the environment, naturally dissolves this underdetermination.
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change.
The passive view of gauge transformations as changes of representation is thus seen not to

conflict with our ability to construct new, successful theories using the gauge argument. The
pursuit of gauge covariance is an attempt to extend our knowledge using empirical considera-
tions together with the theoretic symmetry principle. The success of the principle is anchored in
contingent properties of physical interactions. We hope that this paper contributes to dispel the
worries of ‘the paradox of a ghost or figment of our imagination turning the wheels of the real
world’9. The gauge argument should neither be understood as a miracle nor as a mathematical
deduction, but as a well-calculated guess.
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