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Abstract 

 

 
Ever since its foundations were laid nearly a century ago, quantum theory has provoked questions 

about the very nature of reality.  We address these questions by considering the universe – and the 

multiverse – fundamentally as complex patterns, or mathematical structures.  Basic mathematical 

structures can be expressed more simply in terms of emergent parameters.  Even simple 

mathematical structures can interact within their own structural environment, in a rudimentary 

form of self-awareness, which suggests a definition of reality in a mathematical structure as simply 

the complete structure.  The absolute randomness of quantum outcomes is most satisfactorily 

explained by a multiverse of discrete, parallel universes.  Some of these have to be identical to 

each other, but that introduces a dilemma, because each mathematical structure must be unique.  

The resolution is that the parallel universes must be embedded within a mathematical structure – 

the multiverse – which allows universes to be identical within themselves, but nevertheless distinct, 

as determined by their position in the structure.  The multiverse needs more emergent parameters 

than our universe and so it can be considered to be a superstructure.  Correspondingly, its reality 

can be called a super-reality.  While every universe in the multiverse is part of the super-reality, 

the complete super-reality is forever beyond the horizon of any of its component universes. 

 

 

 

 

1. A first approach to reality 

 

Of the two great theories that were synthesised during the 20th century, only one has invited – 

and continues to invite – “interpretation”.  To be sure, general relativity provokes questions 

about, for instance, the spacetime topology of our universe, but not about its very reality.  The 

quantum theory, on the other hand, forces us to consider not only the reality of our universe, 

but even the nature of reality itself. 

 

To get straight to the point, without being diverted by ontological and epistemological 

discussions (for those, a good starting point might be [1]), let us make a first attempt at a 

working definition of reality: 

 

Reality (I) 

 

Reality is the complete set of quantum fields extending throughout the whole of spacetime that 

comprises our block universe.

                                                           
1 www.godel-universe.com 
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Before going further, we need to unpack this definition to see if it works.  The block universe 

may be thought of as the four-dimensional block of spacetime that encapsulates the complete 

past and future history of our universe.  (The notion of the block universe, of course, has a 

respectable provenance, and, indeed, the block universe may even be demonstrated 

experimentally [2].)  So, our definition is saying that reality is the complete past and future 

history of all of the quantum fields that go to make up our universe.  That must include all of 

the particles that arise from stable excitations of the appropriate quantum fields as well as all 

of their interactions. 

 

Symbolically, the dependence of our universe U on quantum fields is 

 

𝑈 = {𝜑𝑖: 1 ≤ 𝑖 ≤ 𝑖𝑚𝑎𝑥}                   (1) 

 

where i denotes the ith quantum field, φi, imax is the total number of quantum fields and the curly 

brackets represent the set. 

 

A consequence of our definition of reality is that it cannot be expressed more fundamentally in 

terms of contemporary physics.  For instance, if we were instead to define reality in terms of 

just the fundamental particles of the Standard Model, then that definition would be open to the 

charge that the particles are themselves describable as excitations of the appropriate quantum 

fields.  On the other hand, if we try to extend our definition more deeply than the quantum 

fields, then all we are left with, like the grin on the Cheshire cat, is the essential pattern of the 

quantum fields.  There are straws in the wind that the patterns of quantum fields and their 

interactions may be further reducible into yet more fundamental patterns (see, for instance, [3]) 

but there is no hint of any return to stuff – it’s patterns all the way down! 

 

 

2. How a simple mathematical structure can in principle be self-aware 

Patterns, of course, are just mathematical structures, but, at least for some in the physics 

community, it seems to be less provocative to claim that the universe is, fundamentally, a 

pattern rather than to say that it is a mathematical structure.  Philosophers might call either 

claim ontic structural realism [4], but the former version appears to attract less controversy 

than Tegmark’s bold statement that the universe is mathematics [5]. 

It is easy to see why many physicists reject such a statement.  While they may accept that our 

universe can be described by mathematics, it is seemingly a step too far to think that it can be 

mathematics.  Nevertheless, a case can be argued to make that idea more palatable by 

considering a version of a two-dimensional cellular automaton, Conway’s Game of Life [6], in 

which, as we shall see, there can be a structure that is “aware” of its environment.  (It is 

sometimes helpful to use such automata rather than to appeal to our own subjective experience 

as self-aware beings in our own universe, with all of the associated baggage that such 

experience would entail.) 

 

The main attraction of the Game of Life is that its very simple set of rules can lead to solutions 

of interesting complexity.  The game evolves within a two-dimensional (p, q) matrix, the cells 

of which live or die, and it is typically played out on a computer monitor screen which displays 

successive generations (labelled h) of the matrix.  The pattern in any generation (generation h) 

is transformed according to the rules, and the resulting pattern is then displayed as the next 
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(h + 1) generation.  Pragmatically, the matrix is finite in extent which means that boundary 

conditions (for instance, toroidal) must be chosen. 

 

 
 

Figure 1:  A “glider” in the Game of Life moves downwards and to the right in a cycle of four 

generations.  “Live” cells are shown in black; dead cells are in white.  The number in each cell is 

the number, N, of live neighbours surrounding the cell. 

 

 

The rules are that (1) a live cell with either two or three live neighbours (formally called the 

Moore neighbourhood) will live on to the next generation but will die otherwise and (2) a dead 

cell with exactly three live neighbours will become alive in the next generation.  Symbolically, 

in each generation h, we can assign to each cell, (𝑝, 𝑞), a state 𝑆𝑡𝑎𝑡𝑒(𝑝, 𝑞, ℎ), which takes the 

value 1 if the cell is live and 0 if it is dead.  At the beginning of the game, when h = 0, the 

pattern – a boundary condition – is specified for every cell in the starting matrix: 𝑆𝑡𝑎𝑡𝑒(𝑝, 𝑞, 0).  

The patterns of successive generations are then found from: 

 

𝑆𝑡𝑎𝑡𝑒(𝑝, 𝑞, ℎ + 1) = {
1   if 𝑁(𝑝, 𝑞, ℎ) ≤ 3 and (3 − 𝑆𝑡𝑎𝑡𝑒(𝑝, 𝑞, ℎ) ≤ 𝑁(𝑝, 𝑞, ℎ))

0   otherwise                                                                                  
            (2) 

 

where 

𝑁(𝑝, 𝑞, ℎ) = { ∑ ∑ 𝑆𝑡𝑎𝑡𝑒

𝑞+1

𝑏=𝑞−1

(𝑎, 𝑏, ℎ)

𝑝+1

𝑎=𝑝−1

} − 𝑆𝑡𝑎𝑡𝑒(𝑝, 𝑞, ℎ)                                          (3) 

 

The parameter N is the number of live neighbours surrounding a central cell.  In (3), the value 

of the central cell’s state is subtracted from the double summation because that value should 

not be included in the total, which is supposed to include only neighbouring states. 
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The complete pattern of the Game-of-Life block universe may be reconstructed from 

algorithms (2) and (3), given the state of all of the cells in the matrix at the beginning of the 

game.  Notice that the pattern and the algorithms are isomorphic – they are the same 

mathematical structure. 

 

An example of how the Game of Life works, based on a simple 7 × 7 matrix, is given in Figure 

1, which shows a starting position at generation h and the subsequent four generations.  In each 

matrix, the value of N is shown for each of the 49 cells.  The pattern in this figure is a “glider” 

(discovered by the British mathematician, Richard Guy [7]), which progresses diagonally 

across the matrix, completing the cycle in four steps. 

 

To emphasise the block-universe nature of the structure, these same five matrices are displayed 

in Figure 2, stacked in order of successive generations with the starting pattern at the bottom. 

 

 

 
Figure 2:  This highlights the block-universe nature of the Game of Life shown in Figure 1. 

 

 

Remarkably, for structures based upon such a simple algorithm, the Game of Life can support 

a Universal Turing Machine (UTM) as was first shown by Paul Rendell [8].  The elements of 

his UTM are shown in Figure 3.  It consists of the rectangular “programmable machine”, and 

a stack that contains both the program and the input data for the program.  The stack is diagonal 

because it relies upon, among other objects, many copies of the diagonally-moving glider 

depicted in Figures 1 and 2.  With a little licence, one can envisage such a UTM sending probes 

around its neighbourhood and thereby constructing an internal representation of its matrix 

environment.  When this environment includes itself, then, in a rudimentary sense, we might 

say that the UTM is self-aware. 
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Figure 3:  A Universal Turing Machine (UTM) implemented on the Game of Life.  Drawing 

adapted from [9]. 

 

 

If a Game-of-Life player were to pause the execution of a program that included such a “self-

aware” UTM and then re-start it at a later time, the UTM would obviously be unaware that the 

program had been temporarily interrupted.  This is to be distinguished from the situation where 

we build a robot in our laboratory which is aware of its environment, switch it off and then re-

start it.  Our robot would be aware that it had been temporarily switched off because its 

environment, such as the laboratory clock, would have changed state while it was unconscious.  

In the scenario with the Game of Life being paused, however, it is the UTM’s complete universe 

that is temporarily halted. 

 

This simple scenario is intended to illustrate the independence of the pattern – that is, the 

mathematical structure – of the Game-of-Life block universe from the computer programs that 

simulate it.  It is important to appreciate that the UTM in our Game of Life does not spring into 

self-awareness when the program is started up: the self-awareness of the UTM is a property of 

the pattern of the particular Game-of-Life block universe in which it finds itself.  Its self-

awareness is completely independent of the simulation, which has no self-awareness. 

 

Notice, too, that the pattern for the block universe is unique: simulations of it by different 

computers are different simulations, but they are simulations of a unique mathematical 

structure.  In the same way, there may be different simulations of a sphere on different 

computers, but the structure that they are simulating (x2 + y2 + z2 = constant) is unique. 
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3. Emergent parameters in a simple mathematical structure 

 

It may be argued that the structure for the Game-of-Life block universe and that for a sphere 

do not themselves create the three dimensions of the worlds in which their patterns operate.  In 

other words, some may argue that these mathematical structures can only exist by virtue of our 

own universe, which provides the requisite geometry, and that these mathematical structures 

are therefore not independent of our universe.  However, that perception arises because we 

used the labels h, x, y and z, which are suggestive of our own geometry, for convenience.  

Fundamentally, there are no labels, only patterns. 

 

As a simple illustration of this, take the elementary mathematical structure which is the binary 

representation of the number 33874822719.  This number is expressed in 35 binary digits: 

 

1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1  

 

While there is clearly a pattern within these bits, it is not a particularly “interesting” one.  

However, since 35 is the product of two prime numbers, the bits can be arranged, in the same 

order, in a 5 × 7 matrix: 

 

1 1 1 1 1 1 0  

0 0 1 1 0 0 0  

1 1 0 0 0 1 1  

0 0 0 1 1 0 0  

0 1 1 1 1 1 1  

 

This arrangement is hardly more interesting than the previous sequence.  However, if the digits 

are arranged in the alternative 7 × 5 matrix, then a more coherent pattern emerges: 

 

1 1 1 1 1  

1 0 0 0 1  

1 0 0 0 1  

1 0 0 0 1  

1 0 0 0 1  

1 0 0 0 1  

1 1 1 1 1  

 

This pattern lends itself to simple descriptions such as “digits in the 7 × 5 matrix are “1” when 

they are on the perimeter and “0” otherwise”.  So, in a Kolmogorov-complexity sense [10], it 

singles itself out as special.  Hence, even in this crude example, without using labels, a 

dimensionality emerges from within the structure, rather than the other way around.  We call 

the parameters that define the dimensionality (in this case, seven rows and five columns) 

emergent parameters – these are defined in Appendix A1. 

With the above discussion in mind, our definition of reality may now be refined: 

 

Reality (II) 

 

Our reality is the complete mathematical structure of our block universe. 
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4. Fundamental uncertainty implies a parallel-universe model 

 

Let us now look at some of the patterns within our block universe.  We may be particularly 

struck by the outcomes of identical double-slit experiments, each using a single electron.  We 

can arrange for these experiments to be distributed throughout our block universe, including 

experiments separated by space-like intervals (taking place at the same moment in widely 

separated laboratories) as well as experiments performed serially in the same laboratory.  In 

each experiment, only a single electron is used, and we note the position of its interaction on 

the detector screen in every case. 

 

When we look at the outcomes of a very large, but finite, number of experiments, it is clear 

that, while the position of the interaction on the screen in any single experiment could not have 

been predicted (it is apparently random), there is nevertheless a pattern that connects the 

ensemble of outcomes.  When the outcomes of each experiment are collected together and 

plotted on a frequency distribution graph across the detecting screen, the result is a sinc-squared 

term multiplied by a cosine-squared term: (
sin 𝛽

𝛽
)

2

cos2 𝛼 , where α and β are both functions of 

the distance across the detecting screen.  We notice that this pattern matches the absolute square 

of the value of the probability amplitude along the detecting screen, which we can calculate 

from the Lagrangians of the quantum electron field summed over time for all of the different 

trajectories from the slits to the screen. 

 

We notice further that there is always one – and never more than one – interaction between the 

quantum electron field and the detecting screen.  This is surprising because points on the screen 

are generally space-like separated: after all, if the screen is sufficiently far from the double slits, 

then the detecting area would have to be kilometres wide.  Our surprise stems from the fact that 

we already noticed that disturbances in quantum fields transmit at a finite speed, so that there 

is no way for information about an interaction at one point on the screen to be relayed by the 

quantum field to the other parts of the screen to prevent a duplicate interaction. 

 

Figure 4 shows two possible positions for the electron to be detected at the screen.  The most 

important point illustrated in this figure is that the quantum electron field (and all of the other 

quantum fields which have no significant bearing on this particular experiment) is the same at 

the instant at which the electron is detected, no matter where it is detected.  So, it would not 

have been possible to analyse the quantum electron field right up until the moment of detection 

and see that there is a configuration that means that the electron will be detected here rather 

than there. 

 

There appear to be only two ways in which such experiments, which we have distributed both 

in space and in time, can be unpredictable individually and yet be connected through a common 

pattern, such as the sinc-squared–cosine-squared term in this example.  The first way is that, in 

each experiment, the point on the screen where the electron is detected is determined randomly, 

but with the randomness being weighted according to the absolute square of the probability 

amplitude derived from summing the Lagrangians of the quantum electron field over time for 

all possible trajectories between the electron gun and the detecting screen (see Figure 4).  Of 

course, this is a conventional formulation of quantum mechanics. 

 

However, since this is a probabilistic explanation, it requires a mechanism that effectively 

throws the dice for each experiment.  The difficulty with this explanation is that no 
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Figure 4:  The quantum electron field is identical in both experiments, even though there are two 

different outcomes (with the electron being detected at different positions on the screen).  

Therefore, the outcome cannot be predicted from the quantum field. 

 

 

mathematical algorithm or random-number generator can supply the necessary 

unpredictability, because, by definition, such algorithms are ultimately predictable.  Truly 

random sequences exist in mathematics, of course, such as the digits in a Chaitin halting 

probability, but such sequences are unknowable in principle – they cannot be computed – and 

so cannot be candidates for a random-number generator. The only exception is random-number 

generation using quantum processes [11], but that would be a logical circularity: you cannot 

fundamentally explain quantum randomness by saying that it is based upon quantum 

randomness!   

 

Fundamentally, the problem with the probabilistic explanation comes back to the block 

universe: if you picture our universe as a block of spacetime embedded throughout with 

outcomes of quantum interactions, what is it about the underlying pattern of our universe that 

determines which of the several or many possible outcomes appears at each embedded 

interaction?  Simply to put it all down to probability might at least suggest that the model is 

incomplete. 

 

The only other way for a pattern to emerge across the individually unpredictable outcomes of 

identical experiments widely spread in time and space is through a parallel-universe model.  A 

rudimentary example of the particular model used in this paper is described in Appendix A2 as 

a “Toy Multiverse”.  The three key features of the parallel-universe model are (1) there is a 

finite number of discrete, parallel block universes, in contrast to the branching structure of the 
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Many Worlds Interpretation (MWI); (2) the universes are independent of each other (they do 

not interact); and (3) their numbers are distributed according to the Born probabilities of the 

quantum outcomes that they each contain. 

 

Hence, for example, in the case of a Stern-Gerlach experiment with two possible outcomes, 

one with a 75% chance of occurring and the other with a 25% chance of occurring, there are 

three times as many universes in the multiverse containing the high-probability result than there 

are universes that contain the low-probability result.  If the same experiment is repeated a 

million times, this will mean that, in the multiverse, most of the universes which feature the 

sequence of a million experiments will contain approximately 750,000 of the high-probability 

results and 250,000 of the low-probability results. 

 

While such a hypothesis may be regarded by some as preposterous in its plethora of universes, 

others who accept that our universe is ultimately purely a pattern see no fundamental reason 

why the pattern may not be repeated, albeit on an unimaginable (but always finite) scale. 

 

 

5. Super-reality within a mathematical superstructure 

 

Our definition of reality applies equally to all of the parallel universes.  Since each universe is 

independent of the others, each reality is confined to its own universe.  Hence, in Figure 4, 

reality in the block universe containing the quantum electron field configuration shown in 

experiment (a) includes the electron being detected to the right of the screen, whereas reality 

in the block universe containing the identical quantum electron field configuration at the 

moment of detection in experiment (b) includes the electron being detected near the centre of 

the screen. 

 

A definition of reality that encompasses parallel block universes is: 

 

Reality (III) 

 

Reality within a parallel, block universe is the complete mathematical structure of that parallel, 

block universe. 

 

Equally, since each universe is itself a mathematical structure: 

 

Reality (IV) 

 

Reality within a mathematical structure is the complete definition of that structure. 

 

To clarify this final statement, an incompletely defined structure would, for example, be one in 

which the value of a function of a parameter can be, say, either one or zero, with the actual 

value being left unspecified.  The parallel with quantum uncertainty is clear: there is a unique, 

definite outcome for every quantum event in our block universe, as may be seen when viewing 

the event in retrospect.  The uncertainty arises because such an outcome cannot be determined 

from the mathematical structure: it is unpredictable. 

 

From the above example using parallel universes to account for the outcomes of the Stern-

Gerlach experiment, the complete pattern, or mathematical structure, of any given block 

universe is apparently not unique.  Indeed, since each block universe is full of events with two 
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or more possible outcomes, there will be, in general, many exact copies of any given block 

universe.  This may be seen by inspecting equation (A2) and Figure A9.  In that figure, each of 

the block universes has several exact duplicates, and the numbers of such duplicates will 

increase with the total number of events and outcomes in the universes. 

 

As a concrete example of this, consider the three block universes of type i = 2 shown in Figure 

A9, containing outcomes A2, C1, B1.  In Figure A6, the ratios of probabilities of outcomes C1 : 

C2 : C3 are given as 1:3:1.  This might lead us to think that there is one solitary universe with 

outcome C1 and three universes containing outcome C2.  However, we see that there are, in 

fact, three universes of type i = 2 in Figure A9, rather than one solitary universe.  If we try to 

reduce the number of universes in the Toy Multiverse by a factor of three, so that the population 

of type i = 2 is reduced to one solitary universe, then the total number in the A2 branch would 

also have to be reduced from 30 to 10.  However, by the same token, the total number in the 

A1 branch would need to come down from 10 to 3⅓, which fails the requirement that the 

number of universes is necessarily integral.  So, in general, there must be a (very large) number 

of indistinguishable copies of any block universe in the multiverse. 

 

Now, the block universe is a unique mathematical structure, just as we observed earlier that a 

sphere, or, for that matter, the sequence of the first hundred prime numbers, is a unique 

mathematical structure.  Indeed, the adjective “unique” is superfluous in such a context.  If we 

remember that the block universe is purely a pattern – a mathematical structure – then it is just 

as wrong to regard it as having an indistinguishable copy as it is to think of the sequence of 

primes from 2 to 97 as having an indistinguishable copy.  The structure is the structure! 

 

However, the above paragraph is clearly in conflict with the preceding one which states that 

there must generally be many indistinguishable copies of any block universe in the multiverse.  

The difficulty arises because we regard each block universe as an independent mathematical 

structure.  David Deutsch [12] can claim that the double-slit pattern arises from interference 

between many universes just after branching/splitting, because quantum interference is a 

feature of Everett’s MWI formulation.  However, as stated earlier, the topology of a block 

universe rules out such branching in our model: the mathematical structures of a multiverse of 

block universes never overlap, and are therefore independent of each other, and this includes 

groups of those that are indistinguishable from each other. 

 

The only way for the mathematical structures of the block universes to be unique and yet allow 

for indistinguishable copies of such structures is for all of the structures to be embedded within 

a mathematical superstructure.  Appendix A1 clarifies our terminology of mathematical 

structures and superstructures and shows how they are related. 

 

In our universe, each quantum field, φi, is a function of location in the block universe, and we 

may make this dependence explicit by writing it as 𝜑𝑖(𝑥, 𝑦, 𝑧, 𝑡).  From equation (1), our 

universe U is dependent upon the same parameters: 𝑈(𝑥, 𝑦, 𝑧, 𝑡).  Using M to represent the 

mathematical superstructure of our multiverse, its pattern may then be written symbolically as 

 

𝑀(𝜃) ⇒ {𝑈𝑛(𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝑡𝑛): 1 ≤ 𝑛 ≤ 𝑁}                                                  (4) 

 

where, as is stated in Appendix A1, “⇒” is to be read as “contains the following set of 

embedded structures”.  The limit, N, is the total (finite) number of parallel universes in our 
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multiverse.  The reason for considering N as finite is discussed in the second paragraph of 

Appendix A2. 

 

As in the Toy Multiverse of Appendix A2, there must be at least one parameter θ that 

determines the quantum-mechanical distribution of the N completely independent universes, 

Un, embedded in the superstructure of our multiverse. 

 

Equation (4) is effectively the same as equation (A1) that describes the Toy Multiverse of 

Appendix A2, although, in our multiverse, the number N is, of course, unimaginably greater 

than the 40 universes of the Toy Multiverse.  The case for assigning a unique set of parameters, 

{𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝑡𝑛}, to each universe, Un, is also more subtle than the one we used for the Toy 

Multiverse.  Indeed, the alternative, where all of the universes in our multiverse would share a 

common set of parameters, {𝑥, 𝑦, 𝑧, 𝑡}, was actually put forward by Aguirre and Tegmark [13]. 

They suggested that the parallel universes (corresponding to our Un) in their Level III 

Multiverse are similar to, or identical copies of, our own Hubble volume, distributed far across 

the cosmos.  Their model fails because, as is shown in [14], the eigenstate of any given parallel 

universe would extend throughout the whole cosmos – that is, including regions of space that 

are receding from each other at superluminal speeds.  Since this applies to all parallel universes, 

many of which are in mutually orthogonal eigenstates, the scenario of a common set of 

parameters is ruled out because of this potential clash of eigenstates. 

Notice that, since the universes Un are embedded within the superstructure, M, it is permissible 

to have duplicate – that is, identical – universes.  Duplicate universes are identical to each other 

when viewed from within each one – that is, using only the unique set of emergent parameters 

belonging to each individual universe.  (The emergent parameters may be regarded as the set 

of parameters, {𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝑡𝑛}, upon which each universe, Un, depends.)  However, at the level 

of the superstructure, they are distinguishable by their “position” in the superstructure 

(formally, by the parameter(s) θ and the index n that applies to every universe Un). 

 

From the Reality (IV) statement, since each universe, Un, has its own, unique set of emergent 

parameters, {𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝑡𝑛}, each universe also has its own, unique reality.  Because each set of 

emergent parameters is unique to each universe, the realities within each universe cannot ever 

“overlap” in any way.  However, since the superstructure M contains all of these parallel 

universes, they are all part of its reality.  In order to distinguish between (1) the separate realities 

of the individual parallel universes, Un, of which ours is one; and (2) the reality of the 

superstructure, M, which is our multiverse, it is convenient to use the term super-reality for 

reality within the superstructure. 

 

It is natural to ask what this super-reality might “look like”.  Since we are constrained by the 

emergent parameters of our own universe, then our own universe is the only part of the super-

reality that we can explore in any depth.  There may be some limited insight to be gained by 

asking why super-reality appears to be structured along quantum-mechanical lines rather than 

those of any other paradigm.  However, that approach might just turn out to be equivalent to 

asking why we were born in this century and not 200 years ago. 

 

In the final analysis, no picture of the higher reality can ever be verified by checking it directly.  

By definition, the vast structure of super-reality that is inaccessible to our own universe exists 

only for that super-reality, lying forever hidden beyond our own horizon. 
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6. Conclusion 

 

In this paper, we support the case proposed by others that our universe is, fundamentally, a 

pattern, a mathematical structure.  This suggests a relatively simple definition: reality within a 

mathematical structure is the complete definition of that structure.  The idea that our universe 

is ultimately a pattern may also make it easier to imagine the pattern being extended to include 

a whole multiverse of parallel universes (we argue that only such a multiverse can account for 

the absolute randomness of quantum outcomes). 

 

However, such a picture presents us with a dilemma: in order to account for observed 

probabilities of quantum outcomes, there must be many identical copies of universes with 

particular outcomes.  But this means that there must be many identical copies of particular 

mathematical structures.  The difficulty is that every mathematical structure is unique – there 

cannot be two identical mathematical structures any more than there can be two identical sets 

of the first ten prime numbers – there is only one such set.  There can be duplicate 

representations of a set or of a mathematical structure, but every structure is unique. 

 

The resolution of the dilemma is that the structure of every parallel universe must be embedded 

within – must be part of – a larger pattern, which we call a mathematical superstructure.  This 

means that there can be groups of identical universes which can be distinguished from each 

other (since they occupy different “parts” of the pattern of the superstructure).   Thus, each 

universe is unique from the perspective of the superstructure (and so the requirement that every 

mathematical structure is unique is not violated) and yet the internal descriptions of each of 

these universes will be identical, which is one of the requirements of the multiverse explanation 

of measured quantum probabilities. 

 

In Appendix A1, we note how sets of parameters can emerge from the process of defining a 

mathematical structure in the simplest possible terms – we call these emergent parameters.  

Each of the parallel universes in the mathematical superstructure is defined in terms of its own 

unique set of emergent parameters.  The uniqueness of the emergent parameters in each 

universe means that there can be no interference or overlap between universes.  However, the 

superstructure contains all of the unique sets of emergent parameters of these individual 

universes, and so every universe is accessible to the superstructure.  In addition, the 

superstructure must contain one or more emergent parameters that are not common to any 

universe.  Such parameter(s) allow all of the universes to be distinguished individually, and 

they also, presumably, account for the universes being distributed numerically in such a way 

that leads to the expected ratios of quantum outcomes. 

 

Since the superstructure is a mathematical structure, then the same definition of reality applies 

to it as to the individual parallel universes embedded within it.  This reality, however, is 

different from the realities within individual universes.  While the realities of individual 

universes can never overlap (since the universes each have a different set of emergent 

parameters), the reality of the superstructure includes the reality of every embedded universe 

(since the superstructure includes all of the different sets of emergent parameters of the 

embedded universes).  For the reality of the superstructure, we use the term super-reality. 

 

In the end, we seem to have made a philosophical conundrum for ourselves.  We have deduced 

that a mathematical multiverse containing parallel universes must exist as a mathematical 

superstructure.  However, since our universe lacks most of the parameters (including θ and the 
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emergent parameters of the other universes) that are intrinsic to this superstructure, then the 

vast majority of this superstructure cannot be part of our reality.  If we regard the concept of 

reality as synonymous with that of existence, then we have effectively proved that the 

superstructure does not exist, despite our earlier conclusion that it does! 

 

Of course, it is a false conundrum, and it may be resolved by adopting a wider viewpoint.  In 

Figure A5, a UTMA is running in the program of each of the five UTMs, namely UTM1 – 

UTM5.  Each UTMA will deduce, from its narrow viewpoint, that the superstructure Game of 

Life, which is running the five UTMs, does not exist.  However, from the viewpoint of the 

superstructure Game of Life, all five of the Games of Life embedded within its structure most 

certainly do exist.  From within our own universe, the superstructure of the multiverse will 

remain forever hidden below our horizon, and the super-reality will be no more than a 

metaphysical curiosity.  If we ever wish to glimpse and understand the super-reality that lies 

beyond our horizon, then we shall have to elevate our perspective accordingly. 

 

 

APPENDIX A1: MATHEMATICAL SUPERSTRUCTURES AND SUPER-REALITY 

 

Figure A1 is the binary representation of a number that, written in decimal, would contain 

nearly 1000 digits.  In binary, the number contains 3293 bits, and so it can be displayed either 

as an 89 × 37 matrix or a 37 × 89 matrix, with the sequence of bits in either case beginning at 

the top-left corner and ending at the bottom right.  We have chosen the latter arrangement for 

the figure. 

 

Let r and s be the number of rows and columns in the matrix, so that r = 37 and s = 89 in Figure 

A1.  With this arrangement, the symmetries of the figure are clear, and, in particular, two 

rectangles, each identified by a perimeter of “1”s, stand out against a background of “0”s.  

These features would make it easy to reproduce the figure from a simple algorithm based upon 

r and s.  In the case of the alternative arrangement, where there are no coherent embedded 

shapes (r = 89 and s = 37), the algorithm would be longer. 

 

It is in this way that the parameters r and s may be said to emerge – thus, they may be regarded 

as emergent parameters.  In practice, because of the limited space on the page, Figure A1 is so 

simple that it might be reproduced by an even shorter algorithm not based upon r and s.  

However, for significantly large matrices in which are embedded a greater variety of shapes, 

the emergent parameters become key to the shortest reproducing algorithms. 

 

Shorter algorithms are associated with lower Kolmogorov complexity [10], and it is in this 

sense that the parameters r and s emerge naturally. 

 

A characteristic of the type of simple mathematical object displayed in Figure A1 is that the 

space in which smaller objects are embedded (such as the two rectangles) is mutually shared.  

For instance, if the centres of the two rectangles in Figure A1 had been separated in the s 

direction by only one bit rather than 29 bits, the two rectangles would share some common 

space. 

 

In contrast, now consider the matrix in Figure A2.  This figure again features a 37 × 89 matrix 

representation of a number expressed in 3293 bits, and, again, it contains two shapes, this time 

in the form of two vertical lines of “1”s, each punctuated by five strings of three “0”s.  If the 
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matrix had been arranged in the alternative 89 × 37 arrangement, then no such simple 

embedded shapes would emerge. 

 
 

Figure A1:  This is a 3293-bit binary number with the sequence of bits beginning with the “1” in 

the top left-hand corner and finishing in the bottom right-hand corner. 

 

 

The bits in each vertical line, taken sequentially, are: 

 

1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1  

 

which is the 35-bit binary representation of the same number, 33874822719, that we 

encountered earlier.  As before, prime-factor parameters p and q emerge naturally in this 

sequence, with p = 7 and q = 5.  Notice that, in order to differentiate between the emergent 

parameters of the large matrix, r and s, we have used p and q.  To distinguish between the two 

separate lines, we may use subscripts for the emergent parameters, so that p1 = 7 and q1 = 5 

refers, say, to the left-hand line and p2 = 7 and q2 = 5 to the right-hand one. 

 

It is necessary to distinguish between the emergent parameters, r, s, of the 3293-bit number 

and those of the two 35-bit numbers, p1, q1 and p2, q2, because, unlike the rectangles in Figure 

A1, the rectangles that are implicit in the embedded lines of Figure A2 do not share the same 

space as the 37 × 89 matrix.  The two lines could be drawn adjacent to each other, but the two 

implicit rectangles would not overlap, because the spaces defined by the three sets of emergent 

parameters, {r, s,}, {p1, q1} and {p2, q2}, are all different. 

 

Symbolically, we may write: 
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𝑀𝑎𝑡𝑟𝑖𝑥(𝑟, 𝑠) ⇒ {𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒1(𝑝1, 𝑞1), 𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒2(𝑝2, 𝑞2)}  

 

where “⇒” is to be read as “contains the following set of embedded structures”. 

 
 

Figure A2:  This is a 3293-bit binary number, similar, but not identical, to that in Figure A1. 

 

 

A more revealing example is shown in Figure A3, which is a sketch of the starting matrix, 

generation h = 0, of a Game of Life in which there is not one, but five, UTMs of the type shown 

in Figure 3. 

 

As before, the Game of Life may be viewed as a stack of matrices, each evolving from the 

previous one according to the Game-of-Life algorithms (2) and (3), and represented by 

𝑆𝑡𝑎𝑡𝑒(𝑝, 𝑞, ℎ).  The block universe formed from the complete set of these matrices is shown 

in Figure A4, where we have assumed a finite number of generations, terminating in hmax. 

 

Since a Game of Life is evidently computable as a simulation, it can be computed on any of 

the UTMs in Figure A4.  Therefore, let all four outside UTMs, that is, UTM1, UTM2, UTM3 

and UTM4, be programmed to simulate identical Games of Life.  The resulting block Games 

of Life may be labelled, respectively, 𝐺𝑜𝐿1(𝑥1, 𝑦1, 𝑡1), 𝐺𝑜𝐿2(𝑥2, 𝑦2, 𝑡2), 𝐺𝑜𝐿3(𝑥3, 𝑦3, 𝑡3) and 

𝐺𝑜𝐿4(𝑥4, 𝑥4, 𝑡4).  Notice that we have used emergent parameters x, y and t in order to 

distinguish them from those of the Game of Life running the five UTMs, p, q and h. 
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Figure A3:  Everything within the outer rectangle is a schematic of the starting matrix of a Game 

of Life featuring five UTMs, each one of which is, itself, running a Game of Life, 𝐺𝑜𝐿1 - 𝐺𝑜𝐿5. 

 

 

 
Figure A4:  The cuboid shows a complete Game of Life, played out from its starting configuration 

at h = 0 to the final one at h = hmax.  Five UTMs are running in this Game of Life, each programmed 

with its own Game of Life, 𝐺𝑜𝐿1 - 𝐺𝑜𝐿5. 
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Thus, each of the four outside UTMs will contain the same program data (that is, the program 

for the Game of Life) and the same input data, which will represent the pattern (that is, the 

mathematical structure) in the zeroth-generation matrix of the Game of Life. 

 

Now imagine that each of the Games of Life, 𝐺𝑜𝐿1 - 𝐺𝑜𝐿5, contains within it the instructions 

for a further UTM of the kind discussed earlier, programmed to explore its environment – let 

us call it a UTMA.  Suppose also that the input data for each of the four outside UTMs contain, 

in addition to the UTMA, a solitary glider, moving diagonally downwards to the right.  

Suppose, further, that the central UTM – UTM5 – is again programmed with the Game of Life 

featuring a UTMA, but that, this time, it also features a solitary glider moving diagonally 

downwards to the left rather than to the right.  The block Game of Life for UTM5 may be 

labelled 𝐺𝑜𝐿5(𝑥5, 𝑦5, 𝑡5). 

 

The configuration is summarised in Figure A5. 

 

 
Figure A5:  This schematic diagram shows five UTMs, UTM1 – UTM5, running within the Game 

of Life.  Each of these structures contains, in turn, an embedded Game of Life that features a further 

UTM (called UTMA) and a glider. 

 

Of course, the pattern of the Game of Life which each of the UTMs is running, including the 

UTMA and glider, cannot be seen simply by looking at the cuboid illustrated in Figure A4, just 

as the pattern of 𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒(𝑝1, 𝑞1) and 𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒(𝑝2, 𝑞2) cannot be seen by inspecting the 

37 × 89 matrix in Figure A2.  The patterns of the Games of Life running in the five UTMs are 

only revealed when they are expressed in their emergent parameters {𝑥𝑛, 𝑦𝑛, 𝑡𝑛}. 

 

This is an instance of a general property that, if a mathematical structure, S, contains an 

embedded structure which can be expressed more simply in its own emergent parameters, then 

S may be regarded as a mathematical superstructure.  Since the Games of Life, 𝐺𝑜𝐿1 - 𝐺𝑜𝐿5, 
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have emergent parameters that are different from those of the Game of Life running them, then 

the latter is a superstructure. 

 

The embedded Games of Life running in the five UTMs are independent of each other – the 

gliders in the Games of Life running in UTM4 and UTM5 can never collide, with each game 

being played out independently within the respective emergent parameters {𝑥4, 𝑦4, 𝑡4} and 
{𝑥5, 𝑦5, 𝑡5}. 

 

So, in the superstructure Game of Life in Figure A4, there are five independent realities, one 

for each of the five Games of Life being played out in the five UTMs.  In four of these realities, 

a glider moves diagonally downwards to the right, and in one of the realities, the glider moves 

diagonally downwards to the left. 

 

While the five realities are independent of each other, they are part of the reality of the 

mathematical superstructure in Figure A4, which we can call a super-reality.  The complete 

mathematical structure of each of the five realities is accessible to that super-reality.  

Symbolically, we may write: 

 

𝑆𝑡𝑎𝑡𝑒(𝑝, 𝑞, ℎ) ⇒ {𝐺𝑜𝐿𝑛(𝑥𝑛, 𝑦𝑛, 𝑡𝑛): 1 ≤ 𝑛 ≤ 5} 

 

It is in this sense that the Toy Multiverse of Appendix A2, in which 40 universes are embedded, 

is considered to be a mathematical superstructure.  The super-reality of this mathematical 

superstructure contains, among other things, the 40 mathematical structures that are parallel 

universes.  The realities intrinsic to these 40 universes are completely independent of each 

other, although they are accessible to the overarching super-reality.  As well as the 40 parallel 

universes, we can conclude that the mathematical superstructure must contain information 

about the relative probabilities of different quantum outcomes of each of the three quantum 

events A, B and C, in the Toy Multiverse.  This is because the relative numbers of these parallel 

universes are determined within the mathematical superstructure, and it is these relative 

numbers that determine the quantum probabilities. 

 

Symbolically, we may write: 

 

𝑀𝑢𝑙𝑡𝑖𝑣𝑒𝑟𝑠𝑒(𝜃) ⇒ {𝑈𝑛(𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝑡𝑛): 1 ≤ 𝑛 ≤ 40}                                     (A1) 

 

where θ represents the emergent parameter(s) of the multiverse in which the parallel universes 

are embedded.  We know that the multiverse must contain at least one emergent parameter, 

because the 40 embedded universes make a pattern – a structure – that follows the rules of 

quantum mechanics: the frequency distribution of different types of universes is given by 

equation (A2).  The parameter θ determines the pattern of these 40 universes. 

 

Note that, in the above equation, each of the 40 universes, Un, depends upon a set of emergent 

parameters, {𝑥𝑛,𝑦𝑛, 𝑧𝑛,𝑡𝑛} which is unique to that universe.  The fact that each universe must 

depend upon a set of parameters which is unique to that universe may be seen by considering 

the alternative, where all 40 universes share a common set of parameters {𝑥, 𝑦, 𝑧, 𝑡}.  In that 

case, the 40 universes would merge to form a single structure – effectively, a single, large 

universe.  So, instead of this enlarged universe containing a maximum of three quantum events, 

which is one of the specifications for the model, it would contain 110 quantum events. 
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APPENDIX A2: A TOY MULTIVERSE 

 

While Everett’s work was (somewhat sensationally) reinterpreted by De Witt as invoking 

parallel universes [15], [16], Everett’s main aim was to preserve the unitary evolution of the 

Schrödinger equation without having to incorporate wave function collapse.  Strictly, the 

“parallel universes” of the Many Worlds Interpretation are, topologically, a single structure 

that branches at every quantum interaction (“measurement”), and it is this topology that is in 

conflict with that of a block universe, which has no branches.  The resolution of this conflict is 

to replace the branches with separate, discrete, parallel filaments (i.e., universes) with the 

numbers of filaments/universes in the branches being proportional to the “thicknesses” of the 

branches (i.e., the Born probabilities of the quantum outcomes that give rise to the individual 

branches) (see, for instance, Figures A9 and A10).  In such a multiverse of separate, parallel 

universes, the Schrödinger equation evolves in exactly the same unitary fashion without 

recourse to wave function collapse, just as Everett intended in his original work. 

 

 
 

Figure A6:  This shows the elements of a simple Toy Multiverse.  There is a maximum of only 

three quantum events, A, B and C in any of the constituent universes. 

 

The features of this model are discussed in [17].  The most important of these is that the total 

number of parallel universes in the multiverse is large but finite.  This is shown in [18]; 

essentially, it is because the probability of a given outcome of a quantum event is determined 

by the ratio of the number of universes containing that particular outcome to the total number 

of universes containing the quantum event.  If the numbers of universes in the ratio were 

infinite, that ratio would be inconsistent and undefined, whereas the measured probabilities of 

quantum outcomes are consistent and well defined.  At the same time, assuming that all of the 

branches stem from a common source (so that the parallel universes look increasingly similar 

to each other towards their origins), then ni, which is the number of universes of type i, defined 

by a given set of quantum outcomes, 𝑘𝑖, that result from the quantum events, ji, is given by                                                       
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𝑛𝑖 = 𝑁 ∏|⟨𝑘𝑖|𝑗𝑖⟩|2

𝑗𝑖

                                                                    (A2) 

 

where ⟨𝑘𝑖|𝑗𝑖⟩ is the probability amplitude for quantum event ji to have outcome ki in a universe 

of type i.  N is the total number of parallel universes in the multiverse, so that 

 

𝑁 = ∑ 𝑛𝑖

𝑖

 

 

It will be seen from these two equations that N is a free parameter, essentially because 

  

∑   ∏|⟨𝑘𝑖|𝑗𝑖⟩|2

𝑗𝑖

= 1

𝑖

 

 

(A simple example to make this equation plausible is given in [18].) 

 

We shall return to the question of the value of N, but an illustration may be helpful at this point.  

Consider the case of a simple Toy Multiverse containing a maximum of three quantum events, 

A, B and C, as shown in Figure A6.  Event A has two possible outcomes, A1 and A2, with 

occurrence probabilities of 25% and 75% respectively.  If, and only if, the outcome of event A 

is A2, then an event C is triggered.  This has three possible outcomes, C1, C2 and C3, with 

occurrence probabilities of 20%, 60% and 20% respectively.  (The outcomes of C may be 

thought of as representing the array of possible outcomes across the detector screen in a two-

slit experiment.)  Event B occurs independently of A and C, and has two possible outcomes, 

B1 and B2, each with a 50% probability of occurring. 

Figure A7 shows the eight different possible types, i, of universe that can arise in this 

multiverse.  A “type” of universe is defined by the particular set of outcomes arising from the 

quantum events in that universe.   Since the three quantum events in the Toy Multiverse, A, B 

and C, are not entirely independent (event C is triggered by outcome A2), the total number of 

different types of universe is not simply the product of the numbers of outcomes of the three 

different events, 2 × 2 × 3, but, instead, is eight, as shown in Figure A7.  For illustration, the 

symbols ji and ki used in the above equations to represent quantum events and the outcomes of 

these events, are shown pointing to event B and outcome B2 respectively in the universe of 

type 2.  Notice that the numbering sequence, i, used to identify the different types of universe, 

is arbitrary. 

We suppose that event B is sufficiently far from event A that the future light cone of event B 

does not reach A’s world line until after event C, which is on A’s world line.  So, the sequence 

of outcomes in a universe of type 2, as seen from event A, is A2, C1, B1.  This is illustrated at 

the far right of Figure A7 as a vertical strip with the three events drawn in chronological order, 

starting from the first event at the bottom of the strip.  From the vantage point of event B, 

however, the sequence is B1, A2, C1, also shown in a vertical strip in Figure A7.  Notice that 

both versions of the vertical strips are represented by the block universe of type i = 2. 

 

Figure A8 shows how the Toy Multiverse of eight different types of universe may be viewed 

from event A and also from event B.  Each tree is effectively a multiverse according to the 
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Many Worlds Interpretation.  The topologies of the two trees are clearly different, although 

they represent exactly the same events, because the branches have to be drawn from a particular 

viewpoint, and the number of possible viewpoints increases with the number of events.  In this 

respect, the eight types of block universe in Figure A7 may be regarded as more fundamental 

than the MWI picture, because their structure is independent of any viewpoint.  This can be 

more clearly seen by comparing Figures A9 and A10, which show the same eight types of block 

universe in both MWI structures. 

 

 
 

 

Figure A7:  The eight possible outcomes of quantum events A, B and C are shown in the eight 

boxes.  Each box represents a “type” of universe.  The outcomes will look different from different 

perspectives as shown in the two vertical strips to the right of the figure. 

 

Figure A9 corresponds to the MWI tree in Figure A8(a), where, as described above, the 

branches have been replaced with separate, discrete filaments with each filament representing 

one of the eight types of block universe.  Figure A10 corresponds to the MWI tree in Figure 

A8(b), and it will be seen that, although the MWI topology of the tree is different from that in 

Figure A9, it comprises the very same eight block universes. 

 

A total number of 40 parallel block universes has been used in each of the two trees, which is 

just enough to demonstrate the probability rules.  For instance, in Figure A9, the trunk of the 

tree splits into two branches at event A, with 10 filaments/universes in the left branch (outcome 

A1) and 30 filaments/universes in the right branch (outcome A2).  In other words, three times 

as many universes contain outcome A2 as those that contain outcome A1, which is consistent 

with the original premise that the relative probabilities of outcomes A1:A2 are 25%:75%. 
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Figure A8:  Diagram of the same Toy Multiverse of eight different quantum outcomes as seen in 

two representations of the MWI.  The differences arise because of the different perspectives of the 

quantum events A and B. 

 

 
 

Figure A9:  This shows the Toy Multiverse with its eight different types of block universe.  Each 

universe is represented by a long, grey filament.  The tree structure corresponds to the MWI 

structure as viewed from the perspective of event A. 
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In Figure A10, the event A appears twice in the tree, one in each of the two outcome branches 

of event B.  Each of these branches contains 20 universes and it will be seen that, as in Figure 

A9, event A splits into a 25%:75% outcome ratio, with 5 universes in the A1 branch and 15 in 

the A2 branch. 

 

The total number of universes, N = 40, in these two illustrations is the smallest we could have 

used while maintaining the numbers of universes in all of the branches needed to produce the 

specified quantum outcome probabilities.  Clearly, the total number of universes in the Toy 

Multiverse can be scaled upwards to any multiple of 40, but that raises the question of what to 

do if the ratio of two quantum outcomes of an event were irrational: for instance, what would 

be the number of universes containing, respectively, the outcomes A1 and A2 if the ratio A1:A2, 

as determined by the Schrödinger equation, were 1/√10 instead of ⅓ ? 

 

Evidently, the nature of the pattern of the multiverse (namely, that the number of universes in 

the multiverse is discrete) is not compatible with the continuous Schrödinger equation.  So, in 

our hypothesized multiverse, the Schrödinger equation would need to be rewritten as a digital 

equation (see, for instance, [19], [20].)  The fact that no significant difference has been detected 

between measured and calculated quantum probabilities suggests that the number of parallel 

universes is large enough to mask any difference, although finding an appropriate experiment 

remains a possible test of the hypothesis [17]. 
 

 
 

Figure A10:  This shows the Toy Multiverse from an alternative perspective to that in Figure A9. 
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