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Abstract

The CPT theorem states that any causal, Lorentz-invariant, thermodynam-
ically well-behaved quantum field theory must also be invariant under a
reflection symmetry that reverses the direction of time (T), flips spatial
parity (P), and conjugates charge (C). Although its physical basis remains
obscure, CPT symmetry appears to be necessary in order to unify quantum
mechanics with relativity. This paper attempts to decipher the physical rea-
soning behind proofs of the CPT theorem in algebraic quantum field theory.
Ultimately, CPT symmetry is linked to a reversal of the C*-algebraic Lie
product that encodes the generating relationship between observables and
symmetries. In any physically reasonable relativistic quantum field theory,
it is always possible to systematically flip this generating relationship while
preserving the dynamics, spectra, and localization properties of physical sys-
tems. Rather than the product of three separate reflections, CPT symmetry
is revealed to be a single global reflection of the theory’s state space.
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1 Introduction: Explaining CPT Symmetry

Virtually every serious candidate for a fundamental physical theory from Newto-
nian gravitation to classical electrodynamics has been time-reversal-invariant. For
every nomologically possible world, there is another nomologically possible world
where the direction of time is reversed. Surprisingly, this is not true for relativistic
quantum field theories (QFTSs). It is possible to write down physically reasonable
QFTs which are not time-reversal-invariant, and as James Cronin and Val Fitch
experimentally demonstrated in 1964, weak nuclear interactions in the actual world
are described by such a theory.!

While QFTs may fail to be symmetric under simple time reversal, the CPT
theorem ensures that there is always a more complicated time reversal symmetry
present. The theorem loosely states that any causal, Lorentz-invariant, thermo-
dynamically well-behaved QFT must be invariant under a combined symmetry
operation that reverses the direction of time (T), flips spatial parity (P), and
conjugates all charges present in the theory (C). Since particles and antiparticles
carry opposite charge, the net effect of charge conjugation is to swap matter and

'In work that would win them the 1980 Nobel Prize, Cronin and Fitch observed that neutral
kaons transform into their antiparticle partners at a different rate than the reverse process.



antimatter. In a CPT-invariant theory, every nomologically possible world has a
dopplegianger where the future is the past, left is right, and you and I are made
out of antiparticles.?

The historical development of QFT is closely tied to the CPT theorem. Initial
attempts to relativize quantum theory in the late 1920s ran aground on a cluster
of problems stemming from a conflict between relativistic causality and energy
positivity.> Plugging the relativistic dispersion relation, F = /p? + m?2, directly
into the Schrodinger equation yields a Lorentz-invariant wave equation, however,
the resulting dynamics are non-hyperbolic — initially well-localized wavepackets
spread faster than the speed of light, raising the specter of faster-than-light signal-
ing and other causality-violating paradoxes. Hyperbolic wave equations, like the
Klein-Gordon and Dirac equations, avoid these immediate problems, however such
equations have non-physical negative energy solutions. These can be cut off by
hand, but only at the cost of ruining Lorentz invariance, hyperbolicity, or both.*
QF'T effectively sidesteps this problem by dropping the requirement that the the-
ory describe a finite, fixed number of particles. The negative energy states never
really go away. Rather they are reinterpreted as positive energy states with oppo-
site charge. This trick only works to restore Lorentz invariance and hyperbolicity,
though, if there is an exact correspondence between particles and antiparticles;
they must be indistinguishable except for their charge. The CPT theorem ac-
counts for this, explaining why particle/antiparticle pairs have the same mass,
spin, and lifetime. Viewed from this angle, CPT symmetry plays a fundamen-
tal explanatory role in QFT. It is only because the theory is CPT-invariant that
we can reinterpret negative energy states as describing antiparticles in a manner
consistent with the requirements of relativistic causality.

But what explains the origins of CP'T symmetry itself? Why is this seemingly
ad hoc combination of reflections always a symmetry of nature? Despite its im-
portance, the physical basis for the CPT theorem remains notoriously obscure.
As Bain (2016) emphasizes, part of the problem is that there are several different
versions of the theorem with different starting assumptions. Many of the more
technical assumptions do not have a clear physical interpretation, making com-
parisons between various proofs challenging. To compound this difficulty, the the-

2As in the case of T invariance, CPT invariance is often interpreted as indicating that these
apparently distinct possibilities are in fact different representations of the same physically possible
world. For present purposes, I will set aside this interpretive question.

3See Weinberg (1995, Ch. 1) and Strocchi (2013, Ch. 1) for surveys of these problems and the
various attempts to circumvent them that lead to the development of QFT.

4These obstacles can be turned into a rigorous no-go theorem. See Strocchi (2013, Prop. 2.2).



orems are couched within different mathematical frameworks, Lagrangian QFT,
Wightman QFT, S-matrix QFT, and algebraic QFT. Lagrangian and S-matrix
proofs, while more physically transparent, lack mathematical rigor, whereas the
rigorous axiomatic proofs in the Wightman and algebraic frameworks are more
physically opaque. This state of affairs has prompted Greaves (2010) and Greaves
and Thomas (2014) to search for a rigorous Lagrangian version of the CPT the-
orem. In this paper I attack the problem from the opposite direction, by looking
for a more physically perspicuous interpretation of proofs in algebraic QFT, the
framework perhaps most familiar to philosophers of physics.

In §2, I give an overview of algebraic QFT, focusing on the features most es-
sential for understanding the CPT theorem. Algebraic proofs rely on the following
main idea: in the vacuum representation, certain local algebraic invariants asso-
ciated with spacelike wedge regions act geometrically as elements of the Poincaré
group. One of these invariants, the modular conjugation operator, Jy , represents
a full CPT transformation of the theory when combined with a spatial rotation.
But why do modular invariants play such a pivotal role, and what makes wedge
regions so special? Most proofs simply begin by positing critical geometric or
analytic properties of the modular objects, and existing mathematical surveys,
Borchers (2000) and Borchers and Yngvason (2000), do not broach these deeper
interpretive questions.

In order to answer them, we will have to dig down into the algebraic foundations
of QFT. The central portion of the paper, §3, takes the form of a mathematical
physics whodunit. If we suspect that a generic QFT must have some generalized
time-reversal symmetry, where might we look for it in the structure of algebraic
QFT? By tracing the theorem’s starting point back to the physically-motivated
Haag-Kastler axioms and carefully dissecting its logical structure piece by piece,
we will discover why the wedge modular conjugation must be the culprit.

Our detective work points towards an intriguing geometric explanation for CPT
invariance: ultimately, it is linked to a reversal of the C*-algebraic Lie product
that encodes the generating relationship between observables and symmetries. In
any causal, Lorentz-invariant, thermodynamically well-behaved QF'T, it is always
possible to systematically flip this generating relationship while preserving the
dynamics, spectra, and localization properties of physical systems. Rather than
the product of three separate reflections, CPT symmetry is revealed to be a single
global reflection of the theory’s state space.

In §4, I explore the ramifications that this story has for existing philosophical
debates about the explanation of CPT invariance. Recently, Bain (2016) has issued
an important skeptical challenge, arguing that major divergences between proofs
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of the CPT theorem couched in different frameworks preclude any of them from
providing an explanation for the CPT symmetry observed in nature. Contra Bain,
I argue that the present investigation reveals that the algebraic proof shares a
great deal of structure with proofs in Lagrangian, S-matrix, and Wightman QFT,
suggesting convergence towards a core set of explanatory ideas. The algebraic
proof offers some of the greatest insight into this core that we have at present.

Meanwhile, Greaves (2010) offers a different geometric story about the origins
of CPT invariance in Lagrangian field theory. A surprising corollary of this ex-
planation is that the CPT theorem is an essentially relativistic result; quantum
mechanical assumptions do not play a major role. I argue that the algebraic CPT
theorem provides a better explanation for the origins of CPT invariance incorpo-
rating a more unified picture of antimatter captured by algebraic superselection
theory. Although there are intriguing similarities between the algebraic proof and
the more recent Lagrangian proof given by Greaves and Thomas (2014), I argue
that the case for a purely classical explanation of CPT symmetry is not convincing.

Although these counterarguments are not decisive, they significantly advance
both debates and illustrate the potential fruitfulness of further philosophical inves-
tigation into algebraic QFT. I conclude in §5 by highlighting several open questions
and framing a conjecture relating state space, spatiotemporal, and charge orienta-
tion structures that will be the subject of future work.’

2 The Algebraic CPT Theorem

One of the most mathematically rigorous approaches to QFT currently on the
table, algebraic QFT (AQFT) serves as a natural framework for investigating the
conceptual underpinnings of relativistic quantum theories. Rather than beginning
with the specification of a Hilbert space, AQFT starts with an abstract character-

S“CPT, Spin-Statistics, and State Space Geometry,” (in preparation). This paper is based on
previous dissertation work (Swanson, 2014, ch. 3). The main conclusions drawn and the broad
structural account of the algebraic CPT theorem are the same, but some of the central details
are different. In particular, the distinction between *-isomorphisms, anti-isomorphisms, and
conjugate-isomorphisms are more clearly drawn by lemma 1 and directly connected to modular
theory by lemma 2. Lemma 3 is also new. Rather than starting from modular covariance, the
present account uses Borchers’s auxiliary analyticity assumptions to more clearly link central
steps in the proof back to the Haag-Kastler axioms, thereby reinforcing the arguments in Swanson
(2018). The discussion of charge conjugation in §3.6 is also different, highlighting the importance
of modular inclusions and hewing more closely to existing proofs in the mathematical physics
literature.



ization of the algebraic properties of gauge-invariant physical quantities known as
observables. 1t is typically assumed that the observables of a quantum system form
the self-adjoint part of a noncommutative C*-algebra, 2, an abstract collection of
elements isomorphic to a subalgebra of bounded Hilbert space operators.’

States are given by normalized, positive linear functionals, ¢ : 2l — C, whose
values represent the expectation values of observables in 2. Given a state, the
Gelfand-Naimark-Segal (GNS) construction determines a unique representation,
ms(2A), of A as a concrete subalgebra of operators acting on a Hilbert space, H.
Within a representation, the closure of m,(2() with respect to the Hilbert space
weak topology defines a von Neumann algebra equivalent to the double commu-
tant, m,(2A)"”. Such algebras have a complete lattice of projection operators, and
in AQFT, this procedure allows for the definition of additional representation-
dependent observables including energy-momentum operators and superselected
charges. Two representations 7y, , 7y, are quasiequivalent iff my, (A)” and 7y, (A)”
are *-isomorphic. (This generalizes the more familiar notion of unitary equivalence
to reducible representations.) Because field systems in AQFT have infinitely many
degrees of freedom, GNS representations of a given algebra will typically not be
quasiequivalent (unlike the situation in non-relativistic quantum mechanics).

Figure 1: A doublecone, a spacelike wedge, and a spacelike cone.

We will focus on AQFT in flat spacetime. Throughout, O will denote an open
region of Minkowski spacetime and O’ the interior of its causal complement, the
set of all points spacelike separated from all points in O. Certain special regions
will be important to keep track of. A doublecone is a compact region formed by

6See Kadison and Ringrose (1997) and Blackadar (2006) for a thorough introduction to the
mathematics of C*-algebras and Haag (1996) for the application of these ideas to AQFT. Halvor-

son and Miiger (2006) and Ruetsche (2011) represent more philosophically-oriented surveys of
AQFT.



the intersection of a past and future lightcone at two timelike separated points. A
spacelike wedge is an unbounded wedge-shaped region whose two defining planes
are tangent to the edges of some lightcone. A spacelike cone is a cone-shaped
subset of a spacelike wedge, infinitely extended in one spacelike direction.

2.1 Assumptions

A model of AQFT is given by an assignment, {2((O)}, of C*-algebras to regions of
spacetime satisfying the Haag-Kastler axioms, along with a set of physically pos-
sible states, {¢}. Each state in {¢} determines a GNS representation and a cor-
responding assignment of local von Neumann algebras, {fR,(O)} = {m,(A(O))"}.
The self-adjoint elements of these algebras represent locally measurable physical
quantities, while the Haag-Kastler axioms specify the dynamics and enforce the
joint requirements of relativity and quantum mechanics. There are five standard
axioms, and they all play a crucial role in the algebraic CPT theorem:

Isotony: If O; C O,, then A(0O;) C A(Oz). This gives the assignment
{A(O)} the structure of a net and allows us to define the quasilocal algebra,
2, as its upwards inductive limit. (The family of physical states {¢} is
formally defined as a set of states of 2.)

Microcausality: If O, C O}, then 2A(0;) and A(O3) commute. This en-
forces relativistic no-signaling constraints, ruling out act-outcome correla-
tions at spacelike separation. (It is also sometimes called the locality axiom.)

Covariance: The net {2((0)} transforms covariantly under a faithful rep-
resentation of the connected Poincaré group (or more generally its covering
group) as automorphisms of 2. The full group of isometries of Minkowski
spacetime is the Poincaré group. Its covering group has the same Lie algebra
and is used to represent symmetries of spinor fields. The connected Poincaré
group is the subgroup topologically connected to the identity, consisting of
translations, rotations, and boosts. (It does not include orientation-reversing
isometries like P, T, or PT reflections.) The dynamical laws of the theory
are encoded in the translation subgroup of this representation and are guar-
anteed to be Lorentz-invariant.

Vacuum: There ezists at least one translation-invariant state, w € {¢}.
This is a necessary condition for w to be interpretable as a vacuum state.



In the corresponding GNS representation, the translation subgroup is im-
plemented by a strongly continuous 1-parameter group of unitary operators,
U(a). The group generators are the energy-momentum observables and are
affiliated with the global von Neumann algebra, R, = m,,(2()".

Spectrum Condition: In each vacuum GNS representation, the energy-
momentum observables have spectral support in the same lightcone lobe in
momentum space. This ensures that the energy spectrum is bounded from
below in all Lorentz frames and that the vacuum is thermodynamically sta-

ble.”

In addition to the Haag-Kastler axioms, the algebraic CPT theorem relies on five
other assumptions:

Additivity For any family of bounded open regions, {O;}, the local algebra
A(UO;) is the C*-algebra generated by the family of local algebras {A(O;)}.
This is a technical condition relating the algebras of bounded and unbounded
regions. It is used in the analysis of charge superselection structure, and it
entails weak additivity in vacuum representations. Weak additivity ensures
that the global von Neumann algebra R, can be generated by translations of
any local algebra R,,(0). It is an important ingredient in the Reeh-Schlieder
theorem and several crucial lemmas in the algebraic CPT theorem.

Wedge Intersection Property: For any doublecone D, in any vacuum
representation, R, (D) = R, (W;) for all spacelike wedges W; D D. This
is another technical condition allowing vacuum doublecone algebras to be
defined by the intersection of families of wedge algebras. It is used in the
proof of the Bisognano-Wichmann property and to construct the minimal
Poincaré representation in §3.5. If a model of AQFT does not satisfy the
wedge intersection property it is always possible to expand the net of local
algebras so that it is satisfied, although the extension will not typically be
unique.

Split Property: If regions Oy and Oy are spacelike separated and not tan-
gent, then in the vacuum representation R, (O1) and R, (O2) can be “split,”

7 As usually formulated, the spectrum condition requires that the spectral support of U (a) lie in
the closed forward lightcone, V+, in momentum space. The apparent reference to a distinguished
temporal orientation is eliminable. It is only required that U(a) must have spectral support in
a closed convex set V which is asymmetric under taking additive inverses: {V} N {-V} = {0}.



i.e., they generate a tensor product of von Neumann algebras. Along with
the spectrum condition, the split property is part of the characterization
of thermodynamically well-behaved QFTs. It entails that the family {¢}
includes well-defined thermal equilibrium states satisfying the Kubo-Martin-
Schwinger (KMS) condition and is a necessary condition for a model of
AQFT to have an emergent particle interpretation (Haag, 1996, ch. V.5).
Existing algebraic proofs of the CPT theorem rely on the weaker distal split
property, which only requires the existence of some pair of spacelike separated
wedges such that R, (W) and R, (Ws) can be split.

Analyticity: At certain critical stages, proofs of the algebraic CPT theorem,
like proofs in the Wightman framework, rely on tricky analytic continuation
arguments. As we will go on to see, in AQFT many important analyticity
properties are derived from the Haag-Kastler axioms and weak additivity. It
remains an open question if these assumptions along with the split property
are sufficient to derive all of the analyticity needed for the CPT theorem.
Existing algebraic proofs require auxiliary analyticity assumptions, and the
choice of which assumptions to make marks a place where different algebraic
proofs diverge. In our presentation, two closely related assumptions, B-
analyticity and B-reality, will be introduced in §3.5 once we have developed
the necessary technical machinery.

DHR/BF Selection Criteria: For every physical state ¢ € {¢}, the
GNS representation 4 is quasiequivalent to the vacuum representation in
the causal complement of some doublecone or spacelike cone (i.e., for some
doublecone or spacelike cone, O, the restrictions my(A)|o and m,(A)|o are
quasiequivalent). This final assumption is the key to the algebraic analysis of
charge structure. Its physical motivation is the subject of the next section.

2.2 Charges and Superselection Structure

Rather than a single Hilbert space, the state space of a model of AQFT is a col-
lection of different GNS representations, grouped into unitary equivalence classes
called sectors. Each representation in a given sector has the same folium of density
operators, representing states with the same global boundary conditions, charac-
terized by the values of representation-dependent observables in the global algebra,
R, = 1 (A)”. In different models of AQFT, different families of global states and
their corresponding GNS representations carry physical significance. The analysis



of charge representations initiated by Doplicher, Haag, and Roberts (1969a,b) is
one of the crowning achievements of AQFT and plays a central role in the algebraic
CPT theorem.

Charges are gauge-invariant, conserved quantities associated with particular
force laws. Electric charge is the conserved quantity that couples to the electromag-
netic force; color charge is the conserved quantity that couples to the strong force.®
Besides satisfying global conservation laws, they obey superselection rules that for-
bid states which are superpositions of different charges. In addition, charges can
be localized within some region of spacetime, and every charge has a well-defined
conjugate charge. Particles carrying conjugate charges can annihilate. Conversely,
particle/antiparticle pairs can spontaneously spring from the vacuum state.

In AQFT, these features are captured using special mappings called localized
transportable morphisms. Formally, these are injective *~homomorphisms g : 2l —
B(H,), where H,, is the vacuum GNS Hilbert space. Each morphism must be
localized in some region, O (i.e., it acts as the identity on (0’)), and it must
be possible to transport ¢ to any other similarly shaped region in spacetime using
unitary mappings (i.e., for any similar region, O, there is a localized morphism,
092, and a unitary operator, U, such that Up(A) = g2(A)U for all A € A).

The collection of localized transportable morphisms has a rich mathematical
structure, that of a symmetric tensor *-category.” In particular, the category has
a natural tensor product which allows us to define notions of charge composition
and conjugate charges. Fach morphism induces a corresponding mapping on global
states over 2. If w is a vacuum state, wop describes a state with charge ) localized
in region O. Its conjugate is defined as the unique morphism, o, such that wopo o
is a mixed state containing a component in the vacuum sector. This captures the
necessary condition for pair creation/annihilation.!

8The notion of color charge discussed here is not the same as the more familiar quark color
labels red, blue, and green. These labels do not have a gauge-invariant meaning and can be
superimposed. Color charge is a Zs-valued gauge-invariant superselected quantity in the center
of SU(3) constructed from functions of local Casimir invariants. See Kijowski and Rudolph (2003)
for a discussion of the superselection structure of quantum chromodynamics on a finite lattice.

9In the original analysis of Doplicher, Haag, and Roberts, Haag duality entails that the
charge morphisms are actually endomorphisms of the quasilocal algebra, ¢ : 2 — 2. This
greatly simplifies the mathematical analysis. In the more general case considered by Buchholz
and Fredenhagen, this is no longer true, and considerably more work is required to prove that
the charge morphisms have nice categorical properties.

0An example of a common annihilation event is et + e~ — v + 7. Since charge is globally
conserved and photons are chargeless, any interaction of this kind requires that particles and
antiparticles have conjugate charge. If wo po g is a mixed state with a component in the vacuum
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Doplicher, Haag, and Roberts analyze charges described by morphisms local-
ized in compact spatiotemporal regions. Such charges couple to forces like the
strong force whose strength falls off sharply as a function of distance. They prove
that the relevant category of localized transportable morphisms is equivalent to the
category of GNS representations of states satisfying the DHR selection criterion
— ¢ satisfies the DHR selection criterion if its GNS representation is quasiequiv-
alent to the vacuum representation in the causal complement of some doublecone.
The corresponding charge sectors are labeled by the value of the total charge ob-
servable, and conjugate sectors are defined by the condition that 7()” @ 7()”
contains a copy of the vacuum representation, 7, (2()”. According to the DHR pic-
ture, matter and antimatter states are represented by states in conjugate sectors,
giving rigorous mathematical content to the idea that such states have opposite
charge quantum numbers (Baker and Halvorson, 2010).

For theories with compactly localized charges like quantum chromodynamics,
the DHR selection criterion is a physically plausible constraint on the family of
possible global states, {¢}. Buchholz and Fredenhagen (1982) extend the DHR
picture to include topological charges localized in spacelike cones. In theories with
a mass gap, there is a 1-1 correspondence between particle representations (i.e.,
any representation in which the translation subgroup is unitarily implemented and
satisfies the spectrum condition) and states satisfying the BF selection criterion —
¢ satisfies the BF selection criterion if its GNS representation is quasiequivalent
to the vacuum representation in the causal complement of some spacelike cone.
While impressive, the analysis of charge structure in AQFT is still incomplete.
Because of the infrared problem, we currently lack a full understanding of the
localization properties of charges in theories involving massless particles, and thus
the algebraic proof of the CPT theorem cannot be applied to theories like quantum
electrodynamics at this stage.!!

2.3 CPT Symmetry and the Bisognano-Wichmann Prop-
erty

Algebraically, we can view a CPT transformation as an automorphism, 6 : A — 2,
satisfying the following constraints:

sector, then the probability of a creation/annihilation event is nonzero according to the Born
rule.

11See Buchholz and Roberts (2014) for recent work on extending the tools of DHR/BF analysis
to massless theories.
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(a) 0% =id.
(b) If O, C 02, then Q(Q{(Ol)) C Q(Q[(Og))

(c) 0(A(0)) = 2A(—0), where —O is the region obtained from O via a full spa-
tiotemporal inversion in both the space and time coordinates.

(d) foagn = a_gp008, where a5 is the representation of the connected Poincaré
group (or its covering group) posited by the covariance axiom.

(e) For any DHR/BF charge morphisms, § o o = g o 6.

The first two conditions require # to be an involution that preserves the local-
ization structure of the net {A(0)}. Conditions (c)-(d) ensure that 6 represents
a full spatiotemporal inversion (corresponding to the element —id in the Lorentz
group) and has the right commutation relations with the Poincaré transforma-
tions. (Technically, (c), requires the choice of a privileged origin, but in light of
(d), this choice does not matter.) The final condition tells us that 6 conjugates all
charges present in the theory. (Note, the term “automorphism” here is intended
to encompass the various generalizations of *-automorphisms canvassed in §3.1.)
Roberts and Roepstorff (1969) characterize symmetries in AQFT as automor-
phisms of the net that preserve transition probabilities and permute superselec-
tion sectors. Generalizing Wigner’s famous theorem from non-relativistic quantum
mechanics, they prove that any such symmetry can be represented by the adjoint
action of a unitary or antiunitary operator affiliated with the universal enveloping
von Neumann algebra, 2**.1? Note that for any GNS representation, 74, and any
automorphism, o : A — A, 745 0 a(A) := my((A)) is a GNS representation for 2A
generated by the state ¢ o a™(A) := ¢(a'(A)). Roberts and Roepstorff prove
that there always exists a unitary or antiunitary operator, W : Hy — Hyoq-1,
representing «, meaning that Wmy(A)W* = 1, o (). Since W is an isome-
try, it is guaranteed to preserve transition probabilities. Therefore, in order for
a to be a symmetry of a model of AQFT, for every physical state ¢ € {4}, the
symmetry-transformed state must also be a physical state, ¢ o a™! € {¢}.13

12The universal enveloping algebra, 2**, is isomorphic to the direct sum of all GNS represen-
tations of 2.

13As Baker and Halvorson (2013) emphasize, the Wigner unitary/antiunitary, W, will not
in general implement a unitary/antiunitary equivalence between 7y and 7y o a. This will be
true just in case W intertwines the two representations, Wrg(A)W* = 7y o a(A) for all A €
2 (i.e., W maps my(2A) to my o a(A) pointwise). The distinction allows us to accommodate
the phenomenon of spontaneous symmetry breaking. According to one standard definition, a

12



Thus if CPT is a symmetry of a model of AQFT, there exists a unitary or an-
tiunitary operator, ©, such that for any physical representation 74, Omy(A)O* =
7 0 0(21), where 74 0 0 is also a physical representation. In this case, (a) entails
that © = ©* = ©~! (since any isometric involutive operator is self-adjoint). Mean-
while, (c¢) ensures that OU(a, A)© = U(—a, A), in any sector carrying a unitary
representation of the connected Poincaré transformations, U(a,A). This ensures
that CPT reflection commutes or anticommutes with the Hamiltonian and pre-
serves the mass and spin properties of particles which are given by the Casimir
invariants of the representation U(a,A). In addition, (e) guarantees that CPT
reflection maps conjugate charge sectors onto one another.

This leads to a statement of the main theorem:

CPT Theorem. Given a model of AQFT satisfying the Haag-Kastler axioms, ad-
ditivity, the wedge intersection property, the distal split property, and the DHR/BF
selection criterion, if the model also satisfies analyticity conditions sufficient to en-
tail the Bisognano-Wichmann property, then there exists an antiunitary operator,
O, (unique up to unitary equivalence), whose adjoint action represents an alge-
braic CPT transformation preserving the set of physical states, {¢}, and satisfying

(a)-(¢).

Algebraic proofs of the CPT theorem are based on generalizations of a lesser known
result from constructive QFT. Bisognano and Wichmann (1975, 1976) prove that
for QFTs satisfying the Wightman axioms, local algebras associated with space-
like wedges in the vacuum representation contain special invariants that generate
particular Poincaré transformations. The modular unitaries, Alf, associated with
R, (W) generate the unique 1-parameter group of W-preserving Lorentz boosts,

symmetry is unbroken iff W implements a unitary/antiunitary equivalence. Otherwise it is
spontaneously broken. I thank two anonymous referees for drawing my attention to the subtleties
surrounding the Roberts-Roepstorff theorem.

1Gince conjugate charge representations are typically not quasiequivalent, it appears that
CPT symmetry will generally be broken in charge sectors, i.e., the adjoint action of © will not
intertwine 7 and 7. This is not the case. Even if there are no unitary intertwiners between 7 and
7, there may still exist antiunitary intertwiners. As we will go on to see in §3.6, each irreducible
charge sector is equivalent to an irreducible representation of some compact gauge group G.
Varadarajan (1968, Lem. 3.8) proves that a necessary and sufficient condition for the existence
of antiunitary intertwiners between irreducible representations of G is that the representations
in question are conjugate to one another. So there will always exist antiunitary intertwiners
between charge sectors in the DHR/BF picture. If CPT symmetry is unbroken in the vacuum
sector (as we expect is the case in many, if not all, physical models), then the adjoint action of
© will intertwine conjugate charge representations.

13



Aw(t).'> The antiunitary modular conjugation, Jy, represents a P;T reflection
that reverses the direction of time and flips one spatial direction perpendicular to
the edge of the wedge. Interestingly, it turns out that Jy, also conjugates charge.
The CPT theorem is then an immediate corollary of rotational covariance.

t -t

Figure 2: The P T reflection represented by Jy

The original proof of the Bisognano-Wichmann theorem uses extensive ana-
lytic continuation techniques relying on the special properties of gauge-dependent
Wightman field operators. It thus does not directly apply to AQFT. Nonetheless,
mathematical physicists have long suspected that the theorem is actually a more
general consequence of the structure of gauge-independent local observables. As
we will see in §3.3, the existence of local modular invariants is a consequence of
the Haag-Kastler axioms and weak additivity, and their geometric interpretation
is tightly constrained. This motivates the following:

15 A spacelike wedge is the region of Minkowski spacetime causally connected to an immortal,
uniformly accelerating observer, the so-called Rindler wedge. If the observer is accelerating in
the z; direction, their trajectory can be written in standard coordinates as

where 7 is proper time. The wedge region is defined by the condition z! > |2°|. The Bisognano-
Wichmann theorem tells us that in the vacuum representation, A%}, = e¥™itKL (where K is
the generator of an z1-boost). This is a simple rescaling of proper time translations along the
observer’s worldline.
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Bisognano-Wichmann Property: In the vacuum representation, for any
spacelike wedge W, the wedge modular unitaries generate Ay (t).

The Bisognano-Wichmann property holds iff Jy, represents a CP;T reflection.
Algebraic proofs of the CPT theorem therefore attempt to isolate analyticity as-
sumptions that are sufficient for establishing the Bisognano-Wichmann property.

In 2-dimensional theories, no additional assumptions are needed. The first
algebraic proof of the CPT theorem, Borchers (1992), inventively uses the ana-
lyticity properties entailed by covariance and the spectrum condition to establish
the Bisognano-Wichmann property for 2-dimensional models of AQFT. In higher
dimensions the situation is less clear. Haag (1996) conjectures that the Haag-
Kastler axioms and the split property should be sufficient to entail the Bisognano-
Wichmann property on their own, but this problem remains unsolved. Although
there are models of the Haag-Kastler axioms in which the Bisognano-Wichmann
property fails (Yngvason, 1994; Buchholz et al., 2000), there are none that also
satisfy the split property.

The first proof for 3- and 4-dimensional theories, Guido and Longo (1995),
drops the covariance axiom and spectrum condition in favor of a geometric con-
straint on Al :

Modular Covariance: In the vacuum representation, for any spacelike
wedge W, ‘ ‘
AR (0)AR" = Ry (Aw(1)0) .

This requires that the adjoint action of the modular unitaries maps arbitrary local
algebras in the vacuum representation onto the algebras of Ay, (t)-boosted regions.
This covariance entails the Bisognano-Wichmann property, but showing that each
Al acts geometrically as a boost requires a detailed argument exploiting the al-
gebraic and analytic properties of the modular invariants. Bain (2016) draws a
number of philosophical conclusions about the algebraic CPT theorem (e.g., that
it does not assume Lorentz invariance) based on a direct reading of the Guido-
Longo proof. Swanson (2018) cautions against such a direct reading, arguing that
modular covariance essentially bundles together the covariance axiom, spectrum
condition, and additional analyticity properties, obscuring the physical justifica-
tion behind various steps in the proof.

Here I will focus on the approach of Borchers (1995, 1996a, 1998, 2000), which
seeks to identify precisely which analyticity conditions are needed in higher dimen-
sions in addition to those already implicitly encoded in the Haag-Kastler axioms.
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Although in their present form these conditions are quite technical and their phys-
ical motivation is poorly understood, pursuing this strategy will enable us to trace
the clearest possible chain of argument back to the Haag-Kastler axioms.'6

3 Deciphering the Theorem

Summing up the mathematical philosophy behind AQFT, Halvorson and Miiger
(2006, p. 740) observe:

AQFT proceeds by isolating some structural assumptions that hold in
most known QFT models. It formalizes these structural assumptions,
and then uses “abstract but efficient nonsense” to derive consequences
of these assumptions.

Prima facie, the algebraic CPT theorem is a paradigm example of this approach.
With the exception of technical conditions like additivity, the wedge intersec-
tion property, and analyticity, its main structural inputs are reasonably physically
transparent. The chain of argument is anything but. Somehow, using the geomet-
ric properties of wedge-localized modular invariants, we can construct an extended
representation of the Poincaré group which miraculously includes an antiunitary
CPT operator. To make the situation even more challenging, presentations of the
CPT theorem in the mathematical physics literature typically begin by trying to
establish the Bisognano-Wichmann property without providing physical motiva-
tion for this starting point. The proofs are spread over many separate papers, and
often appeal to more abstract assumptions than the Haag-Kastler axioms, aiming
for the highest level of mathematical generality possible. (Frequently they seek to
prove the spin-statistics theorem at the same time.)

The goal of this section is to decipher the chain of physical reasoning behind the
CPT theorem, starting from a more elementary algebraic foundation than existing
presentations. The groundwork for the theorem is laid in §3.1-3 by connecting the
modular conjugation to a reversal of the C*-algebraic Lie product (lemmas 1-2).
In §3.4, this connection is used to illuminate why time-reversal symmetry must

6There are several other approaches that deserve mention. Kuckert (1997) proves that if the
wedge modular invariants map open regions onto open regions, then the Bisognano-Wichmann
property follows. Buchholz et al. (2000) employs an alternative geometric constraint, the con-
dition of geometric modular action, on the family of wedge modular conjugations {Jy }. Mund
(2001) proves the Bisognano-Wichmann property for asymptotically complete QFTs with a mass
gap using elementary algebraic assumptions and tools from Haag-Ruelle scattering theory.
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be antiunitary and to motivate the focus on wedge regions (lemma 3). Proofs of
these lemmas are given in the appendix. We then proceed through the heart of the
theorem in §3.5-6 with the aim of using these ingredients to clarify the physical
justification for each mathematical step. While the argument is certainly abstract,
it is less nonsensical than it first appears.

3.1 The Canonical Involution

We suspect that a generic model of AQFT should contain a hidden CPT reflection
symmetry, but the Haag-Kastler axioms only require covariance with respect to
connected Poincaré symmetries. How can a reflection like CPT get into the mix?

Our first important observation is that there is already a passel of algebraic
reflection symmetries hiding in plain sight. Even though the Haag-Kastler axioms
do not explicitly mention reflections, they do so implicitly. By definition, every
C*-algebra employed by a model of AQFT is equipped with a canonical involution
mapping, * : A — A, satisfying

(A" = A, (A+ B)* = A* + B,
(cA)* = A", (AB)" = B*A*, (1)

for all A,B € 2, ¢ € C (where ¢ denotes complex conjugation). The canoni-
cal involution can be viewed as a reflection of the algebra across its self-adjoint
subspace, Aga. Every operator in 2l can be uniquely written in “complex form,”
A= H+iK, where H = 1(A+ A*) and K = £(A* — A) are self adjoint. A quick
calculation reveals that the canonical involution acts as “complex conjugation,”
sending A = H + 1K to A* = H — iK and leaving g4 pointwise invariant. Thus
just like the complex numbers, a C*-algebra is self-similar; there is a conjugation
operation that reflects the algebra across its “real axis,” Ag4.

Strictly speaking, the canonical involution is not an automorphism of 2f. It
reverses the order of operator multiplication, (AB)* = B*A*, and it is conjugate-
linear on the underlying vector space, (c;A + o B)* = ¢1A* + & B*. It restricts
to the identity on g4, however, and since physical quantities are represented by
self-adjoint operators, this suggests that we should interpret it as a symmetry.
Moreover, while the order of multiplication and the difference between i and —i
matters within the algebra, from the outside looking in, the choice of an operator
product and complex unit looks like an arbitrary convention. We could choose
right instead of left operator multiplication and —¢ rather than 7 as a complex unit
and still be able to encode the same algebraic relations.
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We can capture this intuition as follows. Let 2A°? denote the opposite algebra
relative to 2, consisting of the same underlying vector space, involution, and norm
as 2, but with the opposite C*-product, (AB)°? = BA. Similarly, let 21° denote the
conjugate algebra, consisting of the same involution, norm, and operator product
as 2, but whose underlying vector space is conjugate, © = —¢. Finally, let AP
denote the analogously defined conjugate-opposite algebra.

We say that two C*-algebras are *-isomorphic if there exists a linear bijection
between them that preserves the identity, involution, and the operator product.
(These conditions entail that the norm is also preserved.) An anti-isomorphism is
similarly defined but reverses the order of the operator product, while a conjugate-
isomorphism acts conjugate linearly on the underlying vector space. A conjugate-
anti-isomorphism does both. It follows from this cluster of definitions that 2 is
antiautomorphic, conjugate-automorphic, or conjugate-antiautomorphic (to itself)
iff 2 is isomorphic to AP A°, or AP respectively.

Lemma 1. Let A be any C*-algebra:
(i) 2 is naturally isomorphic to AP,
(11) AP is naturally isomorphic to A,
(11i) A is naturally anti-isomorphic to AP and A°,
(1v) A is naturally conjugate-isomorphic to AP and A°,

with the relevant isomorphisms defined by the involution structure common to all
four algebras.

This lemma precisely characterizes the sense in which a C*-algebra is self-similar:
20 is naturally conjugate-antiautomorphic to itself, with the canonical involution
defining the relevant reflection symmetry. Furthermore, it reveals that there is an
entire family of related isomorphisms linking C*-algebras with opposite choices of
operator product and complex unit.

3.2 The Lie-Jordan Product and State Space Orientation

Do these formal algebraic symmetries have any physical consequences? If the ob-
servables are all contained in 2g4, what role does the “imaginary” part of the al-
gebra play? Our second important observation, following Alfsen and Shultz (2001,
2003), is that observables have double roles — they represent physical quantities
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and they act as infinitesimal generators of symmetries. The operator product is in
fact two products in disguise:

Theorem (Alfsen-Shultz). In any C*-algebra, the operator product has a natural
decomposition,

AB=AeB—i(A%xB), (2)
where A e B := %(AB + BA) is a commutative, non-associative Jordan product,
and A% B := L{(AB — BA) is a noncommutative, associative Lie product.'”

The self-adjoint subspace, g4, is closed under the Jordan product which en-
codes all spectral information about the observables.'® The Jordan product there-
fore captures the way in which observables represent physical quantities. The Lie
product, on the other hand, captures the way in which observables generate sym-
metries. Fach element A € Ag4 defines a 1-parameter group of automorphisms of
2, given by

(X)) = e X e, (3)

for all t € R, X € 2. Infinitesimally, this can be rewritten in terms of the Lie

17See Alfsen and Shultz (2003, ch. 6). The Jordan product satisfies the Jordan identity,
(A’eB)e A= A*e(BeA),
where A% := A e A, while the Lie product satisfies the well-known Jacobi identity,
Ax(BxC)+Cx(AxB)+ B*x(CxA)=0.

They also satisfy two important compatibility conditions, the Leibniz rule and the associator
identity:

Ax(BeC)=(AxB)eC+Be(AxC), and (AeB)e(C — Ae(Be(C)=(AxC)xB.

The first tells us that that the map B — A x B is a derivation on (2g4,e) viewed as a real
Jordan algebra. The second quantifies the departure from associativity of the Jordan product
and is linked to the Heisenberg uncertainty relations. This structure allows us to canonically
view the original C*-algebra, 2, as a dual Lie-Jordan algebra defined on the complexified space
Asa+iAsa. See Zalamea (2018) for an analysis of the physical significance of this dual structure
in both quantum and classical mechanics.

18The spectrum of A € g, is defined as the set of real numbers A such that A — AI is not
invertible. The invertibility of A — AI is equivalent to the existence of B € 2g4 such that
(A—=X)eB=1and (A—\)?>eB = (A— M) (Alfsen and Shultz, 2003, Lem. 1.16-Cor. 1.19).

19



product:

dOét (X)
dt

|i=0 = i(AX — X A)
= 2(A*X) (4)

Thus the Lie product A x X represents the tangent vector of the flow associated
with the group of symmetries defined by A at ¢ = 0. Unlike the Jordan structure,
s is not closed under the Lie product. In fact the closure of g4 with respect
to the Lie product is the entire C*-algebra. This reveals that the imaginary part
of 2 algebraically encodes the generating relationship between observables and
symmetries.

Putting this result together with lemma 1, we see that the four algebras we
have introduced, 2A, A, ¢, and AP, all have the same Jordan product, so they
agree on spectral properties of observables. The choice of a C*-operator product,
Lie product, and complex unit are constrained — specifying any two naturally
defines a choice for the third:

Algebra | C*-Product | Lie Product | Complex Unit
20 AB AxB 1
AP BA BxA 1
20¢ AB Bx A —1
eop BA AxB —1

The algebras 21 and A’ adopt one possible convention linking observables to
symmetries, the Lie product Ax B, while 20°? and 2(¢ adopt the opposite convention,
the opposite Lie product (A * B)? = B % A. Thus, when we specify a model of
AQFT by choosing a net of C*-algebras we are implicitly choosing one of these
conventions.' Since the Lie product is antisymmetric, A x B = —(B x A), if we
choose the opposite convention, the tangent vectors defined by (4) will point in
opposite directions. The canonical anti-isomorphism and conjugate-isomorphism
linking A with 2A°? and 2A¢ reverse the Lie product. They flip the generating
relationship between observables and symmetries.

This algebraic story has an elegant geometric dual: the natural Lie product on
20 corresponds to an orientation structure on its state space, S(), the collection

191f we start with g4 viewed as a real Jordan algebra, there will typically be infinitely many
Lie products compatible with the given Jordan product. Every such compatible Lie product
has a unique opposite. Alfsen and Shultz (2003, Thm. 6.15) prove that Jordan-compatible Lie
products are in 1-1 correspondence with Jordan-compatible C*-products on the complexification
Asa + 1Ag4. The same reasoning applies to the opposite choice of complex unit, Ag4 — i™Aga-
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of all states on 2. The state space is a compact convex set, with extremal points
representing pure states. It has a natural order structure inherited from 2l and
its exposed faces form a lattice whose orthogonality relations mirror the spectral
information encoded in the lattice of projection operators in . Kadison (1951)
proves that all of the spectral information encoded in the real Jordan algebra
(Asa, ) is captured by the convex geometry of S(21).

Alfsen et al. (1980) prove that the full structure of 2 can be recovered by
equipping S(2() with an orientation structure that determines a 1-1 pairing be-
tween observables, viewed as R-valued affine functions on S(2(), and 1-parameter
groups of symmetries of S(). For a 2-level quantum system, this orientation
structure is easily visualized. In this case the state space, S(Ms), is isomorphic
to a Euclidean 3-ball whose boundary points represent pure states and whose in-
terior points represent mixed states. Fach observable A determines a bounded
affine function attaining maximum and minimum values on some pair of antipodal
points. The non-self-adjoint operators iA and —iA generate infinitesimal rotations
of the 3-ball around the diameter connecting these antipodal points. There are
two possible choices of orientation: ¢A can generate clockwise and —iA counter-
clockwise rotations, or vice versa.

max(A)

min(A)
Figure 3: S(Ms) with clockwise orientation.
This basic idea forms the basis for the general case. For an arbitrary C*-
algebra, every minimal exposed face of S(2) is either isomorphic to a Euclidean

3-ball or a line segment, the former if the face is generated by distinct pure states
whose GNS representations are quasiequivalent and the latter if the GNS repre-
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sentations are inequivalent. An orientation for S(2() is then given by a suitably
continuous choice of orientation, clockwise or counterclockwise, for each facial 3-
ball. Unlike a total manifold orientation where there are only two choices, there
are in general, infinitely many orientation structures of S(2() that are in 1-1 corre-
spondence with Jordan-compatible Lie products on 20g4 (Alfsen and Shultz, 2001,
Thm. 5.73). Every such orientation, however, has a unique opposite. Down the
line, this geometric interpretation of the Lie product will give us valuable insight
into the CPT theorem. Symmetries that reverse the Lie product correspond to
orientation-reversing reflections of the theory’s state space.

3.3 Tomita-Takesaki Modular Theory

We have gone from no suspects to an entire slew of them. Every C*-algebra used
by a model of AQFT has a canonical conjugate-antiautomorphism as well as a
family of related mappings connecting the algebra to its opposite, conjugate, and
conjugate-opposite algebra. We do not expect every algebraic symmetry to be a
physical symmetry, however, since they will not necessarily preserve superselection
structure in the given set of physically significant GNS representations.’

There is an additional constraint. In many, possibly all, models of AQFT satis-
fying the assumptions of §2.1, vacuum states are CPT-invariant. This entails that
the algebraic CPT automorphism, 6, is implementable in vacuum representations,
ie., Om,(A)O = 7,00(A) for all A € 7, ().?" In general, the canonical involution
will not be unitarily or antiunitarily implementable in any physically significant
representations, but under certain technical conditions that are guaranteed to hold
for every local algebra in vacuum representations (via the Reeh-Schlieder theorem),
the involution can be split into two pieces, one of which is antiunitary. Furthermore

20Gince each of these mappings induces a bijection on pure states, they must act as a permu-
tation on the unitary equivalence classes of irreducible representations of 2. So they permute
sectors in a broad sense. The difficulty is that there is no guarantee that all of these sectors are
physical sectors. They need not satisfy the DHR/BF selection criteria (or any other physically
significant selection criteria). As emphasized in §2.3, physical symmetries must induce a bijec-
tion on pure states in the set of physically possible states, {¢}, which is a significantly stronger
condition. See Baker and Halvorson (2013) for further discussion of these issues.

2'Must vacuum states be CPT-invariant? Borchers and Yngvason (2000, Thm. 2.1) prove
that the family of vacuum representations is CPT-invariant, but this leaves open the possibility
that CPT-symmetry could be spontaneously broken in vacuum states, and © permutes disjoint
vacuum representations. The chain of argument sketched in §3.5, however, appears to rule this
scenario out. The interplay between CPT symmetry and spontaneous symmetry breaking is a
subtle issue that requires further study.
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this antiunitary piece implements the canonical anti-isomorphism between 2l and
20°P, This is our third important observation and the subject of Tomita-Takesaki
modular theory.

In its most general mathematical setting, modular theory studies the action
of a von Neumann algebra, 91, on a Hilbert space, H, with a cyclic, separating
vector, ®. The former means that 9® = H (where the overline denotes closure
in the Hilbert space norm topology), and the latter means that A® = B® entails
A = B. As a result, we can use ® to translate between algebraic structure on
M and geometric properties of H. In general, the canonical algebraic involution
does not give rise to an isometry of the Hilbert space structure, but can always be
represented as a reflection with an additional “twist.”

Using ®, we can define the (generally unbounded) antilinear operator,

SoAd = A*P (5)

for all A € 91. This can be extended to a closed, antilinear operator, .S, defined on
a dense subset of H. Any such operator has a unique polar decomposition into a
partial isometry and a positive, self-adjoint (generally unbounded) operator called
the modulus. In the present case, the polar decomposition of S is given by:

S =JAV? (6)

with partial isometry J and modulus (S*S)Y2 = A2 Tt can be shown that
J = J* = J71, and thus J, called the modular conjugation, is antiunitary, self-
adjoint, and involutive. The positive, self-adjoint operator A is called the modular
operator. The Hilbert space action of the algebraic involution can thus be broken
up into a reflection, J, with an additional twist, AY/2.22

Together, the operators A, J have a rich structure that forms the basis of
Tomita-Takesaki modular theory. Its central theorem establishes the existence
of a canonical group of automorphisms of 99 and a canonical anti-isomorphism
between 9 and its commutant 97’

22The Tomita operator, S, implementing the canonical involution is isometric iff S = J and
A is the identity operator. This is the case iff ® is a tracial state. Since local algebras in
AQFT are generically type III von Neumann algebras and thus lack tracial states, their canonical
involutions will not be antiunitarily implementable in any physically significant representation.
Global algebras are generically type I, but physical states are typically not separating for these,
and so the conditions for applying modular theory do not apply.
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Theorem (Tomita-Takesaki). If MM is a von Neumann algebra acting on a sepa-
rable Hilbert space, H, with a cyclic and separating vector, ® € ‘H, then

(i) Jb=d=AD,
(i) A"MA™™ = M, Vt € R,
(i3i) JMJ = I

where A, J are the associated modular invariants.?

Since A is positive, A is unitary, and (ii) defines a strongly continuous 1-parameter
automorphism group of 9t — the modular automorphism group. By (iii), the ad-
joint action of the modular conjugation generates an anti-isomorphism and an
equivalent conjugate-isomorphism between 9t and 9. This allows us to canoni-
cally identify 9V with 97 and 9N

Lemma 2. Let 9T be a von Neumann algebra with a cyclic and separating vec-
tor, ® € H, and let A, J be the associated modular objects. J defines natural
*~isomorphisms Y°F : M — MP and ° : M — MC.

Thus within the setting of modular theory, we find that the reflection symmetry
relating 2 and M (equivalently 90¢) is always antiunitarily implemented by J,
with the commutant 9t identified with 91° (equivalently 90t¢).

In AQFT, the Reeh-Schlieder theorem guarantees that these conditions hold
for local algebras in vacuum representations:

Theorem (Reeh-Schlieder). If a model of AQFT satisfies the Haag-Kastler azx-
toms and weak additivity, then any vacuum state, w, is cyclic and separating for
every local von Neumann algebra, R, (O), where O’ is a proper subset of Minkowsi
spacetime.?*

23In the case where S is a bounded operator an elementary proof can be given. See Blackadar
(2006, Thm. II1.4.3.2.). The unbounded case is highly non-trivial. See Takesaki (2000, Ch.
VI-VII) and Kadison and Ringrose (1997, Ch. 9.2) for different versions of the full proof.

24This is the first instance of an analytic continuation argument in the proof of the CPT
theorem. Here is the main idea behind the proof: let €2 be the vector representing w in the GNS
Hilbert space H,,. For some region O, suppose that an arbitrary vector ¥ € H,, is orthogonal
to M, (0)Q. ¥ will also be orthogonal to U(a)R,,(0)U(—a)Q where O is any subregion strictly
contained in O and U(a) are sufficiently small translations. The spectrum condition entails
that the vector-valued function U(a)f2 has analytic extension to the forward tube T'(V™') :=
{z € CYIm z € VT}, where V7 is the forward lightcone. This fact is used to show that
the function (92, U(a)R,,(0)U(—a)Q) is the boundary value of a holomorphic function on the
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So every local algebra in a vacuum representation has a canonical antiunitary
conjugation, J, the reflection portion of the Tomita operator, .S, implementing the
algebraic involution. Lemma 2 then entails that the reflection symmetry linking
R, (0) to R, (0) (equivalently R, (0)°) is always antiunitarily implemented with
R, (0)" identified with R, (0) (equivalently R, (0)°). As we will go on to see,
this has important geometric ramifications since commuting algebras are associated
with spacelike separated regions.

3.4 Time Reversal

The local modular conjugation operators are prime suspects for representing time
reversal transformations. In AQFT, the dynamics are encoded in the represen-
tation of the translation subgroup whose existence is posited by the covariance
axiom. Relative to a given Lorentz frame, we can write the time evolution of an
arbitrary observable as

oy (X) = e Xe (7)

where P, is the global Hamiltonian.

Choosing an arbitrary ¢ = 0 allows us to identify time evolved observables
in two distinct temporal directions, t and —t. As Roberts (2017) emphasizes, in
any quantum theory, a time reversal transformation should reverse the temporal
ordering of observables (in the Heisenberg picture) while preserving the length
of temporal intervals, thus mapping observables at time ¢ to observables at time
—t. It should also be an involution. If a theory is invariant under a symmetry
implementing a time reversal transformation (possibly along with other transfor-
mations), this symmetry will be represented by a unitary or antiunitary operator,
T. In addition, it should either commute or anticommute with F, so that the form
of the dynamical laws is unaffected by the reversal. Putting these four constraints
together, we have

Toy(X)T = Te"™ Xe T = e "X T = a_(TXT) . (8)

forward tube that vanishes in some neighborhood of the origin and therefore vanishes everywhere.
Consequently ¥ is orthogonal to U(a)R,,(0)U(—a)Q for all translations. Weak additivity then
entails that ¥ = 0, and so Q is cyclic for R, (0). Microcausality entails the separating property.
(For a full proof, see Horuzhy 1990, Thm. 1.3.1.) Note that the theorem generalizes to any state
analytic for the energy. This requirement entails that the field strength cannot grow too large as
a function of the energy and is guaranteed to hold for any states satisfying the DHR/BF selection

criteria. We will not need this generalization in the ensuing discussion.
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The spectrum condition entails that the spectrum of P, is positive in all Lorentz
frames. As a consequence, Roberts shows that the only way to consistently im-
plement (8) with Py # 0 is for T to be antiunitary. The key idea is simple, but
illuminating. Since the generators of the translations are unique, it follows from
(8) that TitPyT = —itFy. If T is unitary, linearity entails that Tt = itT and
hence that TP/T = —Fy. (In this case, T" anticommutes with F,.) Since unitary
operators preserve inner products, if Fy # 0 the spectrum of F, cannot be bounded
from below, violating the spectrum condition. So 7" must be antiunitary, in which
case antilinearity entails that Tt = —itT', and T' commutes with F.

Roberts’s argument sheds considerable light on why time reversal symmetries
in quantum mechanics must be antiunitary. Our discussion of the dual Lie-Jordan
product in §3.2 yields additional insight. Any time reversal symmetry worth the
name must send o; — «a_;. There are only two ways to to do this. The first
is a unitary transformation sending Py +— —F,. The second is an antiunitary
transformation that reverses the Lie product and thus the generating relationship
between Py and oy.2° The first route is blocked by the spectrum condition, leaving
the second as the only viable way to implement time reversal symmetry in QFT.
Given the constraints linking the Lie product, C*-product, and complex unit,
antiunitary time reversal can be viewed either as a conjugate-isomorphism sending
i — —i with fixed C*-product (thus sending e — e~) or an anti-isomorphism
sending AB — BA with fixed complex unit (thus sending e(-)e™ — e~ %(-)e™).
Since 2U¢ is naturally isomorphic to 1P, the viewpoints are completely equivalent.
Physically speaking, both are ways of reversing the generating relationship between
observables and 1-parameter groups of symmetries.

But more is required. In order to be a symmetry of AQFT, a time reversal
transformation should also preserve subsystem localization information; 7" should
be a symmetry of the net of observable algebras, not just the global algebra. In the
vacuum representation, if O; C O,, and thus R, (0;) C R, (02), we require that
TR, (01)T C TR, (02)T. Moreover, if a system is localized in a particular type
of region (e.g., a lightcone, doublecone, spacelike wedge, spacelike cone), time
reversal symmetry should preserve this localization. It should map like-regions
onto like-regions.

By the main Tomita-Takesaki theorem, JR, (O)J = R, (0)’, therefore in order
for J to represent a time reversal symmetry, R, (O)" must be the local algebra of a
region with the same geometry as O. In general, there is no guarantee that R, (O)’

25A symmetry preserves the Lie product iff it is unitarily represented and reverses the Lie
product iff it is antiunitarily represented. See Alfsen and Shultz (2001, Thm. 4.27).
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will be a local algebra at all, however microcausality entails that R, (0") C R, (0)".
If a stronger duality relation obtains, the local algebras are as large as possible
consistent with microcausality, and R, (0") = R, (O)". If O has the same geometry
as O, then the modular conjugation meets this necessary requirement.

Are there regions like this — regions that are isometric to their spacelike com-
plement and for which we expect duality to hold quite generally? The answer
is yes. In Minkowski spacetime, the causal complement of a spacelike wedge is
another spacelike wedge. In fact, spacelike wedges are essentially the only causally
well-behaved regions with this property:

Lemma 3. If O is an open, convez, causally complete proper subregion of Minkowski
spacetime such that O and O" are isometric, then O is a spacelike wedge.

Moreover, wedge duality, R,(W) = R, (W), is a sufficient condition (in conjunc-
tion with the Haag-Kastler axioms) for applying the tools of DHR/BF superse-
lection theory. It is expected to hold (in the vacuum representation) with greater
generality than other forms of duality.26

3.5 Wedge Reflection

The focus of our investigation has narrowed to modular conjugations associated
with spacelike wedges in the vacuum representation. (Incidentally, this is where
most presentations of the algebraic CPT theorem begin, obscuring the physi-
cal detective work that has gotten us this far.) If wedge duality holds, then
JwR, W)y = R, (W) = R,(W’), where Jy is the modular conjugation as-
sociated with wedge W, and W' is the opposite wedge, the reflection of W across
one spatial direction (perpendicular to the edge of W). Thus, because of the fact
that Jy is a modular conjugation, mapping R, (W) onto its commutant, combined
with duality and the unique geometry of W, Jy is a candidate for representing a
spatial reflection. If it does so (and thus preserves subsystem localization), and if it
commutes with the Hamiltonian, Jy will also represent a time reversal symmetry
since it is an antiunitary involution.

26Wedge duality entails essential duality, a technical condition needed to prove that the
DHR/BF category has sufficient structure to represent charges. Essential duality requires that
the dual net, R, (0)? := R, (0'), satisfies microcausality. (It should be noted that as a restric-
tion on the family of physical states, {¢}, the DHR/BF selection criteria can be applied whether
or not duality obtains.) Another widely discussed duality condition, Haag duality, requires that
Ro(D) = R, (D) for any doublecone D. It is equivalent to the absence of spontaneous sym-
metry breaking in the vacuum sector and is therefore of more limited interest, although it does
hold in a number of important models, such as the free Bosonic field.
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Under the same elementary conditions needed for the Reeh-Schlieder theorem,
Borchers (1992) and Weisbrock (1992) establish a remarkable result settling the
latter question:

Theorem (Borchers-Weisbrock). If a model of AQFT satisfies the Haag-Kastler
azioms (except the spectrum condition) and weak additivity, then the spectrum
condition holds iff

ALU(a)Ay! = U(Aw(t)a)
JwU(a)Jw = U(ra)

where U(a) is the unitary implementing an arbitrary translation in the vacuum
representation, Ay (t) is the unique I-parameter group of W-preserving Lorentz
boosts, and r is the Py T reflection defined by r(ag,ar,as,as) = (—ag, —ay, as, as),
with a; being a spacelike translation perpendicular to the edge of the wedge.?

The modular objects A and Jy thus have the right commutation relations with
the translations to be interpreted as wedge-preserving Lorentz boosts and a P;T
reflection. For 2-dimensional AQFTs, wedge duality is a direct corollary of the
Borchers-Weisbrock theorem. In higher dimensions, however, counterexamples
constructed by Yngvason (1994) show that things can go haywire in the directions
along the edge of the wedge and the modular invariants may not map doublecones
onto doublecones.

To ensure that the modular invariants act geometrically, additional analyticity
assumptions are needed. Borchers (1995, 1996a, 1998, 2000) identifies two such

2TBorchers originally proved the forward direction and Weisbrock the converse. The forward
proof has since been greatly streamlined by Florig (1998). The key idea is as follows: spacelike
translations along any direction in the characteristic 2-plane of W form a positively generated
1-parameter group U(s), such that U(s)Q2 = Q and U(s)R,(W)U(—s) C R, (W) for s > 0 (a
group of so-called half-sided translations). Using the fact that U(s) is positively generated, along
with the analytic properties of the modular automorphism group encoded in the KMS condition,
Florig shows that the function

f(2) = (AFA'QU(™) Ay AQ)

which is analytic in the interior of the complex strip S(0,1/2), can be extended to a holomor-
phic function which is bounded, and thus constant. (Here, A and A’ are arbitrary elements
of R, (W) and R, (W)’ respectively.) This entails, in particular, that A¥ U(e*™'s)Ay/ =
AR U(e*05)A° = U(s) and JwU(—s)Jw = U(s). Extending these commutation relations
to arbitrary translation vectors, a, is then a straightforward calculation exploiting the algebraic
and analytic properties of All, and Jy .
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conditions that are equivalent to wedge duality and the Bisognano-Wichmann
property. Let D be a doublecone contained within a spacelike wedge, W, and
let K(D) C W denote the cylindrical set obtained by translating D in some
direction parallel to the edge of the wedge. Wedge duality requires that there be
enough elements A € R, (K (D)) such that U(Aw(t))AQ has bounded analytic
continuation into the strip S(—1/2,0). For any such element, it can be proven
that there exists an operator, A, affiliated with R, (K (rD)) C R, (W), such that

U(Aw(—i/2))AQ = AQ . (9)

The Bisognano-Wichmann property requires that in addition, there is a large
enough set of such analytic elements closed under involution. This motivates the
following;:

B-Analyticity The set of A € R, (K (D)) such that U(Aw (t)) A has bounded
analytic continuation into the strip S(—1/2,0) is *-strong dense in R, (K(D)).

B-Reality The set of A € R, (K(D)) such that both U(Aw(t))AQ and
U(Aw (1)) A*Q can be analytically continued, with A* = A*, is *-strong dense
in R, (K(D)).

Theorem (Borchers). If a model of AQFT satisfies the Haag-Kastler azioms and
the wedge intersection property, then

(i) wedge duality holds in the vacuum representation iff B-analyticity holds,

(ii) the Bisognano- Wichmann property holds iff wedge duality and B-reality hold.*®

28The wedge intersection property is only needed for (ii). Borchers’s proof is very technical,
but we can gain some understanding of it by focusing on the significance of the cylindrical sets
K (D) and equation (9). Note that for any K(D) C W, K(D) = (W + a) N (W’ + b) where
a,b, are spacelike translations in the characteristic 2-plane of W. We consider two algebras
RL(K(D)) = Ru(W +a) NR,(W’ +b) and R, (K (D)) =R,(W +a) NR,(W +b). Tt follows
that, R, (K (D)) C R, (K(D)).

The Borchers-Weisbrock theorem entails that A and U(Aw (t)) commute, and since both
leave ) invariant, they differ by a 1-parameter group Fy (t). If A € R, (K(D)) is an analytic
element, then at the lower boundary of S(—1/2,0),

U(Aw(—i/2))AQ = Fy (—i/2) AL AQ
= Fu(—i/2)JwA* JywQ
= JwFyw(—i/2)A* Ty,
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Setting V (Aw (¢)) := A%, this theorem allows us to define a unitary representation
of the Poincaré group, called the minimal representation, which acts covariantly on
the observable net and satisfies the spectrum condition.?? Because of the analytic
properties of these unitaries, Allf = V(Aw(—i/2)) is an element of the complex

Lorentz group and thus Jy = AII/IGSW is the product of a complex Lorentz trans-
formation and the canonical involution on the wedge algebra implemented by Syy.
This allows us to show that the minimal representation contains additional reflec-
tion symmetries. In particular, we can define a “PT” operator,

where V(Ry (7)) implements a spatial rotation by 7 in the plane along the edge
of the wedge.>® The scare quotes are included to emphasize that © may do more
than just represent a PT reflection. Indeed, in the next section we will see that it
must also conjugate charge, making it a CPT operator.

But before we can proceed, one final wrinkle must be ironed out. As a con-
sequence of the Haag-Kastler axioms and weak additivity, we have discovered
that Jy has the right algebraic properties to represent a P;T reflection. Adding

where the second line follows from the definition of the modular invariants, S = JAY2, and
the last line by the Borchers-Weisbrock theorem. In general, Fy (—i/2)A* is not a bounded
operator, but it is affiliated with R, (K(D)) C R,(W + a) C R,(W). Thus by the Tomita-
Takesaki theorem and the Borchers-Weisbrock theorem, Jy Fy (—i/2)A*Jy is affiliated with
R, (K(rD)) C Ry(W — a)' C Ry,(W). Wedge duality holds iff R, (K (rD)) = R, (K(rD)).
Using Lorentz invariance, Borchers shows that this is the case iff the set of analytic elements is
*-strong dense. The Bisognano-Wichmann property holds iff Fyy (t) is trivial. If so, then we have
A*Q = JwATwQ = (JwA* Jw )*Q = A*Q, and B-reality holds. The converse requires a detailed
analytic continuation argument. See Borchers (2000, Thm. IV.2.2) for details.

29The key to defining the Lorentz group is to note that any Lorentz transformation is the
product of boosts in three linearly independent spacelike directions, and that each such boost is
part of the stabilizer subgroup of some wedge. The translations are a bit trickier. Consider two
wedges W + a C W, where a is a lightlike translation in the characteristic 2-plane of W. Using
the Borchers-Weisbrock theorem, it can be shown that

Jim A AR = lim V(Awa(8)V (Aw (1))

converges strongly and therefore defines a unitary operator V' (a) acting like a lightlike translation
in the a-direction. The remaining translations can then be constructed as products of lightlike
translations. See Borchers (2000, §IV.4) for the complete construction.

30In order to prove this it must be shown that the product Jy maps doublecones onto dou-
blecones and that Jyw V(Rw (7)) does not depend on the choice of a particular wedge W. This
hinges on the analytic properties of the modular invariants, Poincaré covariance, and the special
geometry of wedges. See Borchers (2000, §1V.3) for details.
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B-analyticity and B-reality ensures that it does in fact have such a geometric in-
terpretation as part of an antiunitary representation of the Poincaré group which
includes an operator, ©, defined by equation (10), representing a PT reflection.
The difficulty is that this antiunitary representation may not be an extension of
the original unitary representation posited by the covariance and vacuum axioms.
In this case we have two distinct representations, U(A,a) and V (A, a), encoding
potentially different physics. The physics described by the minimal representation
V' (A, a) must be O-invariant, but there is no similar guarantee for U (A, a).

Streater (1967) and Oksak and Todorov (1968) exploit this gap to construct
counterexamples to the CPT and spin-statistics theorems. All of these examples
employ fields transforming under infinite-dimensional representations of the cover
of the Lorentz group, so-called infinite spin representations. As a result, such
QFTs violate the split property and are thermodynamically ill-behaved. Exactly
how physically pathological they are remains to be fully investigated, but Brunetti
et al. (1993) prove that if the split property obtains, even in its weaker distal form,
U(A, a) is the unique covariant representation of the (cover of the) Poincaré group
acting on the vacuum representation:

Theorem (Brunetti-Guido-Longo). If a model of AQFT satisfies the Haag-Kastler
axioms and the distal split property, then there can only be one covariant represen-
tation of the Poincaré group or its covering group in the vacuum representation.>*

So if the minimal representations exists, then the distal split property ensures that
U(A,a) = V(A,a) and the relevant physics is ©-invariant. It also ensures that ©
is unique up to unitary equivalence.

3.6 Charge Conjugation

The hardest part of the CPT theorem is to understand why charge conjugation is
connected to a spatiotemporal symmetry like PT. The answer lies in how the PT
transformation constructed above is implemented. In effect we are performing a
spatiotemporal reflection by flipping the Lie product, by changing how quantities

31Here is the central idea: the Doplicher-Roberts reconstruction theorem (Doplicher and
Roberts, 1990) shows that if the distal split property holds, the gauge group G is compact
and commutes with any representation of the Poincaré group. If U(A,a) and V(A,a) are two
different representations of the Poincaré group, then the adjoint action of U(A,a)V (A1, —a)
is an internal symmetry, and thus an element of G. This defines an action of the Poincaré
group in G. Since G is compact and the Poincaré group has no non-trivial finite dimensional
representations, the action must be trivial, and U(A,a) = V(A,a).
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and symmetries are linked at a fundamental level. The Lie product not only
defines how spatiotemporal symmetries are tied to quantities like mass and spin,
it also defines how internal symmetries are tied to gauge charges. Flipping the Lie
product, while preserving the charge localization structure, maps each charge to
its conjugate. This is exactly what Jy does.

Recall from §2 that in AQFT information about global gauge symmetries is
encoded in the structure of the category of localized transportable morphisms of
the quasilocal algebra. Conjugate charges p and p have the defining property that
wo pop contains a component in the vacuum sector. If a model of the Haag-Kastler
axioms satisfies additivity and the distal split property, the statistical dimension of
each charge sector is finite, and each charge has a unique conjugate up to unitary
equivalence (some charges may be self-conjugate). At the heart of the algebraic
CPT theorem, Guido and Longo (1992) establish the following:

Theorem (Guido-Longo). If a model of AQFT satisfies the Haag-Kastler azioms,
additivity, the distal split property, the Bisognano-Wichmann property, and the
DHR/BF selection criterion, then for any charge morphism, o, localized in a dou-
blecone/spacelike cone

0=Jw©oQojw,
where jw(A) = JwAJw (for all A € A) is the morphism defined by the adjoint
action of the vacuum wedge modular conjugation, Jy .

Rotational invariance then entails that o =0 o po 6.

In order to understand the Guido-Longo theorem, there are two questions that
must be answered — why is jy 0 0 o jyr a suitably localized transportable mor-
phism, and why is it conjugate to p? The answer to the first question is relatively
straightforward. Since Jy, implements a P;T reflection in the vacuum representa-
tion, it induces an algebraic P;T reflection on the defining net of local C*-algebras,
{2(0)}, common to all sectors of the theory. Consequently Jy2A(rO)Jyw = 2A(0),
where r is a P;T reflection around the edge of the wedge, W. Since J3, = I, it
follows that jy o 0 o ji is a nontrivial morphism on A(rO) and the identity on
A(r0"). Therefore jy o p o jy is localized in 7O, a region with the same geometry
at O. Since p is transportable and Jy, acts geometrically, jy o g o jy is similarly
transportable.

The answer to the second question is less obvious and comes from a deep
connection between conjugacy and modular inclusions. Let 90T be an infinite factor
(i.e., an infinite von Neumann algebra with a trivial center, M NI’ = CI) acting
on a separable Hilbert space with a cyclic, separating vector ®. (Eventually 9
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will be identified with R, (WW).) It follows from the Tomita-Takesaki theorem
that 9 is also an infinite factor. Let ¢ be an irreducible morphism of 9t (i.e.,
o(MM) NI = C), and assume that P is also cyclic and separating for o(91). In
this setting, Longo (1984) establishes the existence of a canonical endomorphism,
Yo 1 M — (M), defined by,

Yo(A) == J,JATJ, , (11)

where J and J, are the modular conjugations of 9t and o(9) with respect to
®. This canonical endomorphism in turn defines a conditional expectation relating
the statistical properties of 9t and the subalgebra o(9t). We can loosely think
of a conditional expectation as a device for optimally estimating the statistics
of measurements in 9 given information about measurements in the subalgebra,
o(M). Accardi and Checchini (1982) describe it as characterizing the “statistical
location” of o(9) within 9N relative to a given state.

If o is conjugate to p, then by definition there exist isometries V, W € 9 such
that po 9(A)V =V A and go o(A)W = WA for all A € 9. Longo (1990) proves
that the equation,

€oa(A) = 0(V) 00 0(A)o(V) , (12)

also defines a conditional expectation relating 9t and o(9t). A seminal theorem
by Takesaki (1970) establishes that there can only be one such conditional expec-
tation, and thus v, = gop up to unitary equivalence. Combining these ingredients,
we find that the conjugate morphism must have the form (up to unitary equiva-
lence),

0=0"07,, (13)

where 7! is the inverse of o.

If we choose a unitary operator implementing the morphism, o(-) = U(-)U",
then the inverse, o', is the result of simply reversing the order of multiplica-
tion, o~!(-) = U*(-)U.3? The conjugate morphism, g, is revealed to be something
slightly more complex, the result of reversing the order of multiplication combined
with the canonical endomorphism, ,, relating the statistical structure of 9t and
o(9M). Repeated iteration of conjugate morphisms generates a sequence of nested
subalgebras:

M D (M) D gop(M) Doogop(M) D ... (14)

32In the DHR/BF picture where o is interpreted as a localized charge creating morphism, o
will always be unitarily implementable within its localization region, however the corresponding
unitaries do not give rise to a unitary equivalence between charge sectors.
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A proper charge conjugation symmetry fulfilling condition (e) from §2.3 must do
more than invert o while preserving the type of spacetime region p is localized
in. It must also preserve statistical information about this infinite sequence of
inclusions. The fact that the modular conjugation operator does so is linked to its
role in defining the canonical endomorphism, 7,. Relative to the previous choice of
unitaries, the modular conjugation of o(91) can be written as J, = o(J) = UJU*.
Therefore o(-) = JU*J(-)JUJ.

Returning now to physics, consider a transportable DHR/BF charge morphism,
0, localized in a doublecone or spacelike cone, O C W. Wedge duality entails that
o0 generates a transportable morphism, oy : R,(W) — R, (W), localized in W.
The wedge algebra 2R, (W) is an infinite factor, and by the Reeh-Schlieder theorem,
the vacuum state is cyclic and separating for both R, (W) and ow (R, (W)). For
simplicity we assume that gy is irreducible. (Nothing turns on this simplification.
See Guido and Longo 1992 for the general case.) This places us in the general
mathematical setting discussed above.

Using equation (13), we can define a W-localized conjugate morphism, gy =
0w © Yo~ Choosing a unitary implementing oy, a straightforward calculation
shows that

Ui-)u* on W _ JwU* Jw () JwUJy on W
ow () = { id( ) on W’ ow () = { idw Ol on W’ (16)
while jy o ow o Jw is localized in the opposite wedge,
. . id on W
Jw o aw o jw (") = { JwUdw () JwU* T on W, (17)

It follows that Jy UJw ow JwU*Jw = jw © ow © jw, and since Jyy UJy is unitary,
Jw © ow © jw and gy are thus unitarily equivalent.

This is the situation for every W D O. If it is possible to choose a consistent
family of conjugates, {ow,}, such that

§W1|W1OW2 - §W2|W10W2 (18>

for every Wy, Wy D O, then this consistent family will define a DHR/BF charge
morphism localized in O conjugate to the original p. (The flexibility to choose
different oy comes from the fact that charge morphisms are only defined up to
unitary equivalence.) Guido and Longo (1992) prove that it is in fact possible
to choose such a consistent family as a consequence of the distal split property,
Poincaré covariance, and the geometric action of Jyy .
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Thus we find that all of the special properties of Jy, are essential for explain-
ing why it conjugates charge. Because it represents a P;T reflection, it preserves
the regions that DHR/BF charges are localized in, and thus maps objects to ob-
jects in the relevant category of localized transportable morphisms. Because it
is an antiunitary operator, it reverses the Lie bracket and thus the order of C*-
multiplication, inverting the morphism. But because it is also a modular con-
jugation for the spacelike wedge W, it defines the canonical endomorphism 7, ,
characterizing the statistical location of oy (R, (W)) C R, (W). It therefore maps
W-localized morphisms onto their conjugates given by the formula oy = Q‘;} Yo -
In DHR/BF representations of a Poincaré covariant QF T satisfying the distal split
property, each DHR/BF localized morphism is generated by a consistent family of
such wedge-localized morphisms, and therefore in addition to representing a P;T
reflection, Jy conjugates charge.

The role that the Lie product plays in characterizing conjugate charges can
be further illuminated by considering the more traditional view of charges as con-
served quantities associated with internal gauge symmetries. One of the great-
est insights of the DHR/BF analysis, is that the algebraic description of charge
structure outlined in §2.2 is physically equivalent to this traditional picture. If
the observable algebras are generated by field operators as in Lagrangian and
Wightman QFT, the observable net corresponds to the gauge-invariant portion of
the underlying field algebra. In this context, we can characterize superselection
sectors using irreducible representations of the relevant gauge group G. Superse-
lected charges are defined using the Casimir invariants of the conserved currents
generated by these gauge transformations. The field operators act on a single,
underlying Hilbert space which splits into a direct sum of G-invariant subspaces,
H = @ H,. These subspaces are in 1-1 correspondence with the superselection
sectors in DHR/BF theory. Restricting the action of G to H, yields a direct sum
of irreducible representations of G with the same character, 0. These subspaces
are also 2-invariant. Restricting 2 to H, yields a direct sum of quasiequivalent,
irreducible representations of 2 satisfying the DHR/BF selection criteria. Con-
versely, the reconstruction theorem proven by Doplicher and Roberts (1990) shows
that given the category of DHR/BF representations, one can naturally reconstruct
a unique minimal algebra of field operators and gauge group, G.

In the field algebra picture, we find that the action of Jy, takes a given repre-
sentation of G to its complex conjugate representation, which models the conjugate
charge sector. We do not have to look far to see why. A representation (w, H) of G
can be specified by a set of generating fields, 7, lying in the (weak closure) of the
field algebra, that satisfy the commutation relations [7%, T%] = i f®°T (where f2*
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are the group structure constants for G). The complex conjugate representation
is given by —(7*)*. Within these relations we immediately recognize the ever-
present Lie product. The same structure which encodes how observables generate
symmetries also encodes how unobservable field operators generate internal gauge
transformations. Flipping this structure yields the complex conjugate representa-
tion. It is because the same Lie structure is employed in describing both internal
gauge symmetries and external spacetime symmetries that we find a connection
between them.

3.7 Summary

The algebraic proof of the CPT theorem shows how it is always possible, in a broad
class of thermodynamically well-behaved models of AQFT, to systematically re-
verse the generating relationship between symmetries and observables while pre-
serving the dynamics, spectra, and localization properties of physical systems. As
a consequence of the Reeh-Schlieder theorem, for any local algebra in the vacuum
sector of a generic model of AQFT, the canonical involution can be broken into
two pieces, one of which is the antiunitary modular conjugation operator, J. The
modular conjugation maps the relevant local algebra onto its commutant, reversing
the Lie product in the process. Commuting algebras are associated with spacelike
separated regions, hinting at a possible geometric interpretation, and since J is
antiunitary, it is a candidate for a physical symmetry.

For spacelike wedges, the associated modular conjugation, Jy, is in fact always
a physical symmetry. Because of the spectrum condition, any generalized time
reversal symmetry must be represented by an antiunitary involution that reverses
the Lie product, commutes with the dynamics, and acts uniformly on spacetime.
Because Jy is a modular conjugation operator, JyR,(W)Jy = R,(W)', and if
wedge duality holds, R, (W) = R, (W’), suggesting that Jy represents a P;T
reflection. Proving that Jy, commutes with the dynamics, that wedge duality
holds, and that Jy represents a uniform geometric reflection requires a detailed
technical argument exploiting analyticity properties derived from covariance, the
spectrum condition, and the distal split property, as well as auxiliary assumptions
B-analyticity and B-reality.

The Lie product also appears in the characterization of wedge-localized charge
morphisms, related by the formula g = ¢! 0 4,. The Lie product encodes the
relational distinction between o and its inverse ¢!, and since Jy reverses the Lie
product, it flips this distinction. Moreover since Jy, is a modular conjugation,
it preserves the statistical properties of subalgebras related by charge morphisms
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(encoded by the conditional expectation associated with ~,). Because Jy acts
uniformly on spacetime, it preserves all types of localization regions, and since the
theory is Poincaré covariant, morphisms localized in doublecones and spacelike
cones can be constructed from families of compatible wedge-localized morphisms.
Consequently, Jy also conjugates DHR/BF charges.

The connection between the Lie product and state space orientation discussed
in §3.2 gives us further geometric insight into the theorem. Since © reverses
the Lie product, it reflects the corresponding state space orientation. It is not a
product of three separate reflection symmetries, C, P, and T, but rather a single,
global reflection of state space. This conclusion is reinforced by proofs of the
CPT theorem in Wightman QFT (Streater and Wightman, 1989) and rigorous
Lagrangian proofs (Greaves and Thomas, 2014). In both cases, a CPT operator is
proven to exist without first decomposing it into separate C, P, and T reflections
as is commonly done in textbook presentations. The algebraic framework gives us
a clearer picture of the geometric origins of this operator as a systematic reversal
of the generating relationship between observables and state space symmetries.

4 Philosophical Consequences

4.1 Bain’s Skeptical Challenge

The story just outlined is an example of what Bain (2016) calls a structural expla-
nation, insofar as it appeals to “mathematical constraints on a theory’s state space
that are independent of the specification of the theory’s dynamics” (p. 155). It
should be emphasized, however, that the explanation is not a purely mathematical
one. Though they do take the form of mathematical conditions, the assumptions
in §2.1 represent important physical constraints imposed on any causal, Lorentz-
invariant, thermodynamically well-behaved QFT. By connecting each stage of the
proof back to the Haag-Kastler axioms, and by linking CPT reflection to a system-
atic reversal of the generating relationship between observables and symmetries,
the aim has been to illuminate how the steps of the algebraic proof trace out im-
portant physical dependency relations present in any such QFT.3* The upshot is

33For our purposes it can be left open exactly what sorts of things these dependency rela-
tions are. They might be nomological or meta-nomological relations, counterfactual relations,
grounding or constitutive relations, or a mixture thereof. (It seems unlikely that they are causal
relations, however, making the CPT theorem an important prima facie example of non-causal
explanation.) At this level, the story will depend not only on further analysis of the relevant
physics, but on metaphysical debates about laws, modality, and fundamentality.
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that the only consistent way to realize these constraints is for the theory’s state
space to be CPT-invariant, a fact which has physical consequences for its particle
spectrum as well as for scattering and decay processes. A structural explanation is
only as good as our understanding of how the mathematics represents the physics,
both at the level of a proof’s inputs and outputs, as well as its logical structure.

While Bain is broadly sympathetic to this style of explanation, he is skeptical
that current versions of the CPT theorem actually give us explanations, even
provisional ones. Citing the current inability of AQFT to rigorously model local
gauge theories, he argues that the algebraic CPT theorem does not explain why
the actual laws of nature are CPT-invariant: “the systems of interest; those that
make contact with empirical tests, lie outside the subclass of systems for which the
CPT and spin-statistics theorems provide structural explanations” (Bain, 2016, p.
157). These systems, the Yang-Mills theories that comprise the standard model,
can be described using techniques from perturbative Lagrangian and S-matrix
formulations of QFT, but proofs of the CPT theorem in these frameworks differ
significantly from those in AQFT on Bain’s telling. For example, they disagree
about whether or not Lorentz invariance is necessary to prove the CPT theorem,
as well as about whether CPT invariance entails the spin-statistics connection or
vice versa. Consequently Bain thinks “it will be hard to make a case for a common
underlying mathematical structure,” shared across frameworks, that a structuralist
explanation of CPT invariance can appeal to (p. 156).

I agree that right now the algebraic CPT theorem is only a potential explana-
tion for the CPT symmetry found in nature; however, I think that Bain’s conclu-
sion is overly pessimistic. In my review of Bain’s book (Swanson, 2018), I argue
that Bain’s presentation of the algebraic CPT theorem misinterprets the physical
content of modular covariance and obscures the role of Lorentz invariance, the
spectrum condition, and the split property in the physical argument at the cen-
ter of the theorem. In doing so, it overemphasizes differences and underestimates
commonalities between the algebraic CPT theorem and proofs couched in other
frameworks. Upon closer inspection, there is a set of core of assumptions which
appear (in slightly different forms) in virtually all known versions of the CPT the-
orem: restricted Lorentz invariance, energy positivity, causality, finite spin, and
analyticity.

Our detective work in §3 reinforces this critique. Unlike some versions of the
algebraic CPT theorem, the proof outlined here explicitly displays this common
logical form. The covariance axiom, spectrum condition, and microcausality ax-
iom enforce Lorentz invariance, energy positivity, and causality, respectively, while
the split property ensures that there are no fields transforming under infinite spin
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representations. Together, the covariance axiom, spectrum condition, and Tomita-
Takesaki modular theory entail important analyticity properties (sufficient to es-
tablish the CPT theorem in 2-dimensional models), while B-analyticity and B-
reality supply additional constraints needed in higher dimensions. Moreover, our
analysis locates the seed of CPT reflection symmetry in a systematic reversal of
the algebraic Lie product, a structure found not only in AQFT, but in every formu-
lation of QFT that represents observables using Hilbert space operators including
Lagrangian, S-matrix, and Wightman QFT.3*

While there are significant structural commonalities between proofs in differ-
ent frameworks, there are also non-trivial mathematical differences. Whether these
stem from a deep disagreement about the fundamental character of QFT, as Bain
contends, or if they are simply the product of different modeling techniques and
goals, remains an open question. Regardless, a strong case can be made that
the algebraic approach offers us some of the best explanatory insight into the
CPT theorem at present. Unlike Lagrangian and Wightman QFT which start
with assumptions about gauge-dependent field operators, the Haag-Kastler ax-
ioms characterize constraints on gauge-independent physical quantities, making
their physical interpretation and justification more direct. Moreover, there are
models of CPT-invariant AQFTs that violate the Wightman axioms, that are
not the quantization of any known classical Lagrangian, and which do not satisfy
the assumptions of Haag-Ruelle scattering theory, a mathematically rigorous ana-
logue of the standard S-matrix picture (Summers, 2012; Lechner, 2015). While
the Wightman axioms are known to fail for QFTs with local gauge symmetry
(Strocchi, 2013, ch. 6), the jury is still out on the Haag-Kastler axioms. All of this
suggests that AQFT has a wider scope than other frameworks, providing a better
characterization of what all relativistic QFTs have in common.

Of course, we do not understand the entire story yet. B-analyticity and B-
reality are bootstrap assumptions. Their physical interpretation and justification
is a major question mark at the heart of the algebraic proof. The role of analytic
continuation arguments must be better understood, even in cases like the Reeh-
Schlieder and Borchers-Weisbrock theorems where the starting assumptions are
physically well-motivated. Whether or not additivity and the wedge intersection
property can be eliminated or physically motivated remains to be seen.

In addition, there are significant limitations to the scope of existing algebraic

34In some frameworks, including perturbative AQFT (Brunetti et al., 2009), the local algebras
are not C*-algebras but more general types of *-algebras. Nonetheless, such algebras contain a
canonical involution operation, and thus we might hope to find a suitable generalization of the
ideas sketched in §3.1-2.
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proofs. It is currently not known how to extend the DHR/BF picture to describe
charges associated with local gauge symmetries, and because of the infrared prob-
lem, it cannot be applied to theories with massless particles yet. The argument
also crucially relies on analyticity properties associated with symmetries of a con-
tinuous spacetime manifold, as well as on microcausality holding at arbitrarily
short length-scales. Consequently, it is not clear how to generalize the algebraic
argument to cover effective QFTs.?®> The version of the proof outlined here makes
the further assumption that spacetime is flat.

Despite these limitations, there are reasons for optimism on several fronts. Re-
cent model-dependent results due to Morinelli (2018) suggest that the Bisognano-
Wichmann property is logically weaker than the split property, breathing life into
Haag’s conjecture that it can be proven from existing, physically justified axioms.
The Bisognano-Wichmann property can be formulated in any spacetime with well-
defined wedge regions, and it has been used to prove the CPT theorem in curved
spacetimes with a large group of global isometries (Buchholz et al., 2000). More
recently, the generally covariant AQFT program initiated by Brunetti, Freden-
hagen, and Verch has made substantial progress towards an axiomatic version of
AQFT in arbitrary curved spacetimes (Brunetti et al., 2015).3¢ Combined with
developments in perturbative AQFT, this program has also started to provide a
provisional picture of what effective QFTs with local gauge symmetry might look
like in the algebraic framework (Fredenhagen and Rejzner, 2013, 2016). Strocchi
(2013) tentatively identifies the physical significance of local gauge invariance with
the holding of Gauss-type conservation laws for the associated charge densities,

35 Although the split property and weak additivity can be replaced by distal versions that hold
at some sufficiently long length-scale without affecting the details of the proof, it is much more
difficult to envision relaxing microcausality and covariance.

36Fewster (2016) applies this framework to prove a general curved spacetime version of the
the spin-statistics theorem, the CPT theorem’s close cousin. The proof shows that any QFT
on curved spacetime that can be related to a QFT on flat spacetime by certain deformations
must obey the spin-statistics connection if the flat spacetime QFT does. This suggests that flat
spacetime versions of the CPT and spin-statistics theorems might continue to carry important
explanatory insight in a curved spacetime context. It also could help diffuse a potentially serious
objection to the logic of the algebraic proof sketched in §3. In an arbitrary curved spacetime, it
is no longer true that the causal complement of a wedge is always a wedge, and this is a necessary
condition in order for Jy  to represent a P;CT reflection. Borchers has conjectured that W' is a
wedge only if the background spacetime is conformally equivalent to either Minkowski or deSitter
spacetime (see Hollands and Rheren 2012). If Fewster’s strategy works for the CPT theorem
too, then although we would not expect the CPT operator to be represented by Jy in general
curved spacetime models, it could be defined by deformations of Jy from a corresponding flat
spacetime model.
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and Kijowski and Rudolph (2003) apply the DHR picture to study the supers-
election structure of lattice quantum chromodynamics. Meanwhile, by studying
certain equivalence classes of superselection sectors called charge classes, Buchholz
and Roberts (2014) have started to clarify the complex superselection structure of
massless theories.3” Together, this work suggests that key ideas from the DHR/BF
picture will apply to theories like the standard model.

So even though we must wait for further developments in constructive AQFT
to determine whether the algebraic CPT theorem gives us the right story about
our own universe, we have good reason to believe that central ideas from the proof
will be part of the eventual explanation. In the interim, even as a provisional
explanation, it can shed light on a number of interpretive debates.

4.2 Greaves’s Lagrangian Approach

In her agenda-setting study of the Lagrangian CPT theorem, Greaves (2010) pro-
vides a different structural explanation for the origins of CPT symmetry. (Arntze-
nius 2011 offers a similar story.) Although it has since been superseded by the
more nuanced account developed by Greaves and Thomas (2014), the original,
simpler version is worth investigating on its own terms first.

The explanation has two main components. The first is a theory of antimat-
ter that conceptually links time reversal and charge conjugation. Motivated by
Feynman’s famous view of antiparticles as regular particles traveling backwards in
time, Greaves argues that particles should be represented by oriented worldlines.
Regular particles are co-aligned with the direction of time, while antiparticles are
anti-aligned. Exactly what does the orientation work is left open. It could be a
4-momentum as in Feynman’s picture. It could be a wavevector as in the standard
Lagrangian picture (Wallace, 2009). It could be something else entirely. The up-
shot is that any time reversal symmetry will transform particles into antiparticles
and vice versa. This collapses the CPT puzzle into a PT puzzle.

The second component is a PT theorem for classical field theories in Minkowski

37As in the massive case, charge morphisms are localized in spacelike cones. Unlike the BF
picture, however, where the direction of the cone is arbitrary, in massless theories the direction of
the cone determines an additional superselected global observable associated with the asymptotic
boundary conditions of soft photon clouds. Sectors are labeled by the value of the total charge
along with this asymptotic flux parameter. Although we currently lack tools to define a tensor
product on the relevant category of representations, Buchholz and Roberts show that considering
equivalence classes of sectors with the same global charge, many of the tools from the DHR/BF
picture can be imported into this new setting.
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spacetime. The theorem applies to Lorentz-invariant theories satisfying two main
assumptions: (i) the fields transform as tensors under spacetime diffeomorphisms,
and (ii) the dynamical laws are partial differential equations with polynomial in-
teraction terms. In this situation, Greaves proves that it is impossible for the laws
to encode just a temporal orientation or just a spatial orientation.

Theorem (Greaves). Any polynomial combination of tensor fields that is invariant
under connected Lorentz transformations is also invariant under PT symmetry.®

If these are the only tools the laws have at their disposal, they cannot break PT
symmetry. Accordingly, any reasonable field theory, quantum or classical, has to
be PT-invariant. If the theory has antiparticles, the first part of the story entails
that PT invariance is just the same thing as CPT invariance. The CPT theorem
is therefore an essentially relativistic result.

Although it is an appealing story on many levels, Greaves’s explanation faces
several challenges. The most immediate worry is that assumptions (i) and (ii) in
the classical PT theorem are not physically well-motivated. The first assumption,
(i), rules out spinor-valued fields, which are used to describe matter with half-
integer spin, an essential ingredient in any theory like the standard model with a
wide assortment of fermions in its particle zoo. Spinors can be used to construct
PT-pseudotensors that are not PT-invariant. For example, the common bilinear
currents {y#~°y and ¢ £[y*, "]y change sign under PT transformations. (Here ¢
and © are conjugate Dirac spinors and 4 are Dirac spin matrices.) Prima facie,
classical spinor-valued field theories need not be PT-invariant. This conclusion is
confirmed by Greaves and Thomas (2014, §8), who prove that there is no direct
analogue of Greaves’s PT theorem for classical spinor fields. The fact that quantum
spinor fields are constrained by the CPT theorem cannot simply be explained by
appealing to the classical PT theorem.

38See Greaves (2010, fn. 12) for a proof. The same basic argument underwrites the classical
PT theorem (Thm. 5.6) in Greaves and Thomas (2014). A temporal orientation can be defined
by specifying a privileged timelike vector-field, t*, however t* will not be invariant under all
connected Lorentz transformations. (It defines more than just a temporal orientation.) This
problem can be avoided by choosing an equivalence class of coaligned timelike vector fields, [t%],
but this sort of object is not suitable to appear in a partial differential equation so the laws cannot
make use of it. Similar reasoning rules out the ability to encode just a spatial orientation and
can be generalized to any polynomial combination of tensor-fields. The situation is markedly
different in Galilean spacetime, where it is possible to directly encode a temporal orientation
using a special 1-form field. In this setting, there is no analogue of the PT theorem to be found.
The difference boils down to what kinds of orientation structures can be encoded by polynomial
combinations of tensor fields on a given background spacetime.
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The second assumption (ii), rules out field theories with non-polynomial inter-
actions, a rich area of active study in mathematical physics. Notable examples in-
clude Sine-Gordon models, Liouville field theory, and Weinberg’s chiral Lagrangian
for m-mesons, all of which are expected to be CPT-invariant. Greaves and Thomas
(2014) suggest that insofar as non-polynomial interactions terms can be approxi-
mated by power series expansions, we can import techniques from the polynomial
case and extend the explanation. This may not always be possible, and it is diffi-
cult to ascertain at this stage what limitations in scope this puts on the proposed
explanation. Regardless, the algebraic story sketched in §3 directly circumvents
both of these challenges. It applies to both spinor and tensor theories and is not
restricted to polynomial interactions. In principle, it has the potential to encom-
pass models in which primitive causality fails and the dynamical laws cannot be
expressed in the form of differential equations at all.

Perhaps an even greater advantage, the algebraic story incorporates the DHR/BF
analysis of charge structure, a more powerful, unified picture of antimatter than
the Feynman-inspired view advocated by Greaves. The latter requires a coherent
notion of particle worldline, and if particles must be emergent structures in QFT as
suggested by numerous no-go results (e.g., Halvorson and Clifton 2002), the char-
acterization of antimatter will be similarly emergent. (Even if a QFT has emergent
particles, quantum effects may render the notion of a particle worldline unintelli-
gible in many contexts.) In contrast, the algebraic picture picture draws a more
fundamental distinction between matter and antimatter which is known to ap-
ply to rigorous models of low-dimensional interacting theories like 2-dimensional
Yukawa theory that lack a particle interpretation (Baker and Halvorson, 2010).
The CPT theorem is generally viewed as a deep, foundational result. It would be
odd if it turned out merely to describe high-level, emergent phenomena.

In addition, the connection between charge structure and worldline orientation
lacks a clear explanation on Greaves’s view. Even if time-reversal entails that we
relabel particles and antiparticles, it does not say anything about charge conjuga-
tion as such. An electron will have —1 electric charge and a co-aligned worldline. If
we reverse the direction of time, its worldline is now anti-aligned so we redescribe
it as a positron. But intuitively, it should be a positron with charge —1! If the
4-momentum or wavevector is responsible for orienting the worldline, there is no
obvious link to charge structure. If somehow the charge itself is responsible, then
we need a story about how it does this orientation work. Unless this explanatory
gap can be bridged, the view turns out to rely on a primitive C'T symmetry built
into the laws from the very start.

The algebraic CPT theorem, on the other hand, characterizes antimatter solely
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in terms of charge structure and provides an explanation for when and why par-
ticle/antiparticle partners must have the same mass, spin, and lifetime. From
this perspective, the validity of the CPT theorem justifies why Feynman’s inter-
pretation is possible in the first place. It is because a theory is CPT-invariant
that we can interpret a forward moving positron with charge +1 as a backwards
moving (opposite handed) electron with charge —1. Moreover, it explains why
time-reversal and charge-conjugation are so closely linked. The spectrum condi-
tion entails that the only way to reverse the direction of time is to reverse the Lie
product. But since the Lie product is also responsible for encoding the relationship
between conjugate charges, antiunitary time reversal will also conjugate charge.®”

Thirdly, if time reversal and charge conjugation are linked by definition, as in
Greaves’s view, it is metaphysically impossible for there to be particle/antiparticle
pairs with different masses and spins. But this is arguably a coherent possibility.
Tureanu (2013) reviews a number of CPT violating QFTs with these features.
Although there is ongoing debate about whether these theories can satisfy Lorentz
invariance and locality, the examples prove that particle/antiparticle mass splitting
is a metaphysical possibility, even if the models are not well-behaved relativistic
QFTs. Unlike Greaves’s picture, the algebraic view does not build this restriction
into its definition of antimatter. The possibility of creation/annihilation events
only requires that partners have conjugate charge, not that they are otherwise
identical. One might object on externalist grounds that antiparticles in our world
must be anti-aligned particles, even if in other worlds they are realized by different
sorts of entities. Alternatively, it could be argued that this identification is a
physical rather than metaphysical necessity. Either way, the algebraic picture is
revealed to have greater unifying power as an explanation, describing charges and
antimatter in a broader class of theories with a common structure.

In more recent work, Greaves and Thomas (2014) give a mathematically ex-
panded interpretation of the Lagrangian CPT theorem drawing upon a general
result dubbed strong reflection invariance. (A strong reflection is defined as a PT

39There is an important caveat here. Although it is always possible to conjugate charge
by reversing the Lie product using the CPT operator, in theories where charges and parity are
treated symmetrically by the laws, it is also possible to define unitary C and P operators, Us and
Up , that preserve the Lie product. In this case one can combine an antiunitary CPT reflection
with unitary C and P transformations to produce a net antiunitary time reversal represented by
Vi = UcUp®. This allows for theories like quantum electrodynamics which are invariant under
C, P, and T symmetries independently. In other theories it is possible to define a unitary CP
operator, allowing for theories invariant under T, CP, and CPT transformations. See Bogolubov
et al. (1975, Ch. 12.4) and Mund (2001) for examples of such constructions.
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operation on the field symbols combined with a reversal of the order of products,
reducing to just a PT transformation in the classical case.) In this new work, the
Feynman picture of antimatter no longer plays a prominent role. Instead, Greaves
and Thomas characterize antimatter by a splitting of the space of field configura-
tions into complex subspaces similar to the standard Lagrangian picture defended
by Wallace (2009). The restriction to polynomial interactions persists in their
concept of a classical formal field theory, defined as a complex affine subspace of
the set of polynomial combinations of field symbols and their derivatives. Perhaps
most significantly, by assuming a classical version of the spin-statistics connection
they expand the story to include spinor fields. They use this to prove a more
general version of the classical CPT theorem that will be discussed in the next
section.

There are striking parallels between a strong reflection and a global reversal of
the Lie product. As we have seen in §3.2, reversing the order of the C*-product
is one way of reversing the Lie product in AQFT. Thus at the heart of the new
Greaves-Thomas theorems we can find a signature of the algebraic proof’s guiding
idea. Given the common structural core discussed in §4.1, it is perhaps unsurpris-
ing to discover additional commonalities between Lagrangian and algebraic proofs.
This important connection deserves further study:.

At the same time, the algebraic proof continues to enjoy certain explanatory
advantages over these new Lagrangian proofs. The picture of antimatter advocated
by Greaves and Thomas is subject to many of the same criticisms that applied to
the Feynman view. In interacting QFT's, our ability to decompose the space of field
configurations into positive and negative frequency subspaces is an idealization. In
the limit of no interactions, quantum electrodynamics admits an interpretation in
terms of plane waves with opposite frequency. Conventionally, positive frequency
solutions are labeled as particle states and negative frequency solutions are la-
beled as antiparticle states. This division into positive and negative frequency
states requires a choice of complex structure on the theory’s state space, forging
a link between frequency sign and translations in opposite temporal directions.
Conventionally, positive frequency solutions have a wavevector co-aligned with the
direction of time and negative frequency solutions have an anti-aligned wavevector.
Reversing the direction of time switches which wavevectors are co-aligned and anti-
aligned, but the view is silent on the connection between this wavevector-induced
orientation and charge structure. Identifying symmetric positive and negative fre-
quency solutions with field configurations carrying conjugate charge requires an
additional, unmotivated ansatz. Thus the new picture has the same explanatory
gap as the old one. It postulates a form of CT symmetry at the outset by requir-
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ing any symmetry transformation that reverses the wavevector orientation to also
conjugate charge. This eliminates the possibility of particle/antiparticle partners
with different masses and spins by fiat. Moreover, it is an emergent rather than
fundamental characterization of antimatter that only applies asymptotically in the
free-field limit.

In models of AQFT that have a mass gap and are asymptotically complete
(and thus have a limiting particle interpretation), one can show how matter and
antimatter states are conventionally linked to opposite frequency wave solutions
in the no-interaction limit (Mund, 2001). The DHR/BF picture can thereby help
explain the origins of the emergent Lagrangian picture in certain well-understood
examples. In principle, nothing prevents Lagrangian QFT from making use of
tools from AQFT to provide a more fundamental characterization of antimatter.
Existing Lagrangian proofs simply have not done so. Since a convergent struc-
tural explanation of CPT symmetry within different frameworks would greatly
improve our understanding of the theorem, this marks another important question
for further study.

4.3 Classical or Quantum?

One of the surprising corollaries of Greaves’s Lagrangian account is that apart from
the existence of antimatter, the CPT theorem does not crucially rely on quantum
mechanical assumptions. Most of the heavy lifting is done by the PT theorem
for tensor fields, which applies to both classical and quantum field theories. In
contrast, the algebraic proof of the CPT theorem employs foundational assump-
tions from quantum mechanics as well as relativity. Covariance and microcausality
appear to be primarily relativistic constraints, while the spectrum condition and
modular theory are quantum mechanical in origin. This suggests, contra Greaves,
that the explanation of CPT symmetry requires ingredients from both theories.
To what extent is the theorem classical or quantum?

Intriguingly, Greaves and Thomas (2014) give a proof of a classical CPT the-
orem which they claim has the same logical structure as their version of the full
quantum CPT theorem. True, they are both instances of the same schema:

Theorem (Greaves-Thomas). If a classical/quantum formal field theory is (a)
supercommutative and (b) invariant under a representation of the (cover of the)
connected Lorentz group, then the theory is invariant under CPT reflections iff it
is $-hermitian.*

40For proof, see Greaves and Thomas (2014, Thm. 9.6).
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Supercommutativity is a version of the standard spin-statistics connection for for-
mal field theories, while $-hermiticity requires invariance under a certain involution
mapping. The problem is that different notions of $-hermiticity are required to
prove the classical and quantum versions. In the quantum case, the relevant no-
tion is defined with respect to the canonical involution (providing another point of
convergence with the algebraic proof). In the classical case, it is defined with re-
spect to the charge conjugation involution. Thus once it is unpacked, the classical
theorem asserts that if a classical field theory obeys the spin-statistics connection
and is invariant under (a cover of) the Lorentz group, then it is CPT-invariant iff
it is C-invariant. The quantum CPT theorem permits C-violating theories which
are nonetheless still CPT-invariant, like the weak sector of the standard model.
Thus there is interesting interaction between spatiotemporal and charge structure
in the quantum theorem that is entirely absent in the classical version. More-
over, while the theorem covers classical spinor theories, it does so by assuming the
spin-statistics connection. In relativistic quantum theories this can be motivated
by the spin-statistics theorem, but in classical theories it is unclear if this sort of
physical motivation can be given (Bain, 2016, §4.2). The Greaves-Thomas clas-
sical CPT theorem is therefore markedly different from its quantum counterpart,
despite initial appearances to the contrary.*!

Our investigation of the algebraic proof in §3 casts further doubt on the exis-
tence of a classical theorem with similar structure, although the state of play is
more complicated than it first appears. Naively, we might try to model algebraic
classical field theories by starting with a net of Poincaré-covariant commutative
C*-algebras. But in an abelian algebra, there is no natural Lie product and the
modular structure becomes trivial.*> To compound these difficulties, Borchers
(1996b, Thm. IV.6.2) shows that no net of abelian C*-algebras can satisfy the
spectrum condition. Given the central role played by both modular theory and

41Flato and Raczka (1977) construct an example of a classical scalar theory with \p® self-
interaction that is not C-invariant. Since this is a polynomial field theory, combined with Greaves
and Thomas’s classical CPT theorem, this provides a prima facie example of a CPT-violating
classical field theory. Flato and Raczka draw a different conclusion: whether we describe this
example as CPT-violating and T-invariant or as T-violating and CPT-invariant depends on a
conventional choice of phase for the T operator. This shows that even in the classical case, the
status of reflection symmetries is a subtle problem requiring further investigation.

42The modular automorphism group acts as the identity iff the generating state is tracial, but
in an abelian von Neumann algebra, every state is tracial. As a result there is no meaningful
analogue of the Bisognano-Wichmann property. Furthermore, every abelian von Neumann alge-
bra is maximal, 9 = 9. Thus JOMJ = M, and so the modular conjugation operator cannot
carry the geometric significance of a CPT operator.
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the spectrum condition in the algebraic CPT theorem, these observations appar-
ently preclude a classical analogue of the proof. But this skeptical conclusion is
too quick. In classical field theories, physical quantities are linked to symmetries
by Noether’s theorem just as in QFT. Since this generating relationship is not cap-
tured by the structure of abelian C*-algebras, they are not the right mathematical
tools to model the full structure of classical field theories. This view is adopted by
the deformation quantization program, which models classical theories using dual
Lie-Jordan algebras just like quantum theories.*® The principle difference between
classical and quantum Lie-Jordan algebras is the associativity or non-associativity
of the underlying Jordan product. Weinstein (1997) develops the basic tools of
modular theory within the setting of classical associative Lie-Jordan algebras.

Whether or not such algebras can be used to evade Borchers’s no-go result
remains to be seen. Even if there is a classical analogue of the spectrum condi-
tion and modular theory, though, it is not at all clear that these will entail the
analyticity properties required to establish CPT invariance. The link between ob-
servables and symmetries is more tightly constrained in the quantum case than
in the classical case. As Zalamea (2018) shows, since the classical Jordan prod-
uct is associative, the spectral properties of classical observables are completely
independent of their role as generators. In contrast, the non-associative quantum
Jordan product directly relates the spectral properties of quantum observables to
the state space symmetries that they generate.** In quantum theories, constraints
on symmetries entail constraints on observable spectra and vice versa. This inter-
play between constraints is entirely absent in classical theories. We should expect
the joint consequences of covariance, microcausality, the spectrum condition, and
modular theory to diverge significantly in the classical and quantum cases.

A satisfactory resolution of this problem must await the development of an
algebraic formalism for classical field theories based on Lie-Jordan algebras. For

43See Landsman (1998) for an overview.

447 alamea compares the symplectic manifold formulation of classical mechanics and the Kihler
manifold formulation of quantum mechanics in which quantum mechanical state space is viewed
as a Ké&hler manifold, (M,w, g, J), i.e., a symplectic manifold equipped with a compatible Rie-
mannian metric, g, and almost-complex structure, J. In both the classical and quantum case,
observables can be defined as continuous R-valued functions that preserve all of the geomet-
ric structure of the relevant state space. In classical mechanics, the Jordan product is just
the product of functions f e g = fg. In quantum mechanics, the Jordan product is given by
feg=fg+ g(vs,vg), where g(vs,v,) is the metric-induced inner product of the Hamiltonian
vector fields vy and v, generated by f and g. On this picture, the uncertainty of a quantum ob-
servable, Af = g(vy,vy), in a given state, ¢, is a measure of how much the symmetry generated
by f changes ¢.
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initial work in this direction, see Brunetti et al. (2019). To make better contact
with the algebraic picture of antimatter we also need a classical analogue of the
DHR/BF analysis of charge structure, which is nowhere in sight. These are im-
portant areas for future research. Although the structural disanalogies between
classical and quantum Lie-Jordan algebras give us significant reason for doubt, all
we can definitively say at this stage is that a convincing case for a classical theorem
with the same scope and physical motivation as the quantum CPT theorem has
not been made.

5 Conclusion: Greaves’s Puzzle

Greaves (2010) frames the challenge of explaining CPT invariance in the form of
a puzzle. If the laws of nature violate C, P, or T symmetry it is because they
somehow define a privileged direction of time, spatial handedness, or charge sign.
If the laws are CPT-invariant, this means that they cannot define one such ori-
entation structure independently of the other kinds. The puzzle is that these
orientation structures seem to be “paradigm cases of distinct existences; it’s odd
to find such necessary connections between them” (2010, p. 38). Indeed, in rela-
tivistic spacetime one can show that spatial orientation and temporal orientation
are mathematically independent; a choice of one does not fix the other. (This
follows from the existence of isometries that preserve spatial orientation while re-
versing temporal orientation and vice versa.) While their relationship to charge
orientation is less clear cut, charge superselection structure arises from internal
gauge symmetries associated with the particular forces that the charges couple to,
and these internal symmetries have no obvious connection to spacetime structure.

Our investigation of the algebraic CPT theorem has revealed a hidden con-
nection. The mathematical structure that AQFT uses to distinguish between the
forward dynamics and its time-reversal is the very same structure that it uses to
distinguish between translations in different spatial directions as well as between
charges and their conjugates. CP'T symmetry is not an ad hoc combination of dif-
ferent reflections at all, but rather a single reflection of state space that reverses the
generating relationship between observables and symmetries. By tracing this idea
through the steps of the algebraic CPT theorem we have come to a better physical
understanding of the argument. The proof reveals non-trivial constraints on how a
model of AQFT can deploy the Lie product in conjunction with the Haag-Kastler
axioms and auxiliary physical assumptions. These constraints manifest themselves
in complex analyticity properties derived from the interplay between the spectrum
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condition, microcausality, and covariance.*> As we have seen though, additional
analyticity assumptions are input by hand. It is unclear if they can be derived
from existing assumptions or must be independently motivated, so at this stage
the algebraic CPT theorem only gives us a partial answer to Greaves’s puzzle.

By framing the algebraic proof in this fashion, though, we have made more di-
rect contact with the Haag-Kastler axioms than other presentations of the theorem
(e.g., Bain 2016, Ch. 1.2.4) and revealed important structural commonalities that
it shares with proofs in Lagrangian, S-matrix, and Wightman QFT. This goes a
considerable way towards responding to Bain’s skeptical challenge. Although our
analysis also highlights shortcomings of Greaves’s Lagrangian approach, the par-
allels between the algebraic proof and the recent Greaves-Thomas proof hint at
additional structural commonalities that warrant further investigation.

While the scope of Greaves’s original geometric explanation of CPT symmetry
appears to be too narrow, its central insight is promising. Even if different types
of orientation structures are logically independent, there may be constraints on
how laws of a particular type can encode these structures. Greaves locates these
constraints in the definability properties of Lorentz-invariant polynomial combina-
tions of tensor fields, but the story might go differently. In addition to temporal,
spatial, and charge orientation, there are other orientation structures that the laws
can employ. And in the presence of these other orientation structures, temporal,
spatial, and charge orientation might be less independent than it first seems. For
example, although temporal and spatial orientations are logically independent in
Minkowski spacetime, if the laws somehow make use of a total orientation of the
underlying spacetime manifold, the choice of a temporal orientation naturally de-
fines a spatial orientation and vice versa.*6

The laws of QF'T do not apparently use a total spacetime orientation, but they
do use a Lie product, a natural orientation structure on state space. This provides
the basis for an intriguing conjecture:

Conjecture. In a causal, Lorentz-invariant, thermodynamaically well-behaved QFT,
the choice of a state space orientation naturally defines a temporal orientation up
to a choice of spatial orientation and charge sign.

This has the same flavor as Greaves’s original PT theorem, but with significantly

45These constraints are either absent or substantially weakened in Galilean QFT where the
CPT theorem is known to fail (Lévy-Leblond, 1967). The fact that a theory employs a single
Lie product to describe both internal and external symmetries is insufficient to answer Greaves’s
puzzle on its own.

46See Wald (1984, p. 60, 429-434).
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different mathematical and physical content. A proof of this conjecture stands
to shed further light on the origins of CPT symmetry and will be the subject of
future work.

6 Appendix: Proofs of Lemmas 1-3

Proof of Lemma 1. All four algebras have the same involution structure and self-
adjoint subspace (which includes the identity element). To prove (i), define the
isomorphism ¢ : A — AP as the linear mapping whose restriction to Ag4 is the
identity and that sends i — i and AB +— (AB)°. It is well-defined because the
product of two self-adjoint elements is self adjoint iff they commute (and thus iff
AB = (AB)°), and iA is not self-adjoint for any self-adjoint element A. Using
the fact from the main text, every element A € 2 can be uniquely written as
A= H+iK with H K € Ag4. Consequently p(A) = H +i°K = H —iK = A,
so the map is a bijection. Moreover, p(I) = I and p(A*) = H —i°K = H +iK =
A = p(A)*, so it preserves the identity element and involution structure. Finally,
it is multiplicative, since ¢(AB) = (AB)* = B*A* = (A*B*)? = (p(A)p(B))?,
and is thus a *-isomorphism. Naturality follows from the fact that for any *-
homomorphism, 7, 7(A*) = m(A)*, and therefore 7 o p(A) = 7(A*) = 7(A)* =
pom(A).

The proof of (i7) follows the same reasoning, with ¢ : A% — 2A¢ the analogously
defined natural *-isomorphism. To prove (iii) define the anti-isomorphism ¢ :
20 — A as the linear mapping whose restriction to 2lg4 is the identity and that
sends i — i and AB — (BA)P. po : A — 2° then defines an anti-isomorphism
between 2 and 2A¢. Similarly, to prove (iv) define the conjugate-isomorphism
e A — A° as the conjugate-linear mapping whose restriction to g4 is the
identity and that sends i — —i¢ and AB — AB. ¢ 1o : A — AP then
defines a conjugate-isomorphism between 2l and 2(°°. Naturality follows from the
naturalness of ¢ and the fact that p?(A) = ¢°(A) = A, and so both mappings
commute with *-homomorphisms. []

Note: Interestingly, 2 is not necessarily isomorphic to A°? or 2°. The first
such examples are due to Connes (1975). It remains an open question which (if
any) natural constraints might entail that an algebra is antiautomorphic (equiv.
conjugate-automorphic) to itself.

Proof of Lemma 2: The mapping j* : M — 9 defined j(A) := JA*J is the re-

4T“CPT, Spin-Statistics, and State Space Geometry” (in preparation).
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quired anti-isomorphism, and the mapping j : 9 — 9° defined j(A) := JAJ is the
equivalent conjugate isomorphism. To check this, note that j*(AB) = J(AB)*J =
JB*A*J] = JB*JJA*J = j*(B)j*(A) and j*(il) = J(il)*J = J(—il)J = il since
il € MNIM and for any such central element JAJ = A*. Thus j* is an anti-
isomorphism. It follows from a similar calculation that j preserves products but
j(il) = —il, so j is a conjugate-isomorphism. (These morphisms are natural since
J is uniquely fixed by 9% and ®.) Using Lemma 1, we can then define the natural
isomorphisms ¢ := o o (5*)7! and ¢ := ¢ o j71. [

Proof of Lemma 3: Suppose some open, convex, causally complete region O is
isometric to O’ and is not a spacelike wedge. Thomas and Wichmann (1997,
Thm. 3.2) prove that every closed, convex, causally, complete subset of Minkowski
spacetime is the intersection of closed spacelike wedges, so O C W for some wedge
W and thus W' C O'. Spacelike wedges are maximal in the lattice of open,
convex, causally complete subregions, so it follows that O is a wedge. The causal
complement of a wedge is a wedge and (O') = O (since O is causally complete),
so O is a wedge, contradicting the initial assumption. [
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