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Abstract

Theoretical equivalence and duality are two closely related notions: but their intercon-
nection has so far not been well understood. In this paper I explicate the contribution of
a recent schema for duality to discussions of theoretical equivalence. I argue that duality
suggests a construal of theoretical equivalence in the physical sciences. The construal is
in terms of the isomorphism of models, as defined by the Schema. This construal entails
interpretative constraints that should be useful for theoretical equivalence more generally.
I illustrate the construal in various formulations of Maxwell’s electromagnetic theory.
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1 Introduction

Theoretical equivalence and duality are both taken to be, roughly, a matter of “two the-
ories saying the same thing, in different words”. Thus the question arises how these two
notions are related: and, in particular, whether discussions of duality bear on discussions
of theoretical equivalence. This paper aims to address this question. I will argue that a
recently proposed Schema for physical theories and duality (De Haro (2016) and De Haro
and Butterfield (2017)) leads to a proposal for theoretical equivalence that, furthermore,
suggests interpretative constraints on the use of theoretical equivalence in the physical
sciences (Section . The proposal will be illustrated in a well-known case in the litera-
ture of theoretical equivalence, namely the equivalence between various formulations of
Maxwell’s electromagnetic theory (Section [3)).

Theoretical equivalence is an old and venerable topic in the philosophy of science,
which goes back to the logical positivists: and it finds its roots even earlier, for example in
the philosophy of spacetime (viz. in the Leibniz-Clarke correspondence, and in Poincaré’s
conventionalism). Two influential accounts are Quine (1975) and Glymour (1970). The
recent discussion of theoretical equivalence, with which I will engage, includes: Halvorson
(2012, 2013), Glymour (2013), van Fraassen (2014), Coffey (2014), Weatherall (2015,
2016, 2016a), Barrett and Halvorson (2016), Lutz (2017), Teh and Tsementzis (2017),
Barrett (2018), and Hudetz (2018).

Dualities have come to stand centre stage in theory-construction in theoretical physics:
since, at least, the discoveries of position-momentum duality and electric-magnetic duality,
in quantum mechanics. But even more so, recently: in statistical physics, condensed mat-
ter physics, quantum field theory, and quantum gravity. Accordingly, the philosophical
literature on duality is now flourishing]]

Although the recent literature on dualities has of course engaged with the broad philo-
sophical discussion of theoretical equivalenceE] it has for the most part not attempted to
answer in detail the question of how duality bears on the notion of theoretical equivalence.
This paper aims to fill this gap, by developing a duality-inspired criterion of theoretical
equivalence, which I will dub physical equivalence.

Recent discussions of theoretical equivalence have focussed on an important question:
what is the best formal account of equivalence between physical theories? In an influential
series of papers, Weatherall (2015, 2016, 2016a) has argued that categorical equivalence
provides a good standard of theoretical equivalence for examples in physics. He also pro-
poses an interesting category-theoretic criterion for “when a theory has excess structure”:
namely, when an appropriate functor between the two empirically equivalent theories “for-
gets structure” | He has argued that categorical equivalence gives correct verdicts in a

1See the recent special issue on dualities edited by Castellani and Rickles (2017). Other recent philo-
sophical discussions of duality include De Haro (2016), Read (2016), De Haro and Butterfield (2017), and
Butterfield (2018).

2Earlier work relating duality and the recent literature on theoretical equivalence is in De Haro
(2016: Section 1.4), Butterfield (2018), Read and Mgller-Nielsen (2018: Section 4.1). See also Weatherall
(2019).

3For related work, see Halvorson (2016), Halvorson and Tsementzis (2015), and Barrett (2018).



number of important cases: Newtonian gravitation vis-a-vis Newton-Cartan theory, vari-
ous versions of electromagnetism, Yang-Mills theory, etc. On the other hand, Barrett and
Halvorson (2016: p. 556), and Hudetz (2018: §2.1), have argued that categorical equiva-
lence is “too liberal”, in that it rules as equivalent theories that we would not expect to
count as equivalent. Thus it is worth exploring other formal conceptions of theoretical
equivalence in connection with Weatherall’s examples, to see whether they make the same
judgments.

But the search for a formal account should not overshadow the importance of inter-
pretation. 1 will argue that the formulation of the formal account is itself dependent
on interpretation, since theoretical equivalence usually requires a suitable “translation”.
And so, I will argue that an account of theoretical equivalence requires having an account
of semantic interpretation. I will argue that the Schema’s distinction between internal
and external interpretationsﬂ gives just such an account, and from it that one can draw
interpretative lessons for theoretical equivalence more generally.

First, a warning about the Schema’s use of ‘theory’ and ‘model’. The Schema uses
‘model” for a representation of a theory. This usage differs from the normal usage of
a model as a particular solution of a theory (or a particular trajectory in the space of
states). What we here call a ‘model’ is often called, in philosophy of physics, a ‘theory’.
This usage is motivated by dualities: dualities relate different ‘theories’, as being different
formulations of ‘one underlying theory’: and so, they suggest that we should push the
usage of both ‘theory’ and ‘model’ “one level up” | In view of this basic fact about
dualities—what we first considered as distinct theories is now seen as the same theory, in
two guises—we are led to allow a more general notion of theory, and of model.

Therefore, I will propose, roughly speaking, the following construals of the three cru-
cial terms:

(i) Duality: isomorphism of models of a single theory.

(ii) Weak theoretical equivalence: isomorphism of models (of a single theory) and match-
ing of interpretations (where ‘matching of interpretations’ means that the domains of
application used in the interpretations are isomorphic).

(iii) Physical equivalence, as the duality-based account of theoretical equivalence: same-
ness of the interpretations of weakly theoretically equivalent models (where ‘sameness of
the interpretations’ means the lack of a difference between the elements and relations in
the domains of application of the two models).

Thus the Schema’s notion of theoretical equivalence, namely physical equivalence, is an
isomorphism criterion of equivalence. Such criteria have been criticised, in the context
of the semantic view of theories, because they supposedly make distinctions without a
difference—and this criticism is often accompanied by repudiation of the semantic view.
These criticisms have motivated the search for other criteria of theoretical equivalence.
However, Lutz (2017: p. 335) has recently argued that the arguments against the

4An early version of this distinction, as internal vs. external views on duality, is in Dieks et
al. (2015: p. 209) and De Haro (2015: p. 116).
5Thus I will refer to the solutions simply as ‘solutions’ or ‘possible worlds’, rather than ‘models’.



isomorphism criterion can be blocked: and furthermore, that the recent syntax-semantics
debate does really not capture any significant differences (ibid., p. 347). Likewise, Hudetz
(2018: p. 18) has introduced a new criterion, definable categorical equivalence, which
proposes to find a middle-ground between the category-theoretic approach and the earlier
definability-theoretic approach exemplified by Glymour (1970, 1977) and Quine (1975).

I will add to this discussion by arguing that some of the criticisms of the isomorphism
criterion have as their target only ‘naive’ notions of isomorphism, and do not impugn
more sophisticated notions such as the one provided by the Schema. And so, some of the
motivations recently adduced for abandoning the isomorphism criterion will be found to
be wanting.

I do not mean to be dogmatic about the Schema’s formal adequacy for dealing with
all possible theories. There may be more generally valid, or more precise, mathematical
conceptions of theoretical equivalence than the one I will work out based on the Schema.
But it is worth exploring how far the Schema can go, and we will see that it fares very well:
for it is able to give undoubtedly reasonable judgments about the case study presented in
this paper (Maxwell’s electromagnetic theory) and it also gives correct judgments about
previous case studies (bosonization and gauge-gravity duality). Further case studies are
underway.

I am however uncompromising about the conceptual and methodological importance
of semantic interpretation in any account of theoretical equivalence: a feature endorsed
by the Schema. Errors in the formalism are generally easy to spot, while interpretative
oversights often remain hidden in the background—and they do bear on judgments of
theoretical equivalence. And so, I think that one important way in which the literature
about dualities can contribute to general discussions of theoretical equivalence is through
the philosophical analyses of the interpretation of duals that it has developed in recent
years.

I will give, in Section [2, an account of physical equivalence—roughly, the idea that
two dual theories describe the “same sector of reality”. My analysis will underline that
a full discussion of physical equivalence requires mathematically consistent theories—so
that discussions of theoretical equivalence in the context of, say, Newtonian gravitation,
are at best useful toy models.

The plan of the paper is as follows. Section [2| gives a proposal for theoretical equiva-
lence, based on the Schema, which it then compares with physical equivalence. Section
contains the case study, namely Maxwell’s theory. Section [4] concludes.

2 The Schema as a Proposal for Theoretical Equiva-
lence

I first present, in Section , the Schema for theories and duality: from De Haro (2016: §1.1-
§1.2) and De Haro and Butterfield (2017: §2.2-§2.3). Section contains the proposal
for theoretical equivalence, based on this Schema. Section contrasts the notions of
theoretical equivalence and physical equivalence.



2.1 The Schema for theories and duality

In this Section, I introduce the Schema for duality. I first introduce, in Section [2.1.1] the
notions of theories and models. In Section [2.1.2]T discuss interpretation. I then introduce,
in Section [2.1.3] duality and the notion of physical equivalence. Finally, in Section [2.1.4]
I say how the notion of isomorphism in the Schema differs from what in Section [I]I called
‘naive’ isomorphism accounts.

2.1.1 Theories and models

Recall that dualities reveal that what we thought were distinct theories are representa-
tions of a single theory: so that our talk of ‘theories’ and ‘models’ is pushed “one level
up”. Thus, in this Section, I discuss the notions of theory, model, and interpretation, as
construed by the Schema.

The core notion of the Schema is that of a bare theory: a physically uninterpreted,
but mathematically formulated, structure with a set of rules for forming sentences, i.e. an
abstract calculus (we will refer to these rules as the ‘language’ of the theory: see below).ﬂ
A bare theory could consist of a set of axioms or a set of equations. But, to be specific, the
Schema considers a bare theory as a triple, T := (S, Q, D), of a structured state-space,
S, a structured set of quantities, O, and a dynamics, D, consistent with the relevant
structure. ‘Structure’ here refers: first, to symmetries which may act on the states and-
or the quantities, e.g. as automorphisms of the state-space, a : § — §. And second,
‘structure’ also refers to the set of rules for forming sentences, e.g. for assigning values to
the quantities!]

As an example, consider Maxwell’s electromagnetic theory in vacuum, on R* This
theory can be written as a triple, of which the state-space, S, is the space of square-
integrable, smooth 2-forms F' (or “Faraday tensors”). A salient quantity in this theory
(of course not the only one: for more details, see Section [3)) is the “stress-energy tensor” E|

6The Schema’s account of bare theories bears some similarities to the framework of van Fraassen
(1970: pp. 328-329, 2014: pp. 281-282). What I will refer to as the ‘sentences’ of the bare theory are similar
to van Fraassen’s ‘elementary statements’. One may object that theories in physics always come to us
interpreted. But one should not take the conceptual analysis that I am doing here, namely dissecting a
theory into its bare, uninterpreted, part and its interpretation, for the temporal or methodological process
of formulating or learning new theories. Two reasons for this are as follows: (1) Although theories of
physics usually come to us interpreted, it is perfectly sensible to conceptually distinguish between the
formalism of a theory and its interpretation. (2) Bare theories often have more than one interpretation,
and the bare theory captures the formal structure that underlies them: for example, the heat equation
can be interpreted as describing the spread of heat in time in a given region, or as a diffusion equation
for Brownian particles in a medium.

"These two cases of ‘structure’ are of course not exhaustive. For example, state-spaces often come
equipped with other structures: a topology, a symplectic form, etc. But we can take this in our stride—we
will not need, nor is it I think meaningful, to try and specify all the relevant structure once and for all:
it can be done case by case.

8The scare quotes indicate that at this stage we have not yet interpreted the theory, and so names like
“Faraday tensor” or “stress-energy tensor” are only labels that facilitate that the reader may recognise
the familiar notions from Maxwell’s electromagnetic theory. But at this stage one might simply drop
these labels: the 2-form F' and the symmetric tensor ¢ could indeed describe any other field satisfying
the same dynamics.



t[F]: namely, a rank-2 smooth, symmetric, conserved tensor, quadratic in F: cf. Eq. ([7)).
(I use the lowercase t here because T" already stands for ‘theory’. The tensor components
of t are usually written as 7),,). We can think of quantities Q as maps from the state-space
to a field of real or complex numbers (so that Q is the dual space—in the mathematical,
not the Schema’s sensel—of S): in our example, the stress-energy tensor is a functional
t : S — R, hence the notation ¢[F|. Finally, the dynamics, D, is summarised by a set of
two equations: namely, the 2-form F' is both closed and co-closed, i.e. dFF =d*x F =0
(hence it is harmonic). The symmetries of this theory are Poincaré transformations, which
map F' and ¢ to themselves (of course, their components transform covariantly).

This example prompts the following remark about theories thus defined: notice that
the state-space of Maxwell’s theory could equally well be presented in terms of the electric
and magnetic fields, rather than the Faraday tensor. Thus there is no claim here that
there is always a unique best definition of a theory, and choices are required about what
to take as the state-space, and even judgment about interpretative matters. We will see
another example of this in Section [3.1]

Recall that, as I announced at the start of Section [2.1.1, a model is in this paper
not a particular solution. Rather, a model M of a bare theory, T, is a realization, or
mathematical instantiation: i.e. it is a mathematical entity having the same structure as
the theory, and usually some specific structure of its own. More specifically, I will use a
notion of model as a representation (in the mathematical sense, not the philosophical one!)
of the theory, i.e. a homomorphism from the theory to some other known structure—think,
for example, how an abstract group can be represented by a set of n x n matrices, where
the rank, n, is specific structure that goes beyond the definition of (the homomorphic
copy of) the group.

But a model must not be a merely mathematical representation, for I need to make the
following physical distinction within the homomorphism. A model of a physical theory
naturally suggests the notions of:

A model root: the realization of the theory, usually its homomorphic copy (though, in
some cases, an isomorphic copy).

The specific structure: that structure which goes into building the model root, which
is not part of the theory’s defined structure, and which gives the model its specificity.
Specific structure may well be physically significant, depending on the context of applica-
tion of the theory: and part of it is normally used for calculations within the model—but
calculations can of course be done in different ways, using different specific structure.
For examples, see: Sections m, De Haro (2016: §2.1), and De Haro and Butterfield
(2017: §5.2).

It is helpful to have a schematic notation for models that exhibits how a model aug-
ments the homomorph of the structure of a bare theory, T', with its own specific structure:

M = (m; M) . (1)

Here, m is the model root, and M is the specific structure which goes into building m. In
cases where T' is a triple, m must itself be a triple with properties that are homomorphic
to those of T. When the model root, m, is itself a triple, then we call it the model tm’ple.ﬂ

9Notice that the distinction between the model root and the specific structure, even if formalised into



Like bare theories, models (and model triples) are, at this stage, uninterpreted, and
an interpretation can again be added as a set of partial maps (see Section .

We will sometimes need a notation for the model as a homomorphism, from the theory
to the structure m that does the (mathematical!) representing. I will denote it as follows:

h : T —m (2)

where m labels the representation. As usual, there is a triple of such maps, one for each
item of the theory. For examples of models as representations in Maxwell’s theory, see

Section [3.2

2.1.2 Interpretation

I will adopt a mainstream position about interpretation: namely, classical referential
semantics. Thus we will assign references in the empirical world to the elements of a
theory—viz. to the states and the quantities, and to the formulas built from them—and
likewise for models["] One advantage of the framework of referential semantics is that
both realists and constructive empiricists can agree about the interpretation of a theory
or model, in other words about its basic ontology (‘the picture of the world drawn by
the theory’, to use van Fraassen’s (1980: pp. 14, 43, 57) words), even though they have
different degrees of belief in the entities that the ontology of the theory postulates—and
indeed they will have a different conception of what such a map entails. We will see
illustrations of this point below, and in Section [2.3.1]

Thus I will model referential semantics by interpretation map(s), as follows:

An interpretation is a set of partial maps, preserving appropriate structure, from the
theory to the WOI'ldE The interpretation fixes the reference of the terms in the theory.
More precisely, an intepretation maps the theory, T, to a domain of application, D, in
the world, i.e. it maps ¢ : T" — D. If the theory is a triple of states, quantities, and

the definition of the model as in Eq. , is conceptual rather than strictly mathematical. This means,
firstly, that it can only be made on a case-by-case basis; and second, that in Eq. , we should not think
of m and M as being given independently and together defining M. Rather, M is the specific structure
from which the model root m is built.

10Referential semantics, at least in its mainstream presentation, may admittedly have some limitations
in that it sometimes does not pay sufficient attention to scientific practices, norms, and non-linguistic
skills (as witnessed by works, such as Montague (1970), that are supposedly about “pragmatics” in the
philosophy of language, but remain largely formal). For an interesting critique of such an “ideal of pristine
interpretation” (admittedly, somewhat caricaturized), see Ruetsche (2011, pp. 3-4). However, there is no
incompatibility between using a referential semantics for theories, and other lines of work that emphasise
complementary aspects such as practices, norms, and non-linguistic skills. For a defence of this irenic
perspective, see Lewis (1975: p. 35), De Haro and Butterfield (2018: Section 2.1.3), and De Haro and De
Regt (2018: pp. 633-637).

T will occasionally use the phrase ‘physical interpretation’, in order to distinguish this interpretation
(i.e. what the items of the theory refer to in the world) from the linguistic interpretation (i.e. the language
of—an abstract form of—mathematical physics in which the theory is formulated). The condition that
the map only needs to be partial means that there need not be a reference for all its arguments, i.e. for all
the terms in the bare theory. This is because some interpretations may map to worlds with less structure
than envisaged by the bare theory. See De Haro and Butterfield (2018: §2.4). However, this point will
not be very relevant in this paper.



dynamics, viz. T = (S, Q, D), then the interpretation maps are also a triple, one for each
item in the triple: however, we will not often need to make this explicit. Using different
interpretation maps, the same theory can describe different domains of the world, and
even different possible worlds. For more details, also about the kinds of maps required,
see De Haro (2016: §1.1.2).

Likewise for models, an interpretation is a partial map, i : M — D, preserving appro-
priate structure, from the model to the world.

Notice that the choice of ‘the part of the structure that is common to all of the
theory’s models’ goes into the definition of a model, and singles out the core physics
that is described by the theory, because it is represented in all its models: namely, it is
in the distinction between the model root and the specific structure from the previous
Section: and this choice constrains the kinds of systems the model is able to describe.
The way to determine the relevant structure is interpretative not formal. For example,
only experiments can tell us that massless vector fields correctly describe photons. Once
that question is experimentally settled, one can take a model root including a massless
vector field to describe a photon. But once we have that model root with its massless
vector field, we can strip it of its photon interpretation and use the same model root to
describe whichever other particle exhibits degrees of freedom of the same kind.

Interpretations thus defined are very general. To specify them further, we endorsed, in
De Haro and Butterfield (2018: Section 2.3), De Haro (2016: §1.1.2) and De Haro and De
Regt (2018: p. 636), a more specific framework, viz. intensional semantics (cf. Lewis (1970),
Carnap (1947: pp. 177-182; 1963: pp. 889-908)). In this framework, the notion of ‘linguistic
meaning’ (for us, in the context of scientific theories: an ‘interpretation’) is taken to be
ambiguous between what Frege (1892) called ‘sense’ and what he called ‘reference’, here
called ‘intension’ and ‘extension’ respectively. The intension is the linguistic meaning of a
term, while an extension is the worldly reference of the term, relative to a single possible
world (with all of its contingent details). Thus Lewis (1970: pp. 22-27) defines intensions
as maps from n-tuples of sequences of items—he calls such a sequence an ‘index’—to
extensions, e.g. the truth-values of sentences. And, as Lewis remarks, the framework also
applies if the indices are construed as models consisting of states representing possible
worlds (ibid, p. 23): see also Carnap (1947: pp. 177-182; 1963: pp. 889-908). Here, I will
discuss a variation of this framework that involves: (a) mapping from scientific theories
and models (usually presented as triples, so that there are three such maps) rather than
from sequences of general linguistic items; (b) a simplification: namely, modelling both
intensions and extensions by interpretation maps, rather than defining an extension as
the (set of) objects/truth value(s) and an intension as a map to extensions.

Thus both intensions and extensions are structure-preserving partial maps from a bare
theory or model to a domain of application relative to a possible world. The difference
between the intension and the extension is in the kind of domain of application: explicitly,
for states: an intension maps a state to a generic property (or physical arrangement) of
a system mirroring the defining properties of the mapped state (and likewise for quanti-
ties and dynamics). Thus the image of the state and the domain of application abstract
from contingencies such as the detailed arrangement of the system and how the system is
measured (so that the interpretation applies to all possible worlds that are described by
the theory or model). By contrast, in the case of an extension, the image and domain of

9



application are a fully concrete physical system: usually including also a specific context
of experiment or description, and all the contingent details that are involved in applying
a scientific theory to a concrete system (for more details, see De Haro and Butterfield
(2018: §2.3) and De Haro and De Regt (2018: §1.1)).

Let me illustrate this notion of interpretation in the simple case of Maxwell’s theory
in vacuum, and on R*, mentioned in Section : where the state-space S is a suitable
set of 2-forms F', the quantities Q contain a distinguished quantity, the stress-energy ten-
sor, with components T),,[F], and the dynamics is the condition that the 2-forms F' are
both closed and co-closed (more details in Section [3). Under the standard electromag-
netic interpretation, the Faraday tensor F'is the coordinate-free presentation of a tensor
whose components are interpreted as electric and magnetic fields, so that the intensional
interpretation map is:

i(F) = ‘a coordinate-free specification of an electric and magnetic configuration

in vacuum’ . (3)

The key interpretative parts are here ‘coordinate-free specification” and ‘electric and mag-
netic configurations’, which we (uncontroversially) assume already have established mean-
ings, for example as correlating with certain experimental procedures that we use to mea-
sure the fields, or as corresponding to certain properties of fields that we are familiar with
in our world (such as the polarisation of light waves, and how they interact with other
entities).

This meaning has come about through centuries of experimentation, instrumentation,
and theorising about electro-magnetic fields. Different historical epochs may of course
have different ways of manipulating and measuring these fields, but referential semantics
assumes such reference to be clear, the more because the theory is sufficiently well estab-
lished, as Maxwell’s electromagnetic theory indeed is—and this reference is construed as
saying that there are such things as electric and magnetic fields in the world (if one is a
realist) or that there are indeed appearances of phenomena of electric and magnetic fields
(if one is an empiricist). Likewise for the phrase ‘coordinate-free specification’: it sum-
marises the properties of the fields under changes of the frame of reference, i.e. properties
like ‘the electric field Lorentz is augmented in the directions perpendicular to the mo-
tion by an amount given by the Lorentz factor’. Such properties again uncontroversially
correlate with particular phenomena in the world.H

Notice the following two properties of the interpretation map Eq. . First, recall that
I defined interpretation maps ¢ : M — D as appropriately structure-preserving. There-
fore the phrase ‘coordinate-free specification’ in Eq. implements this appropriately
structure-preserving character of the Poincaré symmetries. Namely, Poincaré symme-
tries, which leave the 2-tensor F' invariant and transform its components according to

P2Interpreting F in a coordinate-free manner emphasises the map’s respecting the symmetries, which
is one of the defining properties of interpretation maps. But the various components of F' of course
also have their own interpretations, once a system of coordinates has been chosen. Thus Fjy (where
i =x,y,2) is interpreted as the electric field along the ¢-direction, and F;; is interpreted as the magnetic
field perpendicular to the ij-plane.

10



the standard Poincaré transformations, have a “shadow” in the domain of the world, D:
this shadow contains the ordinary effects, of Lorentz expansions and contractions of the
fields, that I referred to in the previous paragraph. Thus the interpretation map Eq.
correctly preserves symmetries. Second, the interpretation Eq. is an intension: for it
is valid at any possible world that instantiates electric and magnetic fields whose corre-
sponding Faraday tensor satisfies the definitions of our states (viz. a square-integrable,
smooth 2-form). In other words, it does not depend on a specification of F—as being,
for example, a collection of travelling waves with certain polarizations. Such “generic”
interpretations hold at every possible world that is described by the theory. In order to
get an extension, we should specify the particular 2-form F' that we are mapping. This
would entail giving the details of its functional form: which then corresponds, under the
interpretation map, to further specifications in a particular world, like ‘a wave travelling
in such and such direction, with polarizations at such and such angles’. Since intensions
are less detailed and simpler to write down in words, in the rest of the paper our examples
will be mainly intensions. But, as I mentioned above, this way of modelling intensional
semantics accommodates for boths kinds of interpretations.

There is also an interpretation map for quantities, which for example maps the 00-
component of the stress-energy tensor:

i(Tho) = ‘the electromagnetic energy density of the system’ . (4)

Again, this map is an intension—it holds at all possible worlds at which Maxwell’s the-
ory applies, and in which a frame of reference has been specified, relative to which the
00-components of the tensor are taken. To specify the extension of Ty, we should pro-
vide additional details such as where the electromagnetic energy is produced from, how
it interacts with its environment and is measured, etc. We will return to the example of
Maxwell’s electromagnetic theory in Section [3]

So much by way of introducing referential semantics and intensional semantics. The
idea of theoretical equivalence will be, roughly, that two models are isomorphic relative to
their formal structure—as in their model roots, m—and their interpretation. Thus I will
now define an interpretation that depends only on the model root, and not the specific
structure:

Internal interpretation: an interpretation that maps all of and only the model root,
regardless of the specific structure of the model. Since internal interpretations map the
model roots (and they may map specific structure only in so far as it appears in the model
root), it will often be clearer to restrict the internal interpretation map of models to the
model root, and write: ¢ : m — D. Internal interpretations obviously also apply to bare
theories, T', which do not have any specific structure.

I shall contrast this with other interpretations that also map the specific structure, and
which I dub the ezternal interpretations (for a fuller exposition, see De Haro (2016: §1.1.2)).
For the reason given above, in the rest of this paper the relevant interpretations will be
only the internal interpretations/™|

13The reason to consider only internal interpretations in analysing theoretical equivalence can be spelled

11



I use ‘internal interpretation’ in the singular here because we will normally consider a
single interpretation. However, a given model can have multiple internal interpretations.
For example, take a model whose dynamics is the heat equation for a real, non-negative
function over space and time that we denote by: p : R* — Rsg, and is given by: (¢,x) —
p (t,x). Take the state-space of the model to be the space of configurations of the function
p(t,x) (and let the quantities of the model also be constructed from p, its powers, and
its derivatives and integrals over space and time—so that we now have a triple of states,
quantities, and dynamics). This model can be interpreted as describing the spread of heat
in time in a given region of space, or as a diffusion equation for Brownian particles in a
medium. With these definitions, there is here a single model (in fact, a theory), with no
specific structure. Both interpretations are internal, and yet they differ.E

I also assume that the model root is rich enough that an internal interpretation allows
the specification of a set of possible worlds that instantiate the solutions of the equations of
the model (or, at least, the interpretation specifies suitable domains of application within
such worlds: see the discussion in Section , especially footnote . Nevertheless, for
simplicity, I will talk about ‘the possible world specified by the model’ rather than about
the set of such worlds.

out as follows. Any two isomorphic but distinct models have different specific structure. Thus any pair of
external interpretations that interpret the specific structures of the two models differently would render
the models theoretically inequivalent. If one is interested in theoretical equivalence, it therefore makes
good sense to restrict the interpretations to those that interpret only the isomorphic structure—which
also rids one of the potential arbitrariness of counting as theoretically inequivalent those models that
differ only by a “trivial convention”, if their specific structure differs. The distinction between the model
triple and the specific structure aims to make a distinction between, roughly speaking, what is the
physical core of the model and what is additional structure (which may be physical in some contexts
but not in others). See also the wise remarks, in Butterfield (2018: §3.3), about the flexibility of the
distinction between ‘fact’ and ‘convention’. This is, of course, not to say that two models could not be
theoretically equivalent on external interpretations: but only that we get a natural meshing condition
between theoretical equivalence and duality, as we should, if we consider internal interpretations: as I
will show in Section

4The current formulation of the internal interpretation, following De Haro (2016: §1.1.2), maps only
the model root: i.e. the interpretation map, which is a partial map, is not defined on the parts of
the specific structure which are not part of the model root. This gives a clear-cut criterion for when
an interpretation is internal. The formulation in Dieks et al. (2015: pp. 208-210) might, on the other
hand, give the (mistaken) impression that an ‘internal viewpoint’ somehow requires an interpretation
that is internal to the theory and is constructed with no other information. But this is of course not
how interpretations come about in physics (as I also emphasised in the example of Maxwell’s theory):
they are always constructed against the background of already existing theories. This methodological
point is expounded in De Haro and De Regt (2018), which gives three interpretative tools that can be
used to construct internal interpretations, i.e. without interpreting the specific structure (see also Dewar
(2017: §6) for some excellent comments on related issues). One of the three tools is indeed internal to the
theory, but two others connect to already existing theories, while still being ‘internal’ in my sense. Thus,
just as dualities are used to internally interpret theories, other inter-theoretic relations are also used. In
conclusion, the meaning of ‘internal’ is not ‘internal to the model’ but ‘internal to the model root’ (or
the common core, in cases of duality).
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Figure 1: Physical equivalence. The two interpretations describe “the same sector of
reality”, so that the ranges of the interpretations coincide.

2.1.3 Duality and physical equivalence

In this Section, I give brief construals of the notions of duality and of physical equiv-
alence according to our proposed Schema for duality (and I shall elaborate on physical
equivalence in Section after I define, in Section weak theoretical equivalence).

Indeed, having discussed theories and models, we can now easily state the Schema’s
conception of duality: A duality is an isomorphism between model roots of a single bare
theory, where the model roots are taken to be representations (in the mathematical—not
semantic!—sense) of the theory. We denote this isomorphism of model roots, m; = ma,
by the map d : my — ma.

Theories may have many representations: representations that are isomorphic to the
original theory and representations that are not isomorphic to the original theory. But if
we have two (or more) representations that are isomorphic to each other (whether they
are isomorphic to the original theory or not), we have a duality.

The framework offered so far is mostly formal. Thus it is not surprising that the
Schema contributes to furthering understanding of formal equivalence—what I will call
weak theoretical equivalence. This will be the topic of Section [2.2.1] But first, by way of
introduction, let me say a few words about physical equivalence, i.e. the specific proposal
for theoretical equivalence suggested by recent developments in physics—a fuller exposi-
tion is in Section E Physical equivalence can be defined as sameness of interpretations,
i.e. two models are physically equivalent iff they are weakly theoretical equivalent and, in
addition, they have the same interpretation (not in the sense of having the same interpre-
tation maps, but in the sense that their interpretation maps have the same codomain, or
target, and appropriately matching values in that codomain). Thus physical equivalence,
for dual models, is a meshing condition between duality and intepretation: namely, in the
notation of Figure [l ran (i;) = ran (i o d). Duality and interpretation then commute, in
the sense that they form a triangular commuting diagram.

2.1.4 Against naive appeals to isomorphism

In this Section, I elaborate on the notion of isomorphism employed by the Schema, and
explain how it differs from naive notions of isomorphism.

15The notion of physical equivalence that I use here, and that I discuss more fully in Section [2.3] has
been explicated in more detail De Haro (2016: §1.3).
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Whether a map is an isomorphism of course depends on the structure that the map
is supposed to preserve. In the present case, of isomorphism between model roots, it
is the structure of the model roots—and so of the bare theory of which each root is
a representation—that is preserved. And when the model roots are triples of state-
space, quantities and dynamics, then each of these three items—with their corresponding
structure—is to be preserved.

This contrasts with a vague, and-or unqualified, notion of isomorphism. The iso-
morphism criterion of models is usually associated with the semantic view: see, for
example, Suppe (2001: p. 526) and Halvorson (2012: p. 187). For example, Halvorson
(2012: p. 188) has summarily criticised the isomorphism account of theoretical equivalence
on the grounds that it would render Heisenberg’s matrix mechanics and Schrédinger’s wave
mechanics theoretically inequivalent, for: ‘a matrix algebra is obviously not isomorphic
to a space of wave functions; hence, a simpleminded isomorphism criterion would entail
that these theories are inequivalent.’

The first point to make is that Halvorson slips in his formulation of the claim he is
targeting. For of course the matrix algebra represents the quantities, while the wave-
functions form a space of states—and in that sense I agree that they should not be
isomorphic. But, correcting this slip: I of course agree with Halvorson that the represen-
tation space of a matrix algebra is in general not isomorphic to a space of wave-functions,
and so the isomorphism criterion does not work in this case. But this is only a naive notion
of isomorphism, which attempts to map the state-spaces directly onto each other, so that
discrete matrix indices are directly mapped to the state-space of continuous functions (von
Neumann (1955: p. 22)). Such an isomorphism requires the introduction of what von Neu-
mann called Dirac’s ‘mathematical “fiction”’, namely the Dirac delta distribution: ‘this
cannot be achieved without some violence to the formalism and to mathematics’ (ibid,
p- QS)E] Setting aside the question whether Dirac’s programme can perhaps be carried
out using the theory of distributions: one mathematically correct procedure is to seek an
isomorphism, not of configuration spaces, but of functions on these two spaces, i.e. be-
tween sequences which are functions on the discrete configuration space, {?(c0), and wave
functions on the continuous configuration space. It is this weaker isomorphism that quan-
tum mechanics requires: ‘These functions... are the entities which enter most essentially
into the problems of quantum mechanics’ (ibid, p. 28). And those two spaces are iso-
morphic, as a theorem of Fischer and Riesz secures (cf. e.g. von Neumann (1955: p. 29)).
Indeed, all complex infinite-dimensional separable Hilbert spaces are isomorphic to ?(oo)
(e.g. Prugovecki (1981: p. 41)).

It seems likely that the claims, now well-rehearsed, in the literature (see North (2009:
p. 84-88), Curiel (2014: pp. 295-304), Barrett (2018: §1)), that Lagrangian and Hamilto-
nian mechanics are inequivalent according to the isomorphism criterion, can be dealt with
in a similar way, i.e. that a more sophisticated notion of isomorphism does render them
equivalent, at least in an important class of salient cases. The leading idea of any such
isomorphism must of course be the Legendre transformation, which, as textbooks teach
us, carries one back and forth between the Lagrangian and Hamiltonian frameworks. For
example, Barrett (2018: §4) focusses on the case where the Legendre transform is a dif-

6For a philosophical and historical exposition, see Muller (1997).
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feomorphism (the Lagrangian then being called ‘hyperregular’). Analogously to the case
of matrix vs. wave mechanics, the criterion would obviously not be a direct isomorphism
of tangent and cotangent bundles, which are not invariably isomorphic.

Similarly, Lutz (2017: pp. 335-336) proposes to block a charge against the naive isomor-
phism criterionE] by considering a more sophisticated criterion of isomorphism: namely,
he considers indexed structures and their associated isomorphisms.

Without going into further details here: the target of the criticisms of the isomorphism
criterion for theoretical equivalence often seems to be a naive, i.e. vague and-or unquali-
fied, appeal to isomorphism, which either does not specify the structure to be preserved,
or identifies the wrong structure. On a more sophisticated treatment of the structures
involved—which often means: a more restrictive definition of the relevant structure to
be preserved—cases of theoretical equivalence in physics do often seem to be cases of
isomorphism.

Therefore, I find most of the reasons in the recent philosophical literature, for abandon-
ing the isomorphism criterion, to be wanting. The isomorphism criterion can be upheld
provided we are more careful about the structures that we claim are isomorphic. It is in
this spirit that I will propose an isomorphism criterion in the next Section.

2.2 The Schema’s contribution to a conception of theoretical
equivalence

This Section and the next contain the paper’s main proposal for theoretical equivalence,
based on the Schema. In Section[2.2.1] T give some background on the notion of theoretical
equivalence in recent philosophy of science discussions, in terms of two conditions. Section
then goes on to fill in the first condition according to the Schema, and Section
fills in the second condition.

2.2.1 The general notion of theoretical equivalence

In this Section, I discuss the general idea of theoretical equivalence in recent philosophy
of science. Theoretical equivalence is, in fact, something of a term of art, without a fixed
meaning. It usually combines two conditions:

(A) some sort of “formal or mathematical requirement”; and
(B) some sort of “interpretative requirement”.

Individual authors may of course stress one aspect over the other, or even altogether
reject one of the two conditions/™|

Two influential proposals for theoretical equivalence are due to Quine and Glymour.
On Quine’s (1975: p. 320) proposal, two formulations count as formulations of the same

1"This time, the charge (Halvorson (2012: p. 190)) is rather that the isomorphism criterion fails to
distinguish different theories.

18For example, Coffey (2014: p. 837) proposes an account in which questions of theoretical equivalence
ultimately reduce to questions of interpretation, and formal considerations are only relevant in virtue of
how they shape interpretative judgments.
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theory if, besides being empirically equivalent, the two formulations can be rendered
identical by a reconstrual of the predicates in one of them (for example, by switching some
of the predicates). And Glymour (1970: p. 279) requires, besides empirical equivalence,
inter-translatability as a necessary condition for theoretical equivalence.ﬂ Thus Quine
and Glymour agree that empirical equivalence is a necessary condition for theoretical
equivalence, but construe the formal requirement (reconstrual of predicates vs. inter-
translatability) differently. And both do seem to have in mind a notion of theoretical
equivalence in which both theories in some sense “say the same thing about the world”,
i.e. a notion that is also interpretative "

About ‘empirical equivalence’: there are two main construals of the requirement of
this criterion, one of which is syntactic, and the other semantic. Quine (1970: p. 179,
1975: p. 319) sayﬂ that two theories are empirically equivalent if they imply the same ob-
servational sentences, also called ‘observational conditionals’, for all possible observations—
present, past, and future. Van Fraassen (1980: p. 64) says that two theories, 7" and T" are
empirically equivalent if for every model (not the Schema’s model!), M, of T there is a
model, M’, of T” such that all of M’s empirical substructures are isomorphic to empirical
substructures of M’, and vice-versa?] The criterion of theoretical equivalence that I will
give in Section [2.3|entails empirical equivalence as a special case (for a detailed discussion,
see De Haro (2019)).

The recent discussion of theoretical equivalence by Halvorson (2012), Barrett and
Halvorson (2015, 2016), Halvorson and Tsementzis (2015), Barrett (2018), and Weather-
all (2015, 2016, 2016a) has emphasised the formal aspects of equivalence over the inter-
pretative. Weatherall mentions empirical equivalence in all of his papers on the topic, but
for example Barrett and Halvorson (2015, 2016) do not mention it at al]@fnor do those
papers mention matters of meaning or interpretation (other than interpretation using for-
mulas in a formal language). Thus one could easily get the impression that some of these
authors “are not interested in interpretation”. However, the situation is more subtle@

I will endorse this recent (though usually unstated) consensus, that there is an in-
teresting part of the project of theoretical equivalence that is a largely, but not solely,

9For how Quine’s and Glymour’s views on equivalence relate to the question of empirical under-
determination, see De Haro (2019: Section 2.3).

2OHowever, one should note that Quine’s and Glymour’s interpretative attitudes are quite different,
because Quine was sceptical about meaning and ontology (see Quine’s (1960: Section 2) discussion of
referential indeterminacy) while Glymour (1977: p. 228) is not so sceptical.

21Glymour (1970 : p. 277) holds a similar view.

22For a comparison between Quine’s syntactic and van Fraassen’s semantic conceptions of empirical
equivalence, see De Haro (2019: Section 4.2).

ZBarrett (2018) and Rosenstock et al. (2015) also mention empirical equivalence.

24In conversation, Weatherall and Barrett say both that empirical equivalence is a prerequisite for their
analyses of theoretical equivalence, and that a suitable notion of theoretical equivalence should (at least)
respect (some) meanings, i.e. it is constrained by the interpretation. However, the latter requirement is
not mentioned in their papers, and it is not clear what guiding role it plays. This contrasts with the older
literature on the topic. For Glymour’s (2013: p. 289) and van Fraassen’s (2014: pp. 278-281) comments
about interpretation already go some way towards the kind of interpretative project I have in mind here.
Their comments of course go back to their own accounts of theories and of theoretical equivalence, in
Glymour (1970, 1977) and van Fraassen (1970).
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formal matter’] Thus I will first develop, in Section [2.2.2] a notion of ‘weak theoretical
equivalence’ (I will discuss physical equivalence in Section . Indeed I believe (contra
Coffey (2014)) that there is an interesting philosophical project of:

(EE) FEzplicating equivalence in formal terms.

This consensus position in the recent discussion of theoretical equivalence can be
qualified as a quietist position. Namely, it is the position of authors engaged with parts
of the project of theoretical equivalence, and for whom interpretative equivalence is a
minimal requirement that their project needs, but on which they do not wish to focus.
And so, such authors, when confronted with dual models, discuss formal equivalence but
typically refrain from discussing ontological questions. Quietism is the position that my
account of weak theoretical equivalence attempts to save, by including an interpretative
requirement that is as minimal as possible—namely, mere matching of interpretations.
The account can be suitably strengthened in the second step, as I will do in Section
[2.3] Such authors have nothing to say about physical equivalence—for whatever reason:
perhaps because they are sceptical about the notion, or not interested in it, or think it is
too difficult to articulate. This is, to a large extent, a tenable positionﬂ and in a moment
[ will add some of my own reasons why (EE) is an interesting philosophical project.

In light of the literature discussed above, the challenge in the first step of defining
weak theoretical equivalence lies, for the most part, in how one fills in its being ‘a largely,
but not solely, formal project’. That is, the difficulty lies in striking an appropriate
balance between the interpretative and the formal: in such a way that, once one takes
the interpretative conditions to have been established for a pair of theories, as a kind of
“boundary condition”, then the project can concentrate on the formal issues.

In the next Section I will propose how the Schema suggests this can be done. But it
will clarify that proposal if I first give three reasons why I think ‘weak theoretical equiva-
lence’, in contrast with ‘physical equivalence’, should be construed as being mostly formal
or mathematical:

(i) The notion of weak theoretical equivalence will easily lead in to a notion of physical
equivalence, which can then be further analysed.

(ii) The second reason for letting weak theoretical equivalence be formal and not re-
quire sameness of interpretation is that establishing sameness of interpretation is never
a simple matter: for it requires a notion of identity of domains of application, as I will
discuss in Section [2.3], which leads in to issues of metaphysics. And we do not want to be
too worried about metaphysics in our project of theoretical equivalence.

ZButterfield’s (2018: Section 1.1) Remark, namely, ‘in physics, two theories can be dual, and accord-
ingly get called ‘the same theory’, though we interpret them as disagreeing’, emphasises the distinction
between the formal and the interpretative aspects. In the context of theoretical equivalence, Butterfield’s
Remark has also been voiced by van Fraassen (2014: pp. 278-279); and, in the context of duality, by De
Haro (2016: §1.3-8§1.4, §2.2).

26The reason for the qualification ‘to a large extent’ is that it is not automatic that the various
extant formal proposals—definitional equivalence, Quine equivalence, Morita equivalence, categorical
equivalence—will give physically equivalent theories. However, in Section [2.3] I will argue that, given
weak theoretical equivalence, one can construct interpretations that deliver physical equivalence.
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I take this second reason to underlie the recent consensus mentioned above: that there
is a significant conceptual and technical project of finding criteria for when two theories
are equivalent, without the need for all the details about the interpretation to be fleshed
out, nor to commit to a metaphysical account of how the terms of the theory refer. And
such a project strikes me as sensible.

This then prompts me to break up the overall project of explicating equivalence be-
tween theories into two tasks. The first task, namely explicating weak theoretical equiva-
lence, cares as little as possible about interpretation: and it corresponds to (EE) above.
The second task, namely explicating physical equivalence, takes interpretation fully on
board.

(iii) The third reason for keeping weak theoretical equivalence largely formal is that, as
the Schema for duality has shown, this is indeed also how physicists think about equiva-
lence (cf. De Haro (2018: p. §4.1.2)). Physicists are happy to say that the high-temperature
Ising model is equivalent to a low-temperature one, without worrying about the ontolog-
ical status of ‘temperature’ under such a duality map. It suffices that two variables that
are interpreted as ‘temperatures’ are mapped to each other, and that the values (low
vs. high) of ‘temperature’ are also mapped to each other. Even less do physicists worry
whether they are e.g. realists or empiricists about temperature under this duality. And
this is of course a legitimate practice. Indeed I of course maintain that the metaphysical
questions are important; but they can be addressed in the next step, as part of the project
of physical equivalence. Thus a project like (EE), that only takes interpretation minimally
into account, agrees with a widespread, and justified, scientific practice.

To sum up: regardless of one’s preferred use of ‘theoretical equivalence’: it is an
interesting project to establish criteria of formal equivalence that minimize interpretative
issues, and so avoid being committed to the fully-fledged project of showing that the
theories have the same interpretation (for they may not have the same interpretation!):
and this is what I shall call the project of weak theoretical equivalence.

But if one endorses this recent consensus—that weakly theoretically equivalent mod-
els are in some (weak!) sense interpretatively equivalent: but that establishing weak
theoretical equivalence does not require one to have a complete understanding of the in-
terpretation, so that the project is largely formal—then it is clear that achieving what
the consensus aims for requires a delicate balance.

So, it is now crucial to fill in condition (B)—the interpretative requirement—in such
a way that we can strike this balance. I will propose that the models must have matching
internal interpretations.

2.2.2 Condition (A’): isomorphism of model roots

I first fill in condition (A) in Section namely, the formal or mathematical require-
ment for weak theoretical equivalence, which I will illustrate in Section [3.3] My proposal
here is simple: namely, to read the Schema’s notion of duality as a formal condition of
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theoretical equivalence, applicable to formal theories in the physical sciences{|
(A’) Isomorphism of model roots of a single bare theory.

Recall that this was precisely the definition of duality, in Section [2.1.3] And it is indeed
natural to regard duality as prompting the weak theoretical equivalence of two models (in
my sense of ‘model’).

2.2.3 Condition (B’): matching internal interpretations

In this Section, I fill out the second condition for weak theoretical equivalence: namely,
the interpretative requirement, as prompted by the Schema’s analysis of duality.

We have seen that the spirit of weak theoretical equivalence is that it should capture
when two interpreted models (in the sense of model roots, i.e. often called ‘theories’)
are equivalent, both formally and interpretatively, without being committed to a strong
notion of sameness of interpretation. This is the ‘delicate balance’ that I mentioned at
the end Section 2.2.11

My proposal, then, for filling in condition (B), namely filling in the “interpretative”
part of the definition, is to require “matching interpretations”. So, let me first define this
notion: this will lead us to the restriction to internal interpretations (as defined in Section
2.1.2)).

(B’) Matching interpretations: two models, M; and M;, have matching interpre-
tations when the ranges of their interpretation maps are isomorphic, i.e. when:

ran (i1) = ran (is) . (5)

I use the word ‘matching’ here, in order to avoid the already over-used word ‘equivalence’.
Recall, from Section that an interpretation is a structure-preserving partial map
that maps a model to a domain of application. For the two models M; and M, we thus
have maps i, : M7 — D; and iy : My — D,. Here, the domains of application D; and
Dy are structured sets, and the interpretation maps are structure-preserving. Thus, the
condition Eq. is an isomorphism with respect to that structure, which is induced from
the model’s own structure.

For simplicity in the discussion in the rest of this Section, I will take the interpretations
to be surjective maps, so that ran (i;) = D; and ran (i) = Ds, i.e. the interpretation maps
map “to the whole domain of application”: every element in the domain of application is
mapped to by at least some element of the model. (This restriction does not affect the
content of the discussion but does simplify the notation.) Thus, we can now restate the
condition Eq. as follows: D; = D,. Let us denote the corresponding isomorphism
between domains of application by d, so that:

CZID1—>D2. (6)

2"Notice that this proposal can be discussed independently of whether one endorses my explication,
(B’), of (B): the proposal could be combined with any other explication, (B”).
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D, < D,

Figure 2: Weak theoretical equivalence and the induced duality map, d, between domains
of application.

I shall call this map, induced from the duality and interpretation maps, the induced duality
map.

Combining the duality map, d (defined in Section , with the two interpretation
maps, we get the diagram in Figure [, where the interpretation maps, #; and iy, are
evaluated on the model roots, m; and my (see the discussion two paragraphs below).
Here, d and d are both isomorphisms, while the interpretation maps of course need not
be. Figure[2]thus contrasts with the diagram in Figure[I] where the duality commutes with
the interpretation—in the sense that the three maps d, 71, 75 form a commuting diagram.
In Figure [2| the three maps d, 1,75 do not form a commuting diagram. Rather, we need
to co-vary the duality map, thus getting the induced duality map, a?, in Eq. , as we
change the interpretation.

The notion of co-variation of the interpretations with the duality map is natural for
dualitiesﬁ For example, take Kramers-Wannier duality, i.e. the Ising model with high,
respectively low, temperature as its two models (cf. Butterfield (2018: §4.3)). These
two models are isomorphic, and furthermore we can also match their interpretations by
everywhere replacing a lattice at high temperature with a lattice at low temperature.
Thus the isomorphism, d, between the models induces an isomorphism, cz, between the
domains of application, that takes ‘high temperature’ to ‘low temperature’ and vice versa,
while respecting the syntax. The induced duality map between the domains of application,
thus construed, is analogous to translating one language into another. Of course, such a
map does not in general preserve meanings—rather, it maps them into each other in a
non-trivial manner!

Weak theoretical equivalence, as discussed here, is in the context of duality, i.e. of an
isomorphism account of equivalence. Thus in particular, the diagram in Figure [2| implies
that i o d = d o i;. Now, in order for iy to be defined on, or “match”, the range of d
(i.e. the model root, since the duality map only maps the model roots, see Section [2.1.3)),
i must be restricted to the model root, and likewise for ; (as shown in Figure . This
suggests that, for the purpose of theoretical equivalence between dual theories, we should
restrict our interpretations to the internal interpretations, as I anticipated in Section|2.1.2
(see especially footnote . For such a commuting diagram does not exist for external
interpretations, as I now show.

28Read and Mgller-Nielsen actually define theoretical equivalence in this way, i.e. as empirical equiva-
lence plus duality.
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In principle, weak theoretical equivalence could also be defined for external interpreta-
tions. We would then replace the model roots m; and my in Figure [2| by the full models,
M, and M, (cf. Eq. ), and 7; and i would be their external interpretations. We would
then still require the map, cZ, between the domains of application to be an isomorphism,
as in Eq. . But notice that the diagram is no longer commuting: for the cardinalities
of My and M, may well differ, and so M; and M, are in general not isomorphic.@ Thus,
although weak theoretical equivalence could be defined for external interpretations as the
isomorphism condition Eq. , there is no commuting diagram criterion for it, so that
this sort of weak theoretical equivalence is unrelated to the existence of duality. Thus in
this paper we hold on to the connection between weak theoretical equivalence and duality,
by restricting to internal interpretations (for the example of Maxwell’s theory, see Section

53).

To sum up: I believe that making (B) precise as (B’), i.e. matching of internal in-
terpretations gives a minimal requirement of interpretative equivalence—as required for
the ‘delicate balance’ of the previous Section—that is useful both for dualities and for
discussions of theoretical equivalence. In short: meanings are simply co-varied as we map
one model to the other, without the requirement that the meanings stay “the same”—
the latter requirement is only introduced in the next step. Since the recent literature on
theoretical equivalence has, as I mentioned, not given a conception of (B), I have here
endeavoured to give a minimal one, based on the Schema. In the next Section, I will
refine this to a criterion of theoretical equivalence.

Notice the difference between duality and weak theoretical equivalence thus construed:
namely, condition (B’) is required for weak theoretical equivalence, but not for duality.
We follow the physicists in defining duality as isomorphism of model roots—period. Weak
theoretical equivalence, on the other hand, is constrained by the philosophical tradition to
require, in addition, an interpretative condition that I have here interpreted weakly, in the
sense of Eq. and Figure . Thus weak theoretical equivalence is an equivalence—an
isomorphism—of interpreted model roots, while duality is an isomorphism of model roots,
irrespective of their interpretation.

2.3 Theoretical equivalence of duals, or physical equivalence

In this Section, I spell out the notion of theoretical equivalence, or—in the context of
physics, especially as suggested by dualities—physical equivalence: and discuss the rela-

29Tf the full models, M; and M,, including their specific structure, do happen to be isomorphic, then
one could define weak theoretical equivalence for external interpretations as an isomorphism of the full
models, i.e. My = M,. But then we are changing the notion of duality, which was tied to the notion of
the common core theory, and we lose the connection between the common core theory and the duality.
In such a case, we might say that the full models, M; = M,, are the common core, and that consequently
there is no specific structure—but then we are back to the original case in the main text, of two isomorphic
model roots. And then the external interpretations simply collapse to internal interpretations. And so,
the only gain in defining duality as an isomorphism between full models M; and M, (in cases where
such an isomorphism obtains), while still maintaining that the model roots are smaller than M; and My,
is that the common core comes out to be smaller—thus, as far as I can see, no real gain. And so, the
analysis in the main text is enough.
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tion between weak theoretical equivalence and physical equivalence. In Section [2.3.1], 1
give sufficient conditions for physical equivalence, in the context of an isomorphism ac-
count of duality. In Section [2.3.2] I discuss when a judgment of physical equivalence is
justified, and draw lessons for theoretical equivalence in physics more generally. Then, in
Section I compare my account with other work.

2.3.1 Physical equivalence

Recall that I have explicated the weak theoretical equivalence of models as the matching of
their interpretations. I will now define physical equivalence as weak theoretical equivalence
plus, in addition, sameness of interpretation: more precisely, as sameness of the domains of
application, Dy and Ds (cf. Section , especially Figure [1)). Thus the induced duality
map, J, between the domains of application, is the identity map: so that we have the
commuting diagram, in Figure [2] between the duality and the two interpretation maps.

But recall that, after making explicit the unstated consensus of the project of theoret-
ical equivalence in Section I noticed that this consensus aimed to stay formal and
to minimize matters of metaphysics. And I justified this consensus as sensible, by using a
notion of interpretation that assigned a basic ontology to the models, but remained quiet
about other metaphysical matters. And that quietism is, in its turn, justified by inten-
sional semantics’ appropriately modelling the interpretative practices of both realists and
empiricists: as in the interpretation maps that I defined in Section 2.1.2] Namely, recall
the discussion in that Section: realists and constructive empiricists can agree about the
interpretation of a theory or model, in other words about its basic ontology (‘the picture
of the world drawn by the theory’, to use van Fraassen’s (1980: pp. 14, 43, 57) words),
even though they have different degrees of belief in the entities that the ontology of the
theory postulates. Also, realists may disagree amongst themselves about a metaphysical
construal of those entities: think, for example, of Quine’s (1960: §12) referential indeter-
minacy, according to which the linguist, upon hearing the native utter the word ‘gavagai’
while pointing at a rabbit, might for simplicity translate it as ‘rabbit’—while still being
at a loss whether the objects to which this term applies are rabbits, or stages, i.e. brief
temporal parts of rabbits, or mereological fusions of spatial parts of rabbits.

In other words, whatever the formally coinciding domains of application are, one has
to impose on both sides the same ontological construal of terms, e.g. ‘energy is a property
and not a relation’, etc.

Thus, if numerical identity of the elements and relations in the domains of application—
or, in a weaker sense, the lack of a difference between them—is what we want, we need an
agreed philosophical conception of the ontology, i.e. of the domains of application: which
means that we now need to make our metaphysical commitments explicit, e.g. about
realism or empiricism and referential indeterminacy. This then amounts to a deeper
explication of what we mean by an ‘interpretation’ than just saying that it is a map.
Only then does the requirement, that the induced duality map, d (Eq. @), between the
domains of application be the identity, secure this lack of a difference.

Thus I will say that the domains of application are (numerically) the same (in a
weaker sense, that they lack a difference) if we have an agreed philosophical conception of
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the interpretation|

In conclusion: two models are physically equivalent iff (i) they are weakly theoretically
equivalent, and (ii) they have the same internal interpretation: where ‘sameness’ requires
that an agreed philosophical conception of the interpretation has been supplied. This is
the notion of theoretical equivalence that is suggested by dualities.

We can now be more precise about how weak theoretical equivalence can lead to phys-
ical equivalence, by comparing the diagrams in Figures [I] and 2] Evidently, we obtain
the diagram for physical equivalence, Figure , if the induced duality map, d, in Figure
happens to be the identity map (and provided the above-mentioned philosophical ex-
plication is also given). But this is not the generic situation, i.e. d is in general not the
identity map, as we saw in the example of Kramers-Wannier duality: since it maps high
temperature to low temperature, and vice-versa.

There is a second way to obtain a situation of theoretical, or physical, equivalence
from weak theoretical equivalence, i.e. Figure 2] The idea is to define a new pair of
interpretations using the induced duality map, as follows: @} :=i; and 7}, := do 19, where
both models now have D; as their domain of application, i.e. i} (m;) = i5(my) = D;. This
means that, in effect, we change ms’s domain of application, from Dy to D;. (Although
this definition treats the two models asymmetrically, there is an alternative definition that
maps to Dy rather than D;). While this may at first sight look ad hoc, it is in fact natural
if iy is an external interpretation, while i, is now an internal interpretationﬂ and it is
common practice among the physicists working on dualities.

For example, consider gauge-gravity duality, where m; is a gauge theory model and
ms is a quantum gravity model (more precisely, a version of string theory), and take iy be
the string theory interpretation of the quantum gravity model, while ¢; is a sophisticated,
internal interpretation of the gauge theory model. What we then learn about the inter-
pretation of the quantum gravity model is that an internal interpretation, i, of it exists:
and this is natural, given the existence of a duality. This “change of interpretation”, from
the external interpretation i; to the new internal interpretation ¢}, in fact models the
practices of the physicists who work on dualities: and the recent literature on dualities
has tried to articulate in what sense such interpretations give natural interpretations of
quantum gravity and quantum field theories. This is a large topic than I cannot discuss
here, but it has been central to the recent literature on dualities: see, for example, Dieks
et al. (2015), De Haro (2016, 2019), Huggett (2017), De Haro and Butterfield (2018),

30This is the content of the following remark in De Haro (2016: Section 1.3.2): ‘Doing so [establishing
physical equivalence] would require a deeper analysis of the notion of reference itself. Also, it is partly
a metaphysical question whether, or under what conditions, for example two objects that are physical
duplicates of each other (according to a given theory that describes all their properties) are also identical.
For a proposal for the metaphysics of duplicates, in terms of natural properties, see Lewis (1983: pp. 355-
365).

311f 4, is external, then it maps the whole model, M,, and not just the model triple m,. In that case, the
existence of an isomorphism d between the domains of application is very non-trivial, because the cardi-
nalities of the models considered are no longer the same. However, it can be achieved if i9(ms) = ia(Ma2),
which in effect means that s is already the external interpretation stripped of its “external connotations”,
i.e. in effect restricted to the model root (and for 7} and i3 to both be internal interpretations that map
to the same domain of application, the induced duality map d is not required to be an isomorphism).
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Read and Mgller-Nielsen (2018) 7]

2.3.2 When is a judgment of physical equivalence justified?

The above analysis of physical equivalence leaves unanswered an important epistemic
question, about whether we are justified in adopting an internal interpretation, hence judg-
ing two models to be physically equivalent. The question is, roughly speaking, whether
the internal interpretation is “detailed enough” and “general enough” that it cannot be
expected to change, for a given domain of application D. I call this condition unextend-
ability, and it is a condition on the interpreted theory. De Haro (2016: Section 1.3.3) gives
a technical definition of the two conditions for unextendability, the ‘detail’ and ‘general-
ity’ conditions. Roughly speaking, the condition that the interpreted theory is detailed
enough means that it describes the entire domain of application D, i.e. it does not leave
out any details. And the generality condition means that both the bare theory and the
domain of application D are general enough that the theory “cannot be extended” to a
theory covering a larger set of phenomena. Thus the theory is as general as it can/should
be, and D is an entire possible world, and cannot be extended beyond it.ﬁ For a discus-
sion of unextendability in the context of the effective field theory programme, in De Haro
(2016: Section 1.4).

Part of the unextendability requirement is a general point about the need for mathe-
matically consistent models (which is not the same as: ‘mathematically rigorous models’),
in order to address the question of when dual models may be taken to be physically equiva-
lent. For example, most of the solutions of Newtonian gravitation run into inconsistencies.
One can already see this in the most elementary examples: any two massive point particles
placed next to each other will attract and run into each other, developing a singularity—an
infinitely strong force, with the corresponding infinite potential energy—when the two ob-
jects coincide. And while this may be a consequence of idealizing massive bodies as point
particles, all of the approaches that derive forces for extended bodies use, to my knowledge,
the point particle case as their starting point (see for example Truesdell (1966: Eq. (1.4)),
Arnold (1989: pp. 133-135), Goldstein et al. (2002: pp. 134-136, 187, 224)). Thus the
pathologies seem pervasive: and so, the theory—as currently formulated—is inconsistent:
it does not make any predictions beyond a certain point.@ This may be no problem for

32Recently, Weatherall (2019) has discussed a similar view in the context of classical electric-magnetic
duality, where he introduces an ‘empirical significance functor’ that relates the empirical substructures
of the domains of application of the dual models. Weatherall, too, discusses the empirical inequivalence
of electric-magnetic duals on their ordinary (in my language, ‘external’) interpretations vs. their empir-
ical equivalence once an empirical significance functor is introduced (in my language, on an ‘internal’
interpretation, restricted to the observational conditionals).

33For some examples of unextendable theories, see De Haro (2016: Section 2.3). Notice that, on my
usage, a ‘model’ actually describes an entire set of possible worlds (all the possible worlds that satisfy
the dynamics). But it is simpler to phrase things in the jargon of ‘a possible world’.

34For a review of the (related) problems associated with summing infinite numbers of point-particle
forces acting on a massive body, and of the inconsistencies in cosmological applications of Newtonian
gravitation, see Vickers (2013: pp. 110-146). One might hope that there is a “cleaned-up” version of
Newtonian gravitation that is free of such pathologies, while making the same claims about the world.
But none of the strategies that I know of seem to work. For example, restricting the space of solutions to
only those solutions that are regular would leave us with virtually nothing: certainly nothing of interest
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ordinary uses of the theory, but it is a major obstacle if one wishes to discuss the puta-
tive physical equivalence between Newtonian gravitation and Newton-Cartan theory in a
justified manner, as discussed aboveﬂ or between two versions of Newtonian mechanics
with different standards of rest. For such discussions assume that the theory describes an
entire physically possible world—which it does not!m

The point is of course not new, and my critique is not a wholesale critique of possible
world-talk in physics, as one might take e.g. Wilson (2006: pp. 201-203) to be (for other
criticisms, see Frisch (2005: pp. 4-9) and Vickers (2013: pp. 243))["| Possible world-
talk is helpful even when it is not meant literally—and so, it can be applied to physical
equivalence if one is not worried about this judgment being justified. But if one wishes
to justify the judgment of physical equivalence, for which all agree one needs “a theory
of the whole world”, one would expect that the possible world-talk should be taken to be
literal. That is: because a justified judgment of physical equivalence (see above) entails
unextendability, an entire possible world is required to be associated with the theory.

As T expounded in De Haro (2018: Section 1.4), especially with the example of the
effective field theory programme, it seems to me that claims of physical equivalence—but
also any judgment of theoretical equivalence in physics—between incomplete or inconsis-
tent theories are not justified. Namely, if one is dealing with an effective theory, one must
always be prepared to see its interpretation change, precisely at those points at which
the theory becomes inconsistent—and that may call for a major overhaul of the theory’s
interpretation. In such cases, talk of the ‘possible worlds’ described by the theory cannot
be literal, since there are no such worlds. At best, there are limited domains of application
within larger worlds that are described by the theory. Thus general considerations of ‘toy

for the problem of two-body gravitational attraction that we started with, since it is from the two-body
point particle case that we derive most other solutions, including the extended ones. Also, restricting
the theory to the part of the domain of application where it is finite seems ad-hoc, and to not leave us
with anything like a principled, suitably predictive theory for everyday objects—thus it is not clear that
a domain of application exists on which the theory is finite. Finally, stabilising the singular solutions by
including electrical repulsion not only changes the theory—we are then no longer dealing with Newtonian
gravitation—but it also does not get rid of the inconsistencies, which now show up elsewhere. While we
await whether a mathematically consistent amendment of Newtonian gravitation is forthcoming, it is fair
to say that any such amendment is likely to give a different theory.

35Gee Frisch (2005: pp. 4, 9, 193-194), who defends the view that consistency is just one criterion of
theory assessment, and that one can apply inconsistent theories provided that one supplies additional
rules about how to apply the laws in various situations. In particular, he discusses causal constraints,
considerations of simplicity and mathematical tractability, and rules guiding the use of different parts
of the theory. I agree with this view, which admits that unextendable theories can be an exception (as
Frisch (2005: p. 8) himself admits, in the analogue case of a “theory of everything”).

36Frisch (2005: pp. 4, 7) also notices that consistency is built into both the semantic and the syntactic
conceptions of theories and that any account of theories in terms of possible worlds assumes that the
models (as instantiations of a theory) include structures ‘rich enough to represent possible worlds as
complex as ours’ (ibid, p. 8).

37The theme of the breakdown of a theory at a singularity as a “smoking gun for new physics” is
of course well-known, as well: for example, it motivates K. Wilson’s approach to renormalization. But
this does not conflict with my requirement of unextendable theories for a justified judgment physical
equivalence, nor should that requirement be confused with an unreasonable demand that the theory
be somehow “final”. It is simply in the nature of physical equivalence that it requires mathematically
well-defined theories.
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cosmologies’ or “theories of everything”, without regard for the finiteness and consistency
of the theory, are insufficient. Unextendability is a natural condition that is sufficient to
fix this, cf. De Haro (2016). I consider this to be one major contribution of dualities in
string theory and quantum field theory to analyses of theoretical equivalence in physics.

2.3.3 Comparing to other work on theoretical equivalence

In this Section, I comment on other recent work relating to theoretical equivalence, espe-
cially Butterfield (2018) and Read and Mgller-Nielsen (2018). A common theme in the
recent literature on dualities—and this is another aspect where dualities bear on discus-
sions of theoretical equivalence in physics—is that “physical equivalence is not automatic”.
There is by now indeed a consensus among those working on dualities that duality does
not invariably lead to physical equivalence (and I will substantiate the existence of this
consensus in a moment).

My comments here aim to: (A) first, point out four points where these three authors
went further than I did in De Haro (2015, 2016); and second, point out four specific in-
terpretative points where the current paper adds to previous work: two are interpretative
(B) and two are about sufficient conditions for physical equivalence (C).

A.  Four contributions of Butterfield (2018) and Read and Mpller-Nielsen (2018)

The novelty of Butterfield (2018) and Read and Mgller-Nielsen (2018) can be summarised
in the following four points:

(1) While all hands agree that “formally equivalent models can disagree”, i.e. they can
make different claims about the world even if their claims can be mapped to each other
one-to-one, Butterfield (2018) has emphasised this point clearly and vividly, in several
examples.

(2) Furthermore, Butterfield (2018) distinguishes two ways in which two models can
disagree: namely, by making contradictory assertions about the same subject-matter, or
by describing different subject-matters.

(3) Read and Mgller-Nielsen (2018) have distinguished two different approaches to du-
alities, which they dub the ‘interpretational’ and the ‘motivational” approaches (following
a similar distinction, for symmetries, in Mgller-Nielsen (2017)). By ‘approaches to dual-
ities’ I here mean different ways in which, when confronted with a duality, physicists or
philosophers may choose to approach the interpretative project. The main difference is as
follows: on the interpretational approach, the decision whether to interpret duality-related
models as being physically equivalent need not wait upon an explication of their shared
ontology, while on the motivational approach this explication is mandatory. (Within each
of the two approaches, Read and Mgller-Nielsen further distinguish two sub-positions,
but I will not go into these details.) Thus theirs is a methodological distinction reflecting
two different strategies for interpreting dual models¥| Notice that the interpretational

38Read and Mgller-Nielsen (2018) and De Haro (2018) discuss complementary aspects of the methodol-
ogy of dualities: while De Haro (2018) focusses on one aspect of the heuristic function of duality—mnamely,
on how duality functions within theory construction—Read and Mgller-Nielsen (2018) focus on the closely
related topic of approaches to interpretation—including, but not limited to, theory construction. Thus
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vs. motivational contrast does not lead to new interpretative options regarding dual pairs:
even though being an interpretationalist or a motivationalist does of course bear on the
kinds of interpretations that one is likely to adopt.

(4) Furthermore, Read and Mgller-Nielsen (2018) articulate the possibility that dual
models might not have physical interpretations, and they give this possibility a place in
their overall methodological account—namely, in what they call the ‘cautious motivational
view’ (more on this below, especially in footnote : and, as should be clear already from
Secti% 2.3.1] T agree with these authors about motivationalism being the preferred posi-
tion))

B. Interpretative attitudes and quietism

Let me now make a friendly mention of two points where I think that, in light of the
present work, the two discussed accounts of physical equivalence are not enough. The
first leads into the second: the first is about differing conceptions of physical equivalence
in the literature; the second is about quietism and realism.

The interpretational vs. motivational contrast of Read and Mgller-Nielsen (2018) gives
an interesting characterisation of different approaches to interpretation. The main con-
trast is that motivationalists say we are warranted to pronounce verdicts about physical
equivalence only if an explication of the common ontology of the models has been given.
But, in so far as it is a contrast based on the actions or attitudes taken by interpreters of
dualities, rather than on the reasons leading to those actions or attitudes, or on the notion
of physical equivalence itself, they do not seem to amount to fully fleshed-out intepreta-
tional stances. In particular, interpretationalism is heterogeneous and does not seem to
represent a single interpretative position. Their common trait is that interpretationalists
say we are warranted to draw verdicts of physical equivalence even in the absence of an
explication of the common ontology.

There is a third approach in the recent literature that, I think, is much more widely
represented than interpretationalism, which in Section I introduced as quietism:
namely, the stance of the authors that I quoted in Section [2.2.1] as the “consensus” re-
garding theoretical equivalence, who are engaged with the formal project of theoretical
equivalence, and for whom interpretative equivalence is a minimal requirement that their
project needs, but on which they do not wish to focus.

Interpretationalism seems to be less represented in the literature than one might at
first think. (Dewar (2015) seems to be one.) For example, Read and Mpgller-Nielsen
(2018: Section 5.1) quote Rickles as an example, but I do not see that the evidence for his

I disagree with Butterfield’s (2018: Section 1.2) characterisation, in his point (ii), of Read and Mgller-
Nielsen (2018) as being about the heuristic function of duality, rather than about interpreting dual
theories as now formulated. For their analysis applies to both cases. In other words, their project is
methodological but not always heuristic, in the sense of De Haro (2018).

39Extendable theories provide good examples of Read and Mgller-Nielsen’s (2018) observation, in point
(4), that an explication of the shared ontology of two models need not exist (see the discussion in the
previous Section). For inconsistent models only have limited ontologies, and so the question of the justifi-
cation of physical equivalence does not arise—there is no possible world described by the theory. However,
Read and Mpgller-Nielsen’s (2018) observation (4) does not amount to the theory’s unextendability: for
the former is a purely interpretative condition, while unextendability is both formal and interpretative.
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interpretationalism is more compelling than that for motivationalism or, indeed, quietism.
One reason for this is, I think, that Rickles (2017: p. 64, my emphasis) is not committed
to a realist notion of physical equivalence: ‘the equivalence is at the level of theories first
and foremost... We must therefore remain purely in the realm of theoretical descriptions
to avoid such ‘external’ [physical| confounders.” Thus it seems to me that Rickles is best
seen as a quietist.

Read and Mgller-Nielsen (2018) assume realistic interpretations of scientific theories.
Also Butterfield (2018) endorses realism in the sense of referential semantics. But I think
that referential semantics does not settle all ontological matters because not every on-
tology, in the sense of “realist” referential semantics, is realist in the metaphysical sense
(see the discussion in Section . Therefore, I have kept metaphysics as far from the
main substance of my proposal for theoretical equivalence as possible—specific metaphys-
ical discussions only coming in when we discuss physical equivalence. For the theory’s
interpretation admits both realist and non-realist explications and different resolutions of
referential indeterminacy (cf. Section [2.3.1).

C. Sufficient conditions for physical equivalence and consistency

It is worth mentioning two further points where I think that, in light of the present work,
the accounts of physical equivalence in the literature are not enough. The first is about
sufficient conditions for equivalence; the second is about the mathematical consistency
required for physical equivalence.

First, Butterfield (2018) does not list additional requirements on the kinds of bare
theories or of interpretations that, given a case of duality, can lead to physical equiva-
lence. For example, Butterfield (2018) is sympathetic to my conditions of unextendability
and internal interpretation, and he even uses the question of whether the theories in
question are ‘toy cosmologies’ or “theories of everything” (TOEs) as a criterion to de-
termine whether they are about the same subject-matter (2018: §4.1-§4.5, §6.2). The
reason seems to be ‘that for two dual TOEs, there is literally ‘no room in the cosmos’
for them to have separate but isomorphic subject-matters’ (§1.2). However, he does not
address the question of sufficient conditions for taking duality to give physical equivalence.

Second, so far as I can see, the mathematical inconsistencies of some of the theories
that are taken as examples of duality and theoretical equivalence (inconsistencies which I
discussed in Section have been largely overlooked in the justification of judgments
of theoretical equivalence: for example, in Newtonian gravitation. At least, it has not
voiced the problem as clearly as it could have. For example, Read and Mgller-Nielsen
(2018: Section 3.2) take Newtonian gravitation as their main detailed example.l?] And,
even though this example aims to illustrate symmetry, and only by analogy duality, the
authors ‘seek to provide a fully worked out example of what it means to fully explicate
symmetry-related models’ underlying ontology’ (ibid.). But, as I discussed in Section
[2.3.1} T doubt that one can fully explicate the ontology of Newton’s theory of gravitation

40T will be guilty of the same sin in the next Section: Maxwell’s theory, as usually formulated, is not
unextendable.
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without addressing its singularities and-or inconsistencies. Also Butterfield (2018: Section
4) discusses various examples of dualities: Newtonian mechanics with different standards
of rest, position-momentum duality in quantum mechanics, Kramers-Wannier duality,
Heisenberg vs. Schrodinger pictures in quantum mechanics, and Legendre vs. Hamilto-
nian classical mechanics. Agreed: mathematical consistency is less central to Butterfield’s
analysis, since he does not aim at a full explication of the ontology of these theories. But
the fact that also Butterfield does not distinguish between theories that are well-defined
(like his example of position-momentum duality in quantum mechanics) and those that
have singularities (like his example of Newtonian gravitation) confirms my point.

In Section[2.3.1] I argued that one must have consistent models in order to regard them
as justified cases of theoretical equivalence. This also helps one overcome the rhetoric of
“examples of dualities should not depend on advanced theoretical physics”. While the
simplicity of the examples is desirable, it cannot be had through inconsistent theories,
if what one wishes to discuss is the question of when one is justified in judging cases of
theoretical equivalence—which forces us to consider consistent theoriesEr] Indeed, duali-
ties between inconsistent models such as Newtonian gravitation are not justified cases of
theoretical equivalence, and so they can at best be useful as pedagogical ‘toy models™—
as Butterfield indeed seems to take them. In a slogan: a contemporary discussion of
theoretical equivalence must go beyond Leibniz, Clarke, and Galileo’s ship.

It seems that considerations of physical equivalence—and more specifically, the crite-
rion of unextendability—give us an interesting distinction in the types of theories that are
subject to duality: those in which there is an interesting question about the justification
of the judgment of physical equivalence under all suitable interpretations, and those for
which this question is answered in the negative.

3 Maxwell’s Theory of Electromagnetism

This Section contains the case study illustrating the Schema and the notion of theoretical
equivalence proposed in the previous Section: namely, Maxwell’s theory of electromag-
netism. Sections [3.1] and [3.2] introduce the bare theory and models, respectively. Section
explores theoretical equivalence, and so an interpretation is only required in that Sec-
tion. However, already in Sections [3.1] and [3.2] T will use the language of interpretation, in
the text around the formulas. This will be the standard theoretical physics talk of a ‘Fara-
day tensor’, ‘Maxwell’s equations’, a ‘gauge field’, etc. (and these terms already assume
an at least minimal physical interpretation), rather than the abstract talk of a ‘rank-
2 antisymmetric tensor’, a ‘linear inhomogeneous second-order differential equation’, a
‘Lie-algebra-valued one-form’, etc., which would be both tedious and unnecessary—since
we will need the physics talk in Section [3.3] This then reflects physical practice, where
bare theories are usually already, at least partly, interpreted. But such practice does not
commit us to a specific interpretation. For the same reasons, I will use the terms ‘theory’
and ‘models’ rather than ‘bare theory’ and ‘bare models’.

41De Haro and Butterfield (2018: Sections 4-5) contain what I think is the first (and perhaps the
simplest) rigorous example of a duality, for a quantum field theory.
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Also, since we will only consider internal interpretations, I will occasionally say that
the model root ‘contains the physically significant’ parts of a model, and so on—which is
indeed appropriate on an internal interpretation.

My choice of case study is partly motivated by the aim of being able to compare, in
upcoming work, the Schema’s judgments with Weatherall’s (2015, 2016, 2016a) proposal
of categorical equivalence as a criterion for theoretical equivalence (see the discussion in
the Introduction): and of course by the fact that Maxwell’s theory is an important and
well-known example in physics.

3.1 The electromagnetic theory

I begin, in this Section, by casting classical Maxwell’s theory in the language of the
Schema.

In a classical theory, a state is specified by a field or other variable obeying appropriate
requirements, for example linearity (a linear superposition of two fields again gives a field).
At this stage we want to stay general, and so we do not require that a field solve the
equations of motion—the Lagrangian and Hamiltonian formalisms, for example, require
the use of fields that do not satisfy the equations of motion. Thus we will take the
state-space of Maxwell’s theory of electromagnetism to be specified by elements that are
quadruples, (M, g, F, J), of: (i) a manifold, M (here, 4-dimensional: and, in fact, R?); (ii)
an invertible, smooth flat metric, g, with Lorentzian signature; (iii) a Faraday tensor, F’
(i.e. a square-integrable, rank-2 antisymmetric tensor);@ (iv) a conserved vector current,
J, with compact support.@ Thus, the state-space is a quadruple, § = (M, g, F,J), of
a fixed manifold and metric, a set of antisymmetric 2-forms (Faraday tensors), and a set
of 1-forms (conserved currents). Thus a state in this theory assigns a Faraday tensor
throughout all of M, not just an instantaneous state.

I will denote the members of the sets of Faraday tensors and conserved currents,
respectively F and 7, by F; and J;, where ¢ € I for some index set I. And it will be useful
to abbreviate the state-space and denote it by two of its members, i.e. the pair (F,J),
and even just by the set of Faraday tensors, F. (I will sometimes also, slightly abusing
notation, write e.g. F' € S or J € §, which is of course short for: F' € F, with F the third
component of the state-space, S, and J € J, with J the fourth component of the state-
space.) Notice that we have not yet specified that the Faraday tensors and the conserved
currents must be solutions of the equations of motionfl_z] The symmetries, a, of the state-
space are the diffeomorphisms (usually, for a flat metric: Poincaré transformations) that
preserve the metric, g.

But this is of course not sufficient to define a theory. We also need to specify the

42Thus Faraday tensors are members of the following space: F € F := L?(A?(M,R)).

43Much of the literature tends to not consider conditions such as the square-integrability of the Faraday
tensor and the compact support of the currents: but some such condition is required in order for the
quantities to be well-defined. Although square-integrability and compact support are strong conditions
which can be relaxed (the relaxation giving rise to a host of interesting and important questions such as
the status of “large gauge transformations”), we will for simplicity not consider such weakenings here.

44This is what physicists call working “off-shell”, and it is needed e.g. for discussing the Lagrangian
and Hamiltonian formalisms.
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quantities that can appear in the theory, i.e. the set Q. Recall, from Section that it
is useful to think of quantities as being the duals (in the mathematical sense!) of states,
i.e. as maps ) : S — R. At the linear level, we have a map whose image is the Faraday
tensor itself, evaluated at a point p € M, i.e. Q1[F] = F(z) . At the quadratic level, a
distinguished quantity in electrodynamics is the stress-energy tensor: it takes a Faraday
tensor as input, and it outputs the value of a quadratic polynomial in the Faraday tensor
(cf. also Section [2.1.2)). Its components are:

TulF) = == Fy(e) P (2) -

- g M Poe) F7(a) @

where g is the vacuum permeability. The 00-component is of course interpreted as
the electromagnetic energy (cf. Eq. ) Thus we can (at least tentatively: see the
further development below) regard a quantity, Q[(g,¢~', F,J)| as a functional of the
fields, including the metric and its inverse. Since we want to consider a local, covariant
theory, we will take the values of the quantities to be any covariant, local polynomials
(evaluated at the same spacetime point) that can be constructed from tensor powers of the
metric, the Faraday tensor, and the current, i.e. any polynomials in the fields g, g7 !, F, J,
with any covariant contractions of their indices.

However, we need a more general set of quantities, since integrals over suitable regions,
and derivatives of these polynomial quantities, calculated using the g-compatible connec-
tion, are also admissible, as long as they are covariant. For example, a typical quantity is
quadratic in the Faraday tensor, viz. f F N xF, which gives the Lagrangian of electro-
dynamlcsﬁ By a slight abuse of language, I will speak of the images of the maps, rather
than the maps themselves, as being the ‘quantities’. The total set of quantities (their
images) then includes the action of the differential and integral operators, d and [, on
the fields: T will denote it by Q := {Q (9,97, F, J;d, [) }rer, ses [

The dynamics is again a structured set, consisting of two equations (assumming a flat
metric in the second equation)ﬂ

D::{(F,J)ES‘dfg - m?J}' (8)

45Here are some details, which we will not need to use explicitly. We can include differentiation and
integration operators that act on the quantities. Thus the set of quantities, Q, is a set of maps, whose
images form an (abelian) algebra: namely, the universal enveloping algebra (i.e. the set of all local
polynomials) over the reals, generated by g, g~ !, F, J and by the derivative and integral operations acting
on them, which I will denote by d and [. Notice that, by construction, the quantities are covariant
under the symmetries. I will denote by Q (g7 g, F, J;d, Ik ) the universal enveloping algebra of these
fixed elements, g, g~ %, F, J;d, J, just discussed.

46Unlike @ (g,g_17F, J;d,f), which for fixed F' is both additive and multiplicative, Q is not (for
example, we cannot add or multiply terms with different F’s, except in the linear quantities).

47Notice that there is some flexibility as to where to put the Bianchi identity, i.e. the first of Eq. : it
could as well have been taken to be part of the definition of the state-space, S, rather than the dynamics,
D. In that case, we would have restricted the whole discussion to closed 2-forms. But, in view of possible
generalisations of this example that include magnetic monopoles, it is best to keep the Bianchi identity
as part of the dynamics (and this is also the normal physical usage, i.e. the Bianchi identity is part of
Maxwell’s equations, namely it is the 2-form field version of Gauss’s law for magnetism and Faraday’s
law).
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This set is a linear vector space. Namely, take pairs (Fy, J1), (F», J2) € S, each satisfying
Eq. (8): then, under linear addition, the resulting pair, (F’, J') := (a F1+b Fy,a J1+b J3) €
S, which is also be a member of the state-space (with a,b € R), also satisfies the dynamics,
Eq. . In short: F’ and J' also satisfy Eq. . The symmetries of course leave the
dynamics invariant, as they shold.

Notice that I have made the choice that “the theory is off-shell” while in the next
Section we will take the models to be on-shell: “the theory being off-shell” is physics jargon
for the theory’s fields not being required to satisfy the dynamics, while “the models being
on-shell” is jargon for the models’ fields satisfying the dynamics (i.e. the set of dynamical
equations), Eq. @ This choice is fine: the representation map from the theory to
the model triples then maps off-shell fields and quantities to on-shell ones, and it maps
dynamical equations that impose a constraint to dynamical equations that are identically
satisfied: and so, the representation map is a homomorphism (see the next three Sections).

What are the models of this theory, i.e. its representations? Let me now discuss some
fairly straightforward representations of T' that we can construct, and which correspond
to the models that Weatherall (2015) discusses (see the last paragraph in the preamble
to this Section).

3.2 The electromagnetic models

In this Section, I introduce the three models, whose theoretical equivalence we will assess.
Section introduces the Faraday model. Section introduces the gauge field
model. Finally, section [3.2.3] introduces the gauge orbit model.

3.2.1 The Faraday model

The Faraday model, which I introduce in this Section, is directly based on the formulation
of the theory, T', discussed in Section [3.1l For there is of course a representation of T,
i.e. a model in my sense from Section that is isomorphic to the subset of the theory
satisfying the dynamics: namely, the state-space is a set of quadruples, (M,n, F,J),
satisfying the equations of motion, Eq. (and from now on, we take M = R* and for
simplicity T will fix the metric g to be the Minkowski metric, denoted by n). This set
consists of all the solutions (F), J) to the equations of motion, and they are distinguished
by their boundary and initial conditions and symmetries. We can write this as follows:

SFaraday = { (M’g’ F7 J) | (F7 J) E DFaraday} 9 (9)

where the elements of the quadruple are defined as above, and the dynamics, Dy.,aqay, 1S
the set of pairs (F,.J) satisfying the two equations in Eq. . Again, the above set of
quadruples comes with a structure, viz. the model is closed under addition (i.e. the sum
of two solutions is again a solution). The set of quantities, then, is the set of functionals

48The reason for taking the theory to be off-shell, as mentioned in footnote is that this is required
for the Lagrangian and Hamiltonian formalisms. On the other hand, I will take the models to be on-shell
because this choice will give us, in upcoming work, a way to embed Weatherall’s categories into the
Schema. Notice that Weatherall’s theories are our models, and that he does not discuss theories in the
Schema’s sense of a bare theory (that is represented homomorphically by models in our sense).

32



on the state-space, whose images are constructed from the polynomials in the fields, as
before: Qpuaa = {Q(9,97 " F, J;d, [)}(F.7)€ Sparaaey - 1 shall denote this model triple by

mFaraday .

3.2.2 The gauge field model

This Section introduces the second model, namely the gauge field model: which we will
denote as Myr. This model is obtained from the observation that the closure condition
of the Faraday tensor, i.e. the first of Eq. , can be solved (if M = R*) by introducing
a smooth 1-form, A, such that:

F=dA. (10)

If A is smooth, then identically also: dF = d*A = 0. In addition, A satisfies d * dA =
o J. The state-space of the model then consists of the quadruples (M,n, A, J), viz.
Sar = {(M’ n, A, J)|d*dA:M0J}'

In this model, something interesting and important happens: namely, the quantities
may now depend on A. Since A is part of the specification of a state of a model, the
set of quantities, Qgp (77, A Jd, [ ), is the set of maps on the state-space whose images
are the covariant polynomials in A and J, together with their derivatives and integrals.
This is because of the general relation between state-space and quantities for classical
field theories that we discussed in Section [3.1} and it contrasts with the previous model,
where the quantities were restricted to those built from F' = dA and J only, i.e. no direct
A-dependence was allowed (in fact, no gauge field was defined).

To view this as a representation of the theory, T', we have to construct the representa-
tion map from S to Sgr (see Eq. ) In this representation we assign, to each Faraday
tensor, F' € S, an image gauge field, A € S¢r:

K (F) = A . (11)

However, this map is of course not unique. As is well known, for any smooth scalar
function A, the vector potentials A and A’ := A+ d\ give rise to the same Faraday tensor.
This means that, for each smooth A, there is a different map Eq. . But this just means
that we have different maps h“", each mapping to A 4+ d\ for different smooth functions
A (Eq. being the A = 0 case).

In fact, it is easy to show that each A;, i € I (the image of F; € S under the map
Eq. , where I is an index set labelling all solutions of Maxwell’s equations) must have
its own smooth function \;, so that the correct definition of the homomorphism isﬁ

Thus, as far as the gauge field is concerned (suppressing in the notation all the other parts
of the states, and also the quantities) a model state-space looks like:

Ser = {Al- +dn

z’e[,d*dAi:uOJi}. (13)

49The homomorphism hSF is linear, because S is a linear space. Now if each map comes with the
same smooth function A, the map is not linear: h®F(F; + Fy) = h%F(dA; + dAs) = hCF(d(41 + 42)) =
A+ Ag +dX # h®F(Ay) + hSF(As). This is remedied if hSF is defined as in Eq. .
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And likewise when we include quantities, {Q%"(n, A, A, J)}, and dynamics.lﬂ

Rather than having a single model, we now have a model for each set of gauge functions
{Ai}ier. We will denote the different models by mS§*.

Since m§" keeps A in its space of states, with a corresponding exact piece d\ chosen
by the stipulation, Eq. , the map h°F induces a symmetry of the state-space, Sgr.
Namely, it induces a translation along the gauge orbits which are images of the same value
of the Faraday tensor. So, Sgr comes equipped with an additional set of symmetries: let
us dub this set of symmetries oyy,).

But it is important to note that in this model, we do not define equivalence classes for
these symmetries, i.e. there is no judgment that gauge fields need to be identified along
gauge orbits: in fact, in this model they are not identified. Notice that such a model,
where purportedly “gauge” structure is part of the triple—and hence, on an internal
interpretation, is physical—is a representation of T', since Eq. is a homomorphism.

3.2.3 The gauge invariant model

This Section introduces a third model, the gauge invariant model, which is immediately
prompted by the discussion at the end of the previous Section. I will denote it by m;.

In this model, we take the homomorphism for the state-spaces to map to the set of
gauge orbits with representative A;:

ha(F) =[A]) ={Ai~A+d\ | \:R'" R}, iel. (14)

All the gauge fields related by an exact one-form belong to a gauge orbit that passes
through the (arbitrarily chosen) representative of the orbit, A;, and they are identified
under the equivalence relation[’]]

Thus the space of one-forms of this model—which is the central part of the state-
space—is the quotient of the state-space of the previous model by the gauge symmetry:
namely, it is the set of gauge orbits that satisty Maxwell’s equations:

Thus the states depend only on the gauge equivalence class. Notice that, in the present
case of classical electromagnetism on M = R* with a flat Minkowski metric, specifying an

50This model, once internally interpreted, is indeterministic: for a specification of initial conditions for
a state is compatible with infinitely many solutions in the future, the indeterminism being parametrised
by the gauge parameter A (cf. Belot (1995: pp. 88-90)). Also, the quantities @) that depend on the gauge
field A, rather than on the Faraday tensor, are multi-valued. But nevermind: my aim in this Section is
not to give a familiar model, but rather to illustrate two different ways of defining the model triple (by
contrasting this Section and the next).

51Presented with such models, where the state-space is quotented by a symmetry, there is a natural
question of whether it is mandatory to move to a formalism that automatically enforces the symmetry.
Dewar (2018) has for example introduced a jargon distinguishing a ‘reduced theory’, where the symmetry
is enforced by the formalism, and a ‘sophisticated’ version of the theory, where the formalism does
not enforce the symmetry—symmetries then act e.g. as isomorphisms. Dewar (2018) advocates the
sophisticated version: and I agree that a reformulation of the theory that enforces the symmetry is not
mandatory, even if it can be useful. The present formulation of Maxwell’s theory is in terms of the gauge
dependent variables, and the symmetry is implemented through an identification. This is reflected in the
use of specific structure, as I show below, which on an internal interpretation will indeed be redundant.
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equivalence class [A;] is equivalent to specifying a Faraday tensor F;. But the construction
of the state-space uses specific structure: both in the choice of a representative of the
gauge orbit A; (and Maxwell’s equations d * dA; = puoJ; are written down using this
representative) and in the choice of gauge functions A that move one along the gauge
orbit.

Thus the full state-space of this model is given by all quadruples (M, n, [A], J), satis-
fying the equations of motion. The quantities of this model are the same as in the Faraday
model, but written in terms of the gauge field A; rather than in terms of the Faraday
tensorﬂ The full model then is: Mg = (mg;; ), where A is an arbitrary representative
of the gauge-orbit that enters in the definition of the state-space, Eq. , and A in the
definition of the equivalence class, Eq. .

In this case, the homomorphism from the theory to the model is unique, and given by
Eq. . This is because the gauge field A is defined only up to an exact one-form.

3.3 Theoretical equivalence in electromagnetism

In this Section, I collect our findings from the previous Section regarding our model triples,
Mparadays Mar, ald Mg, S0 as to assess theoretical equivalence, according to the conditions

(A’) and (B’) in Section [2.2.1}

I first discuss (A’), i.e. the isomorphism of model roots (here, model triples). Re-
call that the state-space of the Faraday model triple, mp,,.q4.y, 1S the space of quadruples
(M, n, F,J) satisfying Maxwell’s equations. On the other hand, the state-space of the
gauge invariant model triple, mg,, consists of the quadruples (M, n,[A],J), satisfying
Maxwell’s equations. And we saw that the gauge orbits, [4;], are in one-to-one correspon-
dence to the Faraday tensors, Fj, because each gauge orbit fixes a Faraday tensor, and
vice versa. And also the dynamics between the two models is the same, though written
in different variables. So, to see if the spaces are isomorphic, we only need to see whether
the quantities defined on the phase space are isomorphic: and they are, for they are the
same set of quantities, only written either in terms of the Faraday tensor or in terms of
the gauge field. Thus we conclude that the Faraday and the gauge invariant model triples
are iSomorphic, My aay = Mar. D0 to check their theoretical equivalence, we also need
to check whether they satisfy condition (B’), i.e. if their internal interpretations match
(cf. below).

On the other hand, Mg,y and me, are not isomorphic to any of the models mgp,
because Faraday tensors are not in bijection with gauge fields A 4+ d\, as indicated by the
existence of multiple homomorphisms, Eq. (since this model does not quotient out
the gauge symmetry). Furthermore, the gauge field model triples, mp, contain strictly
more quantities than mp,,..., and mg, since the powers of A are also quantities of mGFﬁ

52Recall, from the previous Section, that quantities that depend directly on A, rather than through
the Faraday tensor, were multi-valued. In this model, we now drop such quantities, because they are
incompatible with the equivalence relation, Eq. , on the state-space .

530f course, the quantities of mg; can be obtained from the quantities of mer by projecting out all
polynomials in A. But anyhow, their state-spaces are not isomorphic.
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Thus, since Mg,y and Mg are not isomorphic, they cannot be theoretically equiva-
lent on their internal interpretations.

I now return to (B’) (cf. Section for Myaaasy and me;. This is the question
whether there is an induced duality map, cZ, between the domains of application of the
two model roots, M,y and me,. We only need to check this for the state-space, since
the quantities and dynamics trivially map onto each other. And we only need to check
this for the Faraday tensor and the gauge field, since the three remaining components,
M, n, J, of the state-space are the same.

The interpretation of the state-space in the Faraday model, Mg, 00y, 15 as follows

(cf. Eq. (3)):

Iraraday (F)) = ‘a coordinate-free specification of an electric and magnetic configuration,

from a source J’ . (16)

As in Section this interpretation is an intension: and it assumes that the (non-
dynamical) ‘source J’ has an established meaning, often by abstraction, through experi-
mentation and instrumentation. An extension would typically specify additional details
about the source, and how it is manipulated in experiments.

In the gauge invariant model, m;, we interpret the state-space as follows:

iai([A]) = ‘a coordinate-free specification of a state of light from a source J’. (17)

Again, this intension assumes that ‘a state of light’ has an established meaning—for
example, in terms of the direction of motion, wave number, and polarizations of light
waves—which together again specify electric and magnetic configurations, from the source
J.

Since each gauge orbit [A] uniquely specifies a Faraday tensor and vice versa, the
following induced duality map is well-defined as an isomorphism:

d (‘an electric and magnetic configuration’) := ‘a state of light’. (18)

Thus the two models are weakly theoretically equivalent: in one model, the states are the
states of the electric and magnetic fields, while in the other they are states of the (gauge
invariant part of the) gauge field, i.e. a vector field.

But I want to argue that we should draw a stronger conclusion: namely, that the
induced duality map is the identity map, d = id, so that the models are theoretically
equivalent, relative to these particular interpretations (cf. Section . Indeed, the two
interpretations simply seem to respond to different historical perspectives on the same
phenomenon (electric and magnetic phenomena vs. phenomena involving light). And
Maxwell’s unification (synthesising the insights and efforts of Faraday, Orsted, and many
others) showed that electromagnetic and light phenomena were the same. Thus, [A] and
I are completely equivalent in the bare model, and therefore their internal interpretations
are the same, i.e. they correspond to the same items in the world (the same current and
the same electric and magnetic fields). This is an identification of physical phenomena,
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prompted by experiment, which now has become part of how the theory is understoodﬂ
it is not an additional formal requirement. Thus:

‘electric and magnetic configurations’ = ‘a state of light’ . (19)

Using this, Eq. simply becomes an identity, and the two models are physically equiv-
alent, relative to this interpretation. That is: we have physical equivalence in the sense
of Figure [I}

4 Conclusion

In this paper I have given an explication of theoretical equivalence based on the Schema
for theories and duality, from De Haro (2016) and De Haro and Butterfield (2017). The
Schema’s account proposes interpretative and formal conditions of theoretical equivalence,
in two steps. In the first step, i.e. weak theoretical equivalence, the interpretative condi-
tion is the requirement that two theoretically equivalent models should have matching
internal interpretations, i.e. isomorphic domains of application. The formal condition is
isomorphism of models, but of a special kind: viz. isomorphism between model roots that
are homomorphs of a single theory. More specifically, when the models are triples, we
have triples of isomorphisms. In the second step, i.e. physical equivalence, the domains of
application are required to be the same.

The question of when one is justified in making a judgment of physical equivalence can
be answered by requiring that the models are unextendable. This suggests that many of
the toy examples of duality and of theoretical equivalence in the literature (including the
example discussed in Section |3|) are not justified cases of physical equivalence—and so,
the completion of these models may well modify such judgments. Examples of dualities
with unextendable theories are in De Haro (2016), Huggett (2017), and De Haro and
Butterfield (2018).

Elsewhere (De Haro (2016) and De Haro and Butterfield (2017)) we showed that the
Schema gives the right judgments about bosonization and about (a simple example of)
gauge-gravity duality. Work is underway to apply it to other examples.

Thus the Schema is seen to give an interesting and plausible notion of theoretical
equivalence, which can be applied to a broad class of cases—including cases, discussed in
this paper, for which it was not designed.

This also suggests that several of the interpretative questions that have been discussed
in detail not just in this paper, but by other recent authors working on dualities—about
internal vs. external interpretations, about unextendability and the justification of phys-
ical equivalence, and about the philosophical explication of interpretationﬂfshould be
of interest for accounts of theoretical equivalence that aim to apply to physical theories.

541t is also allowed by the formalism: for recall that, in the bare model triple mg;, a gauge orbit [A]
corresponds to a unique Faraday tensor F', and vice versa. Although mathematically these are not the
same objects, their function within the theory is the same—a specification of a state in the state-space as
a gauge orbit is the same as a specification as a Faraday tensor. (They also lead to the same quantities.)

55For some references where these interpretative questions are studied in detail, see Dieks et al. (2015),
Huggett (2017), De Haro (2015, 2016, 2019), Read and Mgller-Nielsen (2018), De Haro and Butterfield
(2017), Butterfield (2018).
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