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1. Introduction 

The idea at the core of the New Mechanical account of explanation can be summarized in the 

claim that explaining means showing ‘how things work’. This simple motto hints at three basic 

features of Mechanistic Explanation (ME): ME is an explanation-how, that implies the description of 

the processes underlying the phenomenon to be explained and of the entities that engage in such 

processes. These three elements trace a fundamental contrast with the view inherited from Hume and 

later from strict logical empiricism (see Creath 2017), focused on epistemic and formal features of 

science and according to which issues concerning the kind of entities and processes that lie within a 

theory’s domain are extraneous to science and belong instead to ontology or metaphysics. 

Philosophers belonging to the new mechanical philosophy believe that the received view of scientific 

explanation (Hempel 2001), pivoting on the notion of law of nature,1 overshadows this insight. 

Since its origin in the 17th century, mechanical philosophy aimed to explain natural phenomena 

by reducing them to mechanisms. Traditional attempts to define the concept of mechanism involved 

the identification of a limited set of fundamental elements as, for instance, contact action, action at a 

distance, inertial motion (see e.g. Hesse 2005), and, more recently, transmission of a mark, or of a 

conserved quantity (see Frisch, this volume). The new mechanical philosophy rejects this austere 

characterization of mechanisms and mechanistic explanation and aim at providing a novel, 

philosophically rigorous explication of the concept of mechanism and of its role in scientific 

explanation and practice. 

ME has been adopted with profit in philosophy of special sciences (for instance in biomedical 

sciences, e.g. in the explanation of chemical transmission at synapses ((Machamer, Darden and 

Craver 2000), MDC henceforth); but also in social sciences, e.g. the three kinds of social mechanisms 

in Coleman’s analysis of Max Weber’s account of the role of the Protestant ethic in the growth of 

capitalism (Hedström and Swedberg 1998)), where exceptionless regularities are rarely ever found. 

In physics, it is generally possible to formulate explanations in law-based form, with the result that 

the plurality of explanatory forms might be overlooked. This should not come as a surprise, given 

that physics was the main inspiration for logical empiricists, and, in particular, Newtonian physics 

                                                
1 Unless otherwise specified, in this paper we indicate with the expression ‘law of nature’ the non-metaphysically 

charged notion of exceptionless regularities that support counterfactuals. See Lange (this volume) for a variety of 
accounts of laws of nature. 



was a template for Hempel’s formulation of the covering law model. However, this situation is 

unfortunate, since, we will argue, knowing how things work is often part of the explanation of 

physical phenomena. In this chapter, we provide an introduction to the basic features of ME, with 

specific focus on its application to physics (section 1). The main part of the chapter is devoted to the 

defence of two theses: on the one hand, some domains of physics are not compatible with mechanistic 

reasoning and explanation (section 2); on the other hand, a comprehensive account of explanation in 

physics can’t dispense with ME (section 3). 

 

2. Mechanistic Explanation: general features 

A ME of a phenomenon P requires the description, which may be more or less idealized, of the 

mechanisms underlying the occurrence of P. The novelty of the new mechanical philosophy with 

respect to other accounts of mechanism (e.g. Salmon’s (1984), see also (Frisch this volume)) lies in 

its novel definition of mechanism as organized entities and activities. The literature displays many 

variations over this basic idea, here we report a minimal characterization of the concept:2 

“A mechanism for a phenomenon consists of entities (or parts) whose activities and interactions 

are organized in such a way that they produce the phenomenon”. (Glennan 2017, Ch. 2).” 

A familiar example might serve as an illustration. The pressure of a gas in equilibrium inside a 

piston at constant temperature increases when its volume decreases and vice versa. A ME of this 

phenomenon displays a kinetic model of the ideal gas, described as a mechanism composed of 

Newtonian atoms and molecules (entities), with constant, rapid and random motion (activities) and 

perfectly elastic collisions (interactions). The gas’ pressure corresponds to the force resulting from 

the totality of the particles’ hits on the wall of the container. The smaller is the volume occupied by 

the gas, the higher is the number of particles per unit of volume and the more frequent are the hits to 

the wall of the container. It follows that a reduction of volume corresponds to an increase of pressure. 

Mechanisms are organized in nested hierarchies, in the sense that a mechanism’s components 

are themselves mechanisms and their behaviour is therefore mechanistically explainable through 

description of its components and their activities (Glennan 2011; MDC, 5.1). However, a theory 

describing such a tiered structure of mechanistic composition, always bottoms-out with a stable set 

of mechanisms that are fundamental in that theory, in the sense that the behaviour of the entities that 

compose such mechanisms provide the basic building blocks of MEs in said domains and cannot be 

explained within the theory itself. Bottoming-out is domain-specific: while the behaviour of entities 

cannot be explained within a theory where they are fundamental, they might be explainable by the 

mechanisms of a lower-level theory. For instance, a gas in a piston is an elementary mechanism in 

                                                
2 Other definitions can be found e.g. in (MDC, 3), (Glennan 2002, S344), (Bechtel and Abrahamsen 2005) and (Illari 

and Williamson 2012). 



classical thermodynamics; its behaviour is not explainable within such a theory, but it can be 

explained by the lower-level mechanistic models displayed by the kinetic theory of gases.3 As another 

example, in fluid dynamics a fluid is a fundamental entity whose lack of resistance to deformation 

under the action of a force is unexplained. However, the lack of resistance to deformation is explained 

by the lower-level mechanistic decomposition: fluids are entities composed of particles whose 

bonding force is so weak, that it opposes a negligible resistance to any force cutting particles apart – 

therefore the lack of resistance to deformation. 

Bottoming-out raises the ontological issue whether and when the structure of nested hierarchy 

ends. It is currently matter of debate whether an ontologically fundamental mechanistic level can exist 

or whether there are mechanisms “all the way down”. According to Glennan (2017, ch. 5.5), this is 

an empirical question and the possibility of mechanisms “all the way down” cannot be ruled out a 

priori. 

The formulation of a ME requires in general the isolation of the entities that are the components 

of the mechanism (structural decomposition) and of the activities in which entities engage (functional 

decomposition). In a satisfactory ME, these two elements must be adequately integrated (Bechtel and 

Richardson 2010).  

A mechanism is always a mechanism for a behaviour. The same mechanical system may exhibit 

different behaviours, and which structural and functional decompositions are correct for an 

explanation depends on the behaviour to be explained (see Craver 2013). 

Another novelty of the new ME with respect to its predecessors is the rejection of explanatory 

fundamentalism, i.e. the assumption that the best explanation is provided in terms of the most 

fundamental theories (Craver 2007, p. 11, n. 13). Crucially, the new mechanical philosophy imposes 

no a priori constraint (other than basic standards of scientificity, e.g. coherence, empirical adequacy, 

predictive power or salience) to the features of such building blocks, which vary when the available 

fundamental mechanisms of a given domain are found insufficient to explain new discovered 

phenomena. For instance, consider the development of classical mechanical philosophy,4 based on 

the assumption that matter is the sole physical entity and motion and transmission of impulse by 

contact are the fundamental activities (Kochiras 2013). As new phenomena were discovered in optics, 

electricity and magnetism, the explanatory power of this model turned out to be insufficient, so that 

corpuscles as centres of force capable of attracting and repelling at a distance were added to the stable 

set of fundamental entities and activities. Finally, Maxwell’s theory established that electrical and 

magnetic phenomena could not be explained exclusively in terms of a theory of action (although at a 

distance) between bodies, but required a new kind of fundamental active physical entity: the 

                                                
3 See section 7 of this volume for further discussion of these explanations. 
4 See section 1 for detailed discussion of classical mechanics. 



electromagnetic field.5 

Entities interact in virtue of their properties, and interactions are the carriers of change and 

production. There is general consensus that there is no ME without change and production, which 

makes ME a productive account of causal explanation, as opposed to a relevance account (Hall 2004, 

Glennan 2011). 

The third constitutive element of a mechanism, together with entities and activities, is 

organization: a set of entities and their activities does not constitute a mechanism, if they are not 

arranged in the correct way. Spatio-temporal relations constitute the most common example of 

organization of mechanisms part: in order for one idle wheel to transmit torque between two others, 

it is not sufficient that the wheels’ teeth have the right size, but they must be spatially arranged in 

such a way that the teeth of the middle wheel fit together with the indentation of the others. Another 

example of organizational feature is the kind of geometry (e.g. Euclidean or Minkowskian) 

instantiated by the spatiotemporal properties of a mechanism. 

 

3. Limits of Mechanistic Explanation in physics 

As the familiar examples illustrated so far show, mechanisms can be found all over physics.6  

In this section we are going to show that ME is inapplicable to some explanations in physics. 

A significant limit for the mechanistic account is represented by the class of explanations that 

are independent of the micro-constitution or micro-dynamics of the systems displaying the behaviour 

to be explained. Notable examples in this class are explanations based on conservation laws (for 

example the explanation of Archimedes’ Principle, exploiting the conservation of energy (Lange 

2011)) and the universal behaviour of systems near their critical points (so-called renormalization 

group (RG) explanations (Batterman 2002)7). However, what conclusion should be drawn from this 

limit is matter of debate. Kuhlmann (2011), for instance, argues that RG explanations are actually 

MEs, therefore the fact that the new mechanistic account does not cover them shows that it is too 

restrictive. He therefore proposes a suitable modification of the account to include the class of what 

he calls ‘structural mechanisms’. 

Notice that, even granted that such explanations are not MEs, yet individual instances of the 

explanandum behaviour taken under consideration are mechanistically explained in physics. For 

instance, the RG explanation of why, when near their critical points, fluids of different molecular 

constitution behave in a similar way, might be non-mechanistic, but the explanation of the behaviour 

of an individual fluid near its critical point, is. This fact traces a significant difference between said 

                                                
5 For an overview of the development of the concept of field, see Mary Hesse’s magisterial book “Forces and Fields” 

(2005). 
6 See also (Kuhlmann 2017) for other examples. 
7 See Batterman (this volume) for more on universality. 



non-ME and others that, as well as being independent of the micro constitution or micro dynamics of 

the systems displaying the behaviour to be explained, are also understood as accounting for 

phenomena that are not even in principle mechanically explainable. 

As an example, take the geometrical explanation of length contraction in Special Relativity 

(SR).8 Three features separate this explanation from ME (Felline 2015). The first two features are the 

abstraction and generality of the model: since in this explanation no microphysical or dynamical 

element is relevant, its interpretation as ME would define the model of a ‘universal’ mechanism, 

implemented by every physical system irrespectively of its features – even of whether or not they are 

complex systems. Including such a kind of explanation, Felline argues, would imply a trivialization 

of the concept of mechanism, and of ME. The third feature is a consequence of the first two. Janssen 

(2013) argues that the universality of SR’s explanations justifies a kinematical interpretation of 

relativistic effects. Since (at least in its ‘orthodox’ interpretation)9 length contraction is not causally 

produced, therefore a fortiori it does not represent the behaviour of a mechanism. On the other hand, 

length contraction and time dilation are the instantiations of a feature of the spatio-temporal 

organization of any complex system relativistically described. Non-MEs of this kind are the so-called 

‘structural explanations’ and might include explanations in quantum theory, as for instance the 

explanations of non-locality (Dorato and Felline 2011) and of the uncertainty relations (Felline 2015). 

According to Kuhlmann and Glennan (2014), the vast majority of quantum phenomena, even 

when they depend on the underlying dynamical and constitutive details of the systems involved, is 

non-mechanistically explainable, for at least three reasons. First of all, entities in a mechanism interact 

in virtue of their properties, but quantum states do not associate determinate values to every property 

of a system. For instance, quantum states associated with a determinate spin value in the x axis, are 

not associated with a determinate spin value in the y axis, and vice versa. Following the standard 

interpretation of QT, such indeterminacy is ontological: quantum systems in a state with determinate 

spin value in the x axis do not possess a determinate spin in the y axis. According to Kuhlmann and 

Glennan, this situation is not compatible with ME: first of all, they argue, mechanisms are composed 

of objects with definite properties; secondly, components of a mechanism are interconnected via local 

interactions, therefore spatio-temporal localization is an especially important property for 

mechanisms, so the indeterminateness of position is especially problematic for ME; third, 

entanglement10 seems to undermine the possibility of decomposition into separate parts. However, 

Kuhlmann's and Glennan's conclusion can be contrasted on the basis of the arguably too restrictive 

characterization of mechanism they provide. For instance, as the two philosophers anticipate, one 

                                                
8 See Maudlin, this volume. 
9 Though see Brown and Read (this volume) for discussion of dissenting views. 
10 See Healey (this volume). 



might reject the assumption of localizability (Bechtel and Richardson 2010). Also, the problem with 

entanglement seems to have origin in the requirement that “parts have properties that are relatively 

stable over time and that at least theoretically these parts are subject to manipulation and isolation 

from the rest of the mechanism” ((Glennan 2008, 378), quoted in (Kuhlmann and Glennan 2014)) – 

but many mechanist accounts dispense from such a strict requirement of modularity (e.g. (MDC), 

(Bechtel 2009) and (Illari and Williamson 2012)). 

Finally, a notable case study was recently displayed in the debate over the physical status of the 

Higgs phenomenon, often called the Higgs ‘mechanism’, through which particles gain mass in the 

Standard Model. In the late 1950s the promising hypothesis was investigated that protons and 

neutrons gained mass through the spontaneous breaking of some symmetry. However, under such a 

hypothesis the theory seemed to predict the appearance of massless bosons (the Goldstone bosons), 

which evidence strongly suggests do not exist and that were therefore considered unphysical. During 

1960s, several independent researchers (Peter Higgs, after which the phenomenon was named, was 

between them) formulated a theoretical argument blocking the appearance of Goldstone bosons. The 

first step of such an argument consists in the introduction of additional fields, thanks to which the 

symmetry group of the Lagrangian becomes gauge invariant. Secondly, with a suitable choice of 

gauge one can obtain a unitary gauge where the Goldstone boson disappears and the resulting field 

possesses mass.11 This merely formal account is often illustrated through a metaphor according to 

which the Gauge boson “has eaten the Goldstone boson and grown heavy” (Coleman 1985, p. 123). 

However, many philosophers of science have been critical about this semi-popular explanation of the 

reality behind the phenomenon. Margaret Morrison (2003), for instance,  argues that the Higgs 

mechanism, as Maxwell's aether, possesses great heuristic importance, but is not realistically 

interpretable. According to Earman “[r]eaders of Scientific American can be satisfied with these just-

so stories. But philosophers of science should not be. For a genuine property like mass cannot be 

gained by eating descriptive fluff, which is just what gauge is.” (Earman 2004, 1239). Lyre (2012) 

argues that, despite its name, the Higgs mechanism does not provide a causal dynamical story 

necessary to ground a ME, while Stolzner (2016) relates the explanatory import of the formal account 

to its unifying power, rather than to its mechanical underpinning. 

 

4. The Role of Mechanistic Explanation in Physics 

In the previous section, we have shown how some explanations in physics are incompatible 

with the mechanistic account. It might be tempting to conclude that a law-based account of 

explanation is to be favoured in this domain of science. After all, the argument would go, the familiar 

                                                
11For an historical account of the discovery see (Baggott 2012). See (Coleman 1985) for a technical introduction. 



illustrative examples cited in section 2 are translatable in the form of derivations from laws. 

Contra such a conclusion, in this section we want to show that, in physics as well as in special 

sciences, a comprehensive account of scientific explanation and of its role in scientific practice 

requires the appeal to the notion of ME. 

One way of cashing out the contribution of a variety of explanation in science is the analysis of 

its role as a heuristic guide. MEs are guides to theory-testing, due to the ways in which they suggest 

manipulations, and to discovery, since “if one knows what kind of activity is needed to do something, 

then one seeks kinds of entities that can do it, and vice versa” (MDC, 17). On the contrary, an account 

that reduces explanation to the articulation of laws covering the explanandum does not display the 

same richness when applied to scientific practice (Bechtel and Abrahamsen 2005). Under this 

perspective, attempts at explaining phenomena by showing how things work has traced the path of 

scientific change throughout the history of physics. As an example, Maxwell's mechanical model of 

electromagnetic waves has been of crucial heuristic importance for the discovery of the 

electromagnetic nature of light (Nersessian 1984). 

Another way of demonstrating the role of ME in physics is through the analysis of cases where 

ME reflects and clarifies the desiderata of a suitable explanation, in a far richer way than law-based 

theories of explanation. As an illustrating example of how the mechanistic account can be superior to 

law-based accounts of explanation, in the rest of this section we analyse a time-honoured problem in 

quantum theory: the measurement problem. 

We can summarize the measurement problem as the problem of accounting for the apparent 

determinateness of results in quantum measurement.12 A widespread approach to this problem is the 

so-called ‘black box’ approach – that, rather than providing a genuine explanation, takes the notion 

of measurement as primitive and provides instructions for obtaining probabilities via the Born rule. 

The evolution of the quantum state in case of measurement is here described by the projection 

postulate, although it is typically unclear whether the latter should be interpreted as a physical process, 

or as a change in our epistemic state.13 

Part of the attractiveness of the black box approach consists in its avoidance of commitments 

over the kinds of entities and processes that constitute the world. However, without a description of 

measurement interactions, traditional black box solutions fail to provide a clear-cut criterion for the 

application of the projection postulate. This, in turn, complicates the possibility of a solution to the 

many issues gravitating around the measurement problem. For instance, depending on whether or not 

the projection postulate is interpreted as a real physical process (the so-called ‘collapse of the wave 

function’), the theory has different implications with respect to related problems of internal and 

                                                
12 See section 4 of this volume for more details. 
13 See Maroney (this volume) for details on this dispute. 



external consistency (e.g. Wigner’s friend scenarios (Wigner 1995 (1961)), or non-locality and the 

relationship with special relativity). 

In this sense, the standard black box solution does not provide a satisfactory explanation to the 

measurement problem – and yet, this limit seems not to be highlighted within the covering law 

(Hempel 2001, 281) or the unificationist models (Friedman 1974, 18). Contrarily to law-based 

accounts of explanation, and as we are about to argue more in details, the mechanistic account shows 

why, far from being motivated uniquely by metaphysical (as opposed to scientific) interests, so-called 

‘interpretative’ claims have a substantial role in a satisfactory explanation of the determinateness of 

our experience. 

Recently, other accounts have adopted a refined black box approach. In particular, antirealist 

interpretations of quantum theory (e.g. Fuchs et al. 2014) put forward an explanation away of the 

measurement problem where the determinateness of our experiences is seen as a fundamental but 

unproblematic brute fact. In such epistemic interpretations, the quantum state does not represent the 

outside world, but rather our mental state. For instance, according to QBism “quantum mechanics is 

a tool anyone can use to evaluate, on the basis of one’s past experience, one’s probabilistic 

expectations for one’s subsequent experience” (Fuchs et al. 2014, p.1). 

If the quantum state only represents our epistemic state, then the question ‘why do we have 

determinate experiences?’ does not araise in the first place: why should we expect, in a theory about 

mental states, anything else than determinate experiences? 

Felline (forthcoming) argues that this kind of antirealist approaches represents a Pyrrhic victory 

rather than a genuine solution to the measurement problem, since they are achieved at the price of 

dragging quantum theory outside the domain of empirical sciences. One of the pernicious 

consequences of this move is that explanations in quantum theory do not submit to the same standards 

of scientificity (e.g. that explanatory claims imply successful empirical predictions) as the rest of 

empirical science. 

In any case, this kind of antirealist solutions to the measurement problem rejects a necessary 

precondition of the inquiry carried in this chapter, i.e. that physics, as, more in general, empirical 

science, can represent the outside world. In as such, they are outside the scope of this chapter. In the 

following, we assume that a realist interpretation of quantum theory, according to which the theory 

describes the outside world, is possible. 

Contrary to black-box approaches, the majority of proposals deems necessary, for a 

comprehensive and coherent quantum theory, the explanation of the determinateness of measurement 

results. In turn, such an explanation requires the opening of the black box, i.e. the description of the 

interactions that characterize measurement processes and the clear interpretation of the projection 

postulate. In being guided by the ‘opening the black box’ prescription, the proposals go beyond a law-



based view of scientific explanation and are driven instead by the same spirit that we consider at the 

core of ME and summarize with the expression ‘showing how things work’. In this sense, the 

development of the debate over the measurement problem is driven by the search for a ME. 

This being said, specific solutions come in a variety of proposals that require further analysis. 

An important divide among the explanations provided by different interpretations of quantum 

theory concerns the role played by the wave-function, an entity defined in 3N-dimensional 

configuration space, where N is the number of particles considered. 

In the most straightforward reading of the quantum formalism, the wave-function is a concrete 

entity inhabiting configuration space. 

“The sorts of physical objects that wave-functions are, on this way of thinking, are (plainly) 

fields – which is to say that they are the sorts of objects whose states one specifies by specifying the 

values of some set of numbers at every point in the space where they live” (Albert 1996, 278) 

GRW theory (Ghirardi, Rimini, Weber 1986, see also Lewis (this volume)), Everettian 

interpretations (Saunders (this volume)) and Bohmian mechanics (see Tumulka (this volume)) are 

often interpreted in this way. 

What kind of explanation is at stake in these theories? Can a description of the measurement 

process where the wave-function plays a constitutive role, ground a ME? Yes, if we adopt – as we 

think we should – a mechanistic account that does not rule out a priori entities that do not live on a 

three-dimensional space. The above-cited theories describe different mechanisms underlying the 

occurrence of determinate measurement results. GRW implements a stochastic dynamics, according 

to which the wave-function randomly collapses into one of the terms of the superposition. 

According to Everettian interpretations, the wave-function does not collapse, but all branches 

of the superposition coexist after a measurement and all possible results are realized. Here, 

decoherence shows how classical behaviour (i.e. the loss of interference between branches) is caused 

to emerge from dynamical processes described by Schrödinger equation. 

Finally, in Bohmian mechanics the wave-function is interpreted as acting on one ‘universal 

particle’ like a physical field in configuration space (Albert 1996, 278). In this mechanistic 

decomposition, the interaction between wave-function and universal particle constitutes a new 

fundamental interaction. 

It might be objected at this point that the acknowledgement of the wave function as a 

mechanistic entity goes far beyond our most liberal pre-theoretical image of mechanism. Indeed, 

many accounts (e.g. Craver 2007) describe mechanisms as systems in space-time. However, 

revolutionary extensions of the stable set of mechanistic elements are not only allowed, but also 

envisaged by the new mechanistic account, as the above-cited example of the discovery of the 

electromagnetic field clearly illustrates. Before Maxwell, only material bodies were said to causally 



interact (by contact or at a distance) between each other. Maxwell's realist interpretation of the 

electromagnetic field forced the abandonment of this assumption and added the interaction between 

material bodies and physical space to the basic elements of a ME. In the same way, within wave-

function realist interpretations of QT the wave-function is causally active, and should therefore be 

accepted as a basic element of a ME. 

Besides being compatible with the explanations provided by wave-function ontologies, and 

contrarily to law-based accounts of explanation, the mechanical account is highly informative about 

the role that explanation has in the foundations of quantum theory. 

For instance, an explanatory deficiency of 3N-dimensional wave-function ontologies is that it 

is not clear how they cover the manifest image of everyday 3-dimensional objects with their 

dynamics, from a 3N-dimensional object. If, in other words, the world is in 3N-dimensions, how then 

do you get our 3-dimensional world? 

“the concern with these theories is that, because the wave-function lives on configuration space 

and not three-dimensional space, the explanatory scheme developed in classical theories in terms of 

a primitive ontology must be drastically revised. A new explanatory scheme is needed, and nobody 

has found one yet.” (Allori 2013, 13. Page numbering refers to the online version) 

The new mechanistic philosophy sheds a clarifying light over the issue raised in the above 

quote: the relation that typically grounds the relationship of explanatory relevance between higher 

and lower mechanistic levels is composition; however, there is no straightforward compositional 

relation between the (higher level) three-dimensional entities of our experience and the (lower level) 

wave-function in 3N dimensions. 

In Bohmian mechanics, a way to overcome this problem is “to introduce the notion of a multi-

field, a configuration of which assigns properties to sets or fusions of n points, and to view n-particle 

wave-functions as corresponding to multi-fields on ordinary three-space rather than to fields on the 

much larger configuration space of the system.” (Belot, 2012, 5-6) In this interpretation, 3-

dimensional macroscopic objects are composed of 3-dimensional microscopic objects, and this 

relationship makes it possible for the lower level mechanism to explain the behaviour of the higher 

level entities. Another notable solution, this time in the context of Everettian decoherence-based 

explanations of determinateness, is put forward in (Wallace 2003, 2010) – a strategy pivoting on a 

functionalist criterion for the identification of macro-objects, in concordance with the perspectivalist 

account of mechanistic description and explanation (e.g. Craver 2013). 

The direct rival of the wave-function ontology is the so-called primitive ontology approach 

(Allori et al. 2008), based on the assumption that the wave-function has a ‘nomological status’, while 

the only real physical entities are three-dimensional objects with a well-defined dynamics. Under this 

approach, spontaneous collapse interpretations can be articulated with an ontology of flashes (Bell 



1987) or density of stuff (Benatti et al. 1985). Many-worlds theories might be implemented with a 

similar 3-dimensional density field ontology (Allori et al. 2011); however, the bulk of the work in 

this direction was developed in the framework of Bohmian mechanics. 

In the version originally put forward in (Dürr et al. 1992), the primitive ontology approach can’t 

be covered by the mechanistic account. In fact, while in the latter only concrete objects of physical 

reality, their properties and organization play an explanatory role, in this interpretation of Bohmian 

mechanics the wave-function is not part of the basic ontology of the world, and yet it plays an 

irreplaceable explanatory role. Following this view, Goldstein and Zanghì (2013) describe the wave-

function as a ‘nomological entity’ that ‘governs’ the behaviour of particles (going in this way beyond 

the ontologically neutral view of laws as exceptionless regularities). However, if we discard a naive 

literal reading of the ‘governing’ talk, it is unclear how this metaphor should be interpreted. Notice 

that, since the explanatory role of the wave-function as a nomological entity goes beyond the 

epistemic, formal role that laws as exceptionless regularities hold in the covering law (or the 

unificationist) model of explanation, this version of the primitive ontology approach does not 

naturally fit with law-based accounts of explanation, either. It is because of the unclear explanatory 

import of this version of the primitive ontology approach that, notwithstanding the apparent 

incompatibility of such an account with ME, its use as a counterexample to the ME account begs the 

question.  

Moreover, other primitive ontologies exist that provide alternatives to the ‘governing’ 

explanation, easily accountable as mechanistic, as for instance dispositionalist interpretations (e.g. 

Esfeld et al. 2013), that avoid any appeal to laws of nature, or Humean approaches (e.g. Callender 

2015), where laws of nature play a role that is openly conceded by the new mechanistic philosophy 

(Craver and Kaiser 2013). 

This short survey of solutions to the measurement problem shows that the mechanistic account 

is not only compatible with (some explanations provided by) contemporary approaches to quantum 

theory, but it is also highly informative with respect to the constraints and desiderata of a satisfactory 

solution to the measurement problem, and to the role that explanation has in the foundations of 

quantum theory. 

To this conclusion, it might be countered that the measurement problem, together with the other 

issues belonging to the so-called ‘interpretation’ of quantum theory, is a metaphysical, rather than a 

scientific, problem. However, such a categorical distinction between science and metaphysics is 

inadequate when applied to issues like the measurement problem, which, pivotal as it is for the 

achievement of a coherent quantum theory, can’t be considered external to science. On the contrary, 

this survey illustrates how the new mechanistic account of explanation has the virtue of showing that 

and how the question of what kind of entities and processes underlie phenomena is indeed part and 



parcel of physics and science. 
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