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Abstract: There currently exists no theory that explicitly demonstrates compatibility of

the Standard Model in its operational regime with the general theory of relativity in an

appropriate limit. Here we present a novel theory of quantum gravity that meets required

compatibility, derived from Bayesian and holographic principles. Gravity is not understood

as force mediated by gravitons but fundamentally as emergent spacetime dependent on

entanglement. Both spacetime and quantum mechanics are understood as arising out of

observer's knowledge of the world, instead of pre-existing before an observer. Spacetime

exists as a picture of quantum-mechanical knowledge obtained from signals an observer

received, and the general theory of relativity is understood as an equation of state, as in Ja-

cobson (1995). Despite some departures from conventional quantum gravity understanding,

the theory maintains holographic roots and upholds AdS/CFT.
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1 Introduction

Theories that recover the general theory of relativity and realistic spacetime in classical

limits - most famously, string-theoretic models - exist. Theories that recover the Standard

Model in weak gravity regime also exist. However, physicists are yet to demonstrate that
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some theory recovers both in appropriate limits - a good summary of the current state of

quantum gravity research.

Here we present a theory of quantum gravity that does recover both - the Bayesian

theory of gravity. The new theory does not present new equations unknown to quantum

gravity physicists - thus emphasis is on how di�erent pieces �t together. In particular, we

argue that dominant physical interpretations of probability and gravity were what prevented

construction of an empirically consistent theory of quantum gravity. In a way, this is like

how Lorentz transformation was discovered before Albert Einstein, but he was �rst to

construct a coherent interpretation of a theory such that it can actually be used in full

power. Despite some departures from conventional views of quantum gravity, our theory

only is a re-interpretation of AdS/CFT[1][2][3] suitably generalized to other contexts not

involving boundary-bulk relationship - thus the point of departures is not of mathematical

character but of how di�erent pieces are interpreted and �t together. For the question of

recovering both the Standard Model and the general theory of relativity in appropriate

limits, A/4 theory of spacetime is su�cient - QM-P, which is the other component of the

Bayesian theory of gravity, is not needed.

In this article, we interpret the general theory of relativity as an equation of state in

thermodynamic contexts - following Jacobson (1995)[4]. But it is one step to derive general

relativity as a thermodynamic equation of state, and another leap to go further into general

theory of gravity - is gravity of non-equilibrium thermodynamic nature (thus spacetime

only exists in restricted circumstances) or beyond thermodynamics (spacetime and gravity

may make sense at all times)? The Bayesian theory of gravity states that spacetime does

exist at all times, and successfully generalizes Jacobson (1995). Spacetime is understood as

a way of picturing a quantum state vector.

The theory relies on two components: 1) objective Bayesian interpretation of probability[5]

that includes the principle of maximum entropy and minimum Fisher information, which

culminates in QM-P that includes the partition function constraint 2) extracting spacetime

out of quantum entanglement by inverse Radon transform, e�ectively performing tomogra-

phy, given classical Ryu-Takayanagi relation[6]. (A/4 theory of spacetime)

The �catch phrases� that describe the theory very concisely can be given as follow:

• QM = Bayes (Quantum mechanics = Bayesian statistics with additional constraints

and requirements)

• Entanglement = Spacetime (entanglement generates a unique spacetime that is not

superimposed - not in superposition.)

• GR = Local thermodynamics, in fashion of Jacobson (1995)[4].

• A/4 theory of spacetime (which is directly utilizing Ryu-Takayanagi relation[6].)

• Gravity puri�es an irreducible subsystem.

• Measurement is a continuous never-ending process.
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• No collapse (there is no breakdown of Schrödinger equation - it describes fully evolu-

tion of a state vector from the beginning of the universe to the end.)

• Strong complementarity (Di�erent observers may have di�erent descriptions and state

vectors of the universe.)

In objective Bayesian fashion, quantum state vector is interpreted as representing ob-

server's neutral probabilistic knowledge on possible outcomes of the world. Since entan-

glement determines quantum gravity, gravity is no longer understood as a physical force

but arising out of an observer trying to picture the world consistently, using probabilistic

knowledge.

Enforced di�erentiability of state vector avoids discontinuous state vector collapse,

thereby resolving the measurement problem. Avoidance of discontinuous state vector col-

lapse raises the question of what a measurement is, and this is to be tackled before �nally

presenting the quantum gravity theory.

We �rst provide two important motivations toward the Bayesian theory of gravity. We

then review �controversies� surrounding the measurement problem and nature of quantum

gravity, as clarifying nature of measurements and quantum gravity is critical in our the-

ory - however, they do not necessarily have to be read to understand the theory. Next,

we comment on how quantum mechanics is derived from more fundamental consistency

requirements for probabilistic inference, combined with physical constraints - the theory of

QM-P. Afterwards, the Bayesian theory of quantum gravity is completed with A/4 theory

of spacetime, with demonstration of compatibility of the general theory of relativity with

the Standard Model in its operational domain. More precisely, we demonstrate compati-

bility of general relativity in its operational domain (local equilibrium) with any quantum

theory admitting Rindler modular Hamiltonian.

While the Bayesian theory of gravity consists of component theories of QM-P and A/4
theory of spacetime, each component is an independent theory, and does not rely on other

components. The component theory that purely concerns with gravity questions is A/4
theory of spacetime. The component theory that concerns with how entanglement changes

is QM-P, but other quantum theories would work �ne as far as they determine state vector

evolution in order to allow calculations in A/4 theory of spacetime. For those preferring to

read this article in a non-Bayesian direction, it is recommended to start from the discussion

of the classical Ryu-Takayanagi relation[6], though understanding theoretical motivations

and the discussion on superposition of gravity may be of additional aids in understanding

A/4 theory of spacetime.

We use Planck units (or sometimes referred to as natural units) throughout this article

- thus, Boltzmann constant kB = 1, speed of light c = 1, reduced Planck constant ~ = 1.

Furthermore, we set gravitational constant G = 1, and Guv refers to the (component form

of) Einstein tensor. Schrödinger picture of quantum mechanics is used unless otherwise

noted.
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2 Theoretical motivations

The two important theoretical motivations lead toward features of the Bayesian theory of

gravity:

• Classical Ryu-Takayanagi (RT) relation[6] without quantum corrections. Technically,

the RT equation without quantum corrections already does provide a theory of quan-

tum gravity, but it has never been interpreted this way for �good� reasons. This forms

A/4 theory of spacetime part of the Bayesian theory of gravity.

• Black hole complementarity[7]. We argue that a Bayesian interpretation of state

vector is more natural with black hole complementarity.

The statement that classical RT relation is enough as a consistent theory of gravity is to

be demonstrated when A/4 theory of spacetime is �nally presented in this article. Here

we focus on why classical RT relation was considered insu�cient. As to be discussed

again, conventional understanding is that just like di�erent outcomes are superimposed

in non-gravitational quantum mechanics (superposition), di�erent gravitational outcomes

must be superimposed. The classical RT relation maps area to entanglement entropy, but

�area� is ill-de�ned when di�erent outcomes are superimposed. Semiclassical understanding

allows area term to be de�ned, but it still only counts as an approximation in conventional

understanding. From this view, the classical RT relation can never be a consistent theory of

quantum gravity. We demonstrate in this article that this is not the case. Just to be clear,

the classical RT relation as being fundamental does not refute AdS/CFT[1]. Our theoretical

framework is really about re�ning what theories actually are gravitational theories of our

world after generalizing AdS/CFT. That the classical RT relation produces an empirically

consistent theory of gravity, when we so far do not have any such theory, is an enough

theoretical justi�cation for the theory, but interested readers are referred to the discussion

on superposition of gravity in this article, where the �regularization problem� surrounding

superposition of spacetime is discussed.

We focus more about black hole complementarity here. What is black hole complemen-

tarity? A brief argument, following terminology in the AMPS �rewall[8], goes as follows.

Let A be a subsystem of the Hawking radiation emitted long time ago, B be a subsystem

of the radiation just being emitted, and C be its black hole interior Hawking partner. If

one considers A, B and C as �separate� subsystems, then we get the strong subadditivity

paradox[8] in case conventional understanding of quantum gravity is correct - this is the

modern form of black hole information paradox. Black hole complementarity was under-

stood to �x this issue by arguing that no observer can access all of A, B and C as separate

subsystems - though this detail itself is not part of the original postulates of black hole

complementarity[7]. The AMPS argument[8] was that an observer can access A, B and C,

and thus strong subadditivity paradox is back alive. The questions we can ask are:

• Can AMPS contradiction be fully con�rmed in an experiment? And if not, is theo-

retical inconsistency posed by access to all of A, B and C enough to be problematic?
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• Is C really a separate subsystem even before asking about access to A, B and C?

For example, the Papadodimas-Raju program[9] argues that it is not - which would

dissolve away the strong subadditivity paradox. Black hole complementarity then

is understood as C not being a separate subsystem from other subsystems. Just as

an observer cannot measure in di�erent bases simultaneously - complementarity, an

observer cannot simultaneously access two descriptions involving a black hole simul-

taneously in black hole complementarity.

If we take state vector or its probabilistic contents as physical (ontic), instead of Bayesian

(epistemic), it is unclear how AMPS inconsistency, if it exists and even if an experiment

cannot fully con�rm contradictions, can be brushed aside. After all, probability is some-

thing real, driven by physical stochastic processes in a physical interpretation of probability.

If entanglement is of epistemic and Bayesian nature, then as far as an experiment cannot

con�rm inconsistency, there is no theoretical and empirical contradiction. One can call this

�strong complementarity� - the view we follow in this article. A more correct view, though,

would be that strong complementarity by nature precludes possibility of experimental in-

consistency. Note that the Papadodimas-Raju program is not necessarily at odd with this

strong complementarity view.

Even when one takes the Papadodimas-Raju program to be a valid resolution to the

strong subadditivity paradox, a Bayesian and epistemic interpretation of probability helps.

As to be discussed, one may ask why one description is imposed to some observer, while

another is imposed for another observer. Usually, we assume that not only a single observer

but also di�erent observers can only access, or be governed by, the same description of the

universe. Black hole complementarity suggests that multiple observers may access di�erent

descriptions of the universe, thus extending the notion of complementarity. This opens

up new consistency questions in case probability is physical. Switching to a Bayesian and

epistemic interpretation of probability allows us to simply dissolve consistency questions as

non-existent.

Having settled to a Bayesian understanding of probability, we must ask how a unique

state vector to an observer can be assigned. Unlike in usual statistics, where any prior

and appropriately good posterior results are reasonably �ne, physics does not seem to

have that luxury - though a di�erent opinion exists, especially from QBism[10]. But even

in Bayesian statistics, objective Bayesian analysis exists, arguing that there does exist a

unique consistent way of doing statistics, with principles mostly involving the principle of

maximum entropy (MaxENT)[11] and minimum Fisher information (minFisher). We utilize

both principles, but the latter is used only to derive Schrödinger equation from purely

statistical and physical considerations. Thus, as far as one already accept Schrödinger

equation, minFisher is not utilized. It is MaxENT that is of critical importance for QM-P.

Bayesian parts of the Bayesian theory of gravity - called QM-P - do not have to be

assumed in order for the A/4 theory part to be consistent, as far as appropriate non-

gravitational state vector evolution can be provided. Given non-gravitational state vector

evolution, the A/4 theory can provide corresponding descriptions of gravity. But since

entropy is mapped to spacetime, Bayesian interpretation still is a natural setting for the
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A/4 theory.

3 Background: measurement problem

This part of the article is written to provide a background on nature of measurements

such that QM-P may be understood more clearly - but it is not necessary to read this

part to understand the Bayesian theory of gravity. The measurement problem in quantum

mechanics can be understood in three parts:

• Discontinuity of state vector when a measurement is done, restricting Schrödinger

equation to piecewise applications (that cannot be applied for entire evolution).

• Even if one accepts discontinuous evolution, quantum probability is very di�erent

from classical probability.

• Lack of an explanation as to when a particular measurement occurs, or reality exists.

Let us explore the second part �rst. Mathematically, the problem is that in many circum-

stances,

P (xt) 6=
∑

x0∈X0

P (x0)P (x0 → xt) (3.1)

where xt is an outcome at time t > 0 and Xt is the set of all possible outcomes at time

t. P (xt) refers to probability determined from state vector at time t,
∑

xt∈Xt
P (xt) =

1. P (x0 → xt) refers to transition probability, determined from transition amplitude.

Equation 3.1 is a consequence of quantum superposition, and it is not consistent with

classical probability. In other words, an outcome is not completely separate from others,

unlike in classical probability. In this article, we break away from this problem by adopting

the Bayesian notion of probability.

In contrast, conventional approaches to quantum mechanics mostly accept discontinuity

of state vector, sometimes called collapse of state vector. Reality simply does not exist

before one measures some outcome - thus it makes no sense to talk of P (xt) independently

of actual measurement xt. Amplitude, not probability, matters between measurements,

and quantum mechanics only provides correct probabilistic predictions at the moment of

the measurement. Schrödinger equation only applies between measurements to provide

predictions from one measurement outcome to the next outcome.

In conventional approaches to quantum mechanics, because of Equation 3.1, we cannot

understand reality as if it is measurement-independent. There are times reality does not

exist - or exists as fully quantum - and when reality suddenly exists. When one observes

some de�nite outcome, instead of being condemned to probabilistic knowledge or belief, is

left unexplained.

Is discontinuity of state vector much of a problem? It is not so if one accepts a state

vector represents probability of outcomes that is to be updated when new observations or

measurements arrive - in other words, Bayesian (epistemic) interpretation of probability.

As far as conventional approaches can be reconciled with this Bayesian vision, they are not

that di�erent from the theory of quantum gravity to be explored in this article. What is
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really problematic, then, is the third issue - lack of an explanation as to when reality exists

in apparently anti-realist quantum mechanics. As far as we assert ourselves as users of

quantum mechanics having freedom to measure or not measure, even this is not a problem.

When we choose to measure, we get outcomes and state vector is updated necessarily

discontinuously. However, this makes us something of a constrained god - having freedom

to choose reality we want under constraints of physics. And one can replace humans with

other types of observers as well.

The above point basically was about an intuition that one should be able to de�ne a

measurement using physical laws, instead of being an independent notion. The collapse un-

derstanding violates such an intuition. There are thus alternative approaches that purport

to eliminate collapse completely. One of the most popular understandings is many-worlds

interpretation (MWI) - also referred to as Everettian interpretation of quantum mechanics.

Because of space constraints, and given that this article is not a quantum foundation paper,

we will focus on particular variants of MWI only. We acknowledge that there may even

exist variants of MWI accepting the collapse postulate.

We argue that despite the claim that MWI simply is an interpretation of quantum

mechanics and therefore gives same predictions of other interpretations, variants of MWI

that deny the collapse postulate do make di�erent predictions from other interpretations

if possible Hamiltonians are not constrained. The argument is simple: if MWI upholds

continuous evolution of state vector and breaks away from the collapse postulate such that

a measurement outcome is understood to show one particular branch of entire state vector,

then depending on a Hamiltonian, recoherence of di�erent world branches is possible such

that it would invalidate predictions made from state vector collapsed to the measurement

outcome[12]. Decoherence[13] may explain why one can approximately point out when a

world branch can be identi�ed and thus one can form predictions as if state vector has

collapsed, but this still leaves open possibility of recoherence.

There are two main roads one can take even in these variants of MWI given above:

• Accept that recoherence of world branches (post-measurement) is possible. This runs

contrary to conventional approaches to quantum mechanics that denies such recoher-

ence.

• Physical Hamiltonians would ban possibility of recoherence, making MWI completely

identical to predictions in conventional approaches.

We do not take any of these paths in this article. We argue instead that while a

state vector is updated for measurement outcomes, this update does not necessarily have

to be discontinuous. In fact, we nowadays know that any measurement in reality is not an

instantaneous process. An observer continuously receives signals from changes of her own

states such that state vector is updated accordingly. When an observer assigns probability of

1 to a particular outcome of a measured subsystem in question, one says that a measurement

process is completed, and a state vector dutifully captures this information. In practice

though, there never really is an assignment of probability 1 to a particular outcome. A

discovery of Higgs boson, for example, is not a de�nitive discovery in non-statistical sense.
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We believe that the path underlined above resolves the measurement problem more

nicely. First, evolution of a state vector is continuous and there is no collapse. Second,

there is no need to worry about recoherence of world branches that invalidates the use

of �collapsed� state vectors. Third, we do not have to worry about de�ning when and

how a measurement occurs - a measurement simply is change of states of an observer which

happens continuously. An observer perceives reality as if an observer continuously updates a

state vector based on continuous variations of observer states. For matters of actual physics,

one can simply say that an observer updates a state vector continuously. Intrinsically, an

observer can only probabilistically infer other subsystems - thus state vector only dutifully

captures probabilistic con�dence one has on states of other subsystems. We underline a

unique updating mechanism in this article that eliminates any subjective aspect that may

enter into updating a state vector.

The statement that state vector encodes statistical and probabilistic information needs

clari�cation, given that di�erent bases (plural of basis) can be used to measure reality. We

resolve this basis selection issue by extending the measurement (observable) postulate to a

reduced density matrix of a subsystem being measured. The measurement postulate states

that applying an observable O to a state vector |Ψ〉 (O|Ψ〉) can only give measurement

outcomes as real multiples of eigenvectors of O, given that O is constrained to a self-adjoint

operator. Since a density matrix is a self-adjoint operator, it is feasible to attempt applying

the postulate. Of course a density matrix typically is not considered an observable, given

its dependence on state vector. Thus we note that this is an extension of the usual inter-

pretation of the measurement postulate. Given this postulate, we can give a basis on which

an observer would speak of statistical and probabilistic information on a subsystem being

measured, given that it is almost impossible to know the subsystem exactly. When state

evolves continuously over time, a chosen basis by the measurement postulate in Schrödinger

picture transforms continuously over time as well.

Thus we are re-interpreting quantum mechanics as providing a statistical toolkit to

infer other subsystems in terms of probabilistic information on other physical subsystems

based on variations of observer states. It is thus possible that di�erent observers have

di�erent state vectors of the same universe. Because quantum mechanics is thought of as

being observer-centric, with state vector being purely epistemic, inconsistency is blocked

right from conception.

We emphasize that our interpretation does not add anything to postulates of quantum

mechanics (and we eliminate the collapse postulate), other than clarifying and interpreting

di�erent concepts used in quantum mechanics.

What follows, after discussing nature of quantum gravity, is re�ning details on this

interpretation. The Bayesian theory of gravity in this article depends on the interpretation.

We use quantum reconstruction (or simply derivation from more fundamental understand-

ings) of Schrödinger equation and Born rule to motivate and support the interpretation.
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4 Background: superposition of gravity?

This background is not necessary to understand the Bayesian theory of gravity, but it does

provide some motivation on why the classical Ryu-Takayanagi relation[6], instead of the

one with quantum corrections, is used. In conventional approaches to quantum gravity -

especially canonical gravity and string theory - there exists superposition of gravitational

outcomes. That is, just as reality does not exist in conventional approaches to quantum

mechanics, there exists superposition of spacetime, instead of single spacetime.

The following pictures of how spacetime may be superimposed can be given:

• Superposition of spacetime is always there - collapse suddenly occurs such that one

spacetime outcome instantaneously becomes reality.

• While collapse into one spacetime outcome does not occur, superposition of space-

time eventually evolves and converges into particular spacetime such that we may

e�ectively treat it as our spacetime.

• Superposition of spacetime does not exist - gravitons are not valid descriptions of

gravity.

• Many-worlds interpretation approach, where di�erent spacetimes exist simultaneously

as world branches.

Since we set out to reject the �rst idea, which involves state vector discontinuity,

and the fourth idea because of complications with many-worlds interpretations discussed

before, what we focus on is the second and third pictures. The second picture may be

reconciled with the preferred interpretation of quantum mechanics in this article. But we

actually adopt the third picture in this article, and this is in fact what sets this article

as a departure from usual approaches to quantum gravity. The single important reason

for adopting this radical change is that this allows us, for the �rst time, to formulate a

consistent theory of quantum gravity that reduces both to the Standard Model and general

relativity in appropriate limits. While it may be possible that some alternative approach

demonstrates both required reductions as well, we do not currently know whether this is

the case.

There does exist a problem to the second picture as well. It suggests that the spacetime

we �perceive� is only an approximation to the superposition of spacetimes that may contain

spacetimes that are very di�erent from our perceived spacetime. But then, how do we

manage to pick this approximate spacetime out of superimposed spacetimes? After all, we

do perceive reality in terms of spacetime, even if it may only approximately exists and not

all features of reality may be captured by spacetime we perceive. This necessarily asks us

the question of how we come to regularize quantum superposition to pick some spacetime

to portray reality - and if we have to ask this question anyway, why not simply try an

approach that eliminates superposition of spacetime?

There exists a misunderstanding that if spacetime does not exist in superposition, then

one must be doing quantum �eld theory on �xed curved spacetime. We argue that this is not
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true. In light of holographic spirits, we present a vision of spacetime that directly is created

from non-gravitational state vector. Spacetime arises directly from statistical information

an observer has of other subsystems - or simply a state vector, and thus superposition

of spacetime is eliminated. Spacetime does not exist independently of an observer but

is merely an objective picture of statistical information that she has to experience. An

observer does not have freedom to choose a rule on how she forms spacetime and statistical

knowledge, despite spacetime being observer-dependent. Di�erent new observations arising

due to observed changes of observer's own states lead to di�erent spacetimes, thus there

is no one �xed background spacetime that is true independently of quantum contents. We

explore more details when we discuss our theory fully.

In terms of Ryu-Takayanagi (RT) conjecture[6], this is about using the RT formula

relating entanglement entropy to area without quantum corrections. This allows spacetime

to vary depending on evolution of state vector, but keeps spacetime not superimposed. It

may be useful to note how far the RT formula can relate geometry to quantum information

in conventional string theory. String theory assumes that spacetime is superimposed, and

eventually we cannot express entanglement entropy in terms of area. Each quantum correc-

tion may allow us to relate entanglement entropy with area, but these quantum corrections

are perturbative, and cannot converge to non-perturbative analysis. Thus the RT formula

that we use is an approximative tool to probe nature in string theory - though there is

nothing wrong with this itself, as most tools we use in physics are of approximative nature

anyway. In our Bayesian theory of quantum gravity, the RT formula without quantum

corrections is considered fundamental instead.

The view advocated in this article thus brings us close to Einstein's picture of gravity

as spacetime, not as fundamental force. Also, unlike in other theories of quantum gravity,

spacetime always exists, and is not in superposition.

5 QM-P and quantum reconstruction

The two main features of quantum mechanics are: 1) Schrödinger equation, 2) Born rule.

There are many ways quantum reconstruction can be done, but we stick with one way of

reconstruction following Reginatto (1998)[14], which we believe to be cleanest. We consider

how Schrödinger equation may be derived instead of postulated. Schrödinger equation basi-

cally is Hamilton-Jacobi equation and continuity equation for probability wave constrained

by the principle of minimum Fisher information (MinFisher). Furthermore the approach in

Reginatto (1998) also recovers the Born rule.

Afterwards, we provide motivations for MaxENT and the partition function require-

ment - including them to conventional quantum mechanics results in the new theory of

QM-P. However, these are not really �additions� to quantum mechanics, if we are to inter-

pret quantum mechanics as a consistent Bayesian inference procedure of nature. After all,

these additions are really about determining H(t), the path of Hamiltonians to be used in

Schrödinger equation.
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5.1 Deriving Schrödinger equation

This derivation is not required for the full Bayesian theory of gravity, consisting of QM-P and

A/4 theory of spacetime - the theory can be worked out as long as we assume Schrödinger

equation and objective Bayesian interpretation of quantum mechanics. This derivation is

provided just as to motivate fully Bayesian understanding of quantum mechanics.

We �rst start with the action Φa that recovers Hamilton-Jacobi equation and continuity

equation when minimized with respect to S and P :

Φa =

∫
P

∂S
∂t

+
1

2

n∑
i,k=1

gik
∂S

∂xi
∂S

∂xk
+ V

 dnxdt (5.1)

where P (x, t) refers to probability, and �potential� V (x, t). While coordinates x is used, it

does not represent space, while t does refer to time. It is just like how a quantum operator

can be understood in di�erent basis, and x just is a convenient way to represent P , S, Φa

and V . Therefore, we will understand derivations in Reginatto (1998)[14] as being general

and not necessarily referring to local particles living in spacetime. gik in this context does

not refer to spacetime metric, and just is phase space metric. Hamilton-Jacobi equation is

then written as:
∂S

∂t
+

1

2

n∑
i,k=1

gik
∂S

∂xi
∂S

∂xk
+ V (5.2)

and continuity equation is written as:

∂P

∂t
+

n∑
i,k=1

gik
∂

∂xi

(
P
∂S

∂xk

)
= 0 (5.3)

We now extend Φa by the constraint of minimum Fisher information. Fisher information

metric Iik is:

Iik ≡
∫
gik

1

P

∂P

∂xi
∂P

∂xk
dnxdt (5.4)

Φb =
∑
i

∑
k

Iik (5.5)

The �nal action to be minimized, with respect to P and S, is:

Φ = Φa + λΦb (5.6)

Continuity equation remains the same as when Φa was minimized instead, but Hamilton-

Jacobi equation is replaced with its extension. This is the starting point of what di�erenti-

ates quantum mechanics from classical statistical mechanics. The resulting equations, with

λ = ~2/8 and ψ(x) =
√
P (x)eiS/~ gives us Schrödinger equation (again, ~ = 1 by natural

units convention):

i~
∂|Ψ〉
∂t

= H|Ψ〉 (5.7)

A state vector, or wavefunction, is simply |Ψ〉 =
∫
dnx ψ(x)|x〉.
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ψ has both P and S - thus it is a good representation of a state, capturing both reality

and epistemic information. Furthermore, it echoes path integral understanding of quantum

mechanics. One may ask why a state has to be ψ instead of other possible variables. In fact,

it does not have to be, with all consistent choices of a state variable producing equivalent

results. It is just that ψ and Schrödinger equation allow for simplest analysis, having the

important property of linearity. When you have linearity, why look for other de�nition of a

state variable? There may be only one consistent choice of a state variable or many others,

but this does not matter.

Note that while the original reference[14] casts this Schrödinger equation as being non-

relativistic, the Schrödinger equation derived does apply to relativistic cases as well, as

far as we allow for general interpretations, instead of referring to particle's position or

momentum. It is well-known that Schrödinger equation itself does apply for relativistic

physics as well, despite common misconceptions.

We distinguish ψ with |Ψ〉: the former is a measure of a state containing both proba-

bilistic information and actual state. The latter is a state vector that captures information

of all possible states.

In deriving Schrödinger equation, a Bayesian view of probability does not need to enter,

except for minimization of Fisher information. While it is possible to reconcile this with a

physical view of probability, it is not natural. This motivates a Bayesian view of quantum

mechanics, which is to be discussed separately from quantum reconstruction. But rest of

quantum reconstruction is founded upon a Bayesian view of probability.

Furthermore, because Schrödinger equation does not specify Hamiltonian to be used,

minimization of Fisher information is compatible with maximization of von Neumann en-

tropy - both principles will simultaneously need to be used to pin down complete state

vector evolution.

5.2 Why MaxENT?

We follow the Shore-Johnson Bayesian axioms to support the principle of maximum entropy[11].

A review article that we follow can be found in [5]. We start directly from an entropy max-

imization problem for a system of subsystems but without knowing functional form of

entropy. This seems to assume the principle of maximum entropy (MaxENT) from the

start. But the real assumptions used are two:

• The idea that a unique objective way of setting posterior probability is there and

that this can be found by optimizing some objective function. This objective function

S(p(~x), q(~x)), where p(~x) refers to posterior probability distribution and q(~x) refers to

prior probability distribution, is called entropy, with its functional form later revealed

to be Shannon entropy.

• The same objective function is to be used with di�erent constraints to determine a

posterior probability distribution.

Having accepted these assumptions, we now impose the Shore-Johnson axioms:
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• Subset independence. If new information regarding only p( ~xj) and p( ~xk) that should

not change p( ~xj) + p( ~xk) arrives, this should not change rest of p(~x).

• Coordinate invariance. p(~y) obtained from existing posterior solution p(~x) by coor-

dinate transformation should be the posterior distribution solution of the problem

transformed with coordinate transformation.

• System independence. If x1, x2, .., xk are independent subsystems, and provided con-

straints are for a single subsystem that is independent of other subsystems, then

p(~x)/q(~x) =
∏

i r(xi).

• Uniqueness. Posterior probability distribution must be unique.

Restricted to constraints that are of form
∫
D[x]p(x)a(x) = ā, this yields unique entropy

form of:

S(p(x), q(x)) = −K
∫
D[x]p(x) log (p(x)/q(x)) (5.8)

which is Kullback-Leibler divergence with sign �ipped after setting K = 1. While derived

with a particular type of constraints, the form is consistent with other types of constraints

that provide unique posterior distribution with entropy form in Equation 5.8. We restrict

constraints to such ones.

Consistency means that we arrive at same posterior probability for given observation

data, regardless of how data are updated sequentially. This allows us to elevate the principle

of maximum relative entropy to simply the principle of maximum entropy (MaxENT).

5.3 Why von Neumann entropy?

So far entropy is assumed to be Shannon entropy of S = −
∑

i pi log pi. But in quantum

mechanics, measure of entropy used is von Neumann entropy. The question then is whether

one can simply invoke arguments based on Shannon entropy when von Neumann entropy

is used. We con�rm that the answer is yes.

The measurement postulate of quantum mechanics says that any observable must be

represented by a self-adjoint operator, with each eigenvalue of an operator understood as

a measurement outcome. Any density matrix ρ is a Hermitian operator and can qualify

as an observable. When ρ is a reduced density matrix, it is an observable that is applied

to a hypothetical state vector of a subsystem being measured by an observer. A state

vector is for the entire universe in our framework, so one may wonder what a hypothetical

state vector of a subsystem would mean, when a subsystem is in a mixed state. Here,

we are thinking as if there only exists the subsystem in the universe, as to allow us to

translate reduced density matrix into probability of subsystem states. One may complain

how probability can ever be an observable. But then even a �physical� observable does not

directly provide how it would physically be measured. From that perspective, there is no

reason why probability cannot be represented by an observable. Note that an observable

usually is considered state-independent, but a density matrix is state vector-dependent,

thus there is slight generalization ongoing.
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A density matrix represents degree of statistical knowledge an observer has about a

subsystem. And the measurement postulate says that only when state of a subsystem is in

an eigenvector can a measurement proceed. Thus, given a density matrix, probability only

makes sense for quantum states - in this case, hypothetical reduced ones, from the point of

an observer - that are eigenvectors of the density matrix observable.

Having diagonalized a density matrix, von Neumann entropy of S = −tr [ρ log ρ] is

equivalent to Shannon entropy, con�rming equivalence. von Neumann entropy simply al-

lows one to calculate the right measure of entropy without considering basis change. This

justi�es use of MaxENT with von Neumann entropy instead of Shannon entropy in quantum

mechanics.

Thus what remains is why an observable must be a self-adjoint operator, having as-

sumed uniqueness of density matrix as representing probability under the self-adjoint op-

erator constraint. For the purpose here, it is enough to examine why an observable must

be a diagonalizable linear operator, with eigenvalues representing measurement outcomes.

Also, one can instead argue that any measurement process can be described by a diag-

onalizable linear operator. This is trivial, as one can simply use all possible orthogonal

measurement outcomes to form a diagonal matrix of eigenvalues, which one can transform

by basis transformations. Thus what is really special about the measurement postulate

(and thus quantum mechanics) is that only one particular basis, chosen by a self-adjoint

operator, is privileged for measurements, and it is meaningless to talk of a single observer

measuring in other bases (plural of basis) simultaneously.

5.4 Total entropy of the system

If MaxENT is to be used, what should total entropy of the system refer to? von Neumann

entropy of the system or sum of von Neumann entropy of each irreducible subsystem? The

answer of course is the latter - the former should be zero whenever the state vector of a

system is pure, so would not be meaningful. But why would this measure make sense?

In context of information theory, di�erent irreducible subsystems, by de�nition, are

separate information sources. This mandates that von Neumann entropy of an individual

subsystem must be summed up to get expected total information of the entire system -

or �total entropy�. (Entropy is measure of expected information in information theory.)

By contrast, von Neumann entropy of the entire system is zero - as long as the pure state

vector evolves unitarily. One can trivially translate this argument into the MaxENT context

without invoking information theory - though two arguments are actually equivalent.

5.5 Nature of measurements

Treating density matrix as an observable raises the following question: should not proba-

bility be 1 when a subsystem is measured? If so, would not this defeat the use of density

matrix as an observable for probability? This is not the case.

First, a measurement is simply an observer noticing change of her own state (or equiv-

alently Bayesian updates) that is used to infer state of other subsystems. And it is assumed

that an observer continuously notices this change. It is required to avoid discontinuous evo-
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lution of a state vector. Note that we distinguish �completed measurements� from general

�measurements�.

Second, a completed measurement of a subsystem such that a particular outcome has

probability of 1 takes time even in practice. When a measurement is complete, one can say

collapse of wavefunction (or state vector) happens. But there actually is no collapse - no

discontinuous evolution of state vector - and probability of the measured outcome is 1, as

expected from collapse. We explain how this is possible.

An observer only has probabilistic predictive knowledge of future outcomes of a sub-

system to be measured. But Bayesian updates add to knowledge an observer has about

the subsystem, changing probabilistic inference. When a subsystem being measured can be

described by a pure state vector instead of density matrix, a measurement is completed -

one particular outcome is surely observed. (An entire system is always described by a pure

state vector.) An observer does not have freedom to collapse a subsystem into a de�nite

outcome, and thus what we mean by measuring at some time t′ before a measurement is

completed can only refer to probabilistic knowledge. This is why the use of density matrix

as a probability observable makes sense.

The common de�nition of the measurement problem is di�culty in explaining how

wavefunction collapse occurs. The very point of di�culty lies in discontinuity of state vector

evolution required by wavefunction collapse. Thus, if this discontinuity is eliminated, one

resolves the measurement problem - and discontinuity was eliminated.

The above understanding means subjecting probabilistic inference of physics to the new

physical constraint: observer outcome trajectory. Of course each observer cannot actually

know future outcomes - for future predictions, an observer is condemned to Hamiltonian

H(0) obtained at present-time t = 0 such that we evolve predicted future state vector as

|ψ(∆t)〉 = e−iH(0)∆t|ψ(0)〉. However, we do know thatH(∆t) 6= H(0) for actual state vector

in the future. This is just Bayesian updating - nothing more, nothing less. Furthermore,

Schrödinger equation still works as the main equation of quantum mechanics for both

predicted state vector and actual state vector.

5.6 Irreducible subsystem

MaxENT for quantum mechanics relies on total entropy of the entire system, produced

by summing von Neumann entropy of irreducible subsystems. Thus this requires a proper

de�nition of what an irreducible subsystem means.

Technically, each irreducible subsystem would have to be given empirically. We can

instead ask how we may �nd irreducible subsystems from empirical data.

Given some state vector |Ψ〉 of system U , U is decomposed into irreducible subsystems

i when every i exhibits zero entropy Si,EFT = 0 in the quantum e�ective �eld theory

in the current spacetime. Note that Si = Si,UV + Si,EFT , where Si,UV = A/4, with A
understood to be minimal surface area - though discussions, for now, are deferred to when

Ryu-Takayanagi[6] and A/4 theory of spacetime are presented.

The above de�nition requires recognizing that spacetime is assumed not to be in super-

position. Also, the above de�nition is not really fundamental - it is rather a consequence

of A/4 theory of spacetimeto be discussed later.
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5.7 Strong complementarity and quantum decoherence

How a measurement is de�ned may be worrisome, because observers may come to use

di�erent bases (plural of basis) for measurements of the same subsystem. We argue here

that there is nothing wrong with this. In fact, this is what makes quantum-mechanical

vision of reality di�erent from classical vision of reality and exactly is about the principle of

(strong) complementarity. As long as we dispel the notion that an observer must see exactly

one thing for the same subsystem, there is nothing inconsistent about this complementarity

vision. Quantum mechanics is just a statistical inference tool - so it is consistent by default.

Inconsistency only arises when we try to use state vectors of more than one observer

simultaneously and directly to understand reality. This is a nonsense by de�nition as far as

a Bayesian understanding of quantum mechanics is upheld - state vector represents state of

knowledge of a single observer. If information arrives from another information source by

interacting with an observer and thus varying observer state, then this information would be

updated accordingly by Bayesian and quantum-mechanical principles. The key point here

is that an observer can only update by looking at its own state - it can never know directly

what other subsystems look like. Thus it makes no sense to update by direct subsystem

information, as it cannot happen.

However, it is true that rarely do we have to consider observers measuring in di�erent

bases, before we even think of consistency issues, as have been analyzed. Why is this so?

It is explained by quantum decoherence[15][16]. While quantum decoherence is often said

to be about discovering when �classical reality� emerges, these are speci�c main points of

quantum decoherence literature:

1. Explaining when a density matrix of a subsystem being measured converges to an

equilibrium, or more precisely a local equilibrium.

2. Explaining why despite interactions with environment required for measurements, the

Born rule is respected, working as if a subsystem being measured evolves as a pure

state vector, instead of mixed state evolution. Not all interactions work this way,

thus providing forms of interactions that ensure nice properties required for accurate

measurements. This overlaps with the �rst point.

3. Explaining when di�erent observers agree on the same local equilibrium.

The �rst and second point are well-explained in quantum decoherence literature[17] by

a density matrix represented in a particular basis converging toward a diagonal matrix

(with entries featuring amplitude magnitude squared), with o�-diagonal terms exponentially

decaying. The point here is not about whether there exists a basis such that a density matrix

in question can be represented as a diagonal matrix - there always is a basis that a density

matrix be represented by a diagonal matrix. The point is that evolution of density matrix

moves toward a stable equilibrium. If there is such an equilibrium, then we may simply

pick the privileged basis of the equilibrium to understand our measurements.

Of course the density matrix of a subsystem does not always remain close to the equi-

librium after signi�cant decoherence - thus this equilibrium actually is a local equilibrium.
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Eventually, the density matrix moves away from the equilibrium, but for duration of a non-

instantaneous measurement process, the local equilibrium can be treated as if it is the �nal

equilibrium, as far as deviations away from an equilibrium after signi�cant decoherence is

very slow. When discussing how spacetime arises from entanglement, classical reality would

be de�ned as condition of local equilibrium. For a local equilibrium, Einstein �eld equations

of general relativity is the law of spacetime.

In case di�erent observers have relatively equivalent and su�cient access to subsystems

in question, consistency requires that the same local equilibrium understanding, at least

with high �delity, must be shared across di�erent observers. This is why despite strong

complementarity, we can ignore its e�ects most of time, with the most famous example

that e�ects of strong complementarity cannot be ignored being a black hole.

5.8 Nature of an observer

It may be argued that an observer cannot maintain an ideal inference mechanism, as we

seem to assume. We instead argue that observer's perception works as if it retains an ideal

inference mechanism. That is, an observer does not actually �infer� nature - laws of nature

force an observer to behave as if it is ideally observing the universe. With this clari�cation,

the charge of an observer requiring too much computational resource is cleared.

In classical physics, the principle of least action is fundamental - but no one says that

because a subsystem acts as if it computes least action, the principle must be wrong. The

same point applies here as well.

Also, this epistemic viewpoint is shared by Copenhagen interpretation - the most con-

ventional approach to quantum mechanics - which simply argues that state vector collapses

when we measure or equivalently �learn� about a subsystem in question. Such learning was

assumed to be ideal as well. We simply required that this learning process be continuous,

instead of being discontinuous. An observer is condemned to learn and has no freedom on

learning processes.

5.9 Conservation principle: partition function constraint

Partition function Z is de�ned as Z(T ) = Tr
[
e−H/T

]
where H refers to Hamiltonian, where

T is temperature and Tr refers to trace. We set temperature T = TC , where TC refers to

�critical temperature�, a constant. Furthermore, Z(TC) is constrained to be constant. We

do not specify what value of Z and TC must be - they have to be determined empirically.

The motivation behind the constraint is simple. First, note that we use time-varying

Hamiltonian H(t) - or equivalently and more in line with interpretations in this article, a

path of Hamiltonians. Second, we wish to understand each H(t) in the path as degrees

of freedom integrated away from ��nal� theory H(tf ) - meaning that all H(t 6= tf ) are

renormalized theories of theory H(tf ). This requires us thinking of what di�erent H(t)

would have to conserve.

Essentially, we desire some real-valued functional Y (x,H), with real-valued x such that

Y (x0) = f(H(ti)) is conserved among H that is renormalized theory of H(tf ). But given

ignorance of H, we also wish to be able to uniquely identify H from function Y (x) up

to change in bases by checking derivatives of Y (x) at x = x0, just as in Taylor series.
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Furthermore, Y (x,H) then should be considered more fundamental, as a meta-theory, than

theories themselves.

There is no clear answer to what conservation must be done, which would �x the form

of functional Y , but we know that the most straightforward example already exists: parti-

tion function Z(T ) = Tr[e−H/T ], with assumption that di�erent H, that are renormalized

theories of H(tf ), share same Z(TC). Conventional uses of partition function, such as

GKPW relation[2][3] in AdS/CFT, suggest we set TC = 1, but �xing value of TC for the

purpose of this article is not required. This identi�cation of functional Z to be the above

functional Y provides a constraint that is non-trivial that can cleanly mapped to critical

�xed points in existing thermodynamics and QFT renormalization. Di�erent values of Z

are consistent with currently available evidence, given di�erent potential completions of the

Standard Model - thus we do not specify what value of Z must be taken, as our focus is

on quantum gravity, not Grand Uni�cation. However, once any single H(t′) is known, then

value of Z(TC) would be easily calculated, if TC is already known and the partition function

constraint provides valid restriction to possible Hamiltonians.

If there were no partition function restriction, then determined evolution would not have

been plausible, since MaxENT is exploited too quickly. MaxENT, Schrödinger equation,

partition function along with continuous observations allow one to determine a unique

sensible state vector evolution that an observer assigns to the universe, when provided an

initial state vector.

5.10 Physical aspects of quantum mechanics

Here we separate physical (empirical) aspects of quantum mechanics from logical aspects

that arise from consistency requirements. Physical aspects of quantum mechanics are:

1. Lagrange multiplier λ = 1/8 when deriving Schrödinger equation.

2. Required convergence toward non-relativistic classical physics at classical limits. (Hamilton-

Jacobi and continuity equation)

3. Continuous evolution of reality.

4. A single observer cannot simultaneously measure in di�erent bases. (Complementar-

ity)

5. Observer outcome trajectory used for Bayesian updating.

6. Constant partition function Z(TC) = Tr
[
e−H/TC

]
and value TC .

Rest of quantum mechanics can be said to arise from Bayesian inference consistency re-

quirements (MaxENT, MinFisher) - thus quantum mechanics just is probabilistic inference

with given physical constraints.

5.11 Recovering quantum theories

If this Bayesian view of probability is correct for quantum mechanics, how does one recover

usual quantum theories, such as the Standard Model? The point is that conventional
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quantum theories are more like �nal theories in a Bayesian learning framework. Under

su�ciently many observations of subsystems of equal characteristics, Hamiltonian, reduced

to apply only for a subsystem, that will be used to predict future state vector evolution

of these subsystems of equal characteristics is almost the same one. This suggests that we

really do not need full QM-P most of time. However, if there is some degree of freedom

in the universe that is only rarely accessed by an observer subsystem, then QM-P comes

to matter, as number of observations is insu�cient. Black hole complementarity[7] would

count as one important example in this direction.

6 Background: classical Ryu-Takayanagi and tomography

The Ryu-Takayanagi (RT) conjecture[6] says:

SA =
AA

4
(6.1)

where SA represents entanglement (von Neumann) entropy of region A, or in this article

subsystem A, andAA refers to the minimal surface area of subsystem A in the �bulk�, though

in this article we generalize into contexts not involving boundary-bulk relations. Equation

6.1 is conjectured to work for time-dependent state vector as well, as far as appropriate

changes to the notion of minimal surface is made[18].

Usually entanglement entropy is very di�cult to compute in QFT, even after divergence

problems are resolved, and the RT formula serves to provide the holographic machinery to

compute entanglement entropy. In this article, this is not the direction we focus - we go

from entanglement entropy to spacetime. This is because we assume that quantum state

vector is available to provide emergent spacetime, provided by QM-P, but one does not

have to restrict to QM-P.

Before going into how we translate minimal surface areas into entire spacetime, it may

be bene�cial to note that Equation 6.1 from conventional string-theoretic point of view is a

leading order approximation. In conventional understanding of string theory, area law - that

entanglement entropy is proportional to area - eventually breaks down, because quantum

superposition of spacetime kicks in heavily. But as an approximation, Equation 6.1 works

well. In A/4 theory of spacetime, however, Equation 6.1 is fundamental, and does not just

work as an approximation. We can do this because we have already assumed that spacetime

never exists in superpositions, and thus we can safely ignore quantum corrections.

6.1 Quantum corrections to RT formula

It is bene�cial to see what zero quantum correction to RT formula of Equation 6.1 means.

It has been proposed[19] that the one-loop correction to the RT formula is essentially given

by the bulk entanglement entropy between two bulk regions separated by a minimal surface.

The bulk entanglement entropy can be calculated by computing entanglement entropy of

the bulk region Ab connected to the boundary region A in an e�ective �eld theory on a

background spacetime. (Figure 6.1)

Taking Equation 6.1 as fundamental amounts to requiring this bulk entanglement en-

tropy to be zero. In such a case, region Ab is in pure state, along with other regions
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Figure 1. Boundary, bulk and minimal surface in Ryu-Takayanagi and AdS/CFT

enclosed by their minimal surface and boundary. Furthermore, this suggests that space-

time is constructed as to allow for local symmetry without changing underlying quantum

physics. Essentially, this echoes the point that each irreducible subsystem is an indepen-

dent information source - thus total entropy of the universe should add up entropy of each

subsystem. This line of thought between entanglement and spacetime has recently been

pursued, though with di�erent styles of expositions - see, for example [20].

Gravity thus puri�es an irreducible subsystem.

7 Background: tomography - from area to spacetime

A tomographic method that computes entire spacetime using minimal surface area of each

irreducible subsystem was suggested in Cao-Carroll (2018)[21]. The point is that when we

have surface area terms, we can relate them with metric tensor:

A(C) =

∫
C

√
detwij dσ (7.1)

where C refer to minimal surface, wij refers to induced metric tensor from metric tensor

gij of a space manifold, and A refers to area of minimal surface. The point made in Cao-

Carroll[21] is that this is essentially Radon transform, so we can seek for inverse Radon

transform method that would recover metric tensor from surface area.

However, (inverse) Radon transform is de�ned for C that is a totally-geodesic codimension-

1 submanifold of space manifold. To go around limitations, Cao-Carroll (2018)[21] proposes

�nding a best-�t maximally-symmetric background space manifold for a state vector using

MDS, and understand the actual space manifold and state vector as perturbations on the

background space manifold and the associated state vector. In Cao-Carroll (2018), pertur-

bations are understood to be small such that �rst-order approximations are justi�ed. In this

article, we drop such restrictions - the inverse Radon transform technique provides a unique

spacetime generally as far as the assumed �reference space� (analog to background space

in Cao-Carroll) admits inverse Radon transform and state vector does evolve continuously

and is di�erentiable over time - thus no collapse.

Very likely, this reference space will be initial space manifold we associate with initial

state vector - or at least the best-�t maximally-symmetric reference space to the initial

state vector, but such restriction is not be imposed.

The reference space is restricted to a maximally symmetric space manifold. We as-

sume that the reference space manifold remains �xed throughout the article for well-

behaved spacetime evolution. However, even this assumption can be relaxed, with reference
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Lorentzian spacetime manifold, consisting of reference space submanifold slices (restricted

to maximally symmetric space) tied together, providing reference space at each time t for

an observer.

The spacetime update prescription over time works as follows:

• (1) First, determine the reference space manifold to be used. Also determine initial

state vector and its consistent initial space, possibly di�erent from reference space.

• (2) Current time is set as t = 0. [In case (2) is reached from (5), t = dt at (5) is

re-scaled to be t = 0.] Space and state vector at t = −dt are called background space

and state vector.

• (3) State vector is updated for t = 0 accounting for in�nitesimal Bayesian updates as

well, which induces in�nitesimal area perturbations to the background surface area

terms. Note again that in�nitesimal area perturbations are relative to area term at

t = −dt.

• (3) Determine the �fake� in�nitesimal induced metric tensor perturbation from area

perturbations by inverse Radon transform as if background metric tensor is that of the

reference manifold. The unique fake in�nitesiaml induced metric tensor perturbation

is obtained, because the reference space is assumed to be maximally symmetric.[21]

• (4) The fake in�nitesimal induced metric tensor perturbation is converted to the

actual induced metric tensor perturbation by the re-scaling procedure to be described

below.

• (5) The actual metric tensor is computed by summing the background metric tensor

with the computed actual metric tensor perturbation to the background. Repeat from

(2) at time dt.

Let us work on �rst-order (in�nitesimal) variation and �nd[21]:

dA =
1

2

∫
C

√
detwij w

ijdwij dσ (7.2)

(dwij refers to in�nitesimal change of induced metric tensor over in�nitesimal time.) No-

tice some di�erence from Cao-Carroll (2018)[21]. The above equation uses in�nitesimal

perturbations over in�nitesimal time (dA, dwij), instead of perturbations (δA, δwij) not

restricted to in�nitesimal perturbation. Since we assumed continuity (and di�erentiability)

of state vector and measurement updates, this allows for in�nitesimal analysis, and maps

safely to small-perturbation approximation analysis carried out in Cao-Carroll (2018).

Now the inverse Radon transform from area perturbation to induced metric tensor

perturbation is carried out with the assumption that wij is the reference space metric tensor

- to avoid confusion we denote it instead as w′ij , which allows for the unique solution. This

gives us dw′ij . We then re-scale back entry-wise as:

dwij = dw′ij
w′ij

wij

√
detw′ij√
detwij

(7.3)
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which is enforced for all sets of coordinate indices, and the above equation does not follow

Einstein summation notation, and is in entry-wise notation. Other equations involving

tensors always follow Einstein summation notation in this article. Note that one should

not transform dwij to dwuv using previous coordinate system relationship. This is because

pre-perturbation y = y(x), where x, y refer to coordinate vector in a di�erent coordinate

system, no longer holds.

Also, while we use dA of minimal surface for purpose of inverse Radon transform, since

inverse Radon transform gives us entire �fake� space metric tensor perturbation, not just for

minimal surface, we can use same Equation 7.3 for manifold points not in minimal surfaces.

Thus, the tomographic procedure fully recovers actual metric tensor.

8 The Bayesian theory of gravity

8.1 Summary: QM-P and A/4 theory of spacetime

Thus, we now have all pieces of the Bayesian theory of gravity. Let current (present) time be

t = 0, initial condition time be t = t0, and an observing (measuring) irreducible subsystem

that �uses� quantum mechanics be j. Tr[·] refers to trace. An observer only really measures

her own state, and only knows other subsystems by inferring from change of her states. It

consists of:

QM-P:

• Schrödinger equation

• MaxENT: coming from objective Bayesianism

• Partition function constraint: Hamiltonians in the pathH(t) are renormalized theories

of �nal theory H(tf ).

• Observation constraint: Observation path (reduced density matrix path) for j: ρj(t)

for t0 ≤ t ≤ 0, which must be pure for j, is given. That is, j knows its own pure quan-

tum state exactly from t0 ≤ t ≤ 0. Subsystem j does not know exact state of other

irreducible subsystems, and it only infers states of other subsystems probabilistically.

• State vector and Hamiltonian constraint: state vector and Hamiltonian |Ψ(t)〉 and
H(t) are given for time t0 ≤ t < 0 (notice "<" instead of ≤ for t < 0, whereas for

observation constraint, it was t ≤ 0).

A/4 theory of spacetime based on Ryu-Takayanagi[6]:

• Classical Ryu-Takayanagi relation of Equation 6.1: mapping state vector (entropy of

subsystem: Si) with spacetime (surface area: A).

• Metric tensor vij for initial space manifold at time t = t0 that is consistent with state

vector |Ψ(t0)〉 and classical Ryu-Takayanagi is considered given. Metric tensor uij
for reference space manifold is also considered given, constrained to be maximally

symmetric space manifold. Full metric tensor for entire spacetime is determined
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through the tomographic in�nitesimal update method aforementioned, which recovers

metric tensor perturbation to background from minimal surface area perturbations to

background.

To summarize QM-P more concisely, this is an optimization problem for each irreducible

subsystem j with MaxENT objective function:

max
H(0)

∑
i 6=j

Si(t = 0) (8.1)

at t = 0, where Si(t) = −Tr[ρi(t) log ρi(t)] with ρi referring to reduced density matrix of

irreducible subsystem i, subject to:

i
d

dt
|Ψ(t)〉 = H(t)|Ψ(t)〉 (8.2)

which is Schrödinger equation where |Ψ(t)〉 is state vector at time t, H(t) is Hamiltonian

path, and

Tr[e−H(t)/TC ] = Z (8.3)

which is the partition function constraint where Z = Z(TC) is time-independent constant,

subject to given |Ψ(t)〉 for t0 ≤ t < 0 and given observation ρj(0), which may instead be

replaced with a pure state vector for j alone. Prediction of future state vector is made

by setting H(t) = H(0) for t > 0 and evolving state vector using |Ψ(0)〉 and Schrödinger

equation.

Now summarizing the rest of the Bayesian theory of gravity more mathematically.

Si(t) =
Ai(t)

4
(8.4)

which is Ryu-Takayanagi relation. Initial space is given, which must be consistent with

|Ψ(t0)〉 and Ryu-Takayanagi. Spacetime is updated in�nitesimally over past space manifold

using the tomographic procedure - see the discussion before.

8.2 Recovering the Standard Model and general relativity

The Standard Model is trivially compatible with our QM-P framework. Regardless of

whether some completion (extension) of the Standard Model is the �nal theory H(tf ) of

the universe in QM-P or not, if it is (or at least approximately very close to) one Hamil-

tonian of path H(t), we can at least understand it as �local equilibrium� theory in QM-P,

where deviations of Hamiltonians from the Standard Model over time are so slow that for

most experiments we can consider the Standard Model as valid. This includes scenarios

where some completion of the Standard Model is the �nal theory for currently accessible

observations.

Di�erent extensions of the Standard Model are clearly compatible with di�erent values

of partition function constant Z = Z(TC) in QM-P. In case initial evolution of spacetime

keeps space to be very close to being maximally symmetric, then empirical cosmological

data may su�ciently provide details on how Z and TC must be set. After all, just �guring
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out one Hamiltonian H(t′) out of entire path H(t) is enough to determine value of Z in

case TC is known, given correctness of the partition function constraint conjecture.

In a way, we are separating the question of Grand Uni�cation and quantum gravity.

This article provides a full theory of quantum gravity, but does not answer Grand Uni�-

cation, which attempts to �ll in other non-gravitational holes of the incomplete Standard

Model.

Our focus thus is to actually demonstrate that the Standard Model is compatible with

general relativity, which currently no theory of quantum gravity demonstrates. (But in-

compatibility of the Standard Model with general relativity has not been demonstrated

for many candidate theories of quantum gravity, especially string theory.) More gener-

ally, demonstration is that any quantum theory admitting Rindler modular Hamiltonian

is compatible with general relativity. The argument here essentially is re-interpretation of

the result in Cao-Carroll (2018)[21], which generalizes Jacobson (2016)[22]. Also, in that

general relativity is understood as an equation of state for local equilibrium, this article

is in spirit of Jacobson (1995)[4]. (Essentially, Jacobson (2016)[22] re-casted the result in

Jacobson (1995)[4] by treating entropy statistically, rather than in thermodynamic fashion

- but without use of boundary-bulk holography.) This demonstration does not depend on

QM-P, and is compatible with any quantum theory, as aforementioned.

The point is simple - that if a system is in local equilibrium state, with horizons

identi�ed by local Rindler horizons, then the equation of state locally must be Einstein

�eld equations[4]. While we mostly follow derivations in Cao-Carroll (2018), some details

are di�erent.

First, since a subsystem A is in local equilibrium, entropy of a subsystem is as maximal

as it can under constraints at the time. This does not mean that a subsystem A is in

maximal entropy states across time. One can write in terms of potential in�nitesimal

perturbations as:

0 = δSA = δSA,UV + δSA,EFT (8.5)

We drop subscripts A whenever the context is obvious from now on. For a very small

subsystem A, one can switch coordinate system to set background metric tensor as �at.

Initially this assumption seems indefensible, but this is actually required. Equations in

classical limit are often determined in terms of the ~ → 0 limit, which is equivalent to

taking size of a very non-classical quantum system to be small.

The linearized (thus, in�nitesimal) Einstein �eld equations go:

δGuv = 8πδTuv (8.6)

provide the constraint[21] of

δA = −8π

∫
C

∫
x>0

xδTtt d
nx (8.7)

where Tuv refers to stress-energy tensor. Though note that Tuv in Equation 8.7 is classical,

not quantum operator. Thus we now need to distinguish quantum operators from classical
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counterparts, which is done by adding a hat superscript to quantum operators. Then one

sets up Rindler modular Hamiltonian Ĥmod which provides the same constraint of Equation

8.7, with identi�cations:

δ〈Ĥmod〉 = δSEFT (8.8)

δTtt = Tr
[
δρEFT T̂tt

]
(8.9)

A
4

= SUV (8.10)

We then trace back from Equation 8.7, along with the Lorentzian invariance assumption to

obtain the linearized Einstein �eld equations of Equation 8.6.

Initially Equation 8.10 may seem strange. Did we not de�ne entanglement entropy to

be A/4? This is true for actual spacetime, but here we are considering possible spacetime

perturbations and how quantum e�ective �eld theory states living in background spacetime

should respond, and vice versa. In such contexts, Equation 8.10 is the correct equation.

In other words, we are calculating gravitational backreactions due to changes in quantum

contents. After gravitational backreactions are incorporated into spacetime, SEFT = 0 fol-

lowing appropriate change in SUV - since previous calculations were de�ned for an e�ective

�eld theory under the old background spacetime.

These calculations describe how spacetime changes as state vector evolves over time, as

far as a subsystem in question remains in local equilibrium[4], with general relativity being

the law of spacetime at this regime.

Finally, one may ask what happens for cosmological constant Λ. Our equations, for

demonstrating recovery of general relativity, so far were for in�nitesimal change and pertur-

bations under �at spacetime background. Note again though that despite having assumed

�at spacetime background, this choice of background does not a�ect general validity of re-

sulting equations, because choice of local background can always be set to �at spacetime by

coordinate transformation, in case resulting spacetime must be Lorentzian. For in�nitesi-

mal perturbations under Minkowski background, the term involving cosmological constant

drops out from perturbation form of Einstein �eld equations[23] - reducing to Equation 8.6.

Thus cosmological constant can only be determined from initial space manifold.

9 Conclusion

The full Bayesian theory of gravity consists of QM-P and A/4 theory of spacetime based on

classical Ryu-Takayanagi relation[6]. QM-P describes non-gravitational behaviors, which

directly are mapped to spacetime by A/4 theory of spacetime holographically. Before QM-

P, we review back A/4 theory of spacetime, because it can be considered independently of

QM-P.

The use of Ryu-Takayanagi relation as being fundamental without quantum correc-

tions implies that spacetime is not in superposition, though underlying non-gravitational

quantum contents are. Also, Ryu-Takayanagi then suggests that gravity puri�es each (irre-

ducible) subsystem[19], manifestly demonstrating locality of these subsystems - entangle-

ment is not a spooky action at distance. The assumption that state vector has to evolve

� 25 �



continuously and in a time-di�erentiable way was also made to ensure unique spacetime,

as in�nitesimal analysis has to be maintained valid. This in turn requires that an ob-

server must receive observation data (Bayesian updates) continuously. This assumption is

dutifully captured in QM-P.

QM-P essentially is objective Bayesianism based on the principle of maximum entropy[5]

plus the partition function constraint that acts as a conserved quantity to be obeyed by

Hamiltonians in a Hamiltonian path H(t), along with some interpretation points. The

principle of maximum entropy is straightforward, and the partition function constraint can

easily be understood as succeeding theories (Hamiltonians) inverse-renormalizing toward

the �nal theory (Hamiltonian). So the review focuses on interpretation points. Physics

behind each irreducible subsystem behaves locally, despite quantum physics seems to be

non-local at �rst sights. This means that the total entropy to be maximized must be the

sum of entropy of irreducible subsystems. We then must ask why von Neumann entropy

must be used. The answer relies on interpretation of density matrix as providing the right

observable for probability - and thus providing the correct description (basis) that an ob-

server must pick. Density matrix has not been used as an observable, and thus this is a

non-trivial assertion. This is incompatible with discontinuous state vector evolution, or

simply collapse. This in fact is a good thing, and we addressed it by clarifying what a

quantum measurement is. A quantum measurement is simply a continuous probabilistic

learning process by an observer looking at change of her own state to infer other subsystems.

There is no reason why discontinuity must enter. The cost is that we have two state vector

evolutions - one describing expected state vector evolution and one that is actual state

vector evolution accounting for Bayesian updates or simply measurements in the middle of

a measurement process.

QM-P reduces to usual quantum mechanical understanding of a single theory in con-

texts not requiring invocation of black hole complementarity. By this, we mean that there

are su�cient observations of subsystems of same characteristics such that observers surely

will use a single theory to describe reality. In case of black holes, there is lack of su�cient

observations such that use of di�erent theories will be justi�ed.[24] Since each observer only

notices changes of her own states, there cannot be theoretical or empirical inconsistency.

Despite strong complementarity, why can we describe observers as if they are sharing an

equal-basis description? This is a consequence of quantum decoherence[17][15] whenever

it arises. An important concept here is local equilibrium, where, for some measurement

process, deviation away from local equilibrium occurs slowly such that one may describe a

subsystem as if it is in local equilibrium. This local equilibrium allows one to provide a basis

by which state vector during a measurement process is to be understood approximately,

without having to reference density matrix at each time to determine a basis that must

be used. Consistency requires that the same local equilibrium state must be shared across

observers in most contexts. This local equilibrium is de�ned as the condition for classical

reality to emerge. Einstein �eld equations thus govern spacetime of local equilibrium states,

as in Jacobson (1995)[4], which was veri�ed in A/4 theory of spacetime.

Quantum decoherence also explains why despite measurements of a subsystem requiring

interactions with other subsystems, under some interactions one can treat the subsystem

� 26 �



as if it evolves purely, instead of mixed state evolution, with the Born rule connecting this

�fake� and reduced state vector to probability. (Universe always evolves purely.) However,

to determine a basis by which measurements are read, one does anyway need to refer back

to reduced density matrix of a subsystem.

We thus demonstrated an empirically consistent theory of quantum gravity.

9.1 Causal inference point of view

While we have so far discussed QM-P from Bayesian principles applied to physics, QM-P

really is a statistical framework for Bayesian causal inference - Hamiltonian is exactly about

mapping present-time variables with future-time variables! Since our practical observations

are done in discrete time, some modi�cations to QM-P are necessary, along with some

generalization, such as observation path trajectory no longer about observer states, but

otherwise the QM-P framework remains intact. Viewed from this causal inference point of

view, quantum mechanics simply is a speci�c case of Bayesian causal analysis.

Furthermore, if we view A/4 theory of spacetime from Bayesian perspectives, it is

simply about how we may consistently visualize statistical information.

One of the questions that humanity has had over years is why statistics seems to be

so powerless in directly deriving laws of nature, rather than just supplying data analysis to

inspire laws of nature. So far, no one has really derived laws of nature using a well-known

systemic statistical procedure from empirical statistical data. This article, I hope, provides

important clues in answering the puzzle. Statistics may also bene�t from connections with

physics as well.

�Probably,� laws of nature are already about statistical analysis at heart.
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