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Abstract

The paper investigates the relations between Hausdorff and non-Hausdorff

manifolds as objects of General Relativity. We show that every non-Hausdorff

manifold can be seen as a result of gluing together some Hausdorff manifolds. In

the light of this result, we investigate a modal interpretation of a non-Hausdorff

differential manifold, according to which it represents a bundle of alternative

spacetimes, all of which are compatible with a given initial data set.
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1 Introduction

The topic of this paper is a dialectic between Hausdorff differential manifolds and

non-Hausdorff differential manifolds as objects of General Relativity (GR): the

former assume the so-called Hausdorff topological separation condition (which

frequently is taken as a part of the definition of differential manifolds), whereas the

latter assume that this condition is violated. Both varieties thus form a sub-species

of generalized differential manifolds. Our interest is restricted to these two varieties

as they are used in GR or the philosophy thereof and is motivated by three

observations: (i) As a matter of fact, in GR one finds constructions of

non-Hausdorff differential manifolds, despite the almost universally accepted

assumption that GR spacetimes are Hausdorff manifolds.1 (ii) In the 1970s, these

constructions prompted a wave of research into whether GR space-times can be

identified with a generalized differential manifold rather than a Hausdorff one.

After a few years, the standard option has prevailed, as testified, for example, by

Penrose’s claim: “I must ... return firmly to sanity by repeating to myself three

times: spacetime is a Hausdorff differentiable manifold; spacetime is a Hausdorff

. . . ” Penrose (1979). (iii) Finally, the issue of Hausdorffness vs. non-Hausdorffness

also pops up in attempts by branching spacetime theories to model local

possibilities occurring in a spatiotemporal world, initiated by Belnap (1992). The

1 By saying that one finds non-Hausdorff manifolds in GR, or that they occur in GR,

we mean that these objects have been investigated in the standard literature on GR. We

do not investigate here the reasons for assuming the Hausdorff condition in GR, or the

arguments to the contrary that non-Hausdorff manifolds make sense in General Relativity.

For a relevant paper, see Luc (2019).
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non-Hausdorffness of the proposed modalo-spatio-temporal structures is viewed as

a flaw in them (cf. Earman (2008)).

These observations prompt two queries that our paper will address: (1) How

are Hausdorff manifolds and non-Hausdorff manifolds related? (2) How are

non-Hausdorff manifolds that occur in GR to be interpreted? We opt for a view

according to which a non-Hausdorff manifold is a modal representation that

captures a bundle of alternative possible space-times; the advantage of this

understanding is that it disarms most objections to the use of non-Hausdorff

manifolds in GR (see Luc 2019, sections 7-8). There is, however, a certain oddity

in interpreting non-Hausdorff manifolds as a family of alternative spatio-temporal

scenarios evolving from a given region. A failure of the Hausdorff condition does

not entail the existence of bifurcating trajectories, although it permits it.

Bifurcating trajectories is what one expects if one thinks of indeterminism as

happening locally, i.e. as produced by small objects that are possibly developing in

one way or another in some restricted spatio-temporal regions. It turns out,

however, that the modal interpretation of non-Hausdorff manifolds suggests an

additional constraint on the gluing technique by which they are constructed; this

additional constraint prohibits bifurcating trajectories, and hence eliminates

precisely those constructions that would otherwise represent locally indeterministic

scenarios.

The phrase “modal representation” likely invokes a mixture of difficult semantic

and metaphysical questions, most of which we ignore in this paper, as they would

require a separate study of a considerable length.2 We hope that many of these

2To mention a few questions of this sort, one might ask what is the relation between

possibilities and actuality, how we should think of (and semantically represent) possible
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questions can be circumvented, as our focus is on a specific kind of modality

introduced by indeterminism, where the latter is understood as the existence of

multiple alternative evolutions available to a given physical system. At the end of

Section 4, having introduced our constructions in earlier sections, we add a few

remarks which are intended to indicate a standpoint in modal metaphysics that

seems to be the best aligned with the modal interpretation of non-Hausdorff

manifolds, as we understand it.

The paper is organized as follows. In Section 2, after recalling the necessary

definitions, we introduce the gluing technique and show that it produces a

non-Hausdorff topological manifold from Hausdorff differential manifolds.

Section 3 relates to the non-Hausdorff manifolds considered in physics: it describes

in detail how a non-Hausdorff extension of non-isometric Taub-NUT spacetimes is

produced by a gluing procedure. Section 4 contains two theorems that relate these

species of differential manifolds to each other: all non-Hausdorff differential

manifolds can be decomposed (in some precise sense) into maximal Hausdorff

sub-manifolds, and all non-Hausdorff manifolds can be produced by gluing together

a family of Hausdorff differential manifolds. These results form the backbone of a

modal reading of non-Hausdorff manifolds. In Section 5 we discuss Háj́ıc̆ek’s

necessary and sufficient conditions for the existence of bifurcating curves in

non-Hausdorff manifolds. We conclude the paper in Section 6.

individuals, whether modalities are reducible to non-modal notions, and if so, to what non-

modal notions, how possibilities relate to time, or space-time. For a roadmap of current

positions in modal metaphysics, see e.g., Divers (2002).
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2 Gluing introduced

Let us begin by introducing three villains of the peace: generalized, Hausdorff, and

non-Hausdorff differential manifolds:

Definition 1 (manifolds: generalized, Hausdorff, non-Hausdorff). A collection of

pairs {〈uγ , φγ〉}γ∈Γ (where Γ is an index set), with each uγ ⊆M for a set M , is a

Cr n-atlas on M if uγ’s cover M , each φγ is a bijection between uγ and an open

subset of <n, and for any two 〈uγ , φγ〉 and 〈uτ , φτ 〉, if uγτ := uγ ∩ uτ 6= ∅, then

φγ [uγτ ] and φτ [uγτ ] are open subsets of <n and composite functions φγ ◦ φ−1
τ and

φτ ◦ φ−1
γ are Cr on their domains.

A pair 〈M,A〉, where M is a non-empty set and A a maximal Cr n-atlas on M ,

is a Cr n-dimensional generalized differential manifold.

If a Cr n-dimensional generalized differential manifold satisfies the condition

that for any distinct p, q ∈M there are 〈uγ , φγ〉, 〈uτ , φτ 〉 ∈ A such that p ∈ uγ,

q ∈ uτ and uγ ∩ uτ = ∅, then it is called a Cr n-dimensional Hausdorff differential

manifold.3

If a Cr n-dimensional generalized differential manifold does not satisfy the

above condition, it is called a Cr n-dimensional non-Hausdorff differential

manifold.

Elements of an atlas are called charts. Whenever confusion is unlikely, we omit the

qualifications “Cr, n-dimensional, differential”, and just write “generalized” (or

Hausdorff or non-Hausdorff) d-manifold, with “d” for “differential”. If r = 0, i.e.,

3Since an atlas induces a topology T on set M by the condition O ∈ T iff ∀x ∈ O, there

is chart 〈uγ, φγ〉 in the atlas such that x ∈ uγ; an equivalent way of defining Hausdorff

manifolds is to say that the induced topology is Hausdorff.
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Figure 1: One-dimensional non-Hausdorff manifold.

composite maps are merely continuous, a Cr d-manifold collapses into a

topological manifold. Note that by definition, both topological manifolds and

d-manifolds are locally Euclidean, i.e., for every x ∈M there is u ⊆M with x ∈ u

and a homeomorphism φ between u and an open subset of <n.

To understand the above definitions better, let us consider a simple example of

a non-Hausdorff manifold. Figure 1 depicts a one-dimensional manifold that arises

from gluing two R1 manifolds. Note that there is no maximal element in the

bottom “trunk” of this forking structure – if it existed, it could not be mapped on

an open subset of R1, so the structure would violate local Euclidicity, and would

not be a manifold after all. To be a manifold, each upper arm of the structure

should have a minimal element. Then the pair of these elements is a witness to

non-Hausdorffness: regardless of how small the neighbourhoods of these pairs are,

they have a non-empty intersection as they contain some part of the bottom trunk.

This example (to warn the reader) is somewhat misleading, as it involves a

particular bifurcating curve (defined later as a bifurcating curve of the second

kind) that is hard to find in non-Hausdorff manifolds inspired by GR (see
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Section 5). However, although the example clearly has no physical significance as a

potential model for our world, there are other examples of non-Hausdorff manifolds

that are closer to physical practice (although none of them is currently used as the

proposed model of our world). We will turn to a consideration of these later.

In the above example, we have used informally gluing technique as a way to

construct non-Hausdorff d-manifolds from Hausdorff ones. Now, let us describe

this technique formally. Then we will illustrate it by applying it to a real physics

example: a non-Hausdorff extension of the so-called Taub space. We will later (in

Theorem 3) see that that this technique provides a universal method of

constructing non-Hausdorff d-manifolds out of Hausdorff d-manifolds by gluing the

latter appropriately. We begin with these definitions:

Definition 2 (gluing function). Let W1 = 〈W1, AW1 , g1〉 and W2 = 〈W2, AW2 , g2〉

be d-manifolds. Then φ12 : U12 7→ U21, where U12 ⊆W1, U21 ⊆W2 is a gluing map

if

• U12 is open,

• φ12 is an isometry.

Clearly, the definition implies that U21 is open as well.

Each Uij has two indices: the first one is the index of a manifold of which it is a

subset, the second one is the index of a manifold to which the first manifold is

glued by the gluing function φij . If we consider only two manifolds, the latter

information is redundant; however, later (see definition 3) we will consider larger

(even infinite) families of manifolds and some of them can be glued to more than

one manifold in different ways (on different subsets), so that in general Uij 6= Uik

for j 6= k. Therefore, the notation with two indices in general does not involve

redundancy.
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A gluing function can be illustrated by Figure 1. The two manifolds are copies

of R1, R1
i = {〈x, i〉 | x ∈ R1}, where i ∈ {1, 2}, each with a natural global atlas.

Each Ui is an open lower segment of the corresponding manifold, e.g.,

Ui = {〈x, i〉 | x ∈ R1 ∧ x < 0}. The gluing function is given by: φ(〈x, 1〉) = 〈x, 2〉

for 〈x, 1〉 ∈ U1.

A notion that we need in the definition below is that of corresponding elements

from the union of manifolds, W1 ∪W2, glued by a gluing function. Clearly,

x ∈W1 ∪W2 corresponds to itself; less trivially, x, y ∈W1 ∪W2 correspond to each

other if they are linked by the gluing function. In the definition below, where we

glue together arbitrarily many manifolds (using many gluing functions), we appeal

to this notion of correspondence, requiring it to be an equivalence relation.

Definition 3 (gluing d-manifolds together). A Cr n-dim generalized d-manifold

〈W,AW , g〉 is a result of gluing together a family of Cr n-dim Hausdorff differential

d-manifolds {〈Wµ, AWµ , gµ〉}µ∈Γ (where Γ is an index set of an arbitrary

cardinality) iff

1. there exists a family of gluing functions

{φµν ∈ Uµν 7→ Uνµ | Uµν ⊆Wµ, Uνµ ⊆Wν , µ, ν ∈ Γ};

2. the relation R(x, y), as defined below, is an equivalence relation on
⋃
µ∈ΓWµ

R(x, y)⇔


x = y or

∃µ, ν ∈ Γ[x ∈ Uµν ∧ y ∈ Uνµ ∧ y = φµν(x)];

3. W is the set of representatives of the quotient structure
⋃
µ∈ΓWµ/R;
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4. the topology T induced on W by atlas AW is the coarsest-grained topology on

W that satisfies the condition:

O ∈ Tµ ⇒ fµ[O] ∈ T , (1)

where Tµ is the topology induced on Wµ by atlas AWµ and

fµ : Wµ 7→ W̃µ := {p ∈W | ∃XX ∈ (
⋃
νWν) /R ∧X ∩Wµ 6= ∅ ∧ p ∈ X}

is such that fµ(p) = q iff R(p, q);

5. The metric g and metrics gµ agree in the sense that g(p) = gµ(q) for any

p ∈W , q ∈Wµ such that ∃XX ∈ (
⋃
νWν) /R ∧ p ∈ X ∧ q ∈ X.

To comment on clause 1, it says that for any pair of d-manifolds, 〈Wµ, Aµ, gµ〉

and 〈Wν , Aν , gν〉, there are subsets Uµν ⊆Wµ and Uνµ ⊆Wν that are identified by

a gluing function. Clause 2 defines relation R(x, y) and postulates it to be an

equivalence relation on
⋃
µ∈ΓWµ. We may require instead that (i) for each map

φµν there is a map φνµ = φ−1
µν and (ii) for any two maps

φµν : Uµν → Uνµ, φνη : Uνη → Uην , if Uνµ ∩ Uνη 6= ∅, then there is a third map

φµη : Uµη → Uηµ, with Uµη = φνµ[Uνµ ∩ Uνη] ⊆ Uµν and

Uηµ = φνη[Uνµ ∩ Uνη] ⊆ Uην , such that for any x ∈ Uµη: φνη(φµν(x)) = φµη(x).

Thus, clause 2 can be understood as stating a consistency condition on a family of

maps, their domains and counter-domains. Clause 3 requires one to produce a set

of representatives of the quotient structure. This move might look superfluous, but

it is needed later in Theorem 3, in which we prove that by gluing the maximal

Hausdorff submanifolds of a given manifold one obtains exactly the initial

manifold, and not a structurally identical manifold with points replaced by sets of

points. Observe here that if a point x belongs to
⋃
µ∈Γ(Wµ \

⋃
η∈Γ Uµη), it gives
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rise to the singleton of x, {x}, in the quotient structure, so taking a representative

is trivial. Yet, a class in the quotient structure can be infinite, so one may need the

axiom of choice to secure a representative of that class in clause (3). In clause (4)

W̃µ consists of counterparts of elements of Wµ in W and fµ is then a bijection

between W̃µ and Wµ. As for clause (5), even if p is associated with many q’s from

different Wµ’s, since such q’s are connected by the isometry, the metric at all these

points is the same, and hence the definition of g is consistent.

Observe that the definition 3 does not require any specific relation between

atlas A and atlases Aµ (in particular, we do not define A in terms of Aµ), apart

from the relation between the topologies that these atlases induce (which is the

topic of clause (4)). This reflects the role the atlases play: they induce topologies

and produce a differential structure, but for the physical content of the model it is

irrelevant what specific functions these charts contain.

Before we proceed, we prove two facts that are pertinent to the definition above:

Fact 1. Let d-manifold 〈W,AW , g〉 be a result of gluing together a family of

d-manifolds {〈Wµ, AWµ , gµ〉}µ∈Γ, with T and Tµ (µ ∈ Γ) being the topologies on W

and Wµ, resp. Then

O ∈ T ⇒ ∀µ∈Γf
−1
µ [O ∩ W̃µ] ∈ Tµ. (2)

Proof. Let’s assume that the premise of this fact is true and O ∈ T . Pick an

arbitrary µ ∈ Γ. Since Wµ ∈ Tµ, W̃µ ∈ T by Eq. 1 and hence O ∩ W̃µ ∈ T . Since T

is the coarsest-grained topology on W satisfying Eq. 1, O ∩ W̃µ must be the union

of some Ok ∈ T such that f−1
µ [Ok] ∈ Tµ, and hence

⋃
k f
−1
µ [Ok] ∈ Tµ. We also get
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these identities:
⋃
k f
−1
µ [Ok] = f−1

µ [
⋃
k Ok] = f−1

µ [O ∩ W̃µ].4 Thus

f−1
µ [O ∩ W̃µ] ∈ Tµ. Since this argument goes through for an arbitrary µ ∈ Γ, the

right-hand side of the implication above follows.

As an immediate consequence of this fact and Eq. 1, we have the following:

Fact 2. fµ : Wµ → W̃µ is a homeomorphism.

Proof. Plug in Wµ in Eq. 1 and W̃µ in Eq. 2.

At this junction we know what it means that a generalized d-manifold results

from gluing together a family of Hausdorff differential d-manifolds. We do not

know yet, however, whether there are instances of this definition, i.e., whether

there is a generalized d-manifold and a family of Hausdorff d-manifolds that are

related in the way the definition above prescribes. We argue now that Definition 3

has instances by proving first that the product of the gluing construction is a

generalized C0 manifold, i.e., a generalized topological manifold.

Theorem 1. Let {〈Wµ, AWµ , gµ〉}µ∈Γ be a family (of an arbitrary cardinality) of

Cr n-dim Hausdorff d-manifolds. Then the product of the gluing procedure,

〈W,A, g〉, is a C0 n-dim generalized manifold (aka generalized topological

manifold). Further, if for each µ ∈ Γ the topology Tµ that Aµ induces on Wµ is

connected, the topology T on W is connected as well.

Proof. To prove local Euclidicity, we need to check that any p ∈W has an open

neighborhood that is mapped onto an open subset of <n. Let’s thus take an

arbitrary p ∈W . There is then some µ ∈ Γ such that f−1
µ (p) = p′ ∈Wµ.

4To justify these identities, x ∈
⋃
k f
−1
µ [Ok] ⇔ x ∈ f−1

µ [On] for some n ⇔ fµ(x) ∈ On

for some n ⇔ fµ(x) ∈
⋃
k Ok ⇔x ∈ f−1

µ [
⋃
k Ok].
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Accordingly, there is 〈u′, φ′〉 ∈ Aµ such that p′ ∈ u′. Hence p ∈ fµ(u′) := u and

u ∈ T since u′ ∈ Tµ. Since φ′ : u′ → A ∈ T<n and f−1
µ : W̃µ →Wµ are bijections, a

sought-for bijection is the composition φ′ ◦ f−1
µ .

As for C0, we need to prove that composite maps ψ ◦ f−1
η (φ′ ◦ f−1

µ )−1 are C0,

with 〈ψ, u〉 ∈ Aη and 〈φ′, u′〉 ∈ Aµ. Since by the construction each ψ, φ′, fµ, and fη

is a homeomorphism, the composition is a continuous function. Finally, we argue

that T is connected – if every component topology Tµ is connected. For reductio,

let us assume that there is A ∈ T , A 6= ∅, A 6= W , such that W \A ∈ T as well. By

Eq. 2 we get (i) ∀µ∈Γf
−1
µ [A ∩ W̃µ] ∈ Tµ and (ii) ∀µ∈Γf

−1
µ [(W \A) ∩ W̃µ] ∈ Tµ. It

requires only an easy calculation to see that for each µ, one is the complement of

the other, i.e., (iii) f−1
µ [A ∩ W̃µ] ∪ f−1

µ [(W \A) ∩ W̃µ] = Wµ and

f−1
µ [A ∩ W̃µ] ∩ f−1

µ [(W \A) ∩ W̃µ] = ∅. It is also (iv) impossible that

f−1
µ [A ∩ W̃µ] = Wµ = f−1

µ [(W \A) ∩ W̃µ] since this implies W̃µ ⊆ A and

W̃µ ⊆W \A. But then (i), (ii), (iii), and (iv) entails that for every µ ∈ Γ, Tµ is not

connected, contrary to the Fact’s assumption.

Observe that with the above theorem we arrived at a C0 n-dim non-Hausdorff

d-manifold, i.e., an n-dim non-Hausdorff topological manifold. To obtain a Cr

(r > 0) d-manifold, with its atlas resulting from atlases of component manifolds,

compositions ψ ◦ f−1
η (φ′ ◦ f−1

µ )−1 should be Cr continuous, but they do not need to

be so if µ 6= η.5 This means that to produce a Cr (r > 0) d-manifold, an additional

job is needed that consists in appropriately smoothing the maps φ and φ′ that

belong to charts from different atlases. There are limitations to this procedure as

there are topological manifolds that do not admit a Cr (r > 0)-structure, as was

5But clearly, if µ = η, we immediately get Cr (r > 0) continuity since f−1
m ◦ fm = id

and ψ ◦ (φ′−1) is Cr, as these two functions belong to charts from the same atlas.
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proved by Kervaire (1960). However, it is not clear if such troublesome topological

manifolds can be constructed by our gluing procedure, which operates on a Cr

d-manifold. In any case, barring Kervaire’s cases, the introduction of the required

differentiability structure is possible, which suffices to ensure that our Definition 3

is not empty. Besides, the problem with Cr continuity will not arise in our main

theorem about the construction of non-Hausdorff d-manifolds from families of

Hausdorff d-manifolds, as it selects particular families of Hausdorff d-manifolds.

3 Gluing in action

One may wonder in what contexts non-Hausdorff d-manifolds appear in GR

literature, and whether such manifolds are constructible by the gluing technique. A

typical context for the occurrence of a non-Hausdorff d-manifold is a failure of the

well-posedness of the initial value problem: if Einstein’s Field Equations (EFE)

admit multiple solutions, these solutions can be glued together, the results being a

non-Hausdorff d-manifold with a metric that still satisfies EFE. In this spirit

Hawking and Ellis (1973) sketched the construction of non-Hausdorff d-manifolds

that are extensions of Misner spacetime and the Taub spacetime.

As it is far from clear that these constructions are equivalent to our gluing

technique, we now describe a non-Hausdorff d-manifold obtained by gluing

together extensions of the Taub spacetime. An analogous technique can be used to

produce more realistic general-relativistic examples, like pasting together

extensions of Gowdy polarized spacetime (see e.g. Chruściel and Isenberg (1993)).

The Taub spacetime is given by set M = (t−, t+)× S3, with t−, t+ ∈ < and
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t− < t+. The metric is the following:

g = −U−1dt2 + (2l)2U(dψ + cos Θdφ)2 + (t2 + l2)(dΘ2 + sin2 Θdφ2),

where

U(t) =
(t+ − t)(t− − t)

t2 + l2
and t± = m± (l2 +m2)1/2,

m and l are positive constants, and Θ, ψ, φ are Euler angles on S3. We will denote

the Taub spacetime by 〈M,A, g〉, where A is a maximal atlas on M . The

spacetime is singular at t±, but, as first shown by Newman et al. (1963), it can be

extended forward into two spacetimes 〈M↑+, A↑+, g↑+〉 and 〈M↑−, A↑−, g↑−〉, each

with topology (t−,∞)× S3, embeddings Λ↑± : M →M↑±, and metrics

g↑± = ±(4l)(dψ+ cos Θdφ)dt+ (2l)2U(dψ+ cos Θdφ)2 + (t2 + l2)(dΘ2 + sin2 Θdφ2).

(To recall, to say that Λ : M →M ′ is an embedding means that Λ : M → Λ[M ] is

a diffeomorphism and Λ[M ] is open in the topology on M ′. For details of the

construction consult Chruściel and Isenberg (1993).) Analogously, 〈M,A, g〉 can be

extended downward into two spacetimes 〈M↓+, A↓+, g↓+〉 and 〈M↓−, A↓−, g↓−〉,

each with topology (−∞, t+, )× S3, embeddings Λ↓± : M →M↓±, and metrics

g↓± = g↑±. Importantly, the upward and downward extensions can be pairwise

pasted together, producing four spacetimes, known as Taub-NUT spacetimes:

〈M↑+↓+, A++g++〉, 〈M↑+↓−, A+−, g+−〉 〈M↑−↓+, A−+, g−+〉 〈M↑−↓−, A−−, g−−〉,

each with topology (−∞,∞)× S3. The corresponding embeddings are denoted by

i↑ab : M↑a →M↑a↓b and i↓ab : M↓b →M↑a↓b. Each Taub-NUT spacetime is

Hausdorff. As for isometry, Chruściel and Isenberg (1993) proved that while the
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pairs 〈M↑+↓+, A++, g++〉, 〈M↑−↓−, A−−, g−−〉 and 〈M↑+↓−, A+−, g+−〉,

〈M↑−↓+, A−+, g−+〉 are isometric, the pair 〈M↑+↓−, A+−, g+−〉, 〈M↑+↓+, A++, g++〉

is non-isometric. Note that the non-isometric pair is produced by embeddings:

i↑++ : M↑+ →M↑+↓+ i↑+− : M↑+ →M↑+↓−.

These embeddings establish an isometry between i↓++[M↑+] ⊆M↑+↓+ and

i↓+−[M↑+] ⊆M↑+↓−. Thus, i↓++[M↑+] and i↓+−[M↑+] establish isometric

segments of otherwise non-isometric Taub-NUT spacetimes. Moreover, these are

maximal isometric segments (Chruściel and Isenberg, 1993). We will use this fact

to produce a non-Hausdorff d-manifold by means the gluing procedure described in

Definition 3.

Consider non-isometric Taub-NUT spacetimes 〈M↑+↓−, A++, g+−〉 and

〈M↑+↓+, A++, g++〉. By the definition of embedding, U++ := i↓++[M↑+] ⊆M↑+↓+

and U+− := i↓+−[M↑+] ⊆M↑+↓− are open. Clearly, the function

i↓+− ◦ (i↓++)−1 : i↓++[M↑+]→ i↓+−[M↑+] and its inverse are isometries. Thus, we

have two gluing functions that link the two non-isometric spacetimes:

φ12 := i↓+− ◦ (i↓++)−1 and φ21 = φ−1
12 .

We describe now the d-manifold 〈W,A, g〉 that is a result of gluing two

d-manifolds 〈M↑+↓−, A+−, g+−〉 and 〈M↑+↓+, A++, g++〉 in accord with

Definition 3. The glued subsets are U++ ⊆M↑+↑+ and U+− ⊆M↑+↓−, the gluing

functions being φ12 and φ21. As we have only these two gluing functions, it is easy

to see that R(x, y) is indeed an equivalence relation on the union M↑+↓+ ∪M↑+↓−.

We thus take for W a set of representatives of (M↑+↓+ ∪M↑+↓−)/R. Next we

define the topology on W as the coarsest-grained topology that satisfies

O ∈ T ++ → f++[O] ∈ T and O ∈ T +− → f+−[O] ∈ T , where T +± is the topology
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induced by atlas A+± on M↑+↓±. We chose a maximal atlas on W that yields

exactly this topology. Finally, to unpack clause (5), the metric g(p), p ∈W and

metrics g++(q), q ∈M++ (or g+−(q), q ∈M+−) agree whenever p and q belong to

same equivalence class. However, this occurs if p and q are identical or linked by a

gluing function (which is an isometry), so the clause is indeed satisfied.

We now claim that the d-manifold 〈W,A, g〉, constructed as above, is

non-Hausdorff.

Fact 3. A d-manifold 〈W,A, g〉 that results from gluing two non-isometric

Taub-NUT spacetimes in accord with Definition 3, is a non-Hausdorff d-manifold.

Proof. The d-manifolds 〈M↑+↓+, A++, g++〉 and 〈M↑+↓−, A+−, g+−〉 are

non-isometric, as their metrics are different, yet they are the same as far as

topology goes: the sets M↑+↓− and M↑+↓+ are copies of <× S3 and the atlases are

global. The d-manifolds are thus diffeomorphic. Further, the points of each

d-manifold can be referred to by coordinates t, ψ, θ, φ, where t ∈ < and ψ, θ, φ are

Euler’s angles on S3. There are thus points defined by the same set of coordinates,

yet belonging to different d-manifolds, which we denote by xt,ψ,θ,φ ∈M↑+↓− and

yt,ψ,θ,φ ∈M↑+↓+. Consider two points e1, e2 ∈W , with e1 = f+−(xt−,0,0,0) and

e2 = f++(yt−,0,0,0). We will show that e1, e2 is a non-Hausdorff pair. Let us take

arbitrary open neighborhoods of these points, U1 ⊆W , e1 ∈ U1 and U2 ⊆W ,

e2 ∈ U2. Consider a diffeomorphism f : M↑+↓− 7→M↑+↓+, f(xt,ψ,θ,φ) = yt,ψ,θ,φ and

region F := f
[
f−1

+−[U1]
]
∩ f−1

++[U2] ⊆M↑+↓+. F is open in the topology on M↑+↓+,

since f−1
++ and f−1

++ are homeomorphisms (see Fact 2), f is a diffeomorphism, and

U1, U2 are open in the topology on W . The point yt−,0,0,0 belongs to F . Given the

standard topology on <× S3, there exist t3 > t− such that yt3,0,0,0 ∈ F . From the

definitions of f and F it follows that xt3,0,0,0 ∈ f−1
+−[U1] and yt3,0,0,0 ∈ f−1

++[U2].
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These two points correspond in W to e′1 = f+−(xt3,0,0,0) and e′2 = f++(yt3,0,0,0),

respectively. However, as t3 > t−, the points xt3,0,0,0 and yt3,0,0,0 have been actually

glued together, which implies e′1 = e′2. Since from the construction e′1 ∈ U1 and

e′2 ∈ U2, we conclude that e′1 = e′2 ∈ U1 ∩ U2, so U1 ∩ U2 is nonempty; hence

〈W,A, g〉 is non-Hausdorff.

We arrived thus at a non-Hausdorff manifold that resulted from gluing together

non-isometric Taub-NUT spacetimes. The introduction of such objects to GR was

motivated by a desire to have solutions to EFE that are as large as possible, but

there are trade-offs in this chase for even larger solutions: the topologically nice

(globally hyperbolic and Hausdorff) but small the Taub spacetime yields to larger

Taub-NUT extensions (not globally hyperbolic but still Hausdorff), which in turn

yield to non-Hausdorff manifolds resulting from gluing together the former

extensions. The first two kinds of object are typically classified as GR spacetimes.

Is the third object a GR spacetime as well? If not, how should one understand it?

Before we address these questions, in the next section we put forward two theorems

that, we believe, suggest and support a modal interpretation of non-Hausdorff

manifolds in GR.

4 Hausdorff vs. non-Hausdorff manifolds

In this section we prove that any non-Hausdorff d-manifold occurring in GR can be

seen as a result of pasting together a family of Hausdorff d-manifolds.6 We give

6We are indebted to P. Chruściel for describing to TP some non-Hausdorff manifolds

that occur in GR, and for posing the challenge of proving whether or not they are all

constructible from Hausdorff d-manifolds. We hope we meet this challenge in this section.
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first an auxiliary theorem that any non-Hausdorff manifold can be decomposed

into maximal Hausdorff submanifolds. 7

Theorem 2 (Háj́ıc̆ek-Geroch). A family H of all maximal Hausdorff

d-submanifolds of a non-Hausdorff d-manifold W = 〈W,A, g〉 is an open covering

of W.

Proof. Let Ω be the set of all open Hausdorff d-submanifolds of W,

Ω =
{
〈U,AU , gU 〉 | U ⊆W — open and Hausdorff, AU = A|U , gU = g|U

}
. We

introduce an ordering relation on the set Ω: 〈U,AU , gU 〉 � 〈V,AV , gV 〉 iff U ⊆ V .8

Obviously, 〈Ω,�〉 is a partial order. Pick now an arbitrary p ∈W . By local

Euclidicity p has an open neighborhood U∗ homeomorphic to an open set of <n.

Since <n (in the natural topology) is Hausdorff, U∗ is Hausdorff as well, i.e.,

〈U∗, AU∗ , gU∗〉 ∈ Ω. Consider next the set Ωp ⊆ Ω of open Hausdorff

d-submanifolds containing p. It is non-empty as 〈U∗, AU∗ , gU∗〉 ∈ Ωp and partially

ordered by �. Take next an arbitrary chain C = {〈U1, AU1 , gU1〉, 〈U2, AU2 , gU2〉 . . .}

of elements of Ωp. We argue that C has an upper bound in Ωp. To this end define

the sum U + V of open d-submanifolds of W: U + V = 〈U ∪ V,AU∪V , gU∪V 〉, where

AU∪V is the atlas induced by A on U ∪ V and gU∪V is the restriction of g to U ∪ V .

With the sum at hand, we define +C := 〈
⋃
Ui, A|

⋃
Ui , g|

⋃
Ui〉 with A|

⋃
Ui and g|

⋃
Ui

explained analogously as above, and claim that +C belongs to Ωp and is an upper

7Proof of a slightly different theorem (restricted to completely separable non-Hausdorff

manifolds) is given by Háj́ıček (1971b), who attributes it to Geroch; we present here our

version, which is shorter and without the extra premise.
8 Note that since Ω consists of open d-submanifolds, in the definition of �, the inclusion

induces the expected relation on atlases and metrics: a map from AU is the restriction to

U of a map from AV and gU is the restriction of gV to U .
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bound of C. Obviously,
⋃
Ui is open and p ∈

⋃
Ui. +C is also Hausdorff since

otherwise a pair witnessing non-Hausdorffness had to belong to some Uk (as C is a

chain), which is a contradiction. Thus, +C ∈ Ωp. It is also easy to note that for

any c ∈ C: c � +C. Putting these together, C has an upper bound in Ωp. We have

thus seen that the assumptions of the Zorn-Kuratowski lemma are satisfied, so by

that lemma we get it that Ωp has a maximal element. By unpacking this claim, we

have it that there is an open maximal Hausdorff d-submanifold that contains p. As

p is arbitrary, we proved that H is an open covering of W.

We have finally come to the main theorem of this paper:

Theorem 3. Any non-Hausdorff d-manifold 〈W,A, g〉 can be constructed by gluing

together of maximal Hausdorff d-submanifolds of 〈W,A, g〉, with gluing defined in

Definition 3.

Proof. Let 〈W,A, g〉 be a non-Hausdorff d-manifold. By the Theorem 2, we can

construct its open covering by maximal Hausdorff d-submanifolds H. We will show

that 〈W,A, g〉 can be constructed by gluing together these d-submanifolds. We

number elements of H by index set Γ of an appropriate cardinality:

H = {〈Uν , AUν , gν〉}ν∈Γ. For every two Uµ, Uν , we define Uµν = Uµ ∩ Uν . Observe

that there exist µ, ν such that Uµν 6= ∅ (take any non-Hausdorff connected

component of W — its covering contains at least two elements which overlap). As

a family of gluing functions take simply restrictions of identity on W to nonempty

Uµν , that is, φµν : Uµν 7→ Uµν , φµν(p) = p for every p ∈ Uµν . They indeed satisfy

the defining conditions of a gluing function, as Uµν are open and identity is

obviously an isometry. Let us define equivalence relation R ⊆W ×W in the

following way: xRy iff (1) x = y for x /∈
⋃
{Uµν : µ, ν ∈ Γ, Uµν 6= ∅} or (2)
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φµν(x) = y for x ∈ Uµν 6= ∅. Now, define W ′ as a set of representatives of all

elements of W/R. As all elements of this quotient structure are singletons,

obviously W ′ = W . The atlas A and atlases on d-submanifolds agree in the sense

of Definition 3 since the latter are restrictions of the former to d-submanifolds in

question. The metric g and metrics gµ agree for similar reasons.

The theorem provides an underpinning for the modal interpretation of a

non-Hausdorff manifold occurring in GR, which sees it as encapsulating a bundle of

alternative GR spacetimes, all of which are compatible with the initial data set.

Their support for the modal interpretation comes from the universality the

theorems bring. Just think of a non-Hausdorff manifold produced in the context of

a failure of the initial value problem. The theorems then say that this manifold can

be decomposed into maximal Hausdorff sub-manifolds and the decomposition is

faithful in the sense that the initial non-Hausdorff manifold is recovered by gluing

these sub-manifolds together. Moreover, whenever gluing identifies some regions of

sub-manifolds, these regions are physically alike (they are identical). A

non-Hausdorff manifold, whose maximal Hausdorff sub-manifolds have some

additional features so they qualify as GR spacetimes, naturally reads as a bundle

of GR spacetimes that is glued together in physically identical regions. Further, if

the metrics on the sub-manifolds satisfy EFE, the sub-manifolds are arguably

physically possible and are compatible with the physical situation in regions of

overlap.

There is one caveat concerning the universality of modal interpretation. The

gluing procedure can glue together regions that are in any possible relation to a

specified region: they can be to the past or to the future of it, or related to it in a

space-like way. Here emerges an interesting question of whether one can glue two
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manifolds in a fully atemporal way, i.e., such that for any point in the

glued-together region, the region has alternative developments only in the

space-like directions. It would be difficult to treat such cases as instances of

indeterminism, because the latter amounts to the existence of alternative future

temporal developments. However, we do not know whether constructions of this

type are possible.

One might wonder how our talk of the modal interpretation of non-Hausdorff

manifolds relates to the large landscape of positions in modal metaphysics.

Although our construction is conceptually modest, and hence does not provide the

means to give any definite answers to this question, its features make the concept

better aligned with some of the positions in modal metaphysics than others. The

vision underlying a generalized manifold is that of the totality of physically

possible events (idealized to be point-like) that can evolve to occur from some

initial state of our universe. This totality forms a base set of a generalized

manifold. Some events from this set can occur together —- in the jargon of the

metaphysician, they are compatible. Some other events cannot occur together,

they are incompatible. Compatibilities and incompatibles are induced by events

belonging to space-times: if there is a space-time to which two events belong, they

are compatible, otherwise they are incompatible. This idea naturally extends to

the compatibility (incompatibility) of arbitrarily large sets of events.

The notion of space-time is in turn defined by a topological criterion: a

space-time is a maximal Hausdorff submanifold of a given generalized manifold.

Clearly, if a considered generalized manifold is Hausdorff, it has a single

space-time, which is identical to the manifold in question. One division in modal

metaphysics is between possible worlds (Lewis) and possible ways of one (actual)
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world (Kripke, Stalnaker). Are we thus to represent alternative possibilities in

terms of a multiplicity of worlds, or rather a multiplicity of maximal alternative

states available for our (one) world? We opt for the latter: we think of a given

generalised manifold as encapsulating modal and non-modal features of our world;

alternative space-times are like alternative maximal states available to the world.

The daunting question then is which of these maximal states (space-times) is

actual, or is being made actual? A generalised manifold does not tell us which of

these possibilities is actual, or will become actual, however. It merely encapsulates

alternative possibilities (if it is non-Hausdorff). The information as to which

alternative possibility is actual must come from the outside. 9 Yet, given the

multiplicity of states, it is precisely one of these possible states that is actual, or is

gradually becoming actual. Emphatically, there is no answer to the question of

why this possibility rather than some other is actualized. After all, we assume

non-epistemic indeterminism. We thus advise the reader to reconcile themselves

with the idea that there might be no answer as why a particular space-time, out of

many alternative space-times, is actualized.

Fearing that these remarks merely open up more questions than they answer,

we leave the task of relating modally-interpreted generalized manifolds to positions

in modal metaphysics as a project for the future.

9This predicament might be typical of non-deterministic physics. That theories of

physics deliver knowledge on what physical possibilities are, rather than what actually is,

has been argued extensively by Bressan, see e.g., Bressan (1980).
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5 Bifurcating curves – friends or foes?

There is a staple objection against non-Hausdorff manifolds that (1) they admit

bifurcating curves or bifurcating geodesics, and that (2) such bifurcating objects

are bad. Against (2) we argue that on the modal interpretation of non-Hausdorff

manifolds, such bifurcating objects are not bad; to the contrary, they are very much

welcome. However (we continue to argue), there is typically no room for bifurcating

geodesics in non-Hausdorff manifolds, in contrast to objection (1). As we would

like to have bifurcating geodesics, we are not happy about the second argument.

To give some examples of the objection to bifurcating geodesics, since a

geodesic is standardly assumed to be a (potential) worldline of a free test particle,

Earman (2008) asked “how would such a particle know which branch of a

bifurcating geodesic to follow?”. In a similar vein, Hawking and Ellis (1973, p. 174)

opined that “a [bifurcating] behavior of an observer’s world-line would be very

uncomfortable”, with “one branch going into one region and another branch going

into another region”. Háj́ıček (1971b, p. 79) observed that a system cannot have

two solutions unless these solutions form a bifurcating curve, and concludes:

“Therefore, in view of the classical causality conception coinciding with

determinism it is sensible to rule out the bifurcate curves.”

These objections seem to simply beg the question in favour of determinism. It

is perfectly conceivable that there is no answer as to why one possible evolution

actually occurs rather than another. Whether there is always such an answer or

not is to be settled by the physical reality and not by our methodological

assumptions. Similarly, an indeterministically evolving observer might go into one

spatiotemporal region or another. A comparison with the mainstream thinking10

10I.e., barring some hidden-variable theories.
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on quantum phenomena might help. We do not expect that there must be an

answer to the question of “why did an electron go one way rather than the other in

the Stern-Gerlach apparatus?”.

To relate these observations to objection (2), an intuitive way of picturing

indeterminism conceives it as being produced locally in space and time. That is, if

we contemplate alternative evolutions, musing for instance why one rather than the

other has actualized, we wonder when and where one of these evolutions stopped

being possible, and what brought this about. Arguably, in such contexts we are

after a well-localized object. A paradigmatic example is a pointer to a

well-localized electron in a Stern-Gerlach device: before it enters the device,

scenarios with traces at the bottom or top of the photographic plate are possible,

but after the electron has left the device only one of them is possible. The behavior

of the electron in the Stern-Gerlach device is seen as underlying the dynamics of

the global scenarios: once two alternative scenarios were possible, but later only

one was possible. Clearly, similar appeals to the behavior of well-localized objects

to explain the dynamics of global scenarios is even more dominant in human

affairs, when the fact that we live in one scenario rather than another is attributed

to agents’ choices. We call this variety of indeterminism “local indeterminism”.

On local indeterminism, alternative evolutions of a big system (our world

included) require alternative evolutions of at least one of its small components. As

one idealizes the component to be point-like, the alternative evolutions can be seen

as alternative trajectories with two coinciding segments and two separate segments.

With further assumptions, such trajectories can be represented as functions from a

real interval to a manifold’s base set. Needless to say, trajectories representing

alternative evolutions bifurcate. As the standard view on geodesics identifies them
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with trajectories of (test) particles, it follows that geodesics representing

alternative evolutions of a (test) particle bifurcate as well. Accordingly, if cases of

non-unique solutions to EFE mean indeterminism, and the indeterminism in

question is local, there must be bifurcating curves.

Turning to objection (1), a pertinent question is whether non-Hausdorff

manifolds indeed imply the existence of bifurcating curves. There is a compelling

intuition linking non-Hausdorffness to bifurcating curves, to be seen in Figure 1.

This intuition works like this: suppose we have a pair of points, e1 and e2,

witnessing a failure of the Hausdorff condition. Then it ‘must’ be possible to draw

two continuous lines, one passing through e1 and the other passing through e2 in

such a way that they coincide below the two points, but do not overlap above

them, where ‘below’ and ‘above’ are purely conventional. Thus, the picture

suggests that we can always use a failure of Hausdorffness to produce bifurcating

curves. This issue is however more subtle, as the answer is different for two

different types of curves: those having a maximal element in their shared part and

those that instead have minimal elements in their separate arms. It turns out that

the latter are not admitted by some non-Hausdorff manifolds. For an analysis of

how it is possible in a physically relevant case of a non-Hausdorff extension of

Misner spacetime, see Margalef-Bentabol and Villaseñor (2014). (This case is

relevant as the extension is produced by the pasting technique of Definition 3).

Under what conditions non-Hausdorff d-manifolds admit bifurcating curves is thus

a nontrivial question that is answered by Háj́ıc̆ek’s (1971a) theorem, stated below.

After this preview, let us do some work. First (to recall), by a curve one means

a continuous function from a real interval to a manifold’s base set, and a geodesic

is a curve that satisfies the geodesic equation. Does uniqueness results obtain for
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geodesics, and if so, is Hausdorffness needed for uniqueness to obtain? Beginning

with local uniqueness, in a Hausdorff or non-Hausdorff d-manifold alike, if a metric

g is appropriately continuous, given a point p and a vector at this point, in some

neighborhood of p there is a unique geodesic that passes through the point and

whose tangent at this point coincides with the vector.11 Hausdorffness permits

strengthening this local result to global uniqueness: for a Hausdorff d-manifold M ,

given the continuity condition on g, a point p ∈M and a vector ξ at p, there is a

unique maximal geodesic γ : I →M such that (1) γ(0) = p and (2) γ̇(0) = ξ, where

γ̇(0) stands for a tangent to γ at point p = γ(0). The maximality of γ means that

if there is some other geodesic γ′ : I ′ →M satisfying conditions analogous to (1)

and (2) above, then I ′ ⊆ I. In sum, (given the continuity assumption on g), no

geodesics can bifurcate in Hausdorff manifolds, but non-Hausdorff manifolds might

be conductive to bifurcating geodesics.

Having the distinction between global and local uniqueness of geodesics, we link

it to two kinds of bifurcation (cf. Háj́ıc̆ek (1971a)).

Definition 4. A bifurcating curve of the first kind on a Cr generalized d-manifold

M is a pair 〈C1, C2〉 of Cr-continuous curves C1 : I →M , C2 : I →M such that

for some k ∈ I: ∀x ∈ I [x 6 k ⇔ C1(x) = C2(x)], where I is an interval in <.

A bifurcating curve of the second kind on a Cr generalized d-manifold M is a

pair 〈C1, C2〉 of Cr-continuous curves C1 : I →M , C2 : I →M such that for some

k ∈ I: ∀x ∈ I [x < k ⇔ C1(x) = C2(x)].

Thus, in a bifurcating curve of the first kind, there is a maximal element of interval

11See e.g. Chruściel (2011, p. 6). Typically, a metric of a GR spacetime meets the

mentioned continuity requirement. For examples of metrics that do not satisfy it and

accordingly generate non-unique bifurcating geodesics, see (Chruściel, 1991, Appendix F).
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I at which C1 and C2 agree, whereas in a bifurcating curve of the second kind

there is no maximal element in I at which C1 and C2 agree.

Now, as in a generalized d-manifold a geodesic is uniquely determined, locally

speaking, by a point and a vector, no geodesics can make a bifurcating curve of the

first kind. Thus, there is no room for bifurcating geodesics of the first kind in

generalized d-manifolds. But local uniqueness alone does not preclude bifurcating

curves of the second kind. Such curves are precluded by global uniqueness, and

global uniqueness is true in Hausdorff d-manifolds. Thus, if there are bifurcating

geodesics, they are of the second kind and in a non-Hausdorff manifold. But are

they there?

As we have shown, any non-Hausdorff d-manifold is constructible from a family

of Hausdorff manifolds, so perhaps this information can shed light on the existence

of bifurcating curves (of the second kind) in these manifolds? As we shall see, this

is indeed the case.

We need an auxiliary notion to begin with.

Definition 5 (Continuously extendible gluing). A gluing map

φ : A 7→ B,A ⊆M1, B ⊆M2 is continuously extendible iff there exist A′, B′, φ′ such

that A ( A′ ⊆M1, B ⊆ B′ ⊆M2, φ′ : A′ 7→ B′, φ′ is continuous and φ′|A = φ.

Theorem 4. The necessary and sufficient condition for a d-manifold constructed

by gluing together Hausdorff d-manifolds to admit bifurcating curves of the second

kind is that the gluing be continuously extendible. (Háj́ıc̆ek, 1971a)

As every non-Hausdorff d-manifold is constructible by gluing of Hausdorff

d-manifolds, Háj́ıc̆ek’s theorem yields a universal method to decide if it admits

bifurcating geodesics, or not.
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We use Theorem 4 to argue that ‘sound’ non-Hausdorff d-manifolds (to be

explained soon) occurring in GR are not continuously extendible, and hence do not

admit bifurcating curves of the second kind. Let us return to our GR example: the

construction of the non-Hausdorff extension of the two Taub-NUT spacetimes

exhibited in Section 3. The open sets U++ and U+−, glued together by isometry

φ12, are maximal isometric subsets of M↑+↑+ and M↑+↓−, respectively. Thus any

function f : M↑+↑+ →M↑+↓− that properly extends φ12 is not an isometry, so it is

not a gluing function. Accordingly, the gluing that produces a non-Hausdorff

extension of the Taub spacetime is not continuously extendible. Ergo, the

non-Hausdorff extension of the Taub spacetime admits no bifurcating curves of the

second kind.

From a mathematical perspective, there are non-Hausdorff d-manifolds

produced by a continuously extendible gluing procedures as well as non-Hausdorff

d-manifolds produced by a non-continuously extendible gluing procedures. The

former admit bifurcating curves of the second kind, whereas the latter do not. As

we have just seen, the non-Hausdorff extension of the Taub spacetime belongs to

the latter kind — it admits no bifurcating curves of the second kind. What about

the others? We will argue that all non-Hausdorff manifolds of the former type are

in certain sense unnatural, especially when viewed from the perspective of the

modal interpretation developed in this paper.

Observe that the crucial move of the above argument is that the regions

identified by the gluing function are maximal isometric regions of the component

manifolds. A corresponding requirement is not part of Definition 3 of the gluing

function and is not part of Definition 3 of the gluing procedure. These definitions

describe an abstract mathematical object, a generalized d-manifold, and its
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relation to Hausdorff manifolds, understood as its components. They do not pay

attention to how and at which end the defined procedure can be applied.

The application we investigate and advertise aims to produce a modal

representation of a spatio-temporal world: if there are non-unique solutions of EFE

for some data (which, by the Choquet-Bruhat and Geroch theorem, cannot be

globally hyperbolic (1969)), we consider these solutions as alternative possible

evolutions that start from an initial data set and we paste them together into a

non-Hausdorff manifold. In this application a natural directive is to identify (by

gluing) whatever can be identified, following the idea that indeterminism requires a

qualitative difference between alternative possible scenarios. This amounts to the

requirement to glue together maximal isometric regions of component manifolds if

there are such regions. Gluing larger regions is excluded by Definitions 2 and 3,

but gluing smaller than maximal isometric regions is allowed by these definitions.

To accommodate the desideratum to glue together maximal isometric regions of

component manifolds, one may add this postulate to Definition 3:

Postulate 1 (sound gluing of manifolds). For p ∈Wµ, q ∈Wη,

fµ(p) = fη(q) iff there are open subsets A and B of Wµ and Wη, resp., and an

isometry ξ : A 7→ B s.t. p ∈ A, q ∈ B, and ξ(p) = q.

The left-hand side means that two points, each from a different component

manifold, give rise to one and the same point in the non-Hausdorff d-manifold,

whereas the right-hand says that the points belong to appropriate isometric open

subsets and are linked by a corresponding isometry.

Clearly, Postulate 1 raises mathematical or interpretational issues: Do any two

Hausdorff d-manifolds admit maximal isometric regions? Even if in a collection of

Hausdorff d-manifolds any two of them have maximal isometric regions, does the
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gluing procedure always satisfy Postulate 1 (i.e., doesn’t the multiplicity of

components get in the way?) Can there be non-connected maximal isometric

regions, and if so, how are we to interpret the resulting non-Hausdorff manifold?

We leave these issues aside as they are somewhat tangential to the main

observation of this section. This observation is, in a nutshell, that the more

successful one is in delivering a modal representation of multiple solutions to EFE,

the less likely are the bifurcating curves of the second kind. We take it that a

successful representation of indeterminism calls for the satisfaction of Postulate 1.

This postulate requires gluing functions to identify maximal isometric regions,

which means that the functions are not continuously extendible; so, by Theorem 4

the resulting non-Hausdorff manifold does not admit bifurcating curves of the

second kind, and hence does not admit bifurcating geodesics of the second kind.

Since, to recall, by the geodesic equation there are no bifurcating geodesics of the

first kind either, there are no bifurcating geodesics. On the other hand, it might

happen that a particular set of multiple solutions to EFE does not satisfy the

Postulate, in which case the modal interpretation of these solutions is doubtful.

Yet a failure of the Postulate may open the door for bifurcating curves (geodesics)

of the second kind.

We find this situation deeply paradoxical. In a nutshell, given a set of multiple

solutions to EFE, the better the case it makes for the indeterminism of GR, the

worse it is for local indeterminism. Perhaps a way out is to countenance a

non-local variety of indeterminism. This comes with a price, however, as the

divergence of the two notions of local and global indeterminism is deemed

counterintuitive, see e.g., Belot (1995); Melia (1999); Sattig (2015).

31



6 Conclusions

Our paper revolves around two questions, both related to non-Hausdorff manifolds

in GR: (1) What can these manifolds represent? And, in particular, (2) can they

be used to represent indeterminism, modally understood?

The main formal result in the light of which we studied these questions says

that every non-Hausdorff d-manifold can be constructed by gluing together a

family of Hausdorff d-manifolds. This of course means that the gluing procedure

delivers every non-Hausdorff d-manifold of GR as well. Typically, the construction

of these manifolds in GR is motivated by the desire to produce a possibly large

solution of EFE, and gluing together non-isomorphic solutions to EFE is a way to

achieve this goal. The side-effect of this procedure, however, is that the resulting

objects are non-Hausdorff. Since Hausdorffness is standardly required for a

manifold to represent a GR spacetime, the question emerges of what such

non-Hausdorff manifolds constructed in GR can represent.

Our response to this question is two-fold: we conservatively keep the

requirement of Hausdorffness for GR spacetimes, while viewing a non-Hausdorff

manifold produced by gluing together a set of non-unique solutions to EFE as a

modal representation of this set. That is, we read such a manifold as encapsulating

multiple possible spatiotemporal evolutions (spacetimes), every one of which is

compatible with a given initial data set; this looks like a clear case of

indeterminism. We concede that non-Hausdorff manifolds produced outside of the

context of the initial value problem might have no interpretation.

To adopt this interpretation, we argued that a non-Hausdorff manifold should

be constructible by a more stringent gluing procedure, one that satisfies Postulate 1

as well. Although a non-Hausdorff manifold whose components are non-isometric
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Taub-NUT spacetimes is constructible by the more stringent procedure, we do not

know if this more stringent gluing procedure can be performed for all cases. More

worryingly (from a philosophical perspective), Postulate 1 has a consequence (via

Theorem 4) that spells trouble for the modal interpretation: there are no

bifurcating curves, and hence, no bifurcating geodesics in a non-Hausdorff manifold

obtained by the gluing procedure that satisfies the Postulate.

As we argued, the usual notion of indeterminism is local: if there are

alternative evolutions of a big system, some small component of this system has to

have alternative trajectories. Since geodesics are standardly identified with

trajectories of free (test) particles, the fact that there are no bifurcating geodesics

excludes local indeterminism. Thus, a non-Hausdorff manifold produced in accord

with Postulate 1 cannot represent locally indeterministic evolutions. It looks like

we are thus back to square one: what can non-Hausdorff manifolds represent?

The answer depends on what stance one takes to a non-local variety of

indeterminism, which might, and in GR cases does, conflict with the local variety.

If we accept the non-local notion, there is no obstacle to reading a non-Hausdorff

manifold produced from non-unique solutions of EFE in accord with Postulate 1 as

the representation of non-local indeterminism. After all, relativistic physics has

questioned a few intuitive notions, so its verdict that there might be indeterminism

without local indeterminism should not come as a big shock. But, arguing in the

opposite direction, one might recall that GR is concerned with big rather than

small objects, so its failure to accommodate local indeterminism might just reflect

its neglect of micro objects. Another option is to consider non-Hausdorff manifolds

as they occur in GR contexts as purely mathematical objects without any physical

meaning. Finally, the old option of some physicists – allowing for non-Hausdorff
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spacetimes – might be back on the table: their main objection to

non-Hausdorffness was that it introduces bifurcating geodesics, but as we saw,

there are no such geodesics if Postulate 1 is accommodated.12

We leave to the Reader the choice as to which option is preferred.
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