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In 2012, CERN scientists announced the discovery of the Higgs boson,
claiming their experimental results finally achieved the 5σ criterion for sta-
tistical significance. Although particle physicists apply especially stringent
standards for statistical significance, their use of “classical” (rather than
Bayesian) statistics is not unusual at all. Classical hypothesis testing—a
hybrid of techniques developed by Fisher, Neyman and Pearson—remains
the dominant form of statistical analysis, and p-values and statistical power
are often used to quantify evidential strength.1

The dominance of classical statistics raises a puzzle for epistemologists.
On one hand, science is a paradigmatic source of good evidence, with quan-
titative experimental science often described in classical statistical terms.
On the other, the hybrid of Fisherian and Neyman-Pearsonian techniques
is generally rejected by philosophers, statisticians, and scientists who study
the foundations of statistics.2 So why is the use of classical statistics in
empirical science so epistemically successful? Do classical “measures” of
evidence actually measure anything epistemically important?

This chapter provides some positive answers to these questions. Sec-
tion 1 quickly reviews classical hypothesis testing, including the Fisherian,
Neyman-Pearsonian, and hybrid versions. We focus on hypothesis testing
rather than estimation (of the value of a parameter) because there are closer
parallels between the former and philosophical theories of evidence, justifi-
cation, and knowledge.3 The logic for evidence it proposes, however, is only
partial and consequently so are its ambitions to justify belief and constrain
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1 See section 3.5 of Gigerenzer et al. [1989] for a history.
2 See chapter five of Howson and Urbach [2005]. Even proponents of classical methods

such as Mayo [1996, 2018] argue that the hybrid approach needs additional concepts (e.g.,
severity).

3 A reduction of estimation to hypothesis testing would draw the parallels closer, but
we do not attempt to take a stand on the relationship between estimation and testing
here.
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rationality. Yet it does seem to meet more fully the epistemological goals of
indicating truth and guiding inquiry objectively and publicly [Kelly, 2016].

In contrast with epistemologists’ concerns, though, most traditional ques-
tions about the ontology of evidence—e.g., is evidence propositional? Is it
sense data, mental states, or something else?—are less apt in discussions
of classical statistical evidence, which, beyond just assuming that evidence
consists somehow in recorded data, is largely quietist about ontology. Part
of the reason for this is that that classical statisticians typically understand
this data as relatively stable and mind-independent. Perception, memory,
and computational constraints, therefore, are typically ignored in theories
of statistical evidence.4

Regardless, the discussion in this first section reveals how evidence in
classical statistics bears similarities to tracking and anti-luck approaches to
knowledge and justification. Section 2 reviews objections to naive uses of
classical statistics as analogous to well-known criticisms of simplistic track-
ing theories of knowledge.5 We then illustrate several ways in which recent
developments in hybrid classical testing (e.g., by Mayo and Spanos [2006,
2011]) are analogous to modal principles (e.g., basis-relative versions of sen-
sitivity) that are used in more sophisticated tracking theories of knowledge.
In particular, comparing classical statistics with contemporary tracking the-
ories allows us gain insight into the scientific and quantitative application
of reliabilist epistemology.6 This suggests a possible reliabilist explanation
of why hitherto unrectified classical hypothesis testing, despite its numerous
problems, has been so successful in practice.

Classical statistics remains a largely unmined source of examples and
concrete applications for epistemological theories of evidence, justification,
and the like. Our concluding section 3 thus outlines various directions for
research concerning the relationship between classical statistics and philo-
sophical theories of evidence.

1 Classical Hypothesis Testing

To illustrate different forms of classical hypothesis testing in what follows,
we will rely on an example. Imagine Ada is interested in whether, at public

4Theories of justification for logical and mathematical beliefs often do the same.
5 For similar criticisms, see Mayo-Wilson [2018], who argues that just as some tracking

and relevant alternative theories violate epistemic closure in unacceptable ways, naive use
of classical methodology requires one to endorse claims like, “The data provides evidence
that smoking causes lung cancer, but it is not evidence that smoking causes some disease.”

6 See [Fletcher] for a detailed theory.
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universities in the United States, male and female assistant professors were
offered different starting salaries, on average, between 2000–2010—possibly
also in what gender equity policy to recommend to administrators based on
her findings. Using publicly available data, she randomly selects 30 men
who were hired as assistant professors during this period and 30 women.
She calculates an average salary of $68, 326 for men and $67, 552 for women.
How does this data provide evidence about different answers to her question,
and what recommendations she should offer?

Scientific (and pragmatic) questions such as these are qualitative, in-
voking no probabilistic claims. By contrast, classical hypothesis testing
demands that different answers—hypotheses, in statisticians’ jargon—must
each fix a probability distribution for the data gathered. Whatever assump-
tions fix this distribution are collectively called a simple statistical hypothe-
sis, while a composite statistical hypothesis is a (perhaps infinite) disjunction
of mutually exclusive simple ones. Formally, if F denotes the possible data
collected and P(F) all probability measures on F , then one can represent a
simple statistical hypothesis as element of P(F), and a composite one by a
subset of P(F).

Now, sometimes an answer to a scientific question on which the possible
data F bear—a scientific hypothesis, in some statisticians’ jargon—is quanti-
tative enough to entail a simple statistical hypothesis P ∈ P(F). In the case
at hand, however, it is not: to test any hypothesis about the average gender
differences in salaries, Ada must invoke and justify auxiliary assumptions
about the probability of selecting at random 30 different salaries each for
men and women. For example, Ada may reasonably assume that each of her
30 samples was, for each gender, drawn truly at random and independently
of each other, with each salary in the database equally likely to be drawn
(for each gender). The exact contents of the database will then determine
P for salaries of both male and female assistant professors, respectively.

However, the reason Ada is sampling from the database is that she does
not feasibly have access to its whole contents. If she did, she would only
need to engage in descriptive statistics, summaries of the database contents
themselves. Indeed, lack of knowledge about the population of interest is
typically one of the main motivations for the development of inferential
statistics, such as statistical testing. Thus she will need to make some jus-
tified auxiliary assumptions about general features of P—that is, to form
a well-circumscribed composite statistical hypothesis—and let the details
be specified by a choice of parameter, a set of numbers each of which de-
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termines a simple statistical hypothesis.7 For example, Ada might assume
that whatever the distribution of salaries in the database, the probability
distribution for the mean of a 30-element sample from it is (approximately)
normal, with the mean of that normal distribution depending on the gender
sampled.8 This would allow her to consider simple statistical hypotheses,
such as that the means of the two gender’s distributions were equal to a
specific value, e.g., the same value. It also allows her to consider composite
statistical hypotheses, such as that the means of the two gender’s distribu-
tions differ by at most some number ε which (for instance) she considers to
be practically significant. Researchers typically call the hypothesis under
test that test’s null hypothesis. How such a test bears on a null hypothesis
depends on the type of testing used.

1.1 Fisherian Testing

Fisherian testing quantifies purely the evidence against the null hypothe-
sis. Because, in this sense, it provides only negative evidence, it facilitates
a probabilistic sort of falsificationist reasoning: the stronger the evidence
against the null hypothesis, the more reason one has to reject it, although
Fisherian testing itself does not provide complete guidance on rejection.
(We’ll return to a related framework for testing that provides more such
guidance in section 1.2.)

The fundamental concept of Fisherian testing, its technique for quanti-
fying negative evidence, is the p-value. Intuitively, the p-value associated
with a statistic of the recorded data is the probability of observing data at
least as extreme—i.e., improbable—as that actually recorded, if the null hy-
pothesis were true. Small p-values thus indicate the data is strong evidence
against the null, as a p-value will be small only if the observed data, and
any data at least as extreme than it, were unlikely to have been observed if
the null hypothesis were true. However, a small p-value does not generally
indicate evidence for any specific simple alternative statistical hypothesis,
and a large p-values does not indicate evidence for the null hypothesis,for

7 Statisticians make a distinction between parametric inferential statistics and non-
parametric statistical inference, but these names are a bit misleading: the former concerns
families of probability distributions indexed by a finite set of numbers, while the latter
allows this set to be infinite [Tsybakov, 2009].

8 The assumption of a normal distribution is an approximation, as it entails positive
(albeit small) probabilities for data that is impossible, such as negative salaries, or salaries
whose magnitude is larger than the world’s yearly economic output. Although the use
of approximation and idealization in statistical testing is important and pervasive, it
engenders much the same issues as it does elsewhere in science.
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reasons we’ll discuss in section 2. In any case, p-values depend on three
components: (i) the actual/observed data, (ii) an “extremeness” relation on
possible data sets related to their probability, and (iii) the null hypothe-
sis, which determines these probabilities. So the fundamental measure of
evidence for Fisherian testing depends, in a crucial way, upon modal facts
about possible data.

To illustrate a formal definition for p-values,9 consider again the case of
Ada’s investigation of new faculty salaries, and suppose that she is interested
in performing a Fisherian test of the simple statistical hypothesis that there
is no difference in mean starting salaries in the United States between 2000–
2010 among male and female assistant professors. (Recall that the Fisherian
test allows one to find evidence against this hypothesis, but not for it nor
for any other simple statistical hypothesis.) Suppose that D ∈ F represents
the data Ada observed and that her simple null hypothesis determines a
probability distribution P ∈ P(F). Further suppose that the extremeness
relation on possible data sets is given by their probability ordering by P—
formally, for any E1, E2 ∈ F , let E1 ≤P E2 abbreviate the claim that
P (E1) ≥ P (E2).

10 Then Ada’s p-value equals P ({X ≥P D}), where {X ≥P
D} = {E ∈ F : E ≥P D} is the set of possible data that are at least
as extreme as what Ada actually observed. Since the observed difference
between the average salaries of male and female assistant professors was
$774, this amounts to P ({|X| ≥P $774}). Whether the p-value is large
or small will depend as well on the variance of the normal distributions
hypothesized.

9 Despite widespread agreement about how to calculate p-values in most cases, there
is surprising lack of agreement on the formal definition of p-values. Instead of defining
a p-value in terms of an “extremeness” relation, Wasserman [2004, p. 157] defines it to
be function of a collection of statistical tests (as well as the data and null hypothesis).
Lehmann and Romano [2010] do the same, except their definition of p-value is applicable
only when the statistical tests have a particular property. The definition of Casella and
Berger [2001, p. 397] is completely different; they define a p-value to be a statistic with a
particular type of distribution. The definitions, moreover, are not mathematically equiv-
alent to each other, or to the one above in terms of an extremeness relation. This makes
it unclear how to apply Fisherian testing in some novel contexts.

10 If the null hypothesis specifies a continuous distribution, then the extremeness relation
should be specified using the probability density, not the probability itself. Whatever the
distribution specified, though, one more generally lets the extremeness relation be defined
in this way through the probability (density) of a function (statistic) of the data. How to
choose such a function is an interesting topic on which Neyman-Pearson (section 1.2) and
hybrid (section 1.3) approaches to testing have much to recommend [Casella and Berger,
2001, Ch. 8.3.2], although the seeming latitude in this choice does raise questions about
the objectivity of classical statistical testing.
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As we have illustrated, p-values are typically calculated for simple sta-
tistical hypotheses. When the null hypothesis is composite, researchers typ-
ically define its p-value to be the maximum (or supremum) of the p-values
of the disjuncts. This definition, which is rarely explained, is similar to
worst-case reasoning. Unless one’s data is improbable for every way that
a composite null hypothesis might be true, one’s data will not yield a low
p-value and will not count as evidence against the hypothesis according to
Fisherian testing.

1.2 Neyman-Pearson Testing

Fisher aimed to quantify the strength of evidence that a particular data set
provides against a particular null hypothesis. In their landmark 1933 pa-
per, Neyman and Pearson (NP) abandon that goal completely for statistical
testing. They write:

We are inclined to think that as far as a particular hypothesis
is concerned, no test based upon the theory of probability can
by itself provide any valuable evidence of the truth or falsehood
of that hypothesis.

But we may look at the purpose of tests from another view-
point. Without hoping to know whether each separate hypoth-
esis is true or false, we may search for rules to govern our be-
haviour . . . [that] insure that, in the long run of experience, we
shall not be too often wrong . . . Such a rule tells us nothing as
to whether in a particular case [a hypothesis] H is true . . . But it
may often be proved that if we behave according to such a rule,
then in the long run we shall reject H when it is true not more,
say, than once in a hundred times, and in addition we may have
evidence that we shall reject H sufficiently often when it is false.
[Neyman and Pearson, 1933, pp. 141–142]

The fundamental concern of NP’s theory is with the long-run reliability of
statistical testing procedures to minimize (what contemporary philosophers
would call) epistemic risk. To do so, they must consider not just the (simple
null) hypothesis under test, but also an alternative, simple or composite. For
NP, a statistical testing procedure is simply a rule that partitions D ∈ F into
two sets, A and R: those that warrant accepting the null hypothesis (and
rejecting the alternative), and those that warrant accepting the alternative
hypothesis (and rejecting the null), respectively. There are, of course, in
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general many such partitions available, so testing procedures ought to be
judged by how well they minimize two types of errors. Let Θ denote the
set of simple statistical hypotheses composed by the disjunction of the null
hypothesis θ0 ∈ Θ and the alternative hypothesis (which, again, may be
composite). Each θ ∈ Θ prescribes a distinct probability distribution Pθ ∈
P(F). Then, a Type I error occurs when θ0 is true—i.e., the probability of
the data is actually given according to Pθ0—but D ∈ R. A Type II error
occurs when θ0 is false—i.e., the probability of the data is actually given
according to Pθ for some θ 6= θ0—but D ∈ A. The significance level or size α
of a testing procedure is the probability of a Type I error when θ0 is true: α =
Pθ0({D ∈ R}).11 The testing procedure’s power at θ ∈ Θ, β(θ), is one minus
the probability of a Type II error when θ is true: β(θ) = 1− Pθ({D ∈ A}).
Notably, the size of a testing procedure is a constant (assuming, as is typical,
that the null hypothesis is a simple statistical hypothesis), while its power
is a function of the simple statistical hypotheses comprising the alternative.
It’s generally not possible to find a testing procedure that minimizes both
the Type I and Type II error rates at once. The tradition in NP testing is
to fix the size of the testing procedures of interest conventionally, and then
maximize the power, although there are good decision-theoretic reasons to
balance them together rather than sequentially [Cox, 1958].

Details about how to choose a testing procedure aside, already there are
two important points to note about NP testing in general. First, it assumes
the truth of the disjunction of the null and alternative hypotheses, even
when this disjunction is not a tautology. This is clearly also an idealization
in much the same sense as discussed in footnote 8; whether it is a warranted
idealization must be judged from other contextual knowledge and evidence.
Second, size and power are attributes of testing procedures, not of particular
tests applied to particular data. These two quantities, therefore, can be
calculated for one’s anticipated testing procedure before any data is gathered
whatsoever. Their lack of dependence on the data undergird NP’s denial
that the size and power of a test quantify any evidence that a particular
data set provides for any particular hypothesis. Yet if one believes and
acts according to the verdicts of NP tests of sufficient size (about 1%, as NP
suggest), then the long-run reliability of those testing procedures is supposed
to provide evidence that most of one’s beliefs are true, even if they do not

11 Some authors distinguish the size of a testing procedure, as we have defined it, from
the significance level, by which they denote only a strict upper bound on the Type I error
[Casella and Berger, 2001, p. 385]. The relevance of this distinction becomes important
only for more complicated testing procedures, the details of which are beyond the present
scope of discussion.
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provide any evidence for the truth of any particular belief (associated with
a simple statistical hypothesis).

1.3 Hybrid Approaches to Testing

Fisherian and NP testing differ in at least two important ways. First, they
relate different sorts of relata. While both concern (simple) null hypotheses
and data, only NP essentially considers particular alternative hypotheses
through its use of the power concept. The significance of this additional
relata is that it is supposed to provide warrant for positive evidence, i.e.,
acceptance of hypotheses, while Fisherian testing generally provides only
negative evidence. Indeed: “It is sometimes suggested that how confident
a scientist is justified in being that a given hypothesis is true depends, not
only on the character of relevant data to which she has been exposed, but
also on the space of alternative hypotheses of which she is aware” [Kelly,
2016]. Similar suggestions have been made about statistical evidence [Ear-
man, 1992].

However, the way that NP testing implements this relation has been
subject to withering criticism. In particular, its long-run behavioristic ori-
entation, advocated by Neyman in particular, supports no evidence rela-
tions bearing on any particular hypotheses, only a probabilistic guarantee
that one’s actions, based on the hypotheses “accepted” through NP testing,
would often be apt [Howson and Urbach, 2005]. Fisher thus called Ney-
man’s philosophy “childish” and “horrifying [for] intellectual freedom in the
west” [Gigerenzer et al., 1989, pp. 106–109]. This proscription of evidence
relations for particular hypotheses was extreme enough that Pearson himself
later rejected it [Mayo, 1996, Ch. 11].

Yet, Fisherian testing is not an entirely satisfactory alternative, for it
provides no way for data to support an hypothesis. Consequently, both Fish-
erian and NP testing are often taught side-by-side in contemporary statis-
tics textbooks, without mention that the two sets of techniques are based in
radically different conceptions of the relation between data and hypotheses.
There’s often a vague sense, in these hybrid accounts, in which evidence for
an alternative hypothesis requires both a low p-value and sufficiently high
power, even though the former is a function of the data whereas the latter is
a property of the testing procedure only. If the power of a testing procedure
warrants only the reliability of certain behavior in the long-run, how is it to
help warrant evidence for hypotheses in particular cases?

Perhaps surprisingly, statisticians have not directly addressed these is-
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sues.12 But philosopher Deborah G. Mayo [Mayo, 1996, 2018] has, often
in collaboration with econometrician Aris Spanos [Mayo and Spanos, 2006,
2011]. To understand their suggestion, which they call severe testing, it is
first helpful to understand the relationship between p-values and significance
levels. It often the case that one motivates the selection of the rejection re-
gion R ⊂ F of an NP test of a simple hypothesis θ0 by appeal to possible
data that would yield low p-values. Explicitly R = {D ∈ F : Pθ0(X ≥Pθ0

D) ≤ α}, where α is the significance level. Comparing with the definition of
the p-value provided above, this amounts to letting the rejection region be
those data sets that yield a p-value no larger than the chosen significance
level, and the acceptance regions be those that yield a p-value larger than
the chosen significance level. According to this prescription, the significance
level and the p-value are calculated in a similar way, except the former, ap-
plied as it is to a testing procedure, does not depend on any particular data
collected, while the former does so depend, and therefore quantifies the fit
or compatibility of that particular data with the null hypothesis.

Mayo and Spanos suggest introducing a quantity, what they call the
severity of a particular test, analogous to power as p-values are to signifi-
cance levels. Severity is, in other words, a data-dependent version of power,
and its application should help underwrite warrant for positive evidence for
an hypothesis. The severity with which θ0 is tested against θ by data D is
given by

SEV (D, θ) = Pθ(X >Pθ0
D) = 1− Pθ(X ≤Pθ0

D).

When the alternative hypothesis is composite, they propose calculating the
supremum of this function over each simple θ comprising the composite
alternative.13 In a word, a hypothesis H0 is severely tested—receives a high
severity score—just to the extent that it’s likely that more extreme data
(according to H0) would have been observed if the alternative hypothesis
were true. A test of θ0 with data D then produces evidence for θ0 to the
degree that both the p-value and the severity are high.

Fisherian, NP, and hybrid approaches such as Mayo and Spanos’s severe
testing share a commitment to the dependence of evidence upon F , the

12 There is a literature on so-called post-hoc/restrospective analyses of power, but these
techniques do not accomplish their goals [Hoenig and Heisey, 2001].

13 In section 2 we discuss parallels between severe testing and modal criteria for knowl-
edge; this particular proposal for severity when the alternative hypothesis is composite
is a slight departure from these parallels because it does not consider only hypotheses
sufficiently similar to the null, as modal conditions considering only the closest possible
worlds do. This might provide grounds for modifying severe testing [Fletcher].
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space of possible data, not just the actual data. Most Bayesian statisticians
reject this claim. For example, Lindley [1971, p. 436] writes that “unbiased
estimates, . . . sampling distributions, significance levels, power, all depend
on something more—something that is irrelevant in Bayesian inference—
namely the sample space.” If Bayesian inferences depend only on one’s
posterior probability distribution over hypotheses, then this is determined
by one’s prior probability distribution over hypotheses and the likelihoods of
the data, but not essentially on one’s prior probability distribution over the
possible data generally. Moreover, these approaches also require an ordering
of “extremeness” on these possible data sets. This structure on possibilia
should be reminiscent to epistemologists of the closeness, or similarity, of
possible worlds invoked in reliabilist theories. We indeed turn now to the
relationship between modality and evidence in classical statistics in section
2.

2 Reliablism, Modality, and Classical Statistics

There are important parallels between the theories of classical hypothesis
testing outlined in section 1 and reliabilist (e.g., tracking and anti-luck)
theories of knowledge. In the former, the evidence for an hypothesis from
data depends not just on that hypothesis and the actual data, but also (1)
the merely possible data, and, in the case of Neyman-Pearson and hybrid
approaches, (2) the possible alternative hypotheses. Reliabilist theories of
knowledge regiment which beliefs count as knowledge through modal condi-
tions, which may depend upon (1) the basis of a belief (i.e., observations and
the method for forming the belief) and (2) the reasons the belief might have
been false. Conditions such as adherence and sensitivity employed in these
theories parallel the size and power concepts in classical statistical testing.
Thus, criticisms of these conditions, which motivate their basis-relative ver-
sions, find analogs in statistical criticisms of size and power, which lead to
data-dependent versions thereof in the hybrid approaches of Mayo [1996,
2018] and Mayo and Spanos [2006, 2011].

Stine [2008], Dretske [1971], and Nozick [1981], among others, famously
argue that, if a subject S knows some proposition ϕ, then her belief in ϕ
must be sensitive, i.e., if ϕ had been false, then S would not have believed
ϕ.14 Although sensitivity captures many intuitions about knowledge, many,
including Nozick himself, argue the crude formulation just given is not nec-

14 [Becker and Black, 2012] contains several more recent articles on the plausibility of
sensitivity.

10



essary for knowledge.
Nozick [1981] asks us to imagine an elderly grandmother who is dying in

a hospital. Her grandson, a professional stuntman, visits her in the hospital
after a near-death incident on a movie set. But suppose that, if the stuntman
had died, his grandmother would have remained blissfully ignorant until her
death. Intuitively, the grandmother knows that her grandson is alive after
seeing him, but by stipulation, her belief is not sensitive: she would have
falsely believed her grandson to be alive even if he had died. Sensitivity,
Nozick concludes, is not necessary for knowledge.

Power, as defined in section 1.2, is the statistical analog of sensitivity:
a classical statistical test is sensitive to an alternative hypothesis to the
extent that it will probably reject the null hypothesis when that alternative
is true. So unsurprisingly, high power has been criticized as necessary for
statistical evidence using cases analogous to Nozick’s grandmother example.
To see why, we modify an example due to Berger and Wolpert [1988, pp. 5–6,
Example 1].

Example 1 Imagine Acme Corp. makes two types of urns, both of which
contain 100 balls. R-urns contain 1 ruby ball, 50 scarlet balls, and 49
black balls; B-urns contain 49 scarlet balls and 51 black balls.

Urn Type Ruby Scarlet Black

R 1 50 49
B 0 49 51

Table 1: Colors of the balls in the Acme urns.

You find an Acme urn, but you don’t know which type. So you decide
to run a Neyman-Pearson test on the hypothesis HR, “The urn is R-
Type.” You will draw one ball from the urn. If you draw a black
ball, you’ll reject HR for HB, “The urn is B-Type.” Otherwise, you’ll
accept it.

Your test has low power: there’s a 49% chance you will accept HR if
HB is true. Yet, observing a ruby ball entails HR, hence is conclusive
evidence for HR and against HB. So, having high power cannot be a
necessary condition for a test to yield strong evidence.

The problem with power, and with sensitivity, is that they depend only
on procedural aspects of gathering evidence, not on the particular details of
the evidence gathered. Once one recognizes the analogy between sensitivity
and power, it’s unsurprising that proponents of each have modified their
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theories in analogous ways to avoid the above counterexamples. For exam-
ple, Nozick notices that, if the stuntman had died, his grandmother would
not have believed him to be alive on the same basis/evidence. That is, if her
grandson had died, the grandmother’s belief would have been sustained by
different evidence altogether, namely, that the last time she saw her grand-
son, he was alive and well. So, roughly, Nozick argues that, if S knows that
ϕ, then S’s belief need be sensitive only in the sense that if ϕ had been false,
then S would not believe ϕ on the same basis.15 And similarly, Mayo [2018]
and Mayo and Spanos [2006, 2011] emphasize that regardless of the power
of a test, in order for it to provide evidence for a null hypothesis against an
alternative, the data actually collected must yield high severity (as defined
in section 1.3): if the alternative hypothesis were true, the there would be
a high probability that the data collected would have been more extreme
than they actually were. In Example 1, observing a ruby ball provides se-
vere evidence for HR, even though your test has low power, because with
probability one, you would not have pulled a scarlet ball were HR false (and
HB true). In short, epistemologists’ investigation of basis-relative notions of
sensitivity are analogous to investigation of data-dependent notions of power
by philosophers of statistics.

Just as there are challenges to the necessity of a simple version of sensi-
tivity for knowledge, there are also also challenges to its sufficiency. Harman
[2008], for example, asks us to imagine that a dictator dies and a small news
station reports the story immediately. Suppose Ian hears the report and
thus believes (rightfully) that the dictator is dead. However, imagine that,
prior to the dictator’s death, the government planned a cover-up. So news
stations had been instructed not to report the dictator’s death (whenever it
happens). Consequently, the small news station issues a retraction minutes
later, and all other news outlets continue to report that the dictator is alive.
Ian, ignorant of the other reports, continues to believe the dictator is dead.

Here, Ian’s belief seems to be sensitive: if the dictator were alive, he
would not believe the dictator to be dead. Yet many think, intuitively, that
Ian does not know that the dictator is dead. If he knew of the other news
reports, he would believe that the dictator is alive and that the small news
station had erred. Thus, true, sensitive belief is not sufficient for knowledge.
An analogous case, again modeled on an example due to Berger and Wolpert
[1988, p. 8, Example 4a], shows that a hypothesis passing a highly powered
test might nonetheless be poorly supported by the evidence.

15 For simplicity, we ignore the differences (if any) between Nozick’s “methods,” Sosa’s
“bases,” etc.
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Example 2 Imagine Ace Inc. makes two types of urns, both of which con-
tain 100 balls. R-urns contain 1 ruby ball, 98 scarlet balls, and 1 black
ball; B-urns contain 1 ruby ball, 0 scarlet balls, and 99 black balls.

Urn type Ruby Scarlet Black

R 1 98 1
B 1 0 99

Table 2: Colors of the balls in the Ace urns.

You find an Ace urn, but you don’t know which type. So you decide
to run a Neyman-Pearson test on the hypothesis HR “The urn is R-
Type.” You will draw one ball from the urn. If you draw a black
ball, you’ll reject HR for HB, “The urn is B-Type.” Otherwise, you’ll
accept it.

Your test has high power: there’s a 1% chance you will acceptHR ifHB

is true. Yet, observing a ruby ball does not provide strong evidence for
HR, hence against HB, because both R-urns and B-urns have exactly
one ruby ball. So, having high power cannot be a sufficient condition
for a test to yield strong evidence.

The problem with power, and with sensitivity, is that they are essentially
vacuous when an observation is improbable no matter which hypothesis is
true. In Example 2, it is highly and equally improbable that one will observe
a ruby ball, regardless of whether HR or HB is true. So even though the
proposed test of HR has a high power against HB, observing a ruby ball does
not provide good evidence that HR is true, and HB false. And in Harman’s
case, the chances of Ian learning that the dictator is dead are virtually zero,
regardless of whether the dictator is in fact dead. So although Ian’s belief
is sensitive because there is no other nearby world in which he believes the
dictator is dead, it is not thereby knowledge.

This problem extends to basis-relative sensitivity and data-dependent
severity. But, Nozick does not claim that sensitivity is sufficient for knowl-
edge, nor do Mayo and Spanos claim that severity is sufficient for strong
evidence for a hypothesis. The latter also require fit—that the evidence has
a mediocre or large p-value given the hypothesis—while the former also re-
quires an additional condition often called adherence, which states that if an
agent knows ϕ, then in nearby worlds in which ϕ is true, she believes ϕ. We
will leave others to summarize how significance levels (the non-data depen-
dent version of p-values) and non-basis relative versions of adherence have
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been subjected to analogous counterexamples in epistemology and statis-
tics, respectively. Instead, we discuss an objection to the necessity of basis-
relative versions of adherence, due to Kripke [2011, p. 178], extending it to
Mayo and Spanos’s notion of fit. We then briefly argue that the objection
reveals a strength, not a weakness of the requirement.

Imagine a box containing two slits through which a photon might pass.
Suppose there is a detector plate behind the right slit but not the left one.
Mary will believe a photon was emitted if and only if the detector is ac-
tivated; otherwise, she will will suspend judgment. Finally, suppose that
a photon passes through the right slit, activating the detector. Intuitively,
Mary’s belief counts as knowledge. But according to Nozick’s theory, Mary
does not know a photon was emitted because in nearby worlds in which the
photon passes through the left slit, she does not believe a photon has been
emitted (as she suspends judgment). The example shows that, although
Mary got lucky confirming evidence, her belief still counts knowledge be-
cause she would not have received the same confirming evidence if her belief
(that a photon was emitted) were false.

Example 1 above illustrates an analogous problem for the thesis that
good evidence for an hypothesis must fit the hypothesis in Mayo and Spanos’s
sense, i.e., that in order for data to count as evidence for the null hypothesis,
its probability (or that of data at least as extreme) should be high (or at
least not low) if the null hypothesis is true. Drawing a ruby ball in Example
1 intuitively provides good evidence for HR, yet one is unlikely to observe a
ruby ball if HR is true (and so one is unlikely to believe HR on the basis of
observing a ruby ball even if HR is true).

We deny that intuition. Observing a ruby ball is by itself bad evidence
for HR. It is, of course, good evidence against HB. So if one already
had good evidence E for the disjunctive hypothesis HR ∨ HB, then the
conjunction of E and one’s observation of a ruby ball might constitute good
evidence for HR. But a ruby ball alone does not. We conclude that Mayo
and Spanos’s theory delivers the correct verdict that a ruby ball, itself, is
bad evidence for the hypothesis HR.

Some might object that our defense of Mayo and Spanos’s theory is a
bit of a cop out, but we think it reveals a deep strength of their theory and
a limitation of other approaches to measuring statistical evidence. Suppose
now that you draw three balls with replacement from the unknown urn in
Example 1. Imagine that, each time, you draw a ruby ball. That data
might reasonably lead you to doubt your background assumption that the
urn is Type R or B. Although your evidence still definitively rules out the
hypothesis HB, you have still witnessed an incredibly improbable outcome
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if the hypothesis HR is true. So drawing three ruby balls seems to be good
evidence against the disjunctive hypothesis HR ∨HB.16

An analogous response applies to Kripke’s purported counterexample.
If Mary’s detector is activated every time that a photon might have been
emitted, then Mary could reasonably become convinced that her detector is
broken, or that something about the physical apparatus prevents photons
from passing to one side. And that might reasonably undermine her claim
to knowledge that any particular photon was emitted.

These responses illustrate how classical statistical testing avoids van
Fraassen’s “bad lot” objection [Van Fraassen, 1989, pp. 142–3], which, though
originally aimed at inference to the best explanation, applies equally to any
account of inference or evidence that is merely comparative. Such theories,
such as likelihoodism and some forms of Bayesianism, claim that data only
provide evidence for one hypothesis over another, rather than for or against
a single hypothesis. The objection is that the best of bad lot can be no
good at all: just because an hypothesis fares better than others under con-
sideration needn’t entail that it is should be believed, as sufficiently strong
evidence ought compel. Requiring that the data fit an hypothesis to support
it evidentially means that when all the statistical hypotheses under consid-
eration fail to fit the data, they should all be rejected [Gelman and Shalizi,
2013]. This process of checking statistical modeling assumptions [Mayo and
Spanos, 2004] can then in turn spur generation and consideration of new
hypotheses.

3 Conclusions and Future Research

Although classical hypothesis testing was developed to answer concrete ques-
tions in the agricultural and social sciences whereas modal theories of knowl-
edge were designed as solutions to abstract concerns about external world
skepticism, the two share considerable theoretical structure. Both em-
ploy subjunctive conditionals relating, respectively, hypotheses and possi-
ble worlds with data and bases for belief, as logical conditions for evidence
and knowledge. We reviewed a few counterexamples against some of these
conditions in section 2, showing how the statistical and epistemology liter-

16 The careful reader might note that this line of reasoning can also be used to defend the
thesis that pre-sample power is necessary for evidence against the objection in Example
1. A small modification to that example (by increasing the number of ruby balls in Urn
R to one million and leaving all other things the same), however, illustrates the same
problem for power and provides further reason to think Mayo and Spanos’s notion of “fit”
is tracking intuitions.
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atures have paralleled each other. Surely further examples from each could
be adapted to bear on the other. For example, classical hypothesis test-
ing requires an extremeness relation on possible data sets that bears some
resemblance to the similarity relations on possible worlds used in the se-
mantics for modal conditions on knowledge: the more extreme data are, the
less probable they are in, with respect to some way of aggregating the data.
Does this mean such data are less relevantly similar to the most probable
data? What determines the best way to aggregate the data, i.e., the selec-
tion of a test statistic to summarize the data and whose values are the relata
of the extremeness relation?

Another set of tasks we have not completed includes evaluating how well
classical hypothesis testing fares in accomplishing typical goals for philosoph-
ical theories of evidence. These include specifying the ontology and logical
structure of evidence, clarifying its role in justifying belief, constraining
rationality, guiding inquiry towards the truth, and arbitrating these tasks
objectively, publicly, and intersubjectively. Section 1 already makes some
progress on the logical structure of evidence in classical hypothesis testing,
and the introductory section mentioned that it is largely quietist about on-
tology. This makes sense if the motivation for the ontology of evidence arises
from epistemologists’ general assumption that evidence is first-person, thus
must interface with the philosophy of mind. In contrast, evidence in clas-
sical statistics is third-personal. Although statisticians and scientists agree
that it should rationally guide belief and decisions, that guidance itself is
not a part of the theory of testing. Providing such guidance could be a
philosophical project worthy of pursuit.

One of the prima facie advantages of third-personal evidence is its natu-
ral connection with objectivity. Because there are many sorts of objectivity
[Douglas, 2009], it would be worthwhile to investigate whether classical sta-
tistical testing provides the sort that is epistemologically desirable—see, e.g.,
Reiss and Sprenger [2017, §4.2.2] for a dissent. In contrast with Bayesian
statistics, for example, no use of utility functions or subjective prior proba-
bilities over the space of hypotheses is needed, although (as alluded above)
the choice of test statistic raises questions about what Douglas calls “pro-
cedural objectivity.” Connected with objectivity, of course, is the sense
in which evidence is supposed to be indicative of the truth. Here, further
analysis of the significance of famous limiting theorems, such as the law of
large numbers and the central limit theorem, deserve more philosophical
attention.
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