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We compare and contrast two distinct approaches to understanding the Born
rule in de Broglie-Bohm pilot-wave theory, one based on dynamical relaxation
over time (advocated by this author and collaborators) and the other based on
typicality of initial conditions (advocated by the ‘Bohmian mechanics’ school).
It is argued that the latter approach is inherently circular and physically mis-
guided. The typicality approach has engendered a deep-seated confusion be-
tween contingent and law-like features, leading to misleading claims not only
about the Born rule but also about the nature of the wave function. By arti-
ficially restricting the theory to equilibrium, the typicality approach has led to
further misunderstandings concerning the status of the uncertainty principle,
the role of quantum measurement theory, and the kinematics of the theory (in-
cluding the status of Galilean and Lorentz invariance). The restriction to equi-
librium has also made an erroneously-constructed stochastic model of particle
creation appear more plausible than it actually is. To avoid needless controversy,
we advocate a modest ‘empirical approach’ to the foundations of statistical me-
chanics. We argue that the existence or otherwise of quantum nonequilibrium
in our world is an empirical question to be settled by experiment.

To appear in: Statistical Mechanics and Scientific Explanation: Determin-
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1 Introduction

The pilot-wave theory of de Broglie (1928) and Bohm (1952a,b) is a deterministic
theory of motion for individual systems. In the version first given by de Broglie,
a system with configuration q and wave function ψ(q, t) has an actual trajectory
q(t) determined by de Broglie’s equation of motion

dq

dt
=

j

|ψ|2
, (1)

where ψ obeys the usual Schrödinger equation (units ~ = 1)

i
∂ψ

∂t
= Ĥψ (2)

(with a Hamiltonian operator Ĥ) and j is a current satisfying the continuity
equation

∂ |ψ|2

∂t
+ ∂q · j = 0 (3)

(with ∂q the gradient operator in configuration space).1 Equation (3) is a
straightforward consequence of (2), and using (1) it may be rewritten as

∂ |ψ|2

∂t
+ ∂q · (|ψ|2 q̇) = 0 (4)

(where q̇ = j/ |ψ|2 is the configuration-space velocity field).
Thus, for example, for a single low-energy spinless particle of mass m we

find a current

j = |ψ|2 ∇S
m

(5)

(where S is the phase of ψ = |ψ| exp(iS)) and (1) reads

dx

dt
=
∇S
m

. (6)

Given an initial wave function ψ(q, 0), (2) determines ψ(q, t) at all times and
so the right-hand side of (1) is also determined at all times. Given an initial
configuration q(0), (1) then determines the trajectory q(t). Thus, for example,
in a two-slit experiment with a single particle, if the incident wave function is
known then (6) determines the trajectory x(t) for any initial position x(0).

Mathematically, for a given wave function, the law of motion (1) defines a
trajectory q(t) for each initial configuration q(0). In practice, however, we do
not know the value of q(0) within the initial packet. For an ensemble of systems
with the same ψ(q, 0), the value of q(0) will generally vary from one system to
another. We may then consider an initial distribution ρ(q, 0) of values of q(0)

1This construction applies to any system with a Hamiltonian Ĥ given by a differential
operator on configuration space (Struyve and Valentini 2009).
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over the ensemble. As the trajectories q(t) evolve, so will the distribution ρ(q, t).
By construction ρ(q, t) will obey the continuity equation

∂ρ

∂t
+ ∂q · (ρq̇) = 0 . (7)

In principle there is no reason why we could not consider an arbitrary initial
distribution ρ(q, 0). De Broglie’s equation (1) determines the time evolution
of a trajectory q(t) for any initial q(0), and over the ensemble the continuity
equation (7) determines the time evolution of a density ρ(q, t) for any initial
ρ(q, 0). There is certainly no reason of principle why ρ(q, 0) should be equal to

|ψ(q, 0)|2.
As an extreme example, an ensemble of one-particle systems could have

the initial distribution ρ(x, 0) = δ3(x − x0), with every particle beginning at
the same point x0. As the distribution evolves, it will remain a delta-function
concentrated on the evolved point x(t). Every particle in the ensemble would
follow the same trajectory. If such an ensemble were fired at a screen with
two slits, every particle would land at the same final point xf on the backstop
and there would be no interference pattern (indeed no pattern at all), in gross
violation of quantum mechanics.

If instead it so happens that ρ(q, 0) = |ψ(q, 0)|2, then since ρ and |ψ|2 obey
identical continuity equations ((7) and (4) respectively) it follows that

ρ(q, t) = |ψ(q, t)|2 (8)

for all t. This is the usual Born rule. In conventional quantum mechanics
(8) is taken to be an axiom or law of nature. Whereas in pilot-wave theory
(8) is a special state of ‘quantum equilibrium’: if it happens to hold at one
time it will hold at all times (for an ensemble of isolated systems). Thus, for
example, if such an ensemble of particles is fired at a screen with two slits, the
incoming equilibrium ensemble will evolve into an equilibrium ensemble at the
backstop, and hence the usual interference pattern ρ = |ψ|2 will be trivially
obtained. More generally, as first shown in detail by Bohm (1952b), for systems
and apparatus initially in quantum equilibrium, the distribution of outcomes of
quantum measurements will agree with the conventional quantum formalism.

But in principle the theory allows for ‘quantum nonequilibrium’ (ρ 6= |ψ|2).
How then can pilot-wave theory explain the success of the Born rule (8), which
has been confirmed to high accuracy in every laboratory experiment? Most
workers in the field (past and present) simply take it as a postulate. Thus, for
example, according to Bell (1987, p. 112) ‘[i]t is assumed that the particles are
so delivered initially by the source’, while according to Holland (1993, p. 67)
the Born rule is one of the ‘basic postulates’. This is unsatisfactory. There is
after all a basic conceptual distinction between equations of motion and initial
conditions. The former are regarded as immutable laws (they could not be
otherwise), whereas the latter are contingencies (there is no reason of principle
why they could not be otherwise). Once the laws are known they are the
same for all systems, whereas for a given system the initial conditions must
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be determined empirically. Thus Newton, for example, wrote down laws that
explain the motion of the moon, but he made no attempt to explain the current
position and velocity of the moon: the latter are arbitrary or contingent initial
conditions to be determined empirically, which may then be inserted into the
laws of motion to determine the position and velocity at other times. In pilot-
wave theory, if we consider only ensembles restricted by the additional postulate
(8), then this is closely analogous to considering Newtonian mechanics only for
ensembles restricted to thermal equilibrium (with a uniform distribution on
the energy surface in phase space). In both theories there is a much wider
nonequilibrium physics, which is lost if we simply adopt initial equilibrium as a
postulate.

Most workers in the field seem unperturbed by this and continue to treat (8)
as a postulate. Others are convinced that some further explanation is required
and that the question – if pilot-wave theory is true, why do we always observe
the Born rule? – requires a more satisfying answer.

There are currently two main approaches to understanding the Born rule in
pilot-wave theory, which we briefly summarise here.

The first approach, associated primarily with this author and collaborators,
proposes that the Born rule we observe today should be explained by a pro-
cess of ‘quantum relaxation’ (analogous to thermal relaxation), whereby initial

nonequilibrium distributions ρ 6= |ψ|2 evolve towards equilibrium on a coarse-

grained level, ρ̄→ |ψ|2 (in terms of coarse-grained densities ρ̄ and |ψ|2, much as
in Gibbs’ classical account of thermal relaxation for the coarse-grained density
on phase space). This process may be understood in terms of a ‘subquantum’
coarse-graining H-theorem on configuration space, analogous to the classical
coarse-graining H-theorem on phase space (Valentini 1991a,b). Extensive nu-
merical simulations, carried out with wave functions that are superpositions
of different energy states, have confirmed the general expectation that initial
densities ρ(q, 0) lacking in fine-grained microstructure rapidly become highly

filamentary on small scales and indeed approach the equilibrium density |ψ|2
on a coarse-grained level (Valentini 1992, 2001; Valentini and Westman 2005;
Towler, Russell and Valentini 2012; Colin 2012; Abraham, Colin and Valentini
2014). This may be quantified by a decrease of the coarse-grained H-function

H̄(t) =

∫
dq ρ̄ ln

(
ρ̄/|ψ|2

)
, (9)

which reaches its minimum H̄ = 0 if and only if ρ̄ = |ψ|2, and which is found
to decay approximately exponentially with time (Valentini and Westman 2005;
Towler, Russell and Valentini 2012; Abraham, Colin and Valentini 2014). Simi-
lar studies and simulations have been carried out for field theory in an expanding
universe, for which relaxation is found to be suppressed at very long cosmolog-
ical wavelengths (Valentini 2007, 2008a, 2010a; Colin and Valentini 2013, 2015,
2016). This opens the door to possible empirical evidence for quantum nonequi-
librium in the cosmic microwave background (Valentini 2010a; Colin and Valen-
tini 2015; Vitenti, Peter and Valentini 2019) – as well as in relic particles left
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over today from the very early universe (Valentini 2001, 2007; Underwood and
Valentini 2015, 2016). It has further been shown that if nonequilibrium systems
were discovered today, their physics would be radically different from the physics
we currently know, involving practical superluminal signalling, violations of the
uncertainty principle, and a general breakdown of standard quantum constraints
(such as expectation additivity and the indistinguishability of non-orthogonal
quantum states) (Valentini 1991a,b, 1992, 2002a, 2004, 2009; Pearle and Valen-
tini 2006). On this view, quantum theory is merely a special ‘equilibrium’ case
of a much wider nonequilibrium physics, which may have existed in the early
universe and which could still exist in some exotic systems today.

The second approach, associated primarily with Dürr, Goldstein, and Zangh̀ı,
as well as with Tumulka and other collaborators, proposes that the Born rule
we observe today should be explained in terms of the ‘typicality’ of configu-
rations quniv(0) for the whole universe at the initial time t = 0 (Dürr, Gold-
stein and Zangh̀ı 1992; Dürr and Teufel 2009; Goldstein 2017; Tumulka 2018).
In this approach, if Ψuniv(quniv, 0) is the initial universal wave function then
|Ψuniv(quniv, 0)|2 is assumed to be the natural measure on the set of possible
initial universal configurations quniv(0). It may then be shown that the Born
rule (8) is almost always obtained for ensembles of sub-systems prepared with
wave function ψ – where ‘almost always’ is defined with respect to the measure
|Ψuniv(quniv, 0)|2. This is regarded as an explanation for the empirical success
of the Born rule (8). On this view there is no realistic chance of ever observing
quantum nonequilibrium, which is intrinsically unlikely (as defined with respect
to |Ψuniv(quniv, 0)|2). The Born rule is in effect regarded as an intrinsic part
of the theory, though instead of postulating the probability distribution (8) for
sub-systems this approach postulates the typicality measure |Ψuniv(quniv, 0)|2
for the whole universe at t = 0. If this is correct, quantum nonequilibrium will
never be observed and de Broglie-Bohm theory will never be experimentally
distinguishable from conventional quantum theory.

The typicality approach has given rise to a distinctive physical perspective
on pilot-wave theory – concerning for example the status of the uncertainty
principle and of Lorentz invariance, among other important topics. These views
may be classified under the heading of the ‘Bohmian mechanics school’, where
the term ‘Bohmian mechanics’ was first introduced by Dürr, Goldstein and
Zangh̀ı (1992) to denote the dynamical theory defined by equations (1) and (2).

It should however be noted that, historically speaking, the dynamics defined
by (1) and (2) was first proposed by de Broglie at the 1927 Solvay conference
(for a many-body system with a pilot wave in configuration space) (Baccia-
galuppi and Valentini 2009). De Broglie called his new form of dynamics ‘pilot-
wave theory’. The theory was revived by Bohm in 1952, though rewritten in a
second-order form with a law of motion for acceleration that includes a ‘quan-
tum potential’ Q. Bohm’s version of the dynamics is physically distinct from
de Broglie’s: in principle it allows for non-standard initial momenta p 6= ∂qS
(Bohm 1952a, pp. 170, 179; Colin and Valentini 2014).2 Thus there are impor-

2In Bohm’s dynamics there arises the additional question of why we observe today an
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tant physical differences between de Broglie’s dynamics and Bohm’s dynamics.
The terminology ‘Bohmian mechanics’, as applied to de Broglie’s equations (1)
and (2), is therefore misleading: it does not give due credit to de Broglie and it
misrepresents the views of Bohm. Our concern in this paper is with the status of
the Born rule in de Broglie’s dynamics which, following de Broglie’s own usage
(as well as Bell’s), we refer to as ‘pilot-wave theory’.

Writings by the Bohmian mechanics school generally fail to recognise the
significance and priority of de Broglie’s work. For example, in rather glib sec-
tions entitled ‘History’, both Goldstein (2017) and Tumulka (2018) portray de
Broglie as having simply proposed or considered the guidance equation at the
1927 Solvay conference. But in fact, as early as 1923 de Broglie had postulated
the single-particle guidance equation – as a new law of motion, expressing a
unification of the principles of Maupertuis and Fermat – and in that same year
de Broglie used his theory to predict electron interference (four years before it
was observed by Davisson and Germer). Furthermore, it was de Broglie’s early
research into his new form of dynamics (with particles guided by waves) that
led Schrödinger to the wave equation in 1926.3

The distinctive approach of the Bohmian mechanics school has been reiter-
ated and developed in a number of papers and reviews. A textbook has also
been published (Dürr and Teufel 2009). For the sake of perspective it is worth
remarking that writings by members of this school generally focus on their own
interpretation. There are other approaches to de Broglie-Bohm theory, not only
that taken by this author and collaborators but also others that lie outside
the scope of this paper.4 The Bohmian mechanics school has been particularly
influential among philosophers of physics. The entry ‘Bohmian mechanics’ in
The Stanford Encyclopedia of Philosophy is written by a leading member of the
school (Goldstein 2017) (regularly updated by the same author since 2001). It
is noteworthy that such an extensive reference encyclopedia does not contain
an entry on de Broglie-Bohm theory generally; only this one particular school
is represented, suggesting a skewed perception of the field among philosophers.
One of the aims of this paper is to redress this imbalance in the philosophy of
physics literature.

We shall compare and contrast the two approaches outlined above, in par-
ticular regarding the status of the Born rule and related physical questions.
As we shall discuss, in our view the typicality approach is essentially circular
(Valentini 1996, 2001). With respect to a different initial measure (such as

|Ψuniv(quniv, 0)|4), we will almost always obtain initial violations of the Born

rule (such as ρ ∝ |ψ|4). While it may be said that nonequilibrium is ‘untypi-
cal’ (has zero measure) with respect to the univeral Born-rule measure, it may

‘extended quantum equilibrium’ in phase space, with momenta satisfying p = ∂qS as well as
configurations distributed according to (8). Colin and Valentini (2014) show that extended
nonequilibrium does not relax and is unstable, and argue that as a result Bohm’s dynamics
is physically untenable.

3For an extensive historical analysis of de Broglie’s remarkable work in the period 1923–27,
see Bacciagaluppi and Valentini (2009, chapter 2).

4See, for example, the books by Holland (1993) and by Bohm and Hiley (1993).
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equally be said that nonequilibrium is ‘typical’ (has unit measure) with respect
to a non-Born-rule measure. In effect, in the typicality approach the Born rule
is taken as an axiom, albeit at the level of the universe as a whole. This is
misleading, not least because a postulate about initial conditions can have no
fundamental status in a theory of dynamics.

As we shall see, the typicality approach has engendered a basic confusion
between contingent and law-like features. This has led to misleading claims
not only about the Born rule but also about the nature of the wave function
(or pilot wave). The artificial restriction to equilibrium has led to further mis-
understandings concerning the status of the uncertainty principle, the role of
quantum measurement theory, and the kinematics of the theory (including the
status of Galilean and Lorentz invariance). The restriction to equilibrium has
also made an erroneously-constructed stochastic model of particle creation seem
more plausible than it actually is.

By considering how hidden variables can account for the Born rule (8),
workers in quantum foundations find themselves confronted by issues in the
foundations of statistical mechanics – a subject which is no less fractious and
controversial than quantum foundations itself. We begin by outlining our own
views on the subject (Section 2), summarise some of the key results in quantum
relaxation and how these apply to cosmology (Sections 3 and 4), and then pro-
vide a critique of the typicality approach (Section 5) and of related viewpoints
(Sections 6 and 7), ending with some concluding remarks (Section 8).

2 Empirical approach to statistical mechanics

Pilot-wave dynamics is a deterministic theory of motion. As in classical physics,
there is a clear conceptual distinction between the laws of motion on the one
hand and initial conditions on the other. The initial conditions (for the wave
function ψ and for the configuration q) are in principle arbitrary – which is
to say, perhaps more properly, that they are contingent. Whatever the actual
initial conditions were, there is no known reason of principle why they could
not have been different. In order to find out what the initial conditions actually
were, we do not appeal to laws or principles but to simple empiricism: we carry
out observations today and on that basis we try (using our knowledge of the
dynamical laws) to deduce the initial conditions. This is as true for ensembles as
it is for single systems. In pilot-wave theory, for an ensemble of systems with the
same initial wave function ψ(q, 0), the initial distribution ρ(q, 0) of actual initial
configurations q(0) could in principle be anything. To find out what ρ(q, 0) was
in an actual case we must resort to empirical observation.

This raises the subtle question of what it might mean for pilot-wave dynamics
to ‘explain’ the Born rule (8). If the distribution ρ is purely empirical, there
might then seem to be no question of ‘explaining’ the particular distribution
(8): it is not something one explains, it is something one finds empirically.

The matter is further complicated by the time-reversal invariance of pilot-
wave dynamics. If all initial conditions are in principle possible, then any dis-
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tribution ρ(q, t0) today is in principle possible, since it could have evolved from
some appropriate ρ(q, 0) (which can in principle be calculated from ρ(q, t0) by
time-reversal of the equations of motion). Again, there might seem to be no
question of ‘explaining’ (8): it is simply a brute ‘matter of fact’ established by
observation.

In our view there is in fact considerable scope for explaining the presently-
observed Born rule (8), in the sense that it can be explained in terms of past
conditions (with the aid of dynamical laws) – where the past conditions are,
however, ultimately empirical and not fixed by any fundamental laws or prin-
ciples. On this view, the present is explained in terms of the past, while the
past is itself something we establish empirically. This of course leaves open the
possibility of further explanation by peering even further into the past, and in
our universe this chain of causal explanations eventually leads us back to the big
bang. To understand the origins of the Born rule, then, we are led to consider
conditions in the very early universe. Specifically: what initial conditions (at
or close to the big bang) could have given rise to the all-pervasive distribution
(8) which we see today?

In the context of statistical mechanics, it might be objected that to explain
the state (8) seen today we must not merely deduce which past conditions

(for example, which particular initial states ρ(q, 0) 6= |ψ(q, 0)|2) could have
evolved into (8) today, we must instead show that ‘all’ or ‘most’ past conditions
evolve into (8) today. For otherwise, it might be said, we have simply replaced
one unexplained empirical fact (conditions today) with another unexplained
empirical fact (conditions in the past), so that in a sense we are not really
making progress. In our view this objection is misguided and has roots in some
unfortunate misunderstandings in the early history of statistical mechanics.

First of all, it is perfectly reasonable to explain the present in terms of the
past. This is standard practice across the physical sciences – from astrophysics
to geology. As a simple example, suppose that today at time t0 the moon is
observed to have a certain position and momentum, so that it now occupies
a particular location (q0, p0) in phase space. With the aid of Newton’s laws,
this fact today may be explained by the fact that the moon was at a location
(q(t), p(t)) in phase space at some earlier time t < t0. If t is very far in the
past, pre-dating direct human observation, then in practice we would deduce
that the moon must have been at (q(t), p(t)) at time t. That we have had to
deduce the past from the present would not undermine our physical intuition
that the moon may be said to be where it is now because it was in the deduced
earlier state at an earlier time. This is normal scientific practice. On the other
hand, one can imagine the philosophical objection being raised, that the past
state is a mere deduction (or retrodiction) and not a bona fide ‘explanation’
for the observed state today. It might also be suggested that we would have a
satisfactory explanation only if we could show that all – or in some sense ‘most’
– possible earlier states (q(t), p(t)) of the moon evolve into the moon being in the
state (q0, p0) today. Needless to say, most physicists would disagree with this
objection (not least because, from what we understand of lunar dynamics, such
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a suggestion has no chance of being correct). The objection seems unfounded.
And yet similar objections are frequently heard in the context of statistical
mechanics. Why?

In our view the trouble stems from a mistake in the early history of the
subject. Boltzmann originally hoped to deduce the second law of thermody-
namics from mechanics alone. As is well known, this ambitious project was
fundamentally misguided. It is impossible to deduce any kind of necessary uni-
directional evolution in time in a time-reversal invariant theory. For any initial
molecular state that evolves towards thermal equilibrium, one can always con-
struct a time-reversed initial state that evolves away from thermal equilibrium.
Boltzmann’s program was dogged by such ‘reversibility objections’, resulting
in heated debate about the foundations of the subject. The debate rages even
today.5 It is now widely accepted that the laws of mechanics alone do not
suffice: one must also assume something about the initial conditions (such as
an absence of fine-grained microstructure, or an absence of correlations among
molecular velocities). Debates then continue about the status of the assump-
tion about the initial conditions, with many authors attempting to justify the
assumption on the basis of some fundamental principle or other. Running like a
thread through these debates is the expectation that, in order for the program
to succeed, it must be shown either that the required initial conditions are ‘al-
most always’ satisfied or that they are required by some principle (where such
attempts invariably lead to further controversy). In our view, this expectation
is misguided and reflects the historical error in Boltzmann’s original program.
There was never any reason to expect all allowed initial conditions to give rise to
thermal relaxation, and subsequent attempts to show that ‘most’ initial condi-
tions will do so, or that the required initial conditions are consequences of some
fundamental principle or other, in effect propagate the original error (albeit in
a reduced or weaker form).

We advocate a more modest – and in our view more reasonable – ‘empirical’
approach to statistical mechanics (Valentini 1996, 2001). On this view the ob-
served thermodynamical behaviour is an empirical fact which must be explained
(with the aid of dynamical laws) in terms of past conditions, where the latter
are themselves also empirical. The past conditions do not need to be ‘almost
always’ or ‘typically’ true, nor do they need to be true by virtue of some deep
principle or other: they simply need to explain or be consistent with what is ob-
served. Just as in the case of the moon, where we try to deduce – or if necessary
guess – its state in the past given its state today, in the case of a box of gas that
is evolving towards thermal equilibrium we try to deduce or guess the required
character of the initial (microscopic) state. For a gas, of course, there will be
a set or class of microstates yielding the observed behaviour. Unlike for the
moon, we make no attempt to deduce the exact initial micro-state. And with
so many variables involved, it is convenient to apply statistical methods. The
essential aim and method of statistical mechanics is then this. First, to find
a class of initial conditions that yields the observed behaviour. And second,

5For an even-handed and scholarly review see Uffink (2007).
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to understand the evolution of those initial conditions towards equilibrium in
terms of a general mechanism – without having to solve the exact equations of
motion for the huge number of variables involved.

In the case of pilot-wave theory we wish to explain the observed validity
of the Born rule (8) for laboratory systems – to within a certain experimental
accuracy. For example, if we prepare a large number N of hydrogen atoms in
the ground state with wave function ψ100(x), and if we measure the electron
position x (relative to the nucleus) for each atom, then for large N we find an
empirical distribution ρ(x) of the schematic form

ρ = |ψ100|2 ± ε , (10)

where ε characterises the accuracy to which the Born rule has been confirmed
(where this will depend on the accuracy of the position measurements as well
as on the value of N). How can this be explained in terms of past conditions?

The first thing to note is that, when we encounter a hydrogen atom in the
laboratory, the atom has not been floating freely in a vacuum for billions of years
prior to us experimenting with it. The atom has a past history during which it
has interacted with other things. That past history traces back ultimately to
the formation of the earth, the solar system, our galaxy, and ultimately merges
with the history of the universe as a whole, which as we know began with a hot
and violent phase called the big bang. In fact, every system we have access to
in the laboratory has a long and violent astrophysical history. Therefore, when
attempting to explain the Born rule today by conditions in the past, we should
make use of our knowledge of that history. In other words, when we attempt to
deduce what earlier conditions are required to explain what we observe in the
laboratory today, we should take into account what we already know about the
history of the systems in question.

The second thing to note is that the Born rule for a sub-system such as an
atom is a simple consequence of the Born rule applied to a larger system from
which the atom may have been extracted. If we consider an ensemble of many-
body systems, all with the same wave function Ψ(q, t0) and with an ensemble

distribution P (q, t0) = |Ψ(q, t0)|2 of configurations q at some time t0, then it
is readily shown that if an ensemble of sub-systems with configurations x are
extracted from the parent ensemble and prepared with an effective (or reduced)
wave function ψ(x, t) at t > t0, then the distribution of extracted configurations

x will be ρ(x, t) = |ψ(x, t)|2 (Valentini 1991a).6 In other words, equilibrium for
a many-body system implies equilibrium for extracted sub-systems (a property
which is sometimes called ‘nesting’). This means that we can explain the Born
rule for extracted sub-systems such as atoms if we are able to explain the Born
rule for larger parent systems.

Wherever we look, in fact, we find the Born rule – not only in the labo-
ratory today but also further afield. For example, the relative intensities of
atomic spectral lines emitted from the outskirts of distant quasars agree with
the Born rule (as applied to atomic transitions). The observed cosmological

6A similar result was obtained by Dürr, Goldstein and Zangh̀ı (1992).
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helium abundance agrees with calculations based on the Born rule (as applied
to nuclear reactions in the early hot universe). Perhaps the ultimate test of the
Born rule is currently taking place in satellite observations of the small temper-
ature and polarization anisotropies in the cosmic microwave background, which
were caused by classical inhomogeneities which existed at the time of photon
decoupling (around 400,000 years after the big bang), which in turn grew from
classical inhomogeneities which existed in the very early universe, and which
according to inflationary cosmology were in turn formed from quantum vacuum
fluctuations in an ‘inflaton’ scalar field. Ultimately, on our current understand-
ing, the ‘primordial power spectrum’ (the spectrum of very early classical in-
homogeneities) was generated by a Born-rule spectrum of primordial quantum
field fluctuations.

To explain the success of the Born rule, then, we can consider the earliest
possible conditions in the history of our universe. Clearly, the initial conditions
must be such as to evolve into or imply the Born rule at relevant later times.
What initial conditions should we assume?

One possibility, of course, is to simply assume that the universe began in
a state of quantum equilibrium. Below we argue that this is, in effect, the
assumption made by Dürr, Goldstein and Zangh̀ı (1992). Unlike in the thermal
case, we have not observed relaxation to the Born rule actually taking place over
time. All we see is the equilibrium Born rule. Since the equations of motion
preserve the Born rule over time, a simple way to explain our observation of the
Born rule now is to assume that the Born rule was true at the beginning.

But initial equilibrium is only one possibility among uncountably many.
Given the known violent history of our universe and of everything in it, and
given the results for quantum relaxation summarised in the next section, there
clearly exists a large class of initial nonequilibrium states that will evolve to
yield the Born rule today to an excellent approximation (in particular at the
short wavelengths relevant to local physics). As we shall see, the said initial
nonequilibrium distributions may be broadly characterised as having no fine-
grained microstructure (with respect to some coarse-graining length) while the
initial wave functions are superpositions of at least a few energy eigenstates (in
order to guarantee a sufficiently complex de Broglie velocity field). A coarse-
graining H-theorem provides a general mechanism in terms of which we can
understand how equilibrium is approached, without having to solve the exact
equations of motion for the system. By itself, of course, the H-theorem does not
prove that equilibrium is actually reached. The rate and extent of relaxation
depend on the system and on its initial wave function, as shown by extensive
numerical simulations. The Born rule today may then be understood to have
arisen dynamically, by a process of relaxation from an earlier nonequilibrium
state for which the Born rule was not valid.

Once again, in a time-reversal invariant dynamics it cannot be true that all
initial nonequilibrium states relax to equilibrium. But it does not need to be
true: non-relaxing initial conditions (with fine-grained microstructure, or with
very simple wave functions with trivial velocity fields) are ruled out empirically,
not by theoretical fiat.
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As we shall see in Section 4, modern developments in theoretical and obser-
vational cosmology make it possible to test the Born rule for quantum fields at
very early times. Thus the existence of initial equilibrium or nonequilibrium is
an empirical question – not only in principle but also in practice.

3 Overview of quantum relaxation

In this section we provide a brief overview of quantum relaxation. Further
details may be found in the cited papers.

3.1 Coarse-graining H-theorem

For a nonequilibrium ensemble of isolated systems with configurations q, it fol-
lows from (4) and (7) that the ratio f = ρ/ |ψ|2 is preserved along trajectories:
df/dt = 0. (This is the analogue of Liouville’s theorem, dρcl/dt = 0, for a clas-
sical phase-space density ρcl.) The exact H-function H(t) =

∫
dq ρ ln(ρ/|ψ|2)

is then constant, dH/dt = 0, and there is no fine-grained relaxation. However,

if we average the densities ρ and |ψ|2 over small coarse-graining cells of volume
δV ,7 we may assume the absence of fine-grained microstructure at t = 0,8

ρ̄(q, 0) = ρ(q, 0) , |ψ(q, 0)|2 = |ψ(q, 0)|2 , (11)

and consider the time evolution of the coarse-grained H-function (9). Defining
f̃ ≡ ρ̄/|ψ|2, straightforward manipulations show that

H̄0 − H̄ =

∫
dq |ψ|2

(
f ln(f/f̃)− f + f̃

)
(12)

(where the subscript 0 denotes a quantity at t = 0 and the absence of a subscript
denotes a quantity at a general time t). Use of the inequality x ln(x/y)−x+y ≥ 0
– for all real and non-negative x, y, with equality if and only if x = y – then
implies the coarse-graining H-theorem (Valentini 1991a, 1992)9

H̄(t) ≤ H̄(0) . (13)

From (12) it also follows that (13) becomes a strict inequality, H̄(t) < H̄(0),

when f 6= f̃ . Since |ψ|2 remains smooth this occurs when ρ 6= ρ̄, that is, when ρ
develops fine-grained structure – which it generally will for non-trivial velocity
fields that vary over the coarse-graining cells.

The quantity H̄ is equal to minus the relative entropy of ρ̄ with respect to
|ψ|2. As already noted, H̄ is bounded from below by zero and the minimum

7For systems with N degrees of freedom, q = (q1, q2, ..., qN ) and δV = (δq)N .
8This will hold to arbitrary accuracy as δV → 0 if ρ0 and |ψ0|2 are smooth functions.
9As is well known for the classical case, the result (13) is time-symmetric, with t = 0 a

local maximum of H̄(t).
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H̄ = 0 is attained if and only if ρ̄ = |ψ|2. Thus a decrease of H̄ quantifies
relaxation to the Born rule.10

The result (13) formalises an intuitive understanding of relaxation in terms
of a mixing of two ‘fluids’ with densities ρ and |ψ|2 in configuration space.
These obey the same continuity equation and are therefore ‘stirred’ by the same
velocity field q̇. For a sufficiently complicated flow, ρ and |ψ|2 tend to become
indistinguishable on a coarse-grained level (Valentini 1991a). This is similar to
the classical stirring of two fluids that was famously discussed by Gibbs (1902),
where his fluids were analogous to the classical phase-space densities ρcl (for
a general ensemble) and ρeq = const. (for an equilibrium ensemble) on the
energy surface, and where the mixing of ρcl and ρeq may be quantified by a
decrease of the classical H-function H̄cl =

∫
dq ρ̄cl ln (ρ̄cl/ρeq). In both cases

the nonequilibrium density develops fine-grained structure while the equilibrium
density remains smooth. The increase of the ‘subquantum entropy’ S̄ = −H̄
may be associated with the mixing of ρ and |ψ|2 in configuration space, just as
the increase of the Gibbs entropy S̄Gibbs = −H̄cl may be associated with the
mixing of ρcl and ρeq in phase space.

Note that we use the word ‘mixing’ informally in the simple sense of ‘stirring’
(as in Gibbs’ original analogy). Mathematical mixing is defined by an infinite-
time limit.11 Its physical relevance is therefore questionable, and in any case it
might not apply to realistic systems even in that limit (Uffink 2007). In our view
the above process – whereby ρ develops fine-grained structure while |ψ|2 does
not – is the essential physical mechanism that drives quantum relaxation over
realistic timescales. Though as noted, the actual rate and extent of relaxation
will depend on the system.

An assumption about initial conditions is of course necessary to explain
relaxation in a time-reversal invariant theory. We offer no ‘principle’ to justify
the initial conditions (11). In the spirit of our empirical approach, they are
justified only by the extent to which they help us explain observations. We
take (11) to be matters of fact about our world, while acknowledging that in
principle they could be false. Their truth or falsity is ultimately a matter for
experiment.

It is also worth remarking that our approach (like its classical Gibbsean
counterpart) does not rely on any particular interpretation of probability theory.
The density ρ might represent a subjective probability for a single system, a
distribution over a theoretical ensemble, or the distribution of a real ensemble
of existing systems, according to taste or requirement.

Note also that, for a finite real ensemble of N systems, the actual density
ρ will be a sum of delta-functions, which can approach a smooth function only
in the large-N limit (Valentini 1992, pp. 18, 36). To obtain a density with no
fine-grained structure on a coarse-graining scale δV , we must of course take the

10The quantity H̄ is also equal to the well-known (in mathematical statistics) Kullback-

Leibler divergence DKL(ρ̄ ‖ |ψ|2), which measures how ρ̄ differs from |ψ|2.
11Formally, a dynamical system (with measure µ on a set Γ subject to measure-preserving

transformations Tt) is ‘mixing’ if and only if limt→∞ µ(TtA∩B) = µ(A)µ(B) for all relevant
subsets A and B of Γ.
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Figure 1: Illustration of numerical quantum relaxation for an oscillator in a
superposition of M = 25 modes (Abraham, Colin and Valentini 2014). The
wave function has period 2π. The top row shows the evolving coarse-grained
density ρ̃QT as predicted by quantum theory, while the bottom row shows
the coarse-grained relaxation of an initial nonequilibrium density ρ(x, y, 0) =

(1/π)e−(x2+y2) (where tildes denote a smoothed coarse-graining with overlap-
ping cells). After five periods the coarse-grained densities are almost indistin-
guishable. (Note the different vertical scale at t = 0.)

appropriate large-N limit before considering small δV .12

3.2 Numerical simulations

Extensive numerical simulations demonstrate that quantum relaxation takes
place efficiently for wave functions ψ that are superpositions of multiple energy
eigenstates (Valentini and Westman 2005; Towler, Russell and Valentini 2012;
Colin 2012; Abraham, Colin and Valentini 2014). An example is shown in Figure
1, for a two-dimensional oscillator in a superposition of M = 25 modes and with
an initial Gaussian nonequilibrium density ρ0. The top row displays the time
evolution of the (coarse-grained) equilibrium density |ψ|2, while the bottom row
displays relaxation of the actual (coarse-grained) density ρ. Comparable results
are obtained for superpositions with as little as M = 4 modes, and also for a
two-dimensional box.

In all of these simulations H̄ is found to decay approximately exponentially
with time: H̄(t) ≈ H̄0e

−t/τ for some constant τ whose value depends on the
initial wave function as well as on the coarse-graining length (Towler, Russell
and Valentini 2012). An example is shown in Figure 2.

12This resolves a concern raised by Norsen (2018, p. 16) that the condition (11) on ρ0
cannot be satisfied for realistic finite ensembles. The same concern arises, of course, in the
classical Gibbsean approach and has the same resolution.

14



Figure 2: Approximate exponential decay of H̄(t) for the same simulation dis-
played in Figure 1 (Abraham, Colin and Valentini 2014). The error in H̄ is
estimated by running three separate simulations with different numerical grids
(the solid curves). Fitting to an exponential (dashed curve) yields a best-fit
residue c = 0.02 that is comparable to the late-time error, indicating no dis-
cernible late-time residue in H̄. We find a decay timescale τ = 2π/b ' 6 (units
~ = m = ω = 1).

Some simulations show a small but discernible non-zero ‘residue’ in H̄ at
large times (unlike the case displayed in Figure 2), indicating that equilibrium
is not reached exactly (Abraham, Colin and Valentini 2014). For these cases,
the trajectories tend to show some degree of confinement (not fully exploring the

support of |ψ|2). Numerical evidence shows that this is less likely to happen for
larger M . Because all laboratory systems have a long and violent astrophysical
history, during which the relevant value of M will have been very large, we may
expect that in the remote past they will have reached equilibrium on a very
small coarse-graining scale.

3.3 The early universe

This motivates us to consider quantum relaxation in the early universe. This
may be discussed for a free massless scalar field φ on flat expanding space with
spacetime metric

dτ2 = dt2 − a2dx2 (14)

and a scale factor a(t) ∝ t1/2 (corresponding to a radiation-dominated expan-
sion), where t is standard cosmological time and physical wavelengths λphys(t)
are proportional to a(t). The Fourier components φk(t) may be written as

φk =

√
V

(2π)3/2
(qk1 + iqk2) , (15)

where qk1, qk2 are real and V is a normalisation volume. The field Hamiltonian
then takes the form Ĥ =

∑
kr Ĥkr, where Ĥkr (r = 1, 2) coincides with the
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Figure 3: Incomplete quantum relaxation for a super-Hubble field mode φk on
expanding space over a time interval (ti, tf ) (Colin and Valentini 2013). The
final nonequilibrium width is noticeably smaller than the final equilibrium width.

Hamiltonian of a harmonic oscillator of mass m = a3 and angular frequency
ω = k/a (Valentini 2007, 2008a, 2010a). Thus a single (unentangled) field
mode k in the early universe is mathematically equivalent to a two-dimensional
oscillator with a time-dependent mass. This system is in turn equivalent to
an ordinary oscillator (with constant mass and angular frequency) but with t
replaced by a ‘retarded time’ tret = tret(t, k) that depends on k (Colin and
Valentini 2013). It is found that quantum relaxation depends crucially on how
λphys compares with the Hubble radius H−1 = a/ȧ. For short wavelengths
λphys << H−1 we find tret(t, k)→ t and we recover physics on static flat space,
with the same rapid relaxation illustrated in Figure 1 for the oscillator. Whereas
for long wavelengths λphys & H−1 we find tret(t, k) < t and relaxation is retarded
or suppressed (Valentini 2008a; Colin and Valentini 2013).

The suppression of quantum relaxation at long (super-Hubble) wavelengths
is illustrated in Figure 3, where we show the time evolution of a nonequilib-
rium field mode with λphys = 10H−1 (at initial time ti). Over the given time
interval (ti, tf ) relaxation proceeds but is incomplete: in particular, the final
nonequilibrium width (or variance) is smaller than the final equilibrium width.
In contrast, in Figure 4 we show relaxation with the same initial conditions and
over the same time interval (ti, tf ) but with no spatial expansion: relaxation
now takes place essentially completely and the final widths match closely.

Cosmologically speaking, the reduced width of the final distribution in Figure
3 is of particular interest. For a mode with wavenumber k we may write〈

|φk|2
〉

=
〈
|φk|2

〉
QT

ξ(k) , (16)

where 〈...〉 and 〈...〉QT denote respective nonequilibrium and equilibrium expec-
tation values. The function ξ(k) quantifies the degree of primordial quantum
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Figure 4: Essentially complete quantum relaxation for a field mode φk on static
space over the same time interval (ti, tf ) as in Figure 3 and with the same initial
conditions (Colin and Valentini 2013). The final nonequilibrium width closely
matches the final equilibrium width.

nonequilibrium as a function of k. For the case shown in Figure 3, at the final
time we clearly have ξ(k) < 1 (corresponding to a ‘power deficit’). As a general
trend we expect ξ(k) to be smaller for smaller k, where longer wavelengths imply
less relaxation. This has been broadly confirmed by running extensive simula-
tions for varying values of k and plotting the function ξ = ξ(k). The resulting
curves show oscillations of magnitude . 10%. As a first approximation we may
ignore these, in which case we find a good fit to the function

ξ(k) = tan−1(c1
k

π
+ c2)− π

2
+ c3 , (17)

where the parameters c1, c2 and c3 depend on the initial state and on the time
interval (Colin and Valentini 2015). This function tends to a maximum ξ → c3
for k → ∞, and decreases smoothly for smaller k. Simulations for a range of
different initial nonequilibria – all assumed to have a narrower-than-quantum
initial width13 – show a good fit to the curve (17) (ignoring the oscillations)
(Colin and Valentini 2016). Thus, with some mild assumptions about the ini-
tial state, the ‘deficit function’ (17) is a robust approximate prediction of the
cosmological quantum relaxation scenario (for a free scalar field at the end of a
radiation-dominated era).

13Heuristically, it seems natural to assume initial conditions with a subquantum statistical
spread (so the initial state contains less noise than a conventional quantum state), but in
principle this assumption could of course be incorrect.
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4 Testing the primordial Born rule with cosmo-
logical data

We now outline how the Born rule may be tested at very early times with
cosmological data.

The temperature of the cosmic microwave background (CMB) today is slightly
anisotropic. It is customary to write a spherical harmonic expansion

∆T (n̂)

T̄
=

∞∑
l=2

+l∑
m=−l

almYlm(n̂) (18)

for the measured anisotropy ∆T (n̂) ≡ T (n̂) − T̄ , where the unit vector n̂ la-
bels points on the sky and T̄ is the mean temperature. As noted the CMB
was formed around 400,000 years after the big bang, and its small anisotropies
reflect small inhomogeneities of the universe at that time. Thus the coefficients
alm are generated by the Fourier-space ‘primordial curvature perturbation’ Rk

according to the formula (Lyth and Riotto 1999)

alm =
il

2π2

∫
d3k T (k, l)RkYlm(k̂) , (19)

where the ‘transfer function’ T (k, l) encodes the relevant astrophysics.
Cosmologists generally assume that the measured function ∆T (n̂) is a sin-

gle realisation of a random variable with a probability distribution P [∆T (n̂)]
associated with a ‘theoretical ensemble’ (which may be interpreted according to
taste). It is usual to assume ‘statistical isotropy’, which means that P is invari-
ant under a rotation n̂ → n̂′ (that is, P [∆T (n̂′)] = P [∆T (n̂)]). This implies
that the ensemble average 〈∆T (n̂1)∆T (n̂2)〉 depends only on the angle between
n̂1 and n̂2, which in turn implies (Hajian and Souradeep 2005, appendix B)

〈a∗l′m′alm〉 = δll′δmm′Cl , (20)

where
Cl ≡

〈
|alm|2

〉
(21)

(the ‘angular power spectrum’) is independent of m. Thus, while for fixed l

there are 2l+ 1 different quantities |alm|2, statistical isotropy implies that they
each have the same ensemble mean Cl.

For our one observed sky we may define a measured mean statistic

Csky
l ≡ 1

2l + 1

+l∑
m=−l

|alm|2 .

This obviously satisfies
〈
Csky
l

〉
= Cl. Thus Csky

l (measured for one sky) is an

unbiased estimate of Cl for the ensemble. Furthermore, assuming a Gaussian
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distribution it may be shown that Csky
l has a ‘cosmic variance’

∆Csky
l

Cl
=

√
2

2l + 1
. (22)

Thus for large l we expect to find Csky
l ≈ Cl, whereas for small l the accuracy

is limited.
It is also usually assumed that the theoretical ensemble for R is statistically

homogeneous (that is, the probability distribution P [R(x)] is invariant under
spatial translations). This implies that 〈R(x)R(x′)〉 depends only on x− x′,
which implies

〈R∗ḱRk〉 = δkḱ

〈
|Rk|2

〉
. (23)

From (19) and (23) it follows that

Cl =
1

2π2

∫ ∞
0

dk

k
T 2(k, l)PR(k) , (24)

where

PR(k) ≡ 4πk3

V

〈
|Rk|2

〉
(25)

is the ‘primordial power spectrum’ for Rk. Thus measurements for a single sky
constrain the spectrum PR(k) – which is a property of the theoretical ensemble.

Note that in the discussion so far the quantities alm, Cl and Rk are treated
classically.14

What is the origin of the spectrum (25)? According to inflationary cosmol-
ogy, during a very early period of approximately exponential expansion a per-
turbation φk of the ‘inflaton field’ generates a curvature perturbation Rk ∝ φk

(once the physical wavelength of the mode exceeds the Hubble radius) (Liddle
and Lyth 2000). The quantum-theoretical variance

〈
|φk|2

〉
QT

is calculated from

quantum field theory assuming the Born rule for an appropriate vacuum state.
From this we readily obtain the corresponding variance

〈
|Rk|2

〉
QT

and hence a

quantum-theoretical prediction PQT
R (k) for the spectrum of Rk (approximately

flat with a slight tilt). If instead we have a nonequilibrium variance (16) for φk,
the predicted spectrum for Rk is corrected by the factor ξ(k):

PR(k) = PQT
R (k)ξ(k) . (26)

Inserting this into (24) yields a corrected angular power spectrum Cl. From
measurements of the CMB we may then set observational bounds on ξ(k) –
that is, on corrections to the Born rule in the very early universe (Valentini
2010a).

To obtain a prediction for ξ(k), we may for example assume that quantum
relaxation took place during a pre-inflationary era. It is not uncommon for

14Goldstein, Struyve and Tumulka (2015) give a rather confused account of the relation
between primordial perturbations and CMB anisotropies, missing in particular the crucial
role played by statistical isotropy.
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cosmologists to assume that such an era was radiation-dominated.15 In this
case, at the end of pre-inflation we expect the nonequilibrium variance to be
corrected by a deficit function of the approximate form (17). It may be shown
that relaxation does not take place during inflation itself (Valentini 2010a). If
we make the simplifying assumption that the spectrum is unaffected by the
transition from pre-inflation to inflation, we obtain a prediction for a corrected
primordial power spectrum (26) with ξ(k) of the form (17) (with three unknown
parameters). Note, however, that if the lengthscale c1 is too large the dip in the
spectrum will be essentially unobservable (even if it exists).

CMB data from the Planck satellite show hints of a power deficit at large
scales (small k and low l) (Aghanim et al. 2016). Because of the large cosmic
variance in this region, it is however difficult to draw firm conclusions. Extensive
data analysis shows that the predicted deficit (17) fits the data more or less
as well as the standard ‘power-law’ model (where the evaluated significance
takes into acount the larger number of parameters) (Vitenti, Peter and Valentini
2019). This is a modest success, in the sense that with three extra parameters
the significance could have been worse. But evidence from this fitting alone
neither supports nor rules out the prediction (17). If one is inclined to invoke
Ockham’s razor in favour of the simplest cosmological model, then the observed
low-power anomaly may reasonably be regarded as a statistical fluctuation.
To obtain evidence for or against our model we must include more detailed
predictions, such as oscillations around the curve (17) (Colin and Valentini
2015; Kandhadai and Valentini 2019) or possible violations of statistical isotropy
(Valentini 2015).

5 Critique of ‘typicality’ as an explanation for
the Born rule

In this section we provide a critical assessment of the typicality approach to
understanding the Born rule.

5.1 Typicality, probability, and intrinsic likelihood

As we noted in the Introduction, the Bohmian mechanics school attempts to
explain the success of the Born rule today by appealing to a notion of ‘typi-
cality’ for the initial configuration quniv(0) of the universe. In this approach,
if Ψuniv(quniv, 0) is the initial universal wave function then |Ψuniv(quniv, 0)|2 is
assumed to be the ‘natural measure’ on the set of initial universal configurations
quniv(0).

In our view the typicality approach amounts to assuming, without justifi-
cation, that the universe as a whole began in quantum equilibrium (Valentini
1996, 2001). The approach then seems circular. Defenders of the approach
might attempt to avoid the charge of circularity by claiming that typicality and

15See, for example, Wang and Ng (2008).
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probability are conceptually distinct. In our view, however, typicality is syn-
onomous with probability. The Bohmian mechanics school employs the word
‘typicality’ when referring to probability for the whole universe and employs
the word ‘probability’ when referring to probability for sub-systems. But in our
view the two words mean the same thing.

Typicality and the Born rule

Dürr, Goldstein and Zangh̀ı (1992) showed that, if we consider sub-systems
within the universe, we will obtain the Born rule for ‘almost all’ initial configu-
rations quniv(0) – where ‘almost all’ is defined with respect to |Ψuniv(quniv, 0)|2.
Thus it may be said that for sub-systems the quantum equilibrium distribution
ρ = |ψ|2 is ‘typical’, where the notion of ‘typicality’ is defined with respect to
the measure |Ψuniv(quniv, 0)|2.

This result may be illustrated by a simple example. We consider a model
universe at t = 0 containing a large number n of unentangled sub-systems
all with the same initial wave function ψ(q, 0) and with initial configurations
q1(0), q2(0), ..., qn(0) that generally vary from one sub-system to another. We
may write

quniv(0) = (q1(0), q2(0), ..., qn(0)) (27)

and
Ψuniv(quniv, 0) = ψ(q1, 0)ψ(q2, 0)...ψ(qn, 0) . (28)

For large n, a given initial configuration quniv(0) determines an initial distri-
bution ρ(q, 0) over the ensemble of sub-systems. Thus we have a schematic
correspondence

quniv(0)←→ ρ(q, 0) (n→∞) .

Note that the induced distribution ρ(q, 0) need not be equal to (or even close
to) |ψ(q, 0)|2. On the other hand, if we adopt the measure |Ψuniv(quniv, 0)|2 on
the set of possible initial configurations quniv(0), then it is easy to see that,
with respect to this measure, in the limit n → ∞ almost all points quniv(0)
correspond to the Born-rule distribution ρ(q, 0) = |ψ(q, 0)|2. This is because,
with respect to the universal measure

|Ψuniv(quniv, 0)|2 = |ψ(q1, 0)|2|ψ(q2, 0)|2...|ψ(qn, 0)|2 ,

in effect we have n independent and identically-distributed random variables
q1, q2, q3, ..., qn, each with the same probability distribution |ψ(q, 0)|2. In the
limit n→∞ we then necessarily find ρ(q, 0) = |ψ(q, 0)|2.

It might then appear that nonequilibrium configurations – that is, config-
urations quniv(0) corresponding to distributions ρ(q, 0) 6= |ψ(q, 0)|2 – comprise
a vanishingly small set (in the limit n → ∞) and may then be regarded as
intrinsically unlikely or ‘untypical’. But this conclusion rests crucially on the
choice of measure |Ψuniv(quniv, 0)|2. For example, if instead we choose a mea-
sure |Ψuniv(quniv, 0)|4 (up to overall normalisation), then by the same argument
almost all configurations quniv(0) now correspond to a nonequilibrium distri-
bution ρ(q, 0) ∝ |ψ(q, 0)|4 for sub-systems. More generally, if we choose a
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measure |Ψuniv(quniv, 0)|p (for constant p > 0), we will almost always obtain
a nonequilibrium distribution ρ(q, 0) ∝ |ψ(q, 0)|p for sub-systems. The typical-
ity approach then seems circular: by assuming a universal Born-rule measure
|Ψuniv(quniv, 0)|2, one is simply assuming the Born rule at the initial time t = 0
(Valentini 1996, 2001).

In our illustrative example Ψuniv(quniv, 0) takes the simple form (28) and we
only consider measurements at t = 0. The original argument by Dürr, Goldstein
and Zangh̀ı (1992) is more general than this and includes a discussion of time
ensembles of measurements. But the key objection remains: the Born rule is
guaranteed to hold for sub-systems in the early universe only because the Born
rule is assumed to hold for the whole universe at t = 0.

It is important to emphasise that there is a qualitative difference between
cases with large-but-finite n and the literal limit n → ∞. For any finite n,
however large, a set of points quniv = (q1, q2, ..., qn) that has zero measure
with respect to |Ψuniv(quniv, 0)|2 will arguably have zero measure with respect to
any reasonable density function on configuration space. Thus, for example, if a
particle moving in two spatial dimensions has an initial wave function ψ(x, y, 0)
then points and lines in the two-dimensional configuration space will have zero
measure with respect to |ψ(x, y, 0)|2. Those same points and lines will also
have zero Lebesgue measure (or zero area), and furthermore they will have
zero measure with respect to any density proportional to |ψ(x, y, 0)|p (with
p > 0). Much the same may be said for general configuration spaces. This
means that, for finite n, if a set of points quniv(0) has zero measure with respect
to |Ψuniv(quniv, 0)|2 then that same set of points may reasonably be regarded as
objectively small and hence physically negligible. But this objectivity vanishes
when we take the limit n → ∞ (the limit where the typicality argument is
applied). For example, as we noted above, for n→∞ the nonequilibrium set

Snoneq =
{
quniv(0) | ρ(q, 0) ∝ |ψ(q, 0)|4

}
(29)

(the set of initial points quniv(0) yielding a nonequilibrium sub-system density
ρ(q, 0) ∝ |ψ(q, 0)|4) has zero measure with respect to |Ψuniv(quniv, 0)|2 (that is,
µeq[Snoneq] = 0 where dµeq = |Ψuniv(quniv, 0)|2dquniv). On the other hand, the
same set Snoneq has unit measure with respect to |Ψuniv(quniv, 0)|4 (suitably nor-
malised) (that is, µnoneq[Snoneq] = 1 where dµnoneq ∝ |Ψuniv(quniv, 0)|4dquniv).
Thus, in the limit n→∞, there is no objective sense in which the nonequilib-
rium set Snoneq is ‘small’.

Technically, the qualitative difference between cases with finite n and cases
where the literal limit n→∞ is taken may be highlighted in terms of the notion
of ‘absolute continuity’. For finite n, the alternative measure |Ψuniv(quniv, 0)|4 is
absolutely continuous with respect to the equilibrium measure |Ψuniv(quniv, 0)|2.
This simply means, by definition, that the alternative measure of a set S is equal
to zero whenever the equilibrium measure of S is equal to zero (µeq[S] = 0
implies µnoneq[S] = 0). But this will not hold for n → ∞, where we can have
both µeq[Snoneq] = 0 and µnoneq[Snoneq] = 1.

In this context one should beware of statements appealing to absolute con-
tinuity. For example, Dürr and Teufel (2009, p. 222) write:
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... any measure ... which is absolutely continuous with respect
to the equivariant measure [|Ψuniv|2] ... defines the same sense of
typicality.

Taken by itself this statement is correct and simply amounts to a statement
of the definition of absolute continuity. But to avoid misunderstandings in
this context, it is important to add (as Dürr and Teufel omit to) that absolute
continuity fails in the relevant limit n→∞. In that limit, running the argument
with an alternative typicality measure will not yield the Born rule for sub-
systems, because the alternative measure will not be absolutely continuous with
respect to the Born-rule measure.

Intrinsic likelihood and unlikelihood

We have seen that at t = 0 nonequilibrium is ‘untypical’ (has zero mea-
sure) with respect to the equilibrium measure, and that equally nonequilibrium
is ‘typical’ (has unit measure) with respect to a corresponding nonequilibrium
measure. It might then be said that initial nonequilibrium is unlikely with re-
spect to the equilibrium measure, and that it is likely with respect to a nonequi-
librium measure.

With these clarifications in mind, there is clearly no sense in which quan-
tum nonequilibrium is instrinsically unlikely – contrary to claims made by the
Bohmian mechanics school, according to which the theory will always yield the
Born rule. For example, in their founding paper Dürr et al. claim that

... in a universe governed by Bohmian mechanics it is in principle
impossible to know more about the configuration of any subsystem
than what is expressed by [the Born rule]. (Dürr, Goldstein and
Zangh̀ı 1992)

Similarly, Tumulka writes that

... in a universe governed by Bohmian mechanics, observers will
see outcomes with exactly the probabilities specified by the usual
rules of quantum mechanics ... . (Tumulka 2018)

But as we have noted this is true only in quantum equilibrium: for general
nonequilibrium ensembles the Born rule is violated (Valentini 1991a,b) and it
is perfectly possible to know more about a sub-system than is allowed by the
Born rule or by the associated uncertainty principle (Valentini 2002a).

The claims made by the Bohmian mechanics school amount to an artificial
and unjustified restriction of the theory to equilibrium only. This is most explicit
in the presentation by Tumulka, who writes that it is

... a fundamental law of Bohmian mechanics, to demand that [q]

be typical with respect to |Ψ|2. (Tumulka 2018)
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But as we have emphasised, only the dynamical equations have the status of
fundamental laws. In a theory of dynamics it is physically nonsensical to regard
a restriction on the initial state as a ‘fundamental law’.

Dürr and Teufel (2009, p. 224) go so far as to compare searching for nonequi-
librium to waiting for a stone to jump up spontaneously in the air:

... one could sit in front of a stone and wait for the stone to jump
into the air, because in a very atypical world, that could happen,
now, tomorrow, maybe the day after tomorrow. (Dürr and Teufel
2009, p. 224)

But there is no scientific basis for the claim that quantum nonequilibrium is
intrinsically unlikely. This claim stems, as we have seen, from a circular ar-
gument in which the Born-rule measure is taken to define ‘typicality’ for the
initial conditions of the universe. In our view, in contrast, initial conditions are
ultimately empirical.

Typicality and probability

If we replace the word ‘typicality’ by its synonym ‘probability’, it becomes
apparent that the argument given by Dürr et al. simply assumes a universal
Born-rule probability density |Ψuniv|2, which implies the Born-rule probability
density |ψ|2 for sub-systems.16

Goldstein (2001) has, however, defended the view that typicality and prob-
ability are not synonymous. Goldstein argues that for a set S the precise value
of the typicality measure µ(S) (say 1/2 or 3/4) is immaterial: the only thing
that matters is whether µ(S) is very small or not. If µ(S) is very small, this is
regarded as a sufficient explanation for why events in S do not occur. Accord-
ing to Goldstein, this concept of typicality plays an important role in scientific
explanation. In our view such attempts to elevate the notion of typicality from
a synonym for probability to a fundamentally new kind of explanatory principle
raise more questions than they answer. It is claimed that what counts is only
whether µ(S) is very small or not. How small is small enough? Questions re-
main as to precisely how typicality differs from probability. One may also ask
why the notion of probability alone does not suffice. The nature of probability
is already controversial: it seems misguided to introduce a conceptual variant
which proves to be even more controversial.

Other responses to circularity

Dürr and Teufel (2009, pp. 220–222) make some attempt to respond to our
charge of circularity.

The first response appeals to the equivariance of the Born-rule measure over
time. This measure has the special property that its form as a function of Ψ is
preserved by the dynamics (that is, it is ‘equivariant’). Dürr and Teufel argue

16For measurements at a single time this result is a restatement of the ‘nesting’ property
discussed in Section 2 (Valentini 1991a).
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that this property singles out the Born-rule measure as the preferred measure
of typicality:

Would another measure ... say the one with density |Ψ|4 ... not

yield typicality for the empirical distribution |ϕ|4 by the same argu-
ment? In fact, it would, but only at exactly that moment of time
where the measure has the |Ψ|4 density. Since the measure is not
equivariant, its density will soon change to something completely
different. ... The equivariant measure of typicality on the other
hand is special ... . Typicality defined by this measure does not
depend on time. (Dürr and Teufel 2009, pp. 220–221)

This defence is physically unconvincing. As we have seen, in their argument for
the typicality of the Born rule for sub-systems the universal Born-rule measure
is applied to the initial universal configuration quniv(0) at only one time (the
initial time t = 0). From this we may immediately derive the Born rule for
sub-systems at that same initial time t = 0. The time evolution of the measure
at t > 0 is irrelevant to the statistics of sub-systems at t = 0. Furthermore,
as Dürr and Teufel themselves admit, if an alternative universal measure were
applied at t = 0 then by the same derivation we would obtain an alternative
(non-Born-rule) distribution for sub-systems at t = 0 – regardless of how the
measure evolves at later times. Dürr and Teufel wish to argue in favour of Born-
rule typicality for initial configurations at t = 0, but their argument appeals to
properties of the time evolution of the measure at t > 0. Physically speaking,
it is hard to understand how initial conditions at t = 0 can be dictated by, or
influenced by, a convenient mathematical property of the evolution at t > 0.

In a similar vein, while commenting on the quantum relaxation approach
advocated by this author, and in particular on the idea of primordial quan-
tum nonequilibrium, Tumulka claims outright that an initial nonequilibrium
measure would be intrinsically unnatural and puzzling because it would not be
equivariant:

... the |Ψ|2 distribution is special since it is equivariant ... if
we found empirically (which we have not) that it was necessary to

assume that [q(0)] was |Ψ|4-distributed, then it would be a big puzzle

needing explanation why it was |Ψ|4 of all distributions instead of

the natural, equivariant |Ψ|2. (Tumulka 2018)

The argument seems to be that initial equilibrium is natural and needs no
explanation because it is equivariant. Whereas, because initial nonequilibrium
is not equivariant, it is unnatural and so – if it were observed – would present
a major puzzle. Again, physically it is difficult to see how initial conditions at
t = 0 can be dictated by a convenient mathematical property of the evolution
at later times.

A second response to the charge of circularity appeals to ease of proof:
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... the equivariant measure is a highly valuable technical tool,
because this is the measure which allows us to prove the theorem!
At time t, let us say today when we do the experiment, any other
measure would look so odd (it would depend on Ψt in such an intri-
cate way) that we would have no chance of proving anything! And if
it did not look odd today, then it would look terribly odd tomorrow!
The equivariant measure always looks the same and what we prove
today about the empirical distribution will hold forever. (Dürr and
Teufel 2009, p. 222)

But we are concerned with objective physical facts about the initial configura-
tion of our universe. In a scientific theory, the initial state of the universe is not
determined by mathematical convenience or ease of proof of a certain theorem,
but by empirical observation and measurement.

Typicality in classical and quantum statistical mechanics

In defence of the typicality approach it might be asserted that, in statistical
mechanics generally, certain undesirable initial conditions are often ruled out on
the grounds that they are exceptional (or untypical) with respect to a particular
measure. Some authors do indeed justify the required restrictions on initial
conditions along these lines. But it should be admitted that all initial conditions
are allowed in principle. The actual realised initial conditions are ultimately an
empirical matter to be constrained by experiment. Furthermore, the mere use
of a different word does not entail the use of a genuinely different concept: in
our view ruling out undesirable initial conditions as ‘untypical’ simply amounts
to ruling them out as ‘improbable’.

The use of typicality in classical statistical mechanics has also been defended
by Goldstein (2001), who argues that to explain thermal relaxation it suffices to
note that phase-space points corresponding to thermal equilibrium occupy an
overwhelmingly larger volume than phase-space points corresponding to thermal
nonequilibrium. According to this argument, if a system begins at an initial
point corresponding to nonequilibrium, then it is overwhelmingly likely to evolve
(and quickly) to a final point corresponding to equilibrium, merely by virtue of
the much larger volume occupied by the latter points. It may then be said that
thermal relaxation is ‘typical’ with respect to the phase-space volume measure.
However, as noted by Uffink (2007, pp. 979–980), a specific system trajectory
(q(t), p(t)) traces out a set of points S0 of measure zero (with respect to phase-
space volume), whereas the set of points S1 never visited by the trajectory is
of measure one. By definition the system remains in the zero-measure set S0

for all time, and does not move into the set S1 even though the latter has an
overwhelmingly larger phase-space measure. It is then untenable to claim that
a system is more likely to move into a set of points simply because that set has
a larger phase-space volume. Uffink concludes – in our view correctly – that a
bona fide explanation for relaxation must appeal to properties of the dynamics
and not merely to a measure-theoretic counting of states.
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In our view measure-theoretic arguments are misleading and by themselves
give no indication of likelihood. We emphasise once again that initial conditions
are ultimately a matter for experiment. As scientists we need to understand
which initial conditions are consistent with present observations. To this end
we must consider the dynamics, and also take into account our knowledge of
past history (whether locally in the laboratory or at cosmological scales).

5.2 Probability and ensembles in cosmology

According to the Bohmian mechanics school it is meaningless to consider prob-
abilities or ensembles for the whole universe:

What physical significance can be assigned to a probability dis-
tribution on the initial configurations for the entire universe? What
can be the relevance to physics of such an ensemble of universes?
(Dürr, Goldstein and Zangh̀ı 1992)

... since we only have access to one universe ... an ensemble of
universes is meaningless for physics. (Dürr and Teufel 2009, p. 224)

This claim conflicts with common practice in both theoretical and observa-
tional cosmology. In recent decades hundreds of millions of dollars have been
spent on satellite observations of the CMB (as well as on galaxy surveys) with
the express aim of putting empirical constraints on the probability distribu-
tion for primordial cosmological perturbations. These observations do have a
well-defined meaning, in spite of the above claim.

First of all, to suggest that there is only one universe is correct only as a triv-
ial tautology. In practice cosmologists employ the word ‘universe’ to denote the
totality of what we are currently able to observe. Given our current knowledge
it is perfectly plausible that what we see is only one element of a very large and
perhaps even infinite ensemble. In current observational cosmology, the data
are well described by a ‘standard’ cosmological model according to which what
we see is only a tiny patch within an infinite flat (expanding) space – a conclu-
sion that is arguably the most conservative option at the present time. Further
afield, contemporary theoretical cosmology includes ‘eternal’ inflationary mod-
els with an infinity of pocket universes, while string theories are widely believed
to imply the existence of a ‘multiverse’. Thus in theory there is no difficulty in
imagining that the universe we see is merely one of a large ensemble, and this
may well be the case as a matter of physical fact.

Secondly, the meaning of a probability distribution ‘for the universe’ is by
no means as problematic as the Bohmian mechanics school portrays it. As we
outlined in Section 4, practising cosmologists routinely test the predictions of
such distributions via measurements of the CMB. As we explained, such mea-
surements probe the primordial power spectrum (25) for a theoretical ensemble.
By this means, whole classes of cosmological models have been ruled out by
observation because they predict an incorrect spectrum.

This is not to say that one cannot or should not question the meaning of
a theoretical ensemble. But we would argue that such foundational questions

27



have no special connection with pilot-wave theory or cosmology; they arise in
any practical application of probability theory or statistical inference, whether
one is considering genetic populations on earth or the distribution of galaxies
in space. Furthermore, the relevant mathematical properties of the assumed
‘probability distribution over a theoretical ensemble’ do not depend on any
particular interpretation of probability theory. One could, for example, regard
the distribution as expressing a subjective degree of belief, or as representing
a really existing ensemble; it would make no difference to how the distribution
is employed in mathematical practice. Indeed, if one prefers one may avoid
the notion of a theoretical ensemble of ‘universes’ and instead consider a real
ensemble of approximately independent sub-regions of a single universe. Given
that the ‘universe’ we see may in any case be just such a sub-region, which
approach one takes is immaterial.

In this context one should also beware of the claim (sometimes made by the
Bohmian mechanics school17) that pilot-wave dynamics is in some special sense
fundamentally a dynamics of the whole universe. If this were true, we would
need a complete theory of cosmology to work with and apply pilot-wave theory.
In a trivial sense, of course, there will always be small interactions between even
very distant systems, and in all known theories of physics it could be said that
fundamentally the theory is a theory of the whole universe. But this is no more
true in pilot-wave theory than it is in classical mechanics, classical field theory,
or general relativity. In principle one needs to consider the whole universe
in all these theories; but in practice, the universe divides into approximately
independent pieces, at least in the real situations occurring in our actual world.
The situation in pilot-wave theory shows no essential difference from that of
other physical theories.

In our view, the question of the meaning of probability and of ensembles
in cosmology has its place as a valid and interesting philosophical question,
but the emphasis placed on this question by the Bohmian mechanics school has
proved to be misleading and (we would argue) a distraction. The question of the
existence or otherwise of primordial quantum nonequilbrium is empirical. It will
be answered by detailed work in theoretical and observational cosmology, not
by foundational debates about the meaning of probability and related topics.

On a related note we comment on a recent paper by Norsen (2018), which
attempts to combine quantum relaxation ideas with typicality arguments. In
our view considerations of typicality add nothing substantial to a quantum re-
laxation scenario, and merely introduce a new word to denote the probability
measure for a universal theoretical ensemble.18 Furthermore if, as Norsen (p.
24) advocates, we also consider ‘reasonably smooth’ non-Born-rule typicality
measures on the initial universal configuration, then while (as Norsen notes) our
relaxation results suggest that the Born rule will still be obtained on a coarse-
grained level at later times, the fact remains that such initial measures will

17See, for example, Goldstein and Zangh̀ı (2013).
18Norsen (p. 15) follows the Bohmian mechanics school in making the misleading claim that

‘... there is simply no such thing as the probability distribution P for particle configurations
of the universe as a whole, because there is just one universe’.
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imply nonequilibrium for sub-systems in the early universe (with all the novel
physical implications we have described). This then contradicts Norsen’s claim
(p. 22) that early nonequilibrium is intrinsically unlikely (a claim made, con-
fusingly, by appealing to the initial Born-rule measure). To avoid such needless
controversy, we should bear in mind that there simply is no intrinsic typicality
(or probability) measure for initial conditions, and that in the end the existence
or non-existence of early nonequilibrium can only be established by observation.

6 Contingency and the nature of the universal
wave function

The typicality approach has led to misunderstandings not only of the Born rule
in pilot-wave theory but also of the nature of the wave function (or pilot wave).

As we have emphasised, in a theory of dynamics the initial conditions are
contingent and only the laws of motion are law-like. And yet, in the typicality
approach the initial configuration quniv(0) of the universe is restricted by the
requirement that it be typical with respect to the measure |Ψuniv(quniv, 0)|2.
The latter measure is treated as if it had a law-like status (as explicitly claimed
by Tumulka (2018)). In our view, in contrast, the initial probability distribution
for the universe is a contingency which can be constrained only by cosmological
observation.

This confusion between contingent and law-like entities has been taken to
an extreme in claims made by the Bohmian mechanics school regarding the
nature of the universal wave function Ψuniv, specifically: (1) that Ψuniv cannot
be regarded as contingent, and (2) that Ψuniv is not a physical object but a
law-like entity (‘nomological’ rather than ‘ontological’).

The argument that Ψuniv cannot be regarded as contingent is essentially
this: the wave function for the whole universe

is not controllable: it is what it is. (Goldstein 2010)

There are several problems with this argument. Firstly, the same could be
said of the universal configuration quniv, resulting in the remarkable conclusion
that no properties of our universe can be regarded as contingent (not even the
position of the moon). Secondly, and in a similar vein, one could just as well
say that our universe has only one spacetime geometry, and indeed only one
intergalactic magnetic field. Each of these objects ‘is not controllable’ and ‘is
what it is’. And yet, according to standard thinking in physics and cosmology,
the detailed form of either object is not completely determined by physical
laws: each has a strong element of contingency. Thirdly and finally, as noted in
Section 5.2, in this context we ought to beware of statements that there is ‘only
one universe’: in principle such statements are trivially and tautologically true,
but in practice the universe studied by cosmologists may well be one element of
a large (and possibly infinite) ensemble, where the object which we call Ψuniv

can vary contingently across the ensemble.
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The argument that Ψuniv is not a physical object but a law-like entity is based
on three assertions: (a) that Ψuniv cannot be regarded as contingent (claim (1)
above, which we have argued to be unfounded), (b) that Ψuniv is static, and (c)
that Ψuniv is uniquely determined by the laws of quantum gravity.19 On these
grounds it has been claimed that Ψuniv is a law-like entity roughly analogous
to a classical Hamiltonian (Dürr, Goldstein and Zangh̀ı 1997; Goldstein and
Zangh̀ı 2013). Thus:

... the wave function is a component of physical law rather than
of the reality described by the law. (Dürr, Goldstein and Zangh̀ı
1997, p. 33)

But the arguments (a)–(c) do not bear scrutiny. We have already seen that
argument (a) is spurious. Argument (b) is also questionable, based as it is on
the time-independence of the Wheeler-DeWitt equation (the analogue of the
Schrödinger equation) in canonical quantum gravity.20 However, the physical
meaning and consistency of the quantum-gravitational formalism remains in
doubt, in particular because of the notorious ‘problem of time’ (the problem of
explaining the emergence of apparent temporal evolution in some appropriate
limit). Many workers have suggested that a physical time parameter is in effect
hidden within the formalism and that, when correctly written as a function of
physical degrees of freedom, the wave function is in fact time dependent.21 As
for argument (c), in canonical quantum gravity the solutions for Ψuniv (satisfying
the Wheeler-DeWitt equation as well as the other required constraints) are in
fact highly non-unique (Rovelli 2004). In quantum cosmological models, for
example, the solutions for Ψuniv have the same kind of contingency that we are
used to for quantum states in other areas of physics (Bojowald 2015).

It is worth emphasising that even if a consistent theory of quantum grav-
ity did require Ψuniv to be static, this still would not by any means establish
that Ψuniv is law-like. The key aspect of Ψuniv that makes it count as a physi-
cal object is its contingency, in other words its under-determination by known
physical laws. This implies that Ψuniv contains a lot of independent and con-
tingent structure – just like the electromagnetic field or the universal spacetime
geometry – and so should be regarded as part of the physical state of the world
(Valentini 1992, p. 17; Brown and Wallace 2005, p. 532; Valentini 2010b).

7 Further criticisms of ‘Bohmian mechanics’

Pilot-wave theory is, in general, a nonequilibrium physics that violates the sta-
tistical predictions of quantum theory (Valentini 1991a,b, 1992). It can only

19Other authors express concern about regarding a field on configuration space as a physical
object. In our view it is not unreasonable for configuration space to be the fundamental arena
of a realistic physics, with physical objects propagating on it (cf. footnote 23).

20The Wheeler-DeWitt equation takes the schematic atemporal form ĤΨ = 0, where Ĥ is
an appropriate operator for the Hamiltonian density (Rovelli 2004).

21See, for example, Roser and Valentini (2014) and the exhaustive review of the problem of
time by Anderson (2017).
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be properly understood from this general perspective. The Bohmian mechanics
school has instead promoted the belief that pilot-wave theory is instrinsically a
theory of equilibrium. We now consider the principal physical misunderstand-
ings that have arisen from this mistaken belief.

7.1 ‘Absolute uncertainty’

The Bohmian mechanics school has asserted that typicality with respect to
the Born-rule measure is ‘the origin of absolute uncertainty’. On this view
the uncertainty principle is an ‘absolute’ and ‘irreducible’ limitation on our
knowledge:

In a universe governed by Bohmian mechanics there are sharp,
precise, and irreducible limitations on the possibility of obtaining
knowledge ... absolute uncertainty arises as a necessity, emerging
as a remarkably clean and simple consequence of the existence of
trajectories. (Dürr, Goldstein and Zangh̀ı 1992)

... in a Bohmian universe we have an absolute uncertainty ... the
[Born rule] is a sharp expression of the inaccessibility in a Bohmian
universe of micro-reality, of the unattainability of knowledge of the
configuration of a system that transcends the limits set by its wave
function ψ. (Goldstein 2010)

In Bohmian mechanics ... there are sharp limitations to knowl-
edge and control: inhabitants of a Bohmian universe cannot know
the position of a particle more precisely than allowed by the |ψ|2
distribution ... . Furthermore, they cannot measure the position at
time t without disturbing the particle ... . (Tumulka 2018)

But as we pointed out in Section 5.1, the typicality argument in effect inserts
the Born rule by hand at the initial time. Furthermore, as we noted in the
Introduction, the uncertainty principle is not absolute or irreducible but merely
a peculiarity of the state of quantum equilibrium. In general, the uncertainty
principle would be violated if we had access to quantum nonequilibrium systems
(Valentini 1991b, 2002a).

7.2 The status of quantum measurement theory

As also briefly noted in the Introduction, in the presence of quantum nonequi-
librium key quantum constraints are violated: these include statistical locality,
expectation additivity for quantum observables, and the indistinguishability of
non-orthogonal quantum states (Valentini 1991a,b, 1992, 2002a, 2004; Pearle
and Valentini 2006). The physics of nonequilibrium is radically different from
the physics of equilibrium, the latter being merely a highly restricted special
case of the former. It should then come as no surprise that the nonequilibrium
theory of measurement differs radically from its equilibrium counterpart. As
philosophers of physics are well aware, measurement is ‘theory laden’: we need
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some body of theory in order to know how to perform measurements correctly.
As Einstein put it, in an often-quoted conversation with Heisenberg:

It is the theory which decides what we can observe. (Heisenberg
1971, p. 63)

In the presence of quantum nonequilibrium systems, pilot-wave theory itself
tells us how to perform correct measurements. It is found, for example, that
if we possessed an ensemble of ‘apparatus pointers’ with an arbitrarily narrow
nonequilibrium distribution (much narrower than the standard quantum width
as defined by the initial wave function of the pointer), then it would be possible
to use the apparatus to perform ‘subquantum measurements’: in particular,
we would be able to measure the position and trajectory of a particle without
disturbing its wave function (to arbitrary accuracy) (Valentini 2002a, Pearle
and Valentini 2006).

From this perspective, the physics of quantum equilibrium is highly mislead-
ing – and so is the associated equilibrium theory of measurement (also known
as ‘quantum measurement theory’). In fact, the detailed dynamics of pilot-wave
theory shows that the procedures known as ‘quantum measurements’ are gen-
erally not correct measurements. Instead, those procedures are merely special
kinds of experiments which have been designed to respect a formal analogy with
classical measurements (where the analogy is implemented by a mathematical
correspondence between classical and quantum Hamiltonians) (Valentini 1992,
1996, 2010b).

To put the so-called quantum theory of ‘measurement’ in a proper perspec-
tive, we must consider the more general physics of quantum nonequilibrium and
its associated theory of subquantum measurement. But because the Bohmian
mechanics school believes that the theory is fundamentally grounded in equi-
librium, they are led to believe that the equilibrium theory is the theory –
and that the associated quantum theory of measurement has a fundamental
status. Thus Dürr, Goldstein and Zangh̀ı (1996, 2004) argue that the quan-
tum theory of measurement arises as an account of what they call ‘reproducible
experiments’ and reproducible ‘measurement-like’ experiments. Measurements
that lie outside of the domain of the quantum formalism are not considered.
Thus both quantum equilibrium and its associated theory of measurement are
in effect regarded as fundamental features of pilot-wave theory. In our view
this is deeply mistaken. The physics of equilibrium is a special case of a much
wider physics in which new kinds of measurements are possible. If instead we
artificially restrict ourselves to the equilibrium domain, the result is a distorted
understanding of measurement and an overstatement of the significance of the
conventional quantum formalism.

7.3 The misleading kinematics of quantum equilibrium

It is worth noting how the artificial restriction to quantum equilibrium makes the
idea of fundamental Lorentz invariance (at the level of the underlying equations
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of motion) seem much more plausible than it really is. As we have remarked,
in general nonequilibrium gives rise to instantaneous signaling between remote
entangled systems (Valentini 1991b).22 The reality in principle of superluminal
communication between widely-separated experimenters strongly suggests the
existence of an absolute simultaneity associated with a preferred slicing of space-
time (Valentini 2008b). And indeed most versions of pilot-wave dynamics (and
in particular of quantum field theory) are defined with respect to a preferred
frame with a preferred time parameter t – where effective Lorentz invariance
emerges only at the statistical level of quantum equilibrium (Bohm, Hiley and
Kaloyerou 1987, Valentini 1992, Bohm and Hiley 1993, Holland 1993). If instead
the theory is always and everywhere artificially restricted to equilibrium, local-
ity will always hold at the statistical level and practical nonlocal signalling will
be impossible. It may then seem plausible to search for a version of pilot-wave
theory in which the dynamics is fundamentally Lorentz invariant, since one will
never be faced directly with the awkward question of what happens when prac-
tical superluminal signals are viewed from a Lorentz-boosted frame and appear
to travel backwards in time (potentially generating causal paradoxes). Even so,
despite several attempts, a fundamentally Lorentz-invariant pilot-wave theory
remains elusive and problematic (Dürr et al. 1999; Tumulka 2007; Dürr et al.
2014).

The attachment to fundamental Lorentz invariance has in turn encouraged
a misunderstanding of the role of Galilean invariance, which the Bohmian me-
chanics school mistakenly regards as a fundamental symmetry of the low-energy
theory (Dürr, Goldstein and Zangh̀ı 1992; Allori et al. 2008; Dürr and Teufel
2009; Goldstein 2017; Tumulka 2018). Pilot-wave theory is a first-order or ‘Aris-
totelian’ dynamics with a law of motion (1) for velocity (as first envisaged by
de Broglie in 1923), in contrast with Newtonian theory which is a second-order
dynamics with a law of motion for acceleration. Because of this fundamental
difference, the natural kinematics of pilot-wave theory is also Aristotelian with a
preferred state of rest (Valentini 1997). Galilean invariance may be shown to be
a fictitious symmetry of the low-energy pilot-wave theory of particles – just as
invariance under uniform acceleration is well known to be a fictitious symmetry
of Newtonian mechanics. If instead one tries to insist on Galilean invariance
being a physical symmetry of the low-energy theory, the result is a conceptually
incoherent combination of an Aristotelian dynamics with a Galilean kinematics.

In response it might be claimed that Galilean invariance plays an important
role in selecting the form of the low-energy guidance equation (Dürr, Goldstein
and Zangh̀ı 1992; Dürr and Teufel 2009; Goldstein 2017). But in fact the de

Broglie velocity v = j/ |ψ|2 is generally determined by the quantum current
j, which may be derived as a Noether current associated with a global phase
symmetry ψ → ψeiθ on configuration space (Struyve and Valentini 2009). The
derivation takes place in one frame of reference, with no need to consider boosts.
The relevant symmetry is in configuration space, not in space or spacetime.23

22Similar conclusions hold in all nonlocal and deterministic hidden-variables theories (Valen-
tini 2002b).

23This reinforces our view that configuration space is the fundamental physical arena of
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7.4 Particle creation and indeterminism

It is also worth noting how the artificial restriction to quantum equilibrium
makes a fundamentally stochastic model of particle creation – developed by the
Bohmian mechanics school – appear more plausible than it really is. For if one
denies the general contingency of the Born rule for initial conditions, it may
seem no great loss to introduce a fixed and non-contingent probability into the
dynamics as well.

The stochastic model promoted by the Bohmian mechanics school was con-
structed as follows. Bell (1986; 1987, chapter 19) had already proposed a dis-
crete model of fermion numbers evolving stochastically on a lattice and had
suggested that taking the continuum limit might yield a deterministic theory.
The Bohmian mechanics school studied the continuum limit of Bell’s model
and arrived at a theory of particle trajectories with stochastic jumps at events
where the particle numbers change (Dürr et al. 2004, 2005). They named their
approach ‘Bell-type quantum field theory’, and have attempted to apply it to
bosons as well as to fermions. The fundamental probability rule for the jumps
is chosen so as to preserve the Born rule.

Any interacting quantum field theory will contain a plethora of events where
the particle numbers change (photon emission, electron-positron pair creation,
and so on), and the Bohmian mechanics school has suggested that determinism
must be abandoned to describe them:

In Bell-type [quantum field theories], God does play dice. There
are no hidden variables which would fully predetermine the time and
destination of a jump. (Dürr et al. 2004, p. 3)

The quantum equilibrium distribution, playing a central role in
Bohmian mechanics, then more or less dictates that creation of a
particle occurs in a stochastic manner ... . (Dürr et al. 2005, p. 2)

It would, however, be remarkable indeed if indeterminism were required to
describe particle creation – when determinism suffices to describe all other
quantum-mechanical processes. But in fact, indeterminism is not required. The
Bohmian mechanics school obtained a stochastic continuum limit of Bell’s model
because they adopted an erroneous definition of fermion number F . In quan-
tum field theory, F is conventionally defined as the number of particles minus
the number of anti-particles.24 As a particle physicist, this is what Bell would
have meant by fermion number. Unfortunately, Dürr et al. mistakenly took
Bell’s ‘fermion number’ to mean the number of particles plus the number of
anti-particles.

The correct continuum limit of Bell’s model was taken by Colin (2003), who
employed the standard definition of F . As a result Colin obtained a ‘Dirac sea’
theory of fermions – anticipated by Bohm and Hiley (1993, p. 276) – in which

pilot-wave dynamics (cf. footnote 19).
24In particle physics, for historical reasons F is defined as the sum F = L + B of lepton

and baryon numbers – where L is the number of leptons minus the number of antileptons and
similarly for B.
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particle trajectories are determined by a pilot wave that obeys the many-body
Dirac equation.25 The resulting model is fully deterministic, as Bell suggested
it would be. There are no fixed or fundamental stochastic elements, and the
usual contingency of probabilities applies to all processes.

For completeness we note that, for bosons, it is straightforward to develop
a deterministic pilot-wave field theory, in which the time evolution of a (for
example scalar) field φ is determined by the Schrödinger wave functional Ψ[φ, t]

(Holland 1993). In such a theory, again, the Born rule P = |Ψ|2 is contin-
gent and may be understood as arising from a process of dynamical relaxation
(Valentini 2007). In contrast, the Bohmian mechanics school encounters diffi-
culties defining particle trajectories and a Born-rule position-space density for
single bosons, as briefly noted by Dürr et al. (2005, p. 13). Such problems
recall the long history (in standard quantum theory) of controversial attempts
to define a position-space ‘wave function’ for single photons and other bosons,
attempts which invariably lead to negative probabilities and superluminal wave
packet propagation. Without a solution to this – probably insoluble – problem,
so-called ‘Bell-type quantum field theory’ remains undefined for bosons.26

7.5 The problem of falsifiability

Finally, the artificial restriction to quantum equilibrium has compromised the
status of pilot-wave theory as a falsifiable scientific theory. For it is then impos-
sible to measure the trajectory of a system without disturbing its wave function;
hence it is impossible to test the de Broglie equation of motion, which associates
a specific set of trajectories with each given wave function. There are alternative
pilot-wave theories, with alternative velocity fields, which nevertheless preserve
the Born distribution and which therefore imply the same empirical predictions
for the equilibrium state (Deotto and Ghirardi 1998). The physics of equilibrium
is insensitive to the details of the trajectories. Thus, if we have access to equi-
librium only, the alternative theories can never be tested against de Broglie’s
original theory. Indeed, in equilibrium, pilot-wave theories are forever experi-
mentally indistinguishable from conventional quantum theory. As Dürr et al.
put it:

For every conceivable experiment, whenever quantum mechanics
makes an unambiguous prediction, Bohmian mechanics makes ex-
actly the same prediction. Thus, the two cannot be tested against
each other. (Dürr, Goldstein, Tumulka and Zangh̀ı 2009)

It is of course logically and mathematically possible for the world to be
governed by pilot-wave theory and to be always and everywhere in quantum

25The Dirac-sea model requires regularisation (for example a cutoff) (Colin 2003, Colin and
Struyve 2007). The same is true of the models developed by Dürr et al. in the presence of
interactions.

26Dürr et al. (2005, p. 13) cite two papers ‘in preparation’ (their refs. [18] and [28])
purporting to address this problem. To the author’s knowledge, and unsurprisingly, neither
paper was completed.
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equilibrium. But from a scientific point of view such a theory is unfalsifiable
and therefore unacceptable. This shortcoming is, however, not a feature of pilot-
wave theory itself – which abounds in new and potentially-observable physics –
but rather stems from a misunderstanding of the status of the Born rule in this
theory.

8 Conclusion

The foundations of statistical mechanics are notoriously controversial, and over-
lap with difficult questions concerning the nature of probability, the justification
for standard methods of statistical inference, and even with philosophical ques-
tions concerning the foundations of the scientific method. However, important
as these questions are, in our view they are not especially relevant to either
pilot-wave theory or cosmology but instead arise generally across the sciences.
We claim that attempts to forge a special link between such questions and
pilot-wave theory are at best a distraction and at worst deeply misleading.

Something comparable took place during the early development of atomic
theory in the late nineteenth century. At that time theoretical physics was
divided between what we might now call ‘operationalists’ (who saw the macro-
scopic laws of thermodynamics as paradigmatic for physics generally) and ‘re-
alists’ (who thought those laws required a deeper explanation in terms of atoms
and kinetic theory). Boltzmann in particular was especially passionate about
the philosophical importance of atomism as a basis for explanation in physics,
vis à vis the competing operationalist views of Mach and Ostwald.27 In retro-
spect it seems unfortunate that Boltzmann became embroiled in foundational
controversies concerning probability, time reversal, and so on – important and
interesting questions which, in hindsight, proved to be a distraction from the
main goal of demonstrating the reality of atoms. The eventual atomistic expla-
nation for Brownian motion by Einstein in 1905 owed little to such foundational
debates and more to technical developments in kinetic theory – and the foun-
dational debates persist to this day, more than a century after the existence of
atoms was firmly established.

Similarly, theoretical physics today is again divided between operationalists
(who see quantum mechanics as an operational theory of macroscopic observa-
tions) and realists (who think there must be a reality behind the formalism).
Among the various realist approaches, pilot-wave theory is the most closely
analogous to kinetic theory. Once again, it seems unfortunate that the subject
has become embroiled in foundational controversies in statistical mechanics and
probability theory, when surely the main goal is to find out whether the tra-
jectories posited by pilot-wave theory really exist or not. In our view, while
those foundational controversies are important and interesting, in the context
of pilot-wave theory they have proved to be a distraction from the even more

27See, for example, Boltzmann’s selected writings in the collection Theoretical Physics and
Philosophical Problems (Boltzmann 1974).
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important question of whether pilot-wave theory itself is true or not. Further-
more, the viewpoint championed by the Bohmian mechanics school (and widely
followed by philosophers of physics) has played a major role in obscuring the
physics of the theory – which is fundamentally a nonequilibrium physics that
violates quantum mechanics. We emphasise, once again, that the existence or
non-existence of quantum nonequilibrium in our universe (past and present)
is an empirical question that will be settled only by detailed theoretical and
observational work.

Acknowledgement. I am grateful to Valia Allori for the invitation to
contribute to this volume.
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