Explaining Thermodynamics: What remains
to be done?

Wayne C. Myrvold
Department of Philosophy
The University of Western Ontario
wmyrvold@Quwo.ca

July 12, 2019

Abstract

In this chapter I urge a fresh look at the problem of explaining
equilibration. The process of equilibration, I argue, is best seen, not
as part of the subject matter of thermodynamics, but as a presuppo-
sition of thermodynamics. Further, the relevant tension between the
macroscopic phenomena of equilibration and the underlying micrody-
namics lies not in a tension between time-reversal invariance of the
microdynamics and the temporal asymmetry of equilibration, but in
a tension between preservation of distinguishability of states at the
level of microphysics and the continual effacing of the past at the
macroscopic level. This suggests an open systems approach, where
the puzzling question is not the erasure of the past, but the question
of how reliable prediction, given only macroscopic data, is ever pos-
sible at all. I suggest that the answer lies in an approach that has
not been afforded sufficient attention in the philosophical literature,
namely, one based on the temporal asymmetry of causal explanation.



1 Introduction

Early in the previous century, Josiah Willard Gibbs wrote,

A very little study of the statistical properties of conser-
vative systems of a finite number of degrees of freedom is
sufficient to make it appear, more or less distinctly, that
the general laws of thermodynamics are the limit towards
which the exact laws of such systems approximate, when
their number of degrees of freedom is indefinitely increased

(Gibbs, 1902, 166).

From the vantage point of the twenty-first century, Gibbs’ optimism
may seem naive, as the relation between thermodynamics and statisti-
cal mechanics continues to be a topic of philosophical discussion, with
no consensus in sight.

In this chapter I will argue that Gibbs is right. The laws of thermo-
dynamics have been satisfactorily explained on the basis of statistical
mechanics, and, indeed, the seeds of the explanation were already
present in Gibbs’ work, as (by a not entirely surprising bit of good
fortune) the relevant parts of classical statistical mechanics can be
taken over with little ado into quantum statistical mechanics. The ex-
planation of the laws of thermodynamics consists of finding appropri-
ate statistical mechanical analogues of thermodynamic concepts and
deriving relations between them that approximate the laws of ther-
modynamics for systems of many degrees of freedom.! Along the way,
something interesting and subtle happens to the temporal irreversibil-
ity of the second law of thermodynamics. The statistical analogue of
the second law of thermodynamics is, unlike its thermodynamic coun-
terpart, not temporally asymmetric; in place of temporal asymmetry
is a distinct asymmetry related, but not identical to it. This will be
made clear in section 3, below. This removes what has been seen
as the chief stumbling-block for the reduction of thermodynamics to
statistical mechanics, namely, the prima facie tension between a tem-
porally asymmetric second law of thermodynamics and time-reversal
invariance of the underlying dynamics.

T hope it goes without saying that the project of investigating behaviour asymptotically
approached by systems with a finite number of degrees of freedom as the number of
degrees of freedom is increased indefinitely is a distinct project from that of investigating
an idealized system with infinitely many degrees of freedom, though, with care, the latter
project might be informative about the former.



This doesn’t mean that we’re out of the woods, though. There still
remains an important task, not yet fully accomplished, the task of ex-
plaining the process of equilibration in statistical mechanical terms.
This involves both an explanation of the general tendency for systems
out of equilibrium to relax to an equilibrium state unless maintained
in a non-equilibrium state by an external influence, and an explana-
tion of the paths to equilibrium and the rates at which those paths
have been traversed. This task has, of course, been regarded as part of
thermodynamics, and a principle of equilibration has been counted by
some as a law of thermodynamics (Uhlenbeck and Ford, 1963; Brown
and Uffink, 2001). Compared to the other laws of thermodynamics,
a law to the effect that, left to themselves, systems tend to relax to
equilibrium, is an outlier. Though long recognized as an important
principle, it was a late entry to the list of laws of thermodynamics: it
was not referred to as a law of thermodynamics until the 1960s, more
than a century after Kelvin initiated talk of laws, or fundamental
principles, of thermodynamics. There is also an important conceptual
distinction between the equilibration principle and the other laws of
thermodynamics. It is unique among the so-called laws of thermody-
namics in that its formulation does not require to make a distinction
between energy transfer as heat and energy transfer as work. It is also
the chief locus of temporal asymmetry.

Though, of course, this is ultimately a matter of choice of termi-
nology, and nothing more, it seems to be that it is helpful to high-
light the differences between the equilibration principle and the more
traditional laws of thermodynamics by restricting the scope of “ther-
modynamics” to something like what its founders intended, and to
regard the equilibration principle, not as belonging to thermodynam-
ics proper, but as a presupposition thereof. A payoff in conceptual
clarity of this choice is that it will perhaps mitigate somewhat the
tendency to conflate the equilibration principle with the second law.

2 What is thermodynamics?

In contemporary physical parlance, to speak of the dynamics of a sys-
tem is to speak of the laws according to which its state evolves over
time. This has given rise to a folk etymology for the term “ther-
modynamics,” according to which thermodynamics should mean the
dynamical laws governing heat transfer. This folk etymology is incor-



rect. Understanding the actual etymology of the term is not merely a
matter of historical interest. Contrary to the impression that the folk
etymology would give, thermodynamics is aptly named, as the term
stems from, and highlights, the two concepts that are at the core of
the subject.

The term thermodynamics is composed from the Greek words for
heat and power. It refers to the study of the ways in which heat
can be used to generate mechanical action and heat can be generated
via mechanical means. The word’s first appearance is in Part VI of
Kelvin’s “On the Dynamical Theory of Heat” (Thomson 1857, read
before the Royal Society of Edinburgh on May 1, 1854). There he
recapitulates what in 1853 he had called the “Fundamental Principles
in the Theory of the Motive Power of Heat,” now re-labelled “Funda-
mental Principles of General Thermo-dynamics.” The context makes
clear that the new term is intended to denote the study of the rela-
tions between mechanical action and heat. It is worth noting that the
term “thermodynamics” had not been used in connection with the
earlier investigations, by Fourier, Kelvin, and others, of the laws of
heat transport.

The term “thermodynamics” flags the distinction that is at the
heart of the subject, the distinction between two modes of energy
transfer: as work, and as heat. This is not a distinction that belongs to
fundamental physics. Pure mechanics, whether classical or quantum,
employs the concept of energy, but not this distinction between ways
in which energy can be transferred from one system to another.

The two laws identified by Kelvin as laws of thermodynamics cru-
cially invoke the heat-work distinction, and cannot be formulated
without it. The first law states that total energy is conserved, whether
transferred as heat or work; the net change in the internal energy of a
system during any process is the net result of all exchanges of energy
as work or as heat. The second law, in any of its formulations, also
invokes the distinction. This is obvious in the Clausius and Kelvin
formulations.

Heat can never pass from a colder to a warmer body with-
out some other change, connected therewith, occurring at
the same time (Clausius 1856, 86, from Clausius 1854, 488).

It is impossible, by means of inanimate material agency,
to derive mechanical effect from any portion of matter by
cooling it below the temperature of the coldest of the sur-



rounding objects (Thomson 1853, 179; reprinted in Thom-
son 1882, 265).

There is also an entropy formulation of the second law, that says that,
in any process, the total entropy of all systems involved in the process
does not decrease. At first glance, this might seem not to depend on
the distinction between energy transfer as work and energy transfer
as heat. But recall the definition of thermodynamic entropy. The
entropy difference between two thermodynamic states of a system is
calculated by considering some thermodynamically reversible process
that links the two states and the associated heat exchanges between
the system and the external world; the entropy difference between
the two states of the system is the integral of d@Q/T over any such
process (which cannot depend on which reversible process is chosen
for consideration, on pain of violation of the second law in Clausius
or Kelvin form).

In addition to the two laws of thermodynamics identified as such
by Kelvin, there is another, more basic law, called the zeroth law, on
which the definition of temperature depends.? The zeroth law has to
do with the behaviour of systems when brought into thermal contact.
Thermal contact (taken as a primitive notion) between two systems is
a condition under which heat may flow between the systems. Under
conditions of thermal contact, heat may flow from one system to the
other, or else there may be no heat flow, in which case the systems
are said to be in thermal equilibrium with each other. This induces
a relation between states of systems that can be put into thermal
contact with each other, which holds between the states (whether or
not the bodies are actually in thermal contact) if there would be no
heat flow if the systems were brought into thermal contact. This is
obviously a symmetric relation. If we take a system in equilibrium
to be in thermal contact with itself, it is also a reflexive relation. It
is, therefore, an equivalence relation if and only if it is transitive.
The zeroth law states that the relation is, indeed, transitive. If the
zeroth law holds, we can partition thermodynamic states of systems

2The phrase occurs in Fowler and Guggenheim (1939, 56), and became a textbook
staple in the years that followed. This was not, however, its first occurrence. However, a
few years earlier, in a note on terminology, Charles Galton Darwin (1936) mentions the
“zeroth law of thermodynamics” in a way that suggests that he expects it to be familiar
to his readers; it is brought up only to illustrate the use of the word “zeroth,” in Darwin’s
estimation a “terrible hybrid.” Sommerfeld (1956, 1) attributes the coinage to Fowler,
when giving an account of Saha and Srivastava (1931, 1935).



into equivalence classes under this relation, which we may regard as
the relation of being of the same temperature. The zeroth law requires
the notion of thermal contact, and hence the notion of heat flow, and
thus, like the first and second laws, requires the heat-work distinction
for its formulation.

These three laws have been recognized as laws of thermodynamics,
and presented as such, in textbooks since the 1930s. There is also a
late-comer, more basic than the rest. This is what Brown and Uffink
(2001) call the Equilibrium Principle (though perhaps Equilibration
Principle would be better):

An isolated system in an arbitrary initial state within a
finite fixed volume will spontaneously attain a unique state
of equilibrium (Brown and Uffink, 2001, 528).

To signal that this is more fundamental than the traditional zeroth,
first, and second laws, Brown and Uffink label this the minus first law.
They point out that a principle of this sort had been recognized as a
law of thermodynamics earlier, by Uhlenbeck and Ford (1963, 5).3

The equilibration principle has often been conflated with the sec-
ond law. The two are distinct, however. It is a consequence of the
second law that, if an isolated system makes a transition from one
thermodynamic state to another, the entropy of the final state will
not be higher than that of the initial state. This does not entail
that its behaviour will be that dictated by the equilibration principle.
As far as the second law is concerned, there might be some set of
distinct thermodynamic states of the same entropy that the system
cycles through. Or else it might fail to equilibrate when isolated, re-
maining in some quasistable nonequilibrium state until some external
disturbance triggers a slide towards equilibrium.

The equilibration principle is unlike the zeroth, first, and second
laws. The others have to do with exchanges of energy between systems,
and rely on a distinction between energy exchange as heat and energy
exchange as work. The equilibration principle, on the other hand, has
to do with the spontaneous behaviour of an isolated system, and, ipso
facto has nothing at all to do with energy exchange, in any mode.

Should we regard the equilibration principle as a law of thermody-
namics? A case can be made for not doing so, as refraining from doing

3Uhlenbeck and Ford called it the zeroth law to emphasize its priority over the first
and second laws. We will continue to follow standard terminology in taking transitivity of
thermal equilibrium to be the zeroth law.



so provides a neat separation of two sorts of theoretical investigations.

There is a tradition, which can be traced back to Maxwell* and
which has undergone renewed interest in recent years, of thinking of
thermodynamics as a resource theory.> That is, it is a theory that
investigates how agents with specified powers of manipulation and
specified information about physical systems can best use these to
accomplish certain tasks. A theory of this sort involves physics, of
course, because it is physics that tells us what the effects of specified
operations will be. But not only physics; considerations not contained
in the physics proper, having to do with specification of which opera-
tions are to be permitted to the agents, are brought to bear. On such
a view, the work-heat distinction rests on a distinction between vari-
ables that the agent can keep track of and manipulate, and variables
that are not amenable to such treatment. If we take this view, we
would not expect to capture concepts such as heat, work, and entropy
within physics proper, and would not expect there to be statistical
mechanical analogues of these concepts definable in purely physical
terms.

The equilibration principle is in a different category. Though it,
too, requires for its formulation a distinction not found in the funda-
mental physics, a distinction between macrovariables, used to define
the thermodynamic state, and microvariables, required to specify the
complete physical state of a system, it doesn’t require the heat-work
distinction. Someone who (like Maxwell) holds that the distinction
between heat and work vanishes when all limitations on knowledge
and manipulation are removed would expect the zeroth, first, and sec-
ond laws to make sense only in the presence of such limitations. The
same cannot be said of the equilibration principle.

If we take the word thermodynamics in its originally intended
sense, as the science of heat and work, then the equilibration principle
is not a law of thermodynamics. Instead, since it delivers the equilib-
rium states with which thermodynamics deals, it is a presupposition
of all thermodynamics. Though this is merely a terminological issue,
regarding the scope of the term thermodynamics, there is something
to be said for flagging the relation between the equilibration principle
and the traditional laws of thermodynamics by saying that only the
latter, not the former, comprise thermodynamics proper. And if we

4See Myrvold (2011).
5See del Rio et al. (2015) for a general framework for resource theories, Wallace (2016)
and Bartolotta et al. (2016) for some recent work, and Goura et al. (2015) for a review.



take the scope of thermodynamics to comprise only the zeroth, first,
and second laws, then the task of explaining thermodynamics in sta-
tistical mechanical terms is a much less daunting one. It is of this
more modest goal that Gibbs speaks, in the quotation with which we
started.

This, of course, leaves with the deep, important, and interesting
task of explaining equilibration. This is a matter to which much valu-
able and interesting work has been, and continues to be, devoted. The
literature on equilibration deserves more attention from philosophers
than it has heretofore received. Seeing equilibration as not a matter
of thermodynamics but, rather, a process that thermodynamics pre-
supposes, helps one to view this work more clearly, as the enterprise of
studying equilibration is thereby freed of extraneous thermodynamic
concepts (and in particular, of the concept of entropy).

3 Explaining thermodynamics in terms
of statistical mechanics

Statistical mechanics deals with systems composed of a large number
of interacting subsystems, and examines their aggregate behaviour, es-
chewing a detailed description of the microstate of the system. In the
decade from 1867 to 1877, the major figures working to lay the foun-
dations that Gibbs would later call statistical mechanics—Maxwell,
Kelvin, and others in Britain, Gibbs in the U.S., and Boltzmann on
the continent—came to realize that what was to be recovered from
statistical mechanics was not the laws of thermodynamics as origi-
nally conceived, but a modified version on which what the original
version of the second law declares to be impossible should be regarded
as possible but, when dealing with things on the macroscopic scale,
highly improbable. Because of random fluctuations of molecules, on a
given run a heat engine operating between two reservoirs might yield
more work than the Carnot limit on efficiency permits, but, by the
same token, it might also yield less than expected. What we can ex-
pect from statistical mechanics is some statement to the effect that
we can’t predictably and reliably exceed the Carnot efficiency.

This suggests that we will have to traffic in probabilities, and con-
sider, in the classical context, properties of probability distributions
on the phase spaces of classical systems, and, in the quantum context,
of density operators.



Construing a macroscopic system as composed of a large num-
ber of molecules also motivates a reconsideration of the notion of an
equilibrium state. Though systems may settle into a state in which
macroscopically measurable quantities are not changing perceptibly,
this state cannot be a state of quiescence at the microphysical level.
At the level of individual molecules, a system in thermodynamic equi-
librium is seething with activity, and the observed macroscopic repose
is the net result of averaging over large numbers of rapidly changing
microphysical parameters. There is, of course, no sharp line between
macroscopic and microscopic, and, at the mesoscopic scale (illustrated
by Brownian motion) the state into which a system settles is one in
which some measurable parameters are continually fluctuating, with
a stable pattern of fluctuations. Here, again, probabilistic considera-
tions come into play; we want to say that large fluctuations of macro-
scopic parameters during a time scale typical of our observations are
not impossible, but merely improbable. Considerations such as this
suggest that, in statistical mechanics, what we should associate with
the condition of equilibrium, is, not an unchanging state, but a sta-
ble probability distribution. The process of equilibration will then
be one in which non-equilibrium probability distributions over initial
conditions converge (in an appropriate sense) towards the equilibrium
distribution.

We also need, in order to apply thermodynamic concepts to sta-
tistical mechanical systems, a way of partitioning energy exchange
between systems into heat exchange and work. The standard way to
do this is to treat certain parameters (think of, for example, the po-
sition of a piston) as exogenously given, not treated dynamically and
not subject to probabilistic uncertainty. The Hamiltonian of a system
may depend on such parameters, and so a change in an exogenous
parameter can result in a change in the energy of the system. Change
to the energy of a system due to changes in the exogenous parameters
on which its Hamiltonian depends are to be counted as work done
on or by the system, and all other changes of energy counted as heat
exchanges.

In thermodynamics, thermal states play an important role. A sys-
tem that has thermalized (relaxed to thermal equilibrium) is one from
one can extract no energy as work; the only way to extract energy from
it is via heat flow. In such a state, a system has a definite temperature,
uniform throughout the system. When two thermalized systems are
placed in thermal contact with each other, the expected heat flow is



from the hotter to the colder. These things continue to be true if we
consider a number of systems at the same temperature; an assembly
of thermal systems at the same temperature is also a thermal system
at that temperature. There are arguments (see Maroney 2007 for a
lucid exposition) that these considerations lead to the conclusion that
the appropriate probability distributions to associate with thermal
states are what Gibbs named canonical distributions. In the classical
case, the canonical distribution has density function (with respect to
Liouville measure),’

ps(a) = 2716 PHE), 1)

where x ranges over phase-space points, H is the Hamiltonian of the
system, and Z a normalization constant chosen to make the integral
of pg over the accessible region of phase space equal to unity. The
parameter [ indicates the temperature of the thermal state, and is
inversely proportional to the absolute (Kelvin) temperature.
For a quantum system, a canonical state is represented by the
density operator, A
p=2te PH, (2)

We want an analogue of the second law of thermodynamics. The
second law of thermodynamics is equivalent to the statement that
no heat engine can operate with an efficiency exceeding the Carnot
efficiency. We can state this as follows.

If a system undergoes a cyclic process, exchanging heats Q;
with thermal systems at temperatures 7; (and exchanging
no heat with any other system), and returning to its original

state, then
Qi
— <0. 3
> < 3)

Moreover, if the process is thermodynamically reversible, it
can be run in the opposite direction, with heat exchanges
—(@;. This entails that, for such a process,

Z%:o. (4)

SWe're assuming that the system is confined to a bounded region of phase space or
otherwise subjected to conditions that render this a normalizable distribution.

10



This, in turn, entails that, if two thermodynamic states a and b of
the system can be connected by a reversible process, then the heat
exchanges the system makes with thermal systems must be such that
the sum of @;/T; over all such exchanges is the same for any reversible
process connecting the states. We can use this to define a state func-
tion .S, the thermodynamic entropy, such that

S(b) — S(a) = Z ch (5)

where the sum may be taken over any thermodynamically reversible
process taking state a to state b. This uniquely determines the en-
tropy difference of two thermodynamic states, as long as they can be
connected by a thermodynamically reversible process.

It turns out that there is something analogous in the form of a
theorem about probability distributions, a theorem that is provable in
two versions, classical and quantum.

Since we're dealing with multiple systems that may interact, we
have to consider probability distributions over the state space of the
composite system. Given a probability distribution P4p over the state
space of a composite system consisting of disjoint subsystems A and
B, we can define marginal distributions P4 and Pp as the restrictions
of P4p to the degrees of freedom of A and B, respectively. Now
consider a system A, that interacts with a number of thermal systems
B;,i = 1,...,n, at temperatures T;. Suppose that at time ty there
is no interaction between the system A and the thermal systems B;,
and that the probability distribution of the joint system consisting of
A and the thermal systems B; is such that there are no correlations
between A and the thermal systems. Suppose that, between ty and
a time t1, A interacts with the B;s successively, possibly exchanging
energy with them. During this time, the energy of A may also change
via manipulation of exogenous variables, but the only heat exchanges
are with the thermal systems B;. We also assume that at time ¢; there
is no interaction between A and the thermal systems. Let us take the
process to a cyclic one, in the sense that the marginal probability
distribution of A at t; is the same as at tg. As the system A has
interacted with the thermal systems B; in the interim, we do not
assume that at ¢; A is uncorrelated with them.

As we are dealing with probability distributions, the heats @; that
the system A exchanges with the thermal systems B; is not deter-
mined by the setup. Instead, there will be a probability distribution

11



over the energy exchanges. We can consider the expectation values of
these energy exchanges. It is easy to show that, provided that A is
uncorrelated with the B;s at ¢ty and has the same marginal at ¢y and
t1, the expectation values (Q;) of heat exchanges satisfy

> (@) <0. (6)
This means that, even if fluctuations might yield, on an individual run,
a greater yield of work than permitted by the Carnot limit on efficiency
of heat engines, one cannot consistently and reliably violate the Carnot
limit. Suppose I operate a heat engine between two heat reservoirs, a
hot one of temperature 77 and a cooler one, of temperature 75, and
I operate the engine in a cycle, restoring the marginal distribution of
the engine at the end of the cycle. Prior to the beginning of the cycle
my engine is uncorrelated with the heat baths. Suppose my process is
such that the expectation value of heat extracted from the hot bath
is (@1). Then the expectation value of work obtained must satisfy

w) < (1-2) @ )

If the cycle is a reversible one, that is, if it can be run in the opposite
direction with the signs of the expectation values reversed, we must
have equality in (6) and (7). For a reversible cycle, the expectation
value of the work obtained is proportional to the expectation value of
heat extracted, with the factor of proportionality equal to the Carnot
efficiency of a heat engine operating between reservoirs at tempera-
tures 17 and T5.

Equation (6) can be thought of as a statistical mechanical analogue
of the second law of thermodynamics. It should be stressed that it is a
theorem of statistical mechanics, which follows from the stated condi-
tions on probability distributions, that, at time ¢y, the distributions of
the systems B; be canonical, with temperatures 7;, and uncorrelated
with A.

In thermodynamics, the fact that relation (4) holds for any re-
versible process linking two thermodynamic states a, b permits us to
define the entropy difference S[b] — S|a], provided that there is at
least one reversible process linking the two states, and this uniquely
defines the state function S, up to an additive constant. Similarly, in
statistical mechanics, the fact that (6) holds for arbitrary probability
distributions P4 entails that there is a functional S[P4], that takes

12



probability distributions over the state of A as input and yields real
numbers, with the following properties. If, at ty, A is uncorrelated
with thermal systems B;, whose probability distributions are given by
canonical distributions at temperatures 7;, and if A exchanges heat
in the interval between ¢ty and ¢; with thermal systems B; and with
nothing else, then the expectation values of these heat exchanges, (Q;),

satisfy”
(Qi) .

2

S[Pa(t1)] = S[Pa(to)] = ) (8)
7

Suppose, now that there is a reversible process connecting P4 (t1) and

P4(tp). In this context this means that there is a process taking

P4(tg) to P4(t1) and another process starting at t; and ending at a

time ty such that the marginal of A at ty is restored at to (that is,

Pa(t2) = Pa(to)), such that

Z<%">—0, (9)

i

with the sum taken over the entire process. For a reversible process,
we have equality.

(Qq)
T

S[Pa(t1)] = S[Pato)] = Y

i

(10)

Thus, if two probability distributions can be linked by a reversible
process this uniquely determines the functional .S, up to an additive
constant. In the classical case, this is the Gibbs entropy,

S6lP) = [ pa)log pl) d, (11)

where p(z) is a density for P with respect to Liouville measure. In
the quantum case, S is the von Neumann entropy.

Sun|[p] = Tr[plog p. (12)

Thus, we find that the Gibbs entropy, in the classical context, and von
Neumann entropy, in the quantum context, play the role played by

"This is valid for both classical and quantum mechanics. The classical version is found
in Gibbs (1902, 160-164), and the quantum version, in Tolman (1938, §§128-130).

13



thermodynamic entropy in the second law, if we consider expectation
values of heat exchanges rather than actual values.?

The proof that (8) obtains relies only on fairly basic facts about
evolution of states, classical or quantum, facts that are indifferent to
the temporal order of tg and ¢;. And, indeed, the result itself is in-
different. Yet equation (8) itself is not symmetric under interchange
of tg and t;. The two times enter into the statement of the theorem
asymmetrically because it is assumed that the system A is uncorre-
lated with the thermal systems B; at time tg, and it is not assumed
that this holds at time ¢;. In application, we expect that this is rea-
sonable if ¢y is the earlier time, prior to interactions between A and
the thermal systems B;. That is, it is assumed that we have avail-
able to us thermal systems, and that the process by which these come
about—relaxation to equilibrium—effectively effaces any correlations
there might be between the thermal system and other systems. Thus,
to understand the source of temporal asymmetry in thermodynamics,
we should look to the process of relaxation to equilibrium.

4 The Ubiquity of Forgetfulness

Much of the discussion surrounding the relation of microscopic dynam-
ics to the behaviour of macroscopic objects has focussed on the issue of
time reversal invariance: how can we reconcile temporally irreversible
behaviour at the macroscopic level with time-reversal invariance of the
fundamental dynamics?

Time reversal invariance isn’t really the key issue, however. A
symptom of this is that, although there is literature on the proper char-
acterization of time reversal invariance in classical electromagnetism
and in quantum mechanics (Albert, 2000; Earman, 2002; Malament,
2004; Callender, 2000), none of it (as the authors would be the first
to acknowledge) gets us any closer to understanding the phenomenon
of equilibration. Nor does the actual breakdown of time-reversal in-
variance of the weak nuclear force. Though not time-reversal invari-
ant, the weak force is thought to be invariant under a combination
of charge conjugation, parity inversion, and time inversion (C'PT).
A universal tendency to equilibrium, encompassing both matter and

81t should be noted that we are not assuming that the actual values of heat exchanges
are even close to the expectation values. The theorem is valid without restriction, and
holds even in cases in which the variances of the random variables @); are appreciable.
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antimatter, breaks C'PT symmetry every bit as much as it breaks T
symmetry. Similarly, even if claims by Albert and Callender of failure
of T-invariance of classical electromagnetism and quantum mechanics
were correct, this would get us no closer to understanding equilibra-
tion. What is striking about equilibration is that the state of equilib-
rium approached by a system is independent of the precise details of
its initial state. This is a temporal asymmetry of a sort different from
a mere violation time-reversal invariance. It is a failure of invertibility:
distinct initial states lead to the same final state.

This is a phenomenon that is familiar to us in the macroscopic
world. The relentless processes of decay lead inexorably to erasure
of evidence about the past. Put two objects at different tempera-
tures into thermal contact with each other, allow them to equilibrate,
coming to the same temperature, and you will be unable to tell, by
experiments performed on the systems, which had been the hotter,
and which, the cooler. Everything we take to be a record of the past
is subject to the same decay; a book will eventually crumble into dust,
and the words that its pages once held will be lost.

Moreover, not just any failure of invertibility suffices to permit this
sort of forgetting. Suppose that we have some measure p on the state
space of the system that is conserved under the system’s temporal
evolution.? Then, whether or not the dynamics are invertible, any
two disjoint sets will be mapped, by the dynamics, into sets whose
overlap has zero measure. In this sense they remain as distinguishable
as they were before.

9Some terminology. Suppose we have a dynamics on the state space of a system; that
is, for each t in some interval of the real line, a mapping T; of the system’s state space
into itself, that takes a state at a time ¢y to the state at time t¢ + ¢. Given the dynamics,
a measure o on the state of the system induces a measure u; on its state at ty + ¢: the
measure f; assigns to any measurable set of states A the measure, on g, of the set of
states at time to that get mapped into A.

11 (A) = po(T; ' (A)).

We will say that the measure pg is invariant under the evolution T} iff uy = pyo.

Given a set of states A, we can also track the changes (if any) of the measure of its
image T;(A) under evolution. We will say that the measure pg is conserved under the
evolution T} iff 1o(T3(A)) = po(A) for all measurable A.

Any conserved measure is an invariant measure. If T; is an invertible map, then any
invariant measure is also a conserved measure. If T; is not invertible, then an invariant
measure might not be a conserved measure, though it will be non-decreasing under the
action of T;.
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Equilibration requires the temporal evolution of the system to erase
distinctions between initial states. If there is a measure on the state
space of the system that is conserved under temporal evolution, then
we have preservation of distinguishability with respect to that mea-
sure. In the quantum context, what matters is that the evolution of
an isolated system cannot decrease the absolute value of the inner
product of two state vectors.

The salient tension between equilibration and the underlying mi-
crodynamics, in the classical context, is not the tension between time-
reversal symmetry of the microdynamics and temporal asymmetry at
the macroscopic level, but, rather, the tension between the existence
of a conserved measure at the microphysical level and obliteration of
traces of the past at the macrophysical level. In the quantum context,
the salient tension is between forgetfulness at the macroscopic level an
the existence of a conserved inner product on the Hilbert space of the
system. Time-reversal invariance of the microphysics is a red herring.

5 The open systems approach

There are two approaches, at first glance strikingly different, towards
the study of equilibration. On one approach, one considers an isolated
system, but focusses attention on a limited set of dynamical variables
of the system, typically thought of as its macrovariables. The other
considers a nonisolated system, in interaction with its environment,
and tracks the evolution of the state of the system.

The two approaches are not as different from each other as might
seem at first glance. In each case, we are investigating the evolution
of a limited set of degrees of freedom of a larger system and disre-
garding the rest. The larger system is itself treated as isolated, and
hence undergoing Hamiltonian evolution. There is no forgetting in
the large system; if its full set of degrees of freedom is considered,
distinguishability of sets of states is preserved under evolution.

Obviously, this will not hold for subsystems. Though the present
state of the whole may determine the past state of a subsystem, it is
clear that the present state of a subsystem, disregarding the state of
the environment with which it interacts, will not suffice to determine
either the subsystem’s past or future. The evolution of the subsystem
can be a process of forgetting, because details relevant to its past
state may have been exported to the environment. Similarly, details
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relevant to the past macrostate of an isolated system may become
embedded in inaccessible details of its microstate.

Therefore, if we consider a nonisolated system, there is no mystery
of reconciling nonconservation of distinguishability of its states with
Hamiltonian dynamics of the whole of which it is a part; one would
expect this to be ubiquitous. What becomes puzzling instead is the
temporal unidirectionality of this phenomenon.

If the description we are working with is a partial description of a
total system, it is no surprise that, even though the dynamics together
with a complete specification of the present state uniquely determine
the past, a partial description contains less than complete memory of
the past, and the present is compatible with more than one past. By
the same token, it would not be surprising if a partial description of
the present radically and drastically underdetermined the future evo-
lution. However, in a whole host of cases, we do expect to be able
to evolve the present macrostate forward, and make reliable predic-
tions about future macrostates. In some cases, researchers are able
to provide reliable, autonomous equations for the forward evolution
of the macrostate. What is puzzling is not how one obtains macrody-
namics that does not preserve distinguishability from microdynamics
that does. The puzzle is why the phenomenon is not as ubiquitous in
the forward direction: why does the present macrostate of a system
not underdetermine its future as radically as it does its past? To the
extent that equilibration is occurring, the evolution merges distinct
past states into a single present. Why, then, does this present not bi-
furcate into distinct possible futures? That is, the real puzzle is: how
is prediction ever possible, given that we only have access a partial
description of the state of a system?

6 Obtaining autonomous dynamics for
subsystems

To get a sense of circumstances under which one can obtain au-
tonomous dynamics for a system in interaction with its environment,
rendering prediction of the system’s state possible, it is worthwhile to
consider a sufficient condition of particular interest.

Consider a system, A, that is in interaction with another system,
B. Suppose that, for the duration of the time interval considered,
the joint system AB can be treated as isolated, at least as far as the
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evolution of A is concerned.l® Given the state pap of the combined
system at some time %y, we can consider the reduced state p4, which
is the restriction of p4 to the dynamical variables of A, the reduced
state pp, and also the product state p4 ® pp, a state in which there
are no correlations between the two systems. We can consider two
mathematical operations:

1. Apply the system’s dynamics to evolve p4p(ty) forward to pap(t),
and then obtain from that p(t).

2. Apply the system’s dynamics to the product state pa(to)@pp(to)
to obtain a state that we will call pap(t), and then obtain from
that ga(t).

Now it might so happen that, for some range of values of ¢, pa(t)
is equal to pa(t), or, at least, sufficiently close that the difference is
negligible. In such a case, we will say that the correlations between A
and B are irrelevant for A’s evolution. Suppose that this holds for all
t in some interval [tg, t1]. Suppose also that the influence of A on its
environment is such that pp(t) is only negligibly changed during the
interval. In such circumstances, we obtain an evolution of p4 that can
be applied to any initial state of A, that yields pa(t) as a function of
pa(to) (holding pp(to) fixed).

Under what circumstances will this obtain? If B is a large, noisy
environment, that can be regarded as a heat bath, it might be the
case that, though correlations build up between A and B, the traces of
interactions with B become so distributed throughout the system that
they play no significant role in future interactions. You may imagine
B to be a gas or liquid composed of a large number of molecules
undergoing chaotic motion. Molecules that interact with A wander off
into the environment and interact with a great many other molecules
before they interact with A again, and correlations between A and
its environment become so diffused that they are irrelevant to the
influence of B on A.

It is this effective lack of correlations that leads to equilibration.
Suppose, for example, that the systems A and B are initially at dif-
ferent temperatures. Nothing in the dynamics of the system forbids
a steady transfer of energy from the colder to the hotter. But, on
average, molecules of the hotter system will have greater energy than

10This is a much weaker condition than the condition that the joint system be approxi-
mately isolated. It might have considerable interactions with its environment, as long as
those interactions don’t affect the evolution of A in an appreciable way.
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those of the cooler system, so, if interactions between molecules of
the system are anything like a random sample of molecules in the two
systems, then, with high probability, on any appreciable time scale
the net effect will be a transfer of energy from the hotter to the colder
system.

The presentation adopted here differs somewhat from the usual
presentation in textbooks. In the usual presentations one assumes that
the state of the combined system at some time tq is a product state,
and evolves the joint system forward.!! Under certain conditions, one
will obtain autonomous evolution for p4. This raises the question of
what justification one might have for taking systems A and B to be
uncorrelated at time .

It might seem that there’s a simple answer to this. In the sorts of
situations routinely studied in the laboratory, one subjects the systems
A and B to independent preparations, and, at some time tg, places
them into thermal contact with each other, examining the subsequent
evolution of A. One could invoke some sort of principle to the effect
that systems that have not yet interacted be uncorrelated.

This is too quick, however. In the situation considered, there is
considerable overlap in the causal pasts of the two systems, and plenty
of opportunity for correlations to have built up. What is really being
assumed is that the preparation procedures efface those correlations.
For example: suppose that our system A consists of a block of ice, and
is placed in a bath of warm water, both sourced from the same bot-
tle of distilled water. It is quite possible that some of the molecules
that end up in the block of ice are ones that have interacted with
molecules that end up in the heat bath. But any entanglement be-
tween such molecules will have been very thoroughly and effectively
erased by subsequent interactions. The sense that we may have, that a
product state is the default state for a pair of systems, in the absence
of a process to induce and maintain entanglement, is warranted by
the ubiquity of mechanisms of decoherence continually erasing such
entanglement. The guiding principle should be: if A and B are two
systems interacting with a large noisy environment but not directly
with each other, we should expect their state to be effectively a prod-
uct state in the absence of some process counteracting the effects of
decoherence.

The rationale for employing a product state at time tg, the time

UThis is one special case of the procedure discussed by Wallace (ming).
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at which the systems are brought into thermal contact, is, therefore,
much the same as the rationale for employing a product state at later
times. We are not committed to a full specification of the quantum
state of A and its environment being a product state, at ty or any
other time. We are only committed to the much weaker claim that
any entanglement that might exist between A and B at time ty be
irrelevant to the subsequent development of the system A. The usual
textbook treatment, which gives the impression that we are assuming
a product state at some time tp, a condition that could (if there are
nontrivial interactions between the systems) hold only for isolated
instants, is misleading, as it suggests that the moment ¢y must be
singled out as a special moment. This obscures the fact that the
rationale for employing a product state (which is not the same as
assuming that the state is a product state) at time tg is of the same
sort as the rationale for employing a product state at other times.

7 Temporal asymmetry and the open
systems approach

Consider again the example of a system that is in thermal contact with
a large, noisy environment, that may be treated as a heat bath. Sup-
pose that, at time tg, the system is not in thermal equilibrium with its
environment, and suppose that we are convinced that, for some time
to (not the initial moment at which the system and its environment
are brought into thermal contact), employment of a product state at
that time yields correct results for times after ¢y, and that calculations
based on that state yield an approach to equilibrium, with the hotter
system cooling and the colder system warming.

Could the procedure be applied in the opposite temporal direc-
tion? Could it be the case that taking an uncorrelated state at time
to and applying the dynamics in the reverse temporal direction yields
a correct, or approximately correct, description of the evolution of the
reduced state of A7 Evolving a product state backward leads to corre-
lations prior to tg, correlations that, moreover, are precisely balanced
in such a way that the interactions between two systems leads, not
merely to effective disentanglement, but to actual disentanglement at
to. Moreover, typically this procedure would yield approach to equi-
librium as one moves away from %y in both forward and backwards
directions. If A is hotter than B, such an evolution would be, prior
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to tg, one in which energy is transferred from the cooler environment
to the hotter body A. Although, on average, the molecules of B have
less energy than those of A, the ones that interact with A are system-
atically those with higher energy than average.

A natural reaction to such a scenario is that there is something
uncanny, conspiratorial about the states prior to t3. The sorts of
correlations that lead to transfer of energy from B to A are not the
sort that are explicable by appeal to events in their common history,
and the erasure of the correlations at tg not at all like the sort of
erasure of correlations that we expect decoherence to produce.

Some readers will have attempted to train themselves to dismiss
such judgments as misguided prejudices; the proper metaphysical at-
titude, it might be thought, is one of temporal democracy. Any meta-
physically respectable explanation, on this mode of thought, ought to
work equally well in both temporal directions.

Is this attitude warranted? The intuition that motivates it seems
to be that, at some deep level, there is no real difference between past
and future temporal directions, no difference that makes a metaphys-
ical difference. We should ask what grounds, if any, we might have for
believing this to be true. A conviction of this sort cannot be based
on empirical evidence, as the empirical phenomena exhibit a profuse
abundance of temporal asymmetries (and this may even be a precon-
dition for the existence of empirical phenomena at all, as it may be
a precondition for the existence of cognizing subjects). It might be
said that a conviction of this sort is mandated by the time-reversal in-
variance (or CPT-invariance) of fundamental physical laws. To reach
such a conclusion requires an additional premise, one that often goes
unstated; the conclusion only follows if we add the stipulation that
our explanation can only invoke considerations that follow from fun-
damental dynamical laws.

Such a stipulation would be unwarranted. To see this, let’s step
back a moment, and think about the nature of explanation. Consider,
for vividness, an example suggested by Maxwell’s remark that “The
274 Jaw of thermodynamics has the same degree of truth as the state-
ment that if you throw a tumblerful of water into the sea, you cannot
get the same tumblerful of water out again.”'? Imagine yourself stand-
ing by the seaside. You have a tumbler containing a half-litre of fresh
water in your hand, and you toss the water into the sea. You then

12This appears in a letter to John William Strutt, Baron Rayleigh, dated Dec. 6, 1870.
It can be found in Garber et al. (1995, 205) and Harman (1995, 583).
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hold the tumbler above the surface of the sea, and wait for a half-litre
of fresh water to leap from the sea into the tumbler.

Of course, we expect it to be a long wait; you could stand there
until the sun burns out, and you would not expect to see the temporal
reverse process of fresh water being poured into to ocean.

Why not?

Consider two possible answers to this question. One is the one
that would most readily come to mind to most people. It is, I claim,
the correct answer, one that has been too hastily dismissed in the
literature on the philosophy of statistical mechanics. The other is the
one that is, perhaps, most prevalent in the literature on the philosophy
of statistical mechanics.

For the first answer, consider what sort of process the temporal
inverse of your tossing the tumbler-full of fresh water into the sea
would be. It is one in which the seemingly random thermal motion
of molecules becomes a coordinated one, and a very large number of
water molecules (and none at all of the molecules of dissolved matter
with which they are continually interacting) coalesce in one area of the
sea, all possessing an upward velocity that takes them, all in the same
general direction, away from the surface of the water, on trajectories
that happen to land exactly in the tumbler. We are apt to find the
prospect of this concatenation of events unlikely. Asked why, a natural
response would be, “What would make them behave like that? The
presence of the tumbler can’t have that kind of effect on the water
molecules.”

This sort of thinking has temporal asymmetry deeply embedded in
it. This can be seen vividly by considering again the process of hurling
the water into the sea. Consider a moment (or a brief time interval)
at which the water is in the air, having left the tumbler but not yet
hit the sea. In this situation there is coordinated motion of the bits
of water; the velocities of the several parts of the blob of water are
such that, were all of them reversed, the water would return into the
place where the tumbler was when the water left it. If one asked for
an explanation of this remarkable coordination between the positions
and instantaneous velocities of the bits of water, and their relation
to the former position of the tumbler, an adequate explanation of the
phenomenon would be: a velocity-reversal of the water would put it
on a trajectory that leads back to the former location of the tumbler
because that is where it came from.

This, I claim, is a perfectly adequate explanation, and ought to be
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counted as such on any account of explanation.'® The same cannot be
said of its temporal inverse. If asked why a blob of fresh water that
has just emerged from the sea is on a trajectory that will take it into
an awaiting tumbler, an answer of “because that’s where it is going”
would not be counted as an adequate explanation.

Underlying these judgments is a concept of explanation on which
an adequate explanation can be provided by citing a cause in the
recent past that, in conjunction with the laws of physics, accounts
for the coordination in question. The concept of cause invoked is
one on which the cause-effect relation is temporally asymmetric: a
cause must be in the past of its effect. That is, we are invoking a
temporally asymmetric notion of what it is to explain something. A
causal explanation may invoke dynamical laws that are themselves
temporally symmetric; the temporal asymmetry of the explanation
lies in the temporal asymmetry of the notion of cause being employed.

Considerations of this sort are not new, of course, and an account
of temporal asymmetry in physics invoking considerations of this sort
has been defended by Penrose and Percival (1962) and Penrose (2001).
The underlying idea is that there be no correlations between systems
not attributable to common causes in their past. Acceptance of this
basic idea does not necessitate acceptance of Reichenbach’s formaliza-
tion of it, on which the common cause screens off correlations.'® This
sort of reasoning must be applied with due caution and some finesse.
It becomes empty if it can only be applied to events with no common
past. The fact that there are systems that are effectively independent
relies on a process by which events in their common past are rendered
irrelevant to their future state.

The other sort of explanation, favoured by neo-Boltzmannians such
as Lebowitz (1993, 1999a,b), Goldstein (2001), Price (1996, 2002), and
Albert (2000), eschews a temporal asymmetric postulate about proba-
bilities. One chooses a time %y, and imposes a probability distribution
over the state of the system at time ¢ that is the restriction of Li-
ouville measure to its macrostate at that time. Little, if anything,

B0ne could, of course, ask further questions, such as how the water came to be in the
tumbler, or why there are tumblers containing fresh water, but these would be requests

for explanation of other matters. The original why-question has been answered.

14This remark is there because, in Bell-type experiments, it does seem to make sense
that the entanglement exhibited by distant particles can be attributed to the circum-
stances of the generation of the particles pairs at their common source, though there is no

Reichenbachian screening-off common cause.
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is said about the rationale for this choice of probability distribution,
other than that it seems to work, as long as one considers its implica-
tions only for events to the future of tg.'

There is a view of probability, often wrongly attributed to Laplace,
and often associated with the Principle of Indifference, that probability
can be reduced to mere counting of possibilities. The probability of
an event A is the number of ways that A can occur, divided by the
total number of ways things can be. This sort of thinking has been
roundly critiqued in the literature on the philosophy of probability,
and has (rightly, in my view) been widely regarded as untenable. Yet
it seems to linger in the way some advocates of the neo-Boltzmannian
approach talk.

The fundamental problem with a mere-possibility-counting concep-
tion of probabilities is that, as Laplace himself stressed, it requires,
in order to get off the ground, a judgment about which possibilities
are to be regarded as equally probable, and any such judgment will
require grounds for favouring that choice over others. In the case of
a continuum of possibilities, the Principle of Indifference is thought
to enjoin us to adopt a probability distribution on which the parame-
ters we are using to characterize the state of the system are uniformly
distributed. This requires a choice of parametrization. Liouville mea-
sure, which plays a central role in equilibrium statistical mechanics, is
uniform in canonical phase-space coordinates, but not in others.

If a probabilistic postulate of the sort invoked by neo-Boltzmannians,
or any other time-symmetric postulate, is to be applied out of equilib-
rium, then it must be applied at some special time g, which is either
the beginning of all things (if there is such a time), or else a turning
point, with approach toward equilibrium as one moves away from this
time, in both temporal directions. One could, for example, apply it
to an isolated system that has equilibrated but is at the peak of a

15To be sure, Liouville measure, applied to the whole of an isolated system’s phase space,
is distinguished from other measures in various ways. For one thing, it is a conserved (hence
invariant) measure, no matter what the system’s Hamiltonian is. Invariance is sometimes
mentioned by neo-Boltzmannians (see Lebowitz 1999a, 520; 1999b, S348; Goldstein 2001,
53) as a reason for privileging Liouville measure. This property was invoked by Gibbs as
a necessary condition for a measure to represent equilibrium. It cannot be invoked as a
rationale for preference out of equilibrium. For a system that is out of equilibrium and
undergoing a process of relaxation towards equilibrium, the probability to be attached
to a given set of microstates is not unchanging; presumably, one wants to say, of a such
system, that it is more likely to exhibit the macroscopic indications of equilibrium at later
times in the process than at earlier ones.
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fluctuation from the equilibrium mean values of its macrovariables.
This is a marked difference from the approach considered here, which
involves time-asymmetric considerations that can be applied at any
time. Moreover, the same work needs to be done on either approach,
that of explaining why the sorts of correlations that have built up
between systems as a result of events in their common path tend to
become irrelevant for prediction of the forward evolution of the sys-
tem, though remain relevant to retrodiction of the systems’ past.

Obviously, a full-scale critique of this sort of approach is beyond the
scope of this chapter. I will say only that, insofar as it takes motivation
from the idea that probability of an event can be thought of a matter of
mere counting, it should be viewed with suspicion. In addition, making
reference to a special time in the remote past to explain the ubiquitous
and mundane phenomenon of equilibration strikes me as an act of
desperation. For much of the period of the development of statistical
mechanics, a steady-state cosmology was a live option among serious
cosmologists. An advantage of the approach advocated here is that
it does not make explanation of events in the laboratory or in our
homes, such as the cooling of a cup of coffee, sensitive to large-scale
cosmological questions, and can be applied in exactly the same way
whether or not there is a cosmologically privileged instant tg. It also
fits better with nonequilibrium statistical mechanics as practiced; one
will search in vain textbooks of nonequilibrium statistical mechanics
for the sorts of cosmological considerations so frequently found in the
philosophical literature on statistical mechanics.

8 Conclusion

If one construes thermodynamics as it was construed at the time that
Gibbs was writing, as the science of work and heat, then Gibbs’ re-
mark, quoted at the beginning of this chapter, does not seem so naive.
We do have satisfactory statistical mechanical analogues of the first
and second laws of thermodynamics. Moreover, these analogues are
not, in and of themselves, asymmetric in time. Their formulation pre-
supposes, however, the availability of thermal systems, that is, sys-
tems that have relaxed to thermal equilibrium. Understanding cir-
cumstances in which this does and does not occur is an active and
ongoing research project in physics, and it is one that philosophers
would do well to pay attention to. Much of this work involves inves-
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tigation of conditions under which one obtains autonomous dynamics
either for the state of a subsystem of a larger system, or for a limited
set of degrees of freedom of an isolated system. What is needed is an
explanation of why the sorts of states that we can reliably produce in
the laboratory or can reasonably expect to find in nature are states
that afford the autonomous dynamics we seek.

The phenomena to be explained are temporally asymmetric. I have
suggested that we may nevertheless obtain an explanation invoking
only time-symmetric dynamical laws, because of a temporal asymme-
try in the very notion of explanation. This is a temporal asymmetry
that most philosophers have shied away from, perhaps taking it as
axiomatic that we have not reached a satisfactory explanation until
temporal asymmetries have not merely been explained, but have been
explained away, having been shown to be either merely apparent, or
else merely local facts about our limited region of the universe. As a
result, proposals such of that of Percival and Penrose have received
short shrift in the philosophical literature. At the very least I hope,
in this chapter, to have persuaded readers that they deserve serious
consideration.
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