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1 Introduction:

Intertheory Relations in Physics

The study of intertheoretic relationships is a prime topic for philosophers of
science. Typically such studies involve questions about whether one theory
reduces to another, and if so, what is the best way to characterize this re-
lationship. Most contemporary workers in this area pay homage to Ernest
Nagel’s [15, Chapter 11] seminal discussion of theory reduction. In the crud-
est form, Nagel and his followers hold that a typically older and coarser
theory Tc reduces to a typically newer and more refined theory Tf according
to the following scheme:

(N) Tc reduces to Tf just in case the laws of Tc are derivable from
those of Tf .

As an example, we can think of Tf as special relativity and Tc as the New-
tonian theory of space and time. Thus the Newtonian theory reduces to the
special relativistic theory, because some kind of derivational relationship ob-
tains between the laws of the two theories. Much work over the years has
been devoted to refining and elaborating this schema. (Nagel, himself, said
nothing remotely so crude.) Nevertheless, for our purposes here, I think that
this is sufficient to begin with.1

In contrast to this “philosopher’s conception” of reduction, is what I call a
“physicist’s conception.” This view was first noted and discussed by Thomas
Nickles [17] in paper entitled “Two Concepts of Intertheoretic Reduction.”
On this view the finer theory reduces to the coarser theory in some appro-
priate limit.

lim
ε→0

Tf = Tc. (1)

Thus, the special theory of relativity reduces to the Newtonian theory of
space and time in the limit in which the relative velocities of the reference
frames are small compared with the speed of light.

Much of my recent work has been focused on the schema (1).2 In particu-
lar, I have argued that one cannot have interesting philosopher’s reductions,
without a physicist’s reduction obtaining. Furthermore, and this is the cru-
cial point for the current discussion, for most theory pairs Tf and Tc, the

1On the other hand, we will shortly have to become a bit more sophisticated in our
understanding of this “philosopher’s conception” of reduction.

2In particular, see [1].
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physicist’s schema actually fails. Thus, most cases of purported reductions
between theories will actually fail to be reductions at all. The reason for
this is really quite simple. The equality in (1) can obtain only if the limit is
regular. If the solutions of the relevant formulas or equations of the theory
Tf are such that for small values of ε they smoothly approach the solutions
of the corresponding formulas in Tc, then the limit is regular and (1) will be
satisfied. For such cases we can say that the “limiting behavior” as ε → 0
equals the “behavior in the limit” where ε = 0. On the other hand, if the be-
havior in the limit is of a fundamentally different character than the nearby
solutions one obtains as ε→ 0, then the limit is singular and the schema will
fail.

Examples where the physicist’s schema fails include the short wavelength
(λ → 0) limit of the wave theory of light and the semiclassical (h̄ → 0)
limit of quantum mechanics. These limits both fail to approach smoothly
the solutions to the coarser theories—ray optics and classical mechanics,
respectively.

Another limiting relationship that fails to be regular is the topic of this
paper—the thermodynamic limit of statistical mechanics at critical points.
The situation here is very subtle indeed and the study of the limiting failures
bring much of interest physically, mathematically, and philosophically.

Here, I want to investigate further the consequences of the singular nature
of schema (1) for understanding the relationships between statistical mechan-
ics and thermodynamics. One point I would like to make is that a failure
to realize the import of this singular relationship has recently led to a mis-
taken view about the role of the thermodynamic limit and the idealizations
according to which statistical mechanics must treat systems as containing an
infinite number of particles. In particular, I intend to take issue with Craig
Callender’s claim in “Taking Thermodynamics Too Seriously” [3] that such
an idealization leads to fundamental mistakes. On the contrary, once we
understand that reductive relations between thermodynamics and statistical
mechanics completely fail at critical points and phase transitions, we will see
that the infinite idealizations are completely justified.

The conclusion generalizes. I will consider, by way of further supporting
the legitimacy of limiting infinite idealizations, a second example. This is the
everyday phenomenon in which fluid such as water from a dripping faucet
undergoes a singular evolution as it breaks apart into drops. Despite obvious
differences, the two cases are, in fact, quite similar.
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2 The “Received” View

In order for thermodynamics to reduce to statistical mechanics in the philoso-
pher’s sense of schema (N), one must be able to derive the thermodynamic
behavior of a system as captured by the laws of that theory from the sta-
tistical mechanical laws that take seriously the idea that such a (thermal)
system is composed of a large number of particles. Quite famously, primarily
because of Nagel’s presentation, the reduction of thermodynamics to statis-
tical mechanics is taken to be the paradigm instance of theory reduction in
the physical sciences. However, as recent work has shown, this is a mistake.3

Many problems arise including how one can identify the nonstatistical con-
cepts appearing in thermodynamics with the statistical/ensemble quantities
that play such a crucial role in statistical mechanics. Such identifications
or bridge laws are necessary for the derivation demanded by schema (N),
nevertheless, their validity, to say the least, is not at all straightforward.

More serious is the fact that at critical points, it seems that there can be
no schema (N)-type derivation whatsoever, even if we were able to solve the
various problems about bridge laws. This is because the physicist’s schema,
(1) is singular at those locations in phase. I will say more about this below.
For now note that one way in which the singular nature of this limit manifests
itself is in the failure of so-called Mean Field Theory to accurately represent
what goes on at criticality. Let me now introduce these terms and discuss
an important argument leading to what I take to be the received view of the
relationship between thermodynamics and statistical mechanics at critical
points.

Consider a magnet modeled as a system of spins on a lattice. The mag-
netization of the system (in the absence of an external magnetic field) is
produced by the spontaneous alignment of the spins. Such states, again in
the absence of an external field, are degenerate—for every state in which
the average magnetization m of the spins points some direction σ there is
a thermodynamically equivalent state in which it points in the opposite di-
rection. An important quantity for understanding the critical behavior of a
system is the so-called “order parameter” which for the magnet is defined to
be average magnetization m = m(h, T ) where h is the magnetic field and T
is the temperature. As we see in figure 1, below the critical temperature Tc

there are two values of the magnetization for every temperature T , whereas

3See Sklar’s Physics and Chance [21] for a discussion.
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above Tc the magnetization is zero. Therefore, at zero field (h = 0) there is
a first order phase transition for T < Tc and as T → Tc from below that dis-
continuity vanishes indicating the existence of a second order (or continuous)
phase transition at the critical point.

It is well-known that so-called Mean Field Theory gives a qualitatively
correct characterization of phase transitions in magnetic systems. This the-
ory employs the assumption that each spin acts as if it is independent of
the others feeling only the average (mean field) produced by all of the other
spins. In making this assumption, Mean Field Theory explicitly ignores fluc-
tuations in the ordering of the spins on the lattice. This has the unfortunate
consequence that Mean Field Theory completely fails to reproduce the ex-
perimentally observed critical exponent β that appears in the scaling law for
the magnetization:

m ∝ |t|β, (2)

where

t =
T − Tc

Tc

is the reduced temperature describing the deviation of the system from criti-
cality in dimensionless units. The Mean Field prediction for β is 1/2, whereas
a value much closer to .325 is actually observed.

Mean Field Theory, because it ignores fluctuations, also ignores the fact
that near criticality the correlation length—roughly, the distance over which
significant spin correlations occur—becomes extremely large and actually
diverges at the critical point. In fact, though I won’t rehearse the argument
here, it is possible to use Mean Field Theory itself to estimate the importance
of such fluctuations. As a result, the theory, in effect, predicts its own failure.
The argument is due to V. L. Ginzburg [10]. See [13, pp. 242–243] and [11,
pp. 169–172] for discussions.

In statistical mechanics every thermodynamic function can be determined
from the partition function Z which is related to the free energy F through
the relation:

Z(β) = e−β(F (β,λ),

where λ is a some parameter appearing in the system’s Hamiltonian and β
is the inverse temperature—β = 1/kT .4 In particular, the magnetization m

4It is an unfortunate convention that β is also used to represent the exponent in the
scaling law for the order parameter m. Context should make clear to what it refers.
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Figure 1: Magnetization vs. Temperature at zero Field
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is determined as follows:

m =
∂

∂h
ln Z.

For our system of N spins on a lattice, the partition function is a sum of 2N
terms representing the different possible configurations of the spins. Each
such term is a positive exponential and there is a mathematical result stating
that a finite sum of positive exponentials must be an analytic function. It
is, therefore, impossible for the magnetization to be a nonanalytic function.
Phase transitions and, in particular, the continuous phase transition at the
critical point, are represented in thermodynamics as nonanalyticities in the
relevant thermodynamic potentials. This leads immediately to the conclusion
that for a system with a finite number of particles or degrees of freedom, there
can be no phase transitions. As a result, no derivation of the critical behavior
described by thermodynamics from statistical mechanical considerations is
possible. The philosopher’s reduction fails.

On the other hand, Kadanoff [13, p. 238] holds that this argument—
suggesting as it does that nonanalyticities are impossible—is “spurious”. He
believes that the theorem is inapplicable since it is possible for nonanalytic
behavior to appear in systems of infinite size—that is, with infinite N . He
says that from this argument we must conclude that

The existence of a phase transition requires an infinite system.
No phase transitions occur in systems with a finite number of
degrees of freedom. [13, p. 238]

Mean Field Theory for infinite N provides a qualitative description of phase
transitions and critical phenomena in the thermodynamic limit. Quantita-
tively, it is accurate away from critical points but fails at criticality in that
(among other things) it predicts the incorrect value of 1/2 for the exponent
β. The idealization of infinite N—the thermodynamic limit—is necessary for
the qualitative characterization of phase transitions and critical phenomena
as Kadanoff’s argument demonstrates, but it is insufficient for an accurate
quantitative description of what goes on at criticality.

Now, I think that it is fair to say that the view of phase transitions and
critical phenomena as requiring the limit of infinite N is the dominant view
among physicists.5 However, a little reflection suggests that this dominant or
“received” view is not quite so straightforward. When pressed with the fact

5There are dissenters, however. See, e.g., [12].
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that actual physical systems are composed of a finite number of particles,
most people respond by saying something along the following lines: “Well,
the thermodynamic limit is really an idealization, what we mean is that
actual systems approximate in some way this idealized limiting case.”6 In
other words, they hold that from a purely mathematical perspective, we do
need the thermodynamic limit. But in the real world of physics, our appeal
to such a limiting idealization is really a pragmatic move that will help us
deal with very messy detailed calculations.

Such a response is clearly at odds with Kadanoff’s conclusion that infinite
systems are necessary for phase transitions. I think that this “elaborated
received view”, which endorses Kadanoff’s conclusion while simultaneously
appealing to the pragmatic need to approximate, is an unstable position. On
the one hand, perhaps we should take seriously the fact that real systems are
finite and search for an account of phase transitions and critical phenomena
in terms of the statistical mechanical partition function for systems with
finite N . On the other hand, if we do this, we run afoul of the theorem
mentioned above to the effect that phase transitions for finite N systems are
impossible.

In the next section I will consider an argument to the effect that we ought
to look for an account of phase transitions that takes seriously the fact of
finite N and dismisses the relevance of the theorem.

3 Taking Thermodynamics Too Seriously?

Craig Callender [3], I think, can be understood as reasoning to this effect.
He argues that when we assert that the thermodynamic limit is essential
for characterizing phase transitions and critical phenomena, we are “taking
thermodynamics too seriously”—that is, we are taking the thermodynamic
representation of phase transitions and critical phenomena as nonanalytic
behaviors in the various thermodynamic potentials too literally.

He recognizes the mathematical theorem we have been discussing:

The problem is that phase transitions—as understood by sta-
tistical mechanics—can only occur in infinite systems, yet the
phenomena that we are trying to explain clearly occur in finite
systems. [3, p. 549]

6I am not saying that this is Kadanoff’s view of the matter.
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Further, after allowing that from a pragmatic point of view the statisti-
cal mechanical idealization of real systems as having an infinite number of
molecules is a very good thing—such an idealization enables us to ignore
boundary effects, it enables us to minimize (in fact eliminate fluctuations),
etc.—Callender still insists that there is something philosophically mistaken
about such an idealization. He says,

[o]n the other hand, the thermodynamic limit may not be a
good approximation in a more foundational, philosophical sense.
. . . [E]ven if the thermodynamic limit can be given a full philo-
sophical justification, that justification cannot turn an infinity
into a finite quantity. We can grant that it is often fine to sub-
stitute finite N with infinite N for purposes of practical physics.
But if the system is really finite N , what we have until we say
more is a mathematical proof that it cannot undergo a phase
transition. So we ought to grant that, practically speaking, it is
often a good approximation, but point out that this just does not
touch this particular problem. . . .

[T]he fact that thermodynamics treats phase transitions as sin-
gularities does not imply that statistical mechanics must too.
To assume that would be to take thermodynamics too seriously.
. . . Thermodynamics represents (for pretty good reasons) phase
transitions as singularities, and statistical mechanics (for pretty
good pragmatic reasons) takes this to mean a non-analyticity in
the partition function. But from a foundational perspective we
cannot endorse this knee-jerk identification of mathematical def-
initions across levels. [3, p. 550]

We take thermodynamics too seriously when (from the point of view of
statistical mechanics) we take seriously the thermodynamic conception of
a phase transition as mathematically represented by a discontinuity or sin-
gularity in a thermodynamic potential such as the free energy F . Thus,
this must mean that such a mathematical representation is somehow to be
faulted. In other words, the equations of thermodynamics must be physi-
cally inadequate. Hence, the inadequacy of the thermodynamic equations
is ultimately responsible for our (apparently) mistaken conviction that the
thermodynamic limit is required to “derive” phase transitions from funda-
mental statistical mechanics. To the contrary, Callender insists that analytic
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partition functions must govern the phase transitions we see in real systems
and must “in some sense approximate a singularity.” [3, p. 555]

I will argue below that this view is inadequate. Thus, I want to champion
the manifestly outlandish proposal that despite the fact that real systems
are finite, our understanding of them and their behavior requires, in a very
strong sense, the idealization of infinite systems and the thermodynamic
limit. Before getting to this, let me try to provide another perspective on
why one might think that appeal to the thermodynamic limit and infinite
N is a mistake—why, that is, that we might be taking thermodynamics too
seriously.

3.1 A More Sophisticated Attempt at Reduction

As I mentioned earlier, schema (N)—the philosopher’s view of reduction—is
too crude as it stands.7 Often in attempting to reduce a theory Tc to Tf in
the philosopher’s sense we find that we need to amend or correct the reduced
theory Tc.

8 Most physicists, now, would accept the idea that our concept
of temperature and our conception of other “exact” terms that appear in
classical thermodynamics such as “entropy”, need to be modified in light of
the alleged reduction to statistical mechanics. Textbooks, in fact, typically
speak of the theory of “statistical thermodynamics” allowing explicitly for
fluctuations that one observes in thermodynamic systems. The very process
of “reduction” often leads to a corrected version of the reduced theory.

Schaffner [18, p. 618], for instance, has developed a relatively sophisti-
cated version of the Nagelian reduction strategy that explicitly takes this fact
into consideration. Let us call this schema (NN), for “neoNagelian”.

(NN) Tc reduces to Tf if and only if there is a corrected version
of Tc (call it T ∗

c ) such that

1. The primitive terms of T ∗
c are associated via reduction func-

tions (or bridge laws) with various terms of Tf .

2. T ∗
c is derivable from Tf when it is supplemented with the

reduction functions specified in 1.

3. T ∗
c corrects Tc in that it makes more accurate predictions

than does Tc.

7Again, Nagel, himself, would take (N) to be a caricature of the position.
8See [20] and [18].
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4. Tc is explained by Tf in that Tc and T ∗
c are strongly analogous

to one another, and Tf indicates why Tc works as well as it
does in its domain of validity.

Here the idea is that we can have a reduction of thermodynamics to sta-
tistical mechanics if there is a corrected version of the orthodox thermo-
dynamic theory—statistical thermodynamics—that plays the role of T ∗

c in
schema (NN). The real work to be done is in spelling out what “strongly
analogous” means in clause 4. One way of attempting to elucidate this no-
tion is by appeal to the existence of a limiting relationship between statis-
tical thermodynamics and the orthodox theory along the lines suggested by
schema (1).

On the assumption that the relationship between thermodynamics and
statistical mechanics fits this sophisticated neoNagelian reduction program,
we can see why we would be taking thermodynamics too seriously when
we need to appeal to the thermodynamic limit of statistical mechanics to
explain/reduce the thermodynamic theory. In other words, perhaps we can
account for the “apparent” necessity of the infinite N idealization by noting
that we have failed to realize that orthodox thermodynamics too literally
treats phase transitions as real discontinuities. Once we see that the theory
is really corrected in the process of reduction, this literal reading will be seen
to be too strong. Callender actually suggests something like this in a different
context: He holds that the statistical mechanical identification of a stationary
probability distribution with thermal equilibrium results from a failure to
realize that (orthodox) thermodynamics too literally treats equilibrium states
as completely constant and fluctuation free.9 [3, pp. 545–547] Statistical
thermodynamics (T ∗

c ) clearly does not make this mistake.
So on the current proposal, the idealization of infinite N is misguided, at

least in part because the reduced theory—orthodox thermodynamics—needs
to be corrected and not read at face value. Had theorists a more sophisti-
cated, less naive, view of reduction, they would not have taken thermody-
namics so seriously and they would not have made this mistake. Despite this
argument, I still believe that the conclusion that the infinite idealization is
unwarranted, is mistaken. In the next section I begin to argue for this claim.

9Callender thinks that the identification of such Gibbsian ensembles with thermody-
namical equilibrium states is a mistake. I take it that his reasons for this can be seen as
resting upon an endorsement of an understanding of reduction as involving the correction
of the reduced (thermodynamic) theory according to something like schema (NN).

10



4 Taking Thermodynamics Seriously

Let me begin by making a distinction between two types of discontinuities,
broadly construed—“physical discontinuities” and “mathematical disconti-
nuities.” As an instance of a physical discontinuity we can take the phe-
nomenon with which we are concerned, namely, the observed qualitative dis-
tinctions between the distinct phases of a magnet (above and below the
critical point) or the distinctions between the phases of a “fluid”—gaseous,
liquid, and solid. Another example of a physical discontinuity, to be dis-
cussed in detail in the next section, is the obvious discontinuity that obtains
when a droplet breaks off from a stream of water coming out of a faucet.

These physical discontinuities are represented mathematically as blow-
ups or singularities in the equations that purportedly describe the behaviors
of the various systems. In the former these are mathematical singularities
(kinks in the derivatives of the thermodynamic potentials) in the (static or
quasistatic) thermodynamic equations. In the latter case, the phenomenon
is dynamical and the mathematical discontinuities are singularities in the
Navier-Stokes equations of fluid dynamics—infinities that develop in finite
time in the evolution of the fluid as it drips from a faucet.

The real question is whether the singularities in the mathematical repre-
sentations (the equations) have genuine physical significance. Callender, as
I understand him, answers this question in the negative. He agrees with Liu
[14] that “[a]ctual systems are finite and phase transitions in them are never
real singularities.” [3, p. 550, note] I take it, given my distinction above, that
this means (i) there are no physical discontinuities and (ii) the mathematical
discontinuities are, therefore, nonrepresentative.

Now, perhaps, one might argue that the qualitative distinctions between
phases of a magnet or of a fluid system are not genuine physical discontinu-
ities. I don’t really see how the argument might go other than to appeal to
the fact that the equations are mathematically singular and this requires, as
we have seen, the “unrealistic” idealization of the thermodynamic limit. But,
if the distinction between physical and mathematical discontinuities makes
sense, this is to beg the question. Besides, it surely does seem very plausible
to describe the breakup of water into droplets as a genuine physical discon-
tinuity. It is true that we do not see the topological change in the phase
transition (say when we witness water boiling in a tea kettle) in the same
way we see a stream of fluid break apart. But that, by itself, does not show
that there is no genuine physical discontinuity in the thermodynamic system.
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My contention is that thermodynamics is correct to characterize phase
transitions as real physical discontinuities and it is correct to represent them
mathematically as singularities. Further, without the thermodynamic limit,
statistical mechanics would completely fail to capture a genuine feature of
the world. Without the thermodynamic limit, in fact, statistical mechanics
is incapable even of establishing the existence of distinct phases of systems.

If one takes the view that there are no real physical discontinuities (re-
call Callender’s endorsement of Liu’s claim that “phase transitions [in finite
systems] are never real singularities”), then I suppose there is no reason for
statistical mechanics to employ the thermodynamic limit. But if there are
genuine physical discontinuities and it is the goal of statistical mechanics to
describe them and to explain how they are possible, then this move sim-
ply will not work. Below in section 5 I will discuss the case of breaking
droplets. The aim there will be, in part, to provide further evidence that
real physical discontinuities do exist, and require infinite idealizations for
their explanation and understanding. For now, let me continue to examine
the thermodynamic situation on the assumption that critical phenomena are
real physical discontinuities.

One might think of Mean Field Theory as an attempt to realize Schaffner’s
more sophisticated version (NN) of the philosopher’s reductive derivation of
thermodynamic behavior from statistical mechanical assumptions. As Mean
Field Theory involves the assumption that a given spin on a lattice behaves
as if it were independent of its neighbors and feels only the average field pro-
duced by all the other spins, it cannot truly be a realization of the reductive
program, since it involves a rather fundamental idealization about the reduc-
ing theory. However, Mean Field Theory is quite accurate in reproducing the
noncritical behavior of thermodynamic systems and it does, in fact, provide
qualitative accounts of phase transitions. It succeeds in this, in part, because
it employs the limit of infinite N .

Now, Callender appeals to Mean Field Theory in support of our “faith” in
the view that statistical mechanics can proceed without the thermodynamic
limit. He notes that “[w]e have mean field theory, which is very accurate
except near some critical points.” [3, p. 551] This is true, but Mean Field
Theory does employ the thermodynamic limit! So how, exactly can Callender
appeal to Mean Field Theory as a (partial) justification for our belief that we
can derive approximations to (orthodox) thermodynamic singularities? Now,
I do not think that Callender (or any sane person for that matter) would
want to eliminate all idealizations in physics—that would be like claiming
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that we could not speak of frictionless planes, etc. And fact, away from
those pesky critical points the limit of infinite N is relatively unproblematic.
It is similar in certain respects to the idealization of frictionless planes. For
instance, we can explain fluctuations appearing in actual finite systems, in a
way analogous to being able to deal with the introduction of a bit of friction
that real inclined planes possess. We can make precise predictions about
the extent of fluctuations in large but finite systems away from criticality
despite (in fact, because of) our use of the infinite N idealization. And, we
may be able to say in what sense our finite systems actually approximate a
singularity at first order phase transitions.

One way of expressing this is to say that the idealization of infinite N
is controllable in those contexts—away from critical points. The idea that
some idealizations are controllable and others uncontrollable is prevalent in
physics. However it is a difficult task indeed to try to make the distinction
precise. Very roughly, let us say that an idealization is controllable means
that it is possible, via appeal to theory, to compensate in some way for the
idealization. See Sklar [22] for an extended discussion of this distinction.

Thus, in some sense, Mean Field Theory enables one to provide something
like a physicist’s reduction of statistical mechanics to (corrected) thermody-
namics according to schema (1) at least for systems not at criticality. As
a result, away from critical points we may very well expect to satisfy, with
various caveats, the more sophisticated philosopher’s model of reduction as
well.

Nevertheless, as we have seen above, and as Callender himself acknowl-
edges, Mean Field Theory fails to characterize correctly the detailed ther-
modynamics of critical systems. That theory is completely incapable of
dealing with the fluctuations that arise in the neighborhood of a critical
point. At critical points it doesn’t even let us talk about approximation in
the relevant sense. The reason is that at critical points the limit N →∞ is
uncontrollable—that is, it is singular and the behavior as N →∞ is qualita-
tively distinct from the behavior at N = ∞. We may get numerical results
for large finite N that “look close” to the nonanalytic results for infinite N .
But “closeness” in this sense is not relevant: Smooth curves are smooth no
matter how sharp they appear. And, if there exist genuine physical disconti-
nuities, then their faithful mathematical representation demands curves with
kinks. A sense of “approximation” that appeals to how similar the smooth
curves are to the kinky curves is inapposite.

Let me summarize the discussion of this section. As Callender notes,
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“Thermodynamics represents (for pretty good reasons) phase transitions as
singularities, and statistical mechanics (for pretty good pragmatic reasons)
takes this to mean a non-analyticity in the partition function.” [3, p. 550]
Thermodynamics represents phase transitions and critical phenomena as sin-
gularities for very good reasons indeed. It does so because real systems
exhibit physical discontinuities. As a result, I think we should take thermo-
dynamics very seriously on this point. We should not fault thermodynamics
for representing such discontinuities as singularities.

One might diagnose the failure of the naive derivational reduction as
the result of taking (orthodox) thermodynamics too seriously. Instead, we
should look for some corrected account whereby we can find analytic partition
functions governing phase transitions that, as Callender says, “in some sense
approximate a singularity.” [3, p. 550]

But the failure of schema (1) at criticality indicates that even this neoN-
agelian reduction strategy must fail. The limit is singular and, as a result,
no such corrected, approximate account is possible. This manifests itself in
the failure of Mean Field Theory to correctly produce the exponent β in
equation (2). The idea that we can find analytic partition functions that
“approximate” singularities is mistaken, because the very notion of approxi-
mation required fails to make sense when the limit is singular. The behavior
at the limit (the physical discontinuity, the phase transition) is qualitatively
different from the limiting behavior as that limit is approached.

As we know, it is possible to provide a mathematical proof that for any
finite N the partition function Z is analytic. The limit N →∞, therefore, is
a necessary condition for obtaining mathematical discontinuity in Z. But the
failure of that limit to be regular tells us further that Mean Field Theory even
in the thermodynamic limit cannot correctly represent the real physical dis-
continuities that are accurately captured by the thermodynamic equations.
New statistical mechanical techniques (renormalization group theory) are re-
quired to deal with the singularities in the thermodynamic limit at critical
points. In particular, the renormalization group techniques take advantage
of the fact that at criticality, there is no characteristic length scale. These
techniques, in effect, exploit this fact about the singularity to develop scal-
ing or similarity solutions that can then be employed to explain the observed
universal behavior. I won’t go into the details here, but they are similar (no
pun intended) to the techniques to be discussed in the next section. Further-
more, it is no accident that the techniques are related to one another. The
problems of dealing with singularities in these equations are quite analogous.

14



As a consequence of the singular nature of the thermodynamic limit at
critical points, I believe that one ought to give up on the goal of reducing
one theory to the other. The singular nature of the thermodynamic limit
suggests that much of interest remains to be investigated by examining the
details of the singular asymptotic domain. It therefore, suggests that the
idea of infinite N is not so readily dismissed as Callender and others would
like it to be.

To be more precise, the worry about the infinite N idealization per se
is not the real issue. In some cases that idealization is controllable and
provides no real interpretive problems. The real issue is the existence of gen-
uine physical discontinuities—real singularities in the physical system. One
needs mathematics that will enable one to represent these genuine physical
discontinuities. As a result, there is something deeply right about the ther-
modynamic representation of the singularities—something that needs to be
taken very seriously. Callender is right to argue that a “knee-jerk” identifi-
cation of singularities between the theories should be avoided. But, the fact
that the limit is singular at critical points is really an indication that the
idealization cannot be dismissed so readily.

The next section discusses the other example mentioned earlier. This
concerns understanding of the structure of breaking droplets. Here too we
will see that there is something deeply correct about the “unrealistic” ideal-
ization that accompanies the hydrodynamical equations required for the rep-
resentation of real singularities. This is the idealization that we are dealing
with a continuum, as opposed to, once again, a finite collection of molecules
governed by molecular dynamical equations.

5 Breaking Droplets

The problem of describing and explaining the nature of drop formation in
fluids received its first systematic investigation in the 19th century. Despite
this, it is fair to say that real progress on this problem has been achieved
only within the last 40 years or so with much work being accomplished in the
last decade. One reason for this is the recognition that various linear theories
were inadequate, and that a full theory would involve the investigation of the
nonlinear Navier-Stokes equations for free surface flows.10

10See [6] for a recent review.
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As water drips from a faucet it undergoes a topological change—a single
mass of water changes into two or more droplets. This is perhaps the most
common example of a hydrodynamical discontinuity that arises in a finite
period of time. It was recognized early by Lord Rayleigh that drops form as
a result of a competition between gravitational force and surface tension. He
was able to determine the typical size of a droplet and was able to set the
time scale upon which a drop would form. [6, p. 866]

Contemporary work has focused on the shape of the fluid interface near
the time of breakup. As the interface breaks, the thickness of the fluid
must become very small. In fact, it must necessarily become smaller than
any other macro-length scale that figures in the problem, such as the nozzle
diameter. This has the consequence that the fluid thickness is essentially
the only length (prior to reaching atomic scales) that can effect the shape
of the fluid near the singularity or breakup. In particular, it is natural to
assume that the shape of the fluid at different times near the breakup will
differ only by a change in scale. In such a situation it is reasonable to look
for a similarity solution describing the radius of the drop as a function of the
vertical length z′ and the time t′ both measured from the point of breakup
at z0 and t0 (z′ = z − z0 and t′ = t− t0). (See figure 2.) Such a solution has
the form

h(z′, t′) = f(t′)αH(ζ), (3)

where

ζ =
z′

f(t′)β
.11

Eggers and Dupont [8] argued that a similarity solution of this form
does indeed hold for the problem at hand. In fact they argue that such
a solution is in good agreement with solutions to the Navier-Stokes equation
(or approximations thereof) for low viscosities.12

This similarity solution must break down as the radius of the fluid neck
reaches atomic scales. There, surely, microscopic structure becomes relevant

11The scaling exponents α and β are constants to be determined, as are the functions f
and H. Note also, that β, here, has not special meaning and is is different from both its
occurrences earlier on in the paper.

12Shi, Brenner, and Nagel [19] argue that Eggers’ and Dupont’s solution needs to be
corrected as there are perturbations (noise) that play an essential role in determining the
character of the fluid shape near breakup.
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(z0,t0)

z' = z - z0

t' = t - t0

neck radius

Figure 2: Neck Radius h vs. z

for a complete description of the breakup. The analogy between this and the
thermodynamic problematic discussed in the last section is clear: How can
a continuum theory provide a realistic representation of the breakup when
ultimately (from a “foundational, philosophical” perspective) the particulate
makeup of the system plays a role in its behavior? From such a (microscopic)
perspective there can be no discontinuity just as there can be no real sin-
gularity at criticality from the point of view of a theory that takes seriously
the fact that statistical systems have finite N . Perhaps we take the hydro-
dynamic theory too seriously when we use it to represent the breakup of the
fluid neck into droplets. Perhaps we need to include a microscopic length
scale in the full description of the droplet problem.

Following the breakup, the new surfaces that appear (on the neck side
and on the droplet side) are again governed by similarity solutions to the
Navier-Stokes equation. So an important question is whether we need to
include a microscopic length scale in our attempt to find a continuation of
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Figure 3: Water Droplet at Breakup

the Navier-Stokes equation from before breakup to after breakup—that is,
across the singularity. If such a scale were required, then the hydrodynamic
description would not be self-consistent, and we would have reason to suspect
that we were taking that theory too seriously.

However, Eggers shows, for scales sufficiently greater than the micro-
scopic, that it is possible to continue the solution for the before-the-breakup
fluid to that for the after-the-breakup formation of drops and satellite droplets.
[5] [6, pp. 894–904] Thus, the hydrodynamic theory of the breaking—the
topological transition—is self-consistent and “the dynamics very quickly ‘for-
get’ the microscopic details of breaking.” [7, p.306] As long as we are inter-
ested in scales larger than the microscopic, the hydrodynamic description is
completely adequate.

A couple of caveats are in order here: First, it is true (as noted in foot-
note 12) that perturbations disturb the Eggers-Dupont similarity solution.
Nevertheless, as Brenner, et al. [2] suggest, thermal fluctuations producing
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Figure 4: Water Droplet after Breakup

capillary waves cause instabilities in the primary similarity solution which
themselves lead to structures that are self-similar.

Second, there is the fact that the shape of the breakup region depends
upon the ratio of the viscosity of the internal fluid, µint , to the viscosity of
the external surrounding medium, µext . The shape of water dripping from a
faucet surrounded by air (figures 3 and 4) in which µint � µext is different
than that of a fluid falling through another fluid of approximately the same
viscosity (figure 5) where µint ≈ µext .13 Despite this both are, in fact, robust
across a wide range of parameters.14 Interestingly, Sidney Nagel et al. [4] have
recently demonstrated a third regime, characterized by µint � µext that fails

13Compare the shapes of the cone at the breakup in figures 3 and 5. (Figures 3, 4, and
5 are courtesy of Sidney R. Nagel.)

14In particular, they are robust or universal over a fairly wide range of the relative
viscosities of inner and outer “fluids”.
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Figure 5: Two Fluid Drop Off

to exhibit universal behavior. The breakup profiles in this latter regime are
nonuniversal and depend upon initial and boundary conditions in a way that
the other two regimes do not.

These caveats aside, the existence of the similarity solution in the variable
ζ indicates the universality of the shape of breaking droplets. For instance,
compare the cone-to-sphere shape in figure 3 with the shape of the interface
between the about-to-break satellite drop at the top of figure 4. This has
the same cone-to-sphere shape indicating that “[t]he point of breakup would
have looked the same even if it had been formed from a wave tossed into the
air at the shores of Lake Michigan.” [16, p. 27] Thus, the details of how the
drops are formed are essentially irrelevant for their character upon breaking.
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This is a characteristic feature of universality.15

Physical discontinuities, typically are represented by singularities and di-
vergences in their representative equations. Such singularities or divergences
are often associated with the existence of scaling and, hence, are indicators
of universality. We see this in the case of breaking droplets and in the case
of thermodynamics at critical points. The determination of the scaling ex-
ponents (e.g. α and β in equation (3)) provides a means to delimit the class
of systems that exhibit the same (universal) behavior.

6 Conclusion

As I noted in the beginning, many physical theories are related to one another
by limits that are singular—situations in which for some relevant parameter,
ε, schema (1) fails. Statistical mechanics and thermodynamics provide an
interesting pair in that the limiting relationship is singular at critical points.
Yet for other phases, much work has been done to demonstrate the existence
of this thermodynamic limit—that is, the regularity of schema (1).

Several interesting things are going on here. First, there are two limits
involved:

• The thermodynamic limit:
1

N
→ 0.

• The limit in which the temperature T → Tc from below in the case of
a magnet.

If we take the thermodynamic limit first, and then let T → Tc, we will have
nonanalyticities in the statistical mechanical equations that mimic the kinks
in the thermodynamic equations. On the other hand, if we let T → Tc first,
we will not get a phase transition for any finite N no matter how large. This
is to say that the two limits do not commute.

Second, it is exactly at critical points (second order phase transitions)
where the thermodynamic limit is singular. In other words, as we have seen,
Mean Field Theory fails. The idealization becomes uncontrollable and new
techniques are required to understand the subtle structures that emerge at
those locations in phase. It is here that we encounter sophisticated attempts

15See [1] for an extended discussion.
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to deal with the singular nature of the limit. In effect, the success of these
attempts provides a vindication of the universal thermodynamic represen-
tation of the phenomena. But, such a vindication is most definitely not a
derivation.16

The analogy with the case of drop breakup is close indeed. The hydrody-
namic equations must blow up as the breakup point is approached. Attempts
must be made to see if it is possible to justify a “macroscopic” (that is, hy-
drodynamic) description of the physical discontinuity.

In both situations, as the singularities are approached, there is a loss of
a characteristic length scale. This leads to the hypothesis of scale invariance
and the idea that the large scale features of a system are virtually independent
of what goes on at a microscopic level. In the thermodynamic case we see that
the bulk properties of the thermodynamic systems are independent of the
detailed microscopic, molecular constitution of the physical system. Similarly
in the case of drop formation, the ultimate breakup profile is independent of
the microscopic details of the breaking.

We ought to take very seriously the idea that real physical systems dis-
play genuine physical discontinuities—critical behavior in thermodynamic
systems and finite time topological changes in the evolution of hydrody-
namic free surface flows. And, we ought to take very seriously the idea that
the full understanding of such physical discontinuities can be achieved only
though a detailed investigation of the asymptotics of the governing equa-
tions. The appeal to asymptotics is essential to a foundationally respectable
understanding of these physical discontinuities.

16It is interesting to note that in Gibbs’ famous work Elementary Principles in Statistical
Mechanics [9] no mention of phase transitions or critical phenomena appear despite the
fact that Gibbs was an expert on the subject. The book develops, as far as possible,
a reductive relationship between thermodynamics and statistical mechanics that holds
away from lines of phase transition and critical points. One reason for Gibbs’ caution in
advocating “thermodynamic analogies” as opposed to philosopher’s bridge laws connecting
concepts of the two theories, was surely his recognition that such connections fail at
criticality.
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