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Abstract

The representational theory of measurement (RTM) has long been the
central paradigm in the philosophy of measurement. Such is not the
case anymore, partly under the influence of the critique according to
which RTM offers too poor descriptions of the measurement proce-
dures actually followed in science. This can be called the metrological
critique of RTM. I claim that the critique is partly irrelevant. This
is because, in general, RTM is not in the business of describing mea-
surement procedures, be it in idealized form. To support this claim,
I present various cases where RTM can be said to investigate mea-
surement without providing any measurement procedure. Such limit
cases lead to a better understanding of the RTM project. They also
illustrate some of the questions which the philosophy of measurement
can explore, when it is ready to go beyond the metrological viewpoint.
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Introduction

The representational theory of measurement (henceforth, RTM—especially
Krantz et al., 1971; Suppes et al., 1989; Luce et al., 1990) has long been
the central paradigm in the philosophy of measurement. RTM is mainly
concerned with providing the various possible forms of measurement with
mathematical foundations. It tackles this task by employing what has be-
come its signature method of enquiry, namely, representation theorems. On
the received view, RTM thus examines idealized measurement procedures.
It simplifies measuring to assigning numbers, or constructing scales (e.g.,
Krantz et al., 1971, p. 9, 102). It investigates when this can be well-defined.

RTM has largely lost its influence in the philosophy of measurement.
Dissatisfaction has grown with its idealization of measurement procedures.
One can find such dissatisfaction expressed throughout the history of RTM,
sometimes even by direct contributors to this literature (e.g., Stevens, 1968,
p. 854; Niederée, 1992, p. 245). But the most forceful expression has been
recently inspired by the metrology community. Metrology is officially de-
fined as “the science of measurement and its application[s]” (Joint Com-
mittee for Guides in Metrology, 2008, p. 16). It is primarily a field con-
cerned with the design, standardization, and use of measuring instruments.
It thus embodies an extremely careful attention to the actual implemen-
tation of measurement procedures. It has also recently inspired influential
contributions to the philosophy of science (as evidenced in, e.g., Mitchell et
al., 2017). Metrology-inspired philosophers of measurement deplore the fact
that RTM “took ‘measurement’ to be synonymous with either ‘number as-
signment’ (. . .) or ‘scale construction’, and neglected the ‘applied’ aspects of
measurement such as accuracy, precision, error, uncertainty, and calibration
(. . .)” (Tal, 2013, p. 1164). They recommend paying much closer attention
to the particulars of the measurement procedures followed in actual scien-
tific practice. They advocate going “beyond the representational viewpoint”
(Mari, 2000) to get richer insights on measurement.

Accordingly, call the following “the metrological critique”: RTM poorly
describes the measurement procedures actually followed in science, and there-
by it offers the philosophy of science limited insights on measurement. There
is much to grant in this critique. RTM alone is not sufficient to provide a
complete account of measurement in the sciences. Other takes on measure-
ment, such as those inspired by metrology, are necessary to complement what
RTM can deliver. However, one important preliminary question is whether
RTM really is in the business of describing measurement procedures, be it
in idealized form. I take the metrological critique to be premised on a pos-
itive answer to this question. More generally, the vivid contrast between
metrology and RTM constitutes a welcome occasion to revisit this received
view. What is at stake is not only the correct interpretation of the RTM
project—a matter of long-standing debates. It is also the possible directions
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for the philosophy of measurement, at a time when the metrological view-
point dominates. When philosophers of science reflect upon measurement,
should they be concerned with, more specifically, measurement procedures?

My main claim will be that, in general, RTM is not in the business of
describing measurement procedures, be it in idealized form. To support this
claim, I will present various cases where RTM can be said to investigate
measurement without providing any measurement procedure. Such limit
cases reveal that the RTM project is even more profoundly different from
the metrological project than currently understood in the literature. On the
alternative view which I will sketch, RTM is concerned with measurability,
rather than measuring, and some of its results are remarkable precisely in
that they illustrate that the former should not be reduced to the latter. This
is naturally not an attack on the project of a metrology-inspired philosophy
of science, let alone the research agenda of the metrology community. This
is a defense of RTM against the metrological critique, to the effect that the
critique is at least partly irrelevant. Besides, the polemical twist is essentially
for vividness. What matters most is that taking the metrological critique into
account leads to refining the received interpretation of the RTM project and
to highlighting the existence of fundamentally non-metrological questions in
the philosophy of measurement. Consider this an illustrated invitation to go,
whenever relevant, “beyond the metrological viewpoint”.

Several other authors have already, in the context of general discussions
of the interpretations of RTM, offered indirect defenses of RTM against
the metrological critique. See especially Narens and Luce, 1993; Decoene et
al., 1995; Narens, 2002 (Sec. 5.3); Heilmann, 2015; and Vessonen, forthcoming.
However, none of these discussions is as direct and as focused as mine, and
none has followed the argumentative strategy sketched above. Unlike the
above scholars, I emphasize the developments of RTM that do not square
with the apparently conciliatory view according to which RTM is commit-
ted to investigating idealized measurement procedures, in contrast with the
actual measurement procedures to be found in scientific practice. A re-
lated difference, the relevance of which will appear along the way, is that I
emphasize developments of RTM that are not to be found in the pioneer-
ing volume of Krantz et al., 1971. By contrast, the above scholars do not
sufficiently distance themselves from the widespread but outdated view ac-
cording to which, as far as the philosophy of measurement is concerned, this
particular contribution summarizes RTM without loss of generality.

The core of the paper is comprised of four short sections. Each section
is organized around one illustrative theorem from the RTM literature. None
of the theorems can be here discussed in great detail; but for my purposes,
it is enough to give a sense of what kind of results they are. As a necessary
preliminary, Section 1 recalls the fundamentals of the RTM approach. The
subsequent sections discuss various ways in which the RTM approach can be
said to investigate measurement without providing any measurement proce-
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dure. I will successively examine three cases. For brevity, I will call them the
cases of “unknown” (Sec. 2), “irrelevant” (Sec. 3), and “unspecified” (Sec. 4)
measurement procedures. A brief conclusion ensues.

1 The Representational Approach in a Nutshell

It is best to recall the fundamentals of the RTM approach by means of
an example. The example introduced and elaborated upon next has been of
great importance throughout the history of RTM.1 It permits illustrating not
only the spirit of the RTM approach, but also, as a natural starting point, the
received view according to which RTM proceeds by investigating idealized
measurement procedures. The result is known as the Hölder theorem (for a
full statement and a proof of the below variant of the theorem, which is the
most accessible of all, see, e.g., Krantz et al., 1971, Thm. 3.1, p. 74).

Let X be a non-empty set, <, a binary relation over X, ⊕, a binary oper-
ation (i.e., a ternary relation) over X. For concreteness, one can interpret X
as a set of rigid rods, <, as the ordering of these rods in terms of their re-
spective lengths, ⊕, as the operation consisting in the concatenation of two
rods. Another intuitive interpretation is with reference to the measurement
of weight thanks to an equal-arm pan balance. Denote by X = 〈X,<,⊕〉 the
relational structure thus constituted, i.e., the setX equipped with the various
relations defined over it. The Hölder theorem states that X satisfies a distin-
guished set of properties—namely, it qualifies as a so-called “closed positive
concatenation” structure—if and only if there exists a function φ : X → R>0

such that, for any w, x, y, z ∈ X, the following representing conditions hold:

i) x < y ⇔ φ(x) ≥ φ(y);
ii) w ⊕ x < y ⊕ z ⇔ φ(w) + φ(x) ≥ φ(y) + φ(z).

(1)

This means that the length ordering of the rigid rods in X, <, is represented
by the usual ordering ≥ over the real numbers delivered by φ and further-
more that the concatenation operation ⊕ is represented by the usual addition
operation +. The theorem is completed by the uniqueness proposition ac-
cording to which ψ : X → R>0 also satisfies i) and ii) if and only if ψ = αφ,
for some α ∈ R>0. The Hölder theorem thus offers mathematical foundations
for some of the customary ways in which scientists measure length, weight,
and still other comparable attributes.

Generally speaking, a representation result like the Hölder theorem is
composed of the following elements, which can be considered the hallmarks
of the RTM approach. On the one hand, take a qualitative relational struc-
ture X , such as 〈X,<,⊕〉 in the above example. Think of it as the primitives

1Infamously, the mathematician Peter Freyd is reported to have once judged that the
whole RTM literature was nothing but a long series of corollaries of the Hölder theorem
(see, e.g., Luce, 1996, p. 82—with a rejoinder of sorts from Luce on p. 90).
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of a candidate measurement situation, for instance the objects of interest and
the proposed operations upon them. On the other hand, take a quantitative
relational structure Y, such as 〈R>0,≥,+〉 in the example. Think of it as
the potential outcomes of a measurement situation, i.e., numerical results,
together with a selection of the relations naturally holding between numbers.
Of central interest to RTM is the set of all homomorphisms of X into Y, i.e.,
all structure-preserving mappings between a qualitative relational structure
and a quantitative relational structure of the same type.2 Call this set Φ,
with generic element φ. The existence claim in the representation result
amounts to claiming that, given the properties of X , Φ is not empty. In
the example, this means that given the properties of X , there exists at least
one well-defined numerical assignment φ such that < and ⊕ stand as qual-
itative analogues of ≥ and +. The uniqueness claim amounts to providing
an internal characterization of Φ. Indeed, when it is not empty, Φ typically
contains more than one element and it needs to be clarified how any two ad-
missible numerical assignments φ and ψ relate to one another. The Hölder
theorem illustrates one of the classical uniqueness categories, namely, the
case of so-called ratio scales. In what follows, I will give special emphasis to
the difference between the various uniqueness categories. This is in general
an important topic, be it only because different uniqueness categories make
different classes of numerical statements robust, or meaningful, across all the
admissible ways of expressing one same set of measurement results.

Both the existence claim and the uniqueness claim come with dedicated
proofs. As I will later emphasize, some aspects of the proofs can be significant
and this is in effect underappreciated in the current philosophy of measure-
ment. For future reference, I now sketch the main argument in the proof of
the Hölder theorem. It is an explicit construction, that goes as follows. The
properties of X are such that, for any x ∈ X and n ∈ N, one can find an
element, denoted here by nx, that is <–equivalent to n copies of x, taken to-
gether. Besides, picking any e ∈ X as an arbitrary reference element, one can,
for any x ∈ X and n ∈ N, appropriately bound nx bymne and (mn − 1)e, for
some mn ∈ N. Letting n go to infinity, one gets tighter and tighter bounds.
In the limit, one thus obtains a well-defined function φ satisfying the two
conditions in (1). Satisfying these conditions with some other function ψ
amounts to picking another element e′ ∈ X as the initial unit, and repeating
the construction. Extrapolating on the characteristics of proofs like the one
thus sketched, Krantz and co-authors write: “the method of constructing φ
is precisely the measurement procedure” (Krantz et al., 1971, p. 15).

The question to which I now turn pertains exactly to this point: Is
the RTM approach generally committed to articulating measurement pro-
cedures in its investigations of measurement? I emphasize that while this is
a central question raised by the metrological critique of RTM, the question is

2For a glossary regarding homomorphisms and the like, see, e.g., Narens, 1985, Sec. 1.3.
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of philosophical interest beyond what an assessment of this critique requires.

2 The Case of Unknown Measurement Procedures

Perhaps the most striking counterexample to the view according to which
RTM proceeds by investigating idealized measurement procedures is based
on the so-called Alper-Narens theorem (for a full statement and a proof, see,
e.g., Luce et al., 1990, Thm. 20.5, p. 120). This result is considered by many,
in the RTM community, as one of the most remarkable ever produced in their
field. But it is still little-known outside this community, and more work in
the philosophy of science will be required to fully appreciate its significance.

Consider the class of all qualitative relational structures satisfying the
following requirements. Each structure is equipped with a binary order re-
lation. It is, qua binarily ordered structure, isomorphic to the positive real
numbers (endowed with the usual order). For brevity, within this paper, call
“continuum” any such structure. Notice that, given any numerical represen-
tation of any continuum, one can think of the admissible transformations
of the representation as automorphisms of the qualitative structure itself.3

Now, consider the class of all continua that are homogenous and finitely
unique, according to the following definitions. First, given any two points in
the domain of the structure, there is at least one automorphism that maps
one point into the other. This is “homogeneity”. Second, there are at most
finitely many points on which two automorphisms can agree without being
one and the same automorphism. This is “finite uniqueness”. The key im-
plications of these two definitions are the following. The first notion rules
out that any point be structurally incomparable to all others, as would be,
say, an absolute maximum, minimum, or zero. For instance, in the weakly
positive reals equipped with the addition operation, 0 is unlike any other
number in that it is the only number such that, for any x, x+0 = 0+x = x.
This illustrates a failure of homogeneity. The second notion imposes that
the class of all admissible transformations be some strict subset of the class
of all increasing transformations. Indeed, with forms of measurement that
are unique up to any increasing transformation, such as the Mohs scale for
the hardness of minerals or the Beaufort scale for the force of winds, two
automorphisms could agree on infinitely many points and yet be different.
This illustrates a failure of finite uniqueness. For brevity, within this paper,
I will call “simple” any continuum satisfying these two requirements.

Equipped with this terminology and the previously introduced notation,
one can state the Alper-Narens theorem as follows. Any simple continuum,
with Φ the associated set of numerical representations, falls into exactly one

3Recall when, in the previous section, we considered replacing the initial reference
element e with some other element e′. This is a simple illustration. The more abstract
statement above is explained with great didactic care in Michell, 1990, p. 158ff.
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of the following three categories, construed exclusively:

i) ∀φ, ψ ∈ Φ, ψ = αφ, for some α ∈ R>0;
ii) ∀φ, ψ ∈ Φ, ψ = αφ+ β, for some α ∈ R>0, β ∈ R;

(2)

iii) ∀φ, ψ ∈ Φ, ψ = αφ+ β, for some α in a non-trivial subgroup of the
multiplicative positive reals (e.g., {rz | r ∈ R>0, z ∈ Z}), β ∈ R.

The first category is known as the ratio category and the second, as the
interval category. They are illustrated by the customary ways in which sci-
entists measure length and temperature, respectively. The third category is
intermediate between the first two. It does not yet have a well-established
name in the literature. For brevity, within this paper, I will call it the “hy-
brid” category. Thus, the Alper-Narens theorem is the result that any simple
continuum is an interval, an hybrid, or a ratio scale.

The important point for my purposes is the sheer existence of the hybrid
category. This is because, to my knowledge (or that of Alper, Narens, and
any commentator of the theorem named after them), the following holds.
There is, in the current state of science, no measurement procedure that
would fall in this category, i.e., be such that α in (2) can be taken only in a
non-trivial subgroup, not the full group, of the multiplicative positive reals.
To my knowledge, there is not even, in RTM, a representation theorem that
could give an idea of the underlying measurement procedure. In noting this,
I grant for now, and till the last section of this paper, that this is what such a
theorem would have to deliver. In a nutshell, one is dealing here with a mea-
surement category with unknown measurement procedures. Indeed, thinking
about what measurement procedures are possible should sometimes demand
focusing away from any of the currently known measurement procedures.
Now, the case of the hybrid category should not trouble the practicing sci-
entist. But it raises the following puzzle for the philosophy and, perhaps,
the metaphysics, of science. While it happens that science focuses on sim-
ple continua, why did it never stumble across the hybrid category? Is there
here a pure logical possibility that would prove physically infeasible? Or
has this category actually been overlooked in some past scientific contexts?
Noteworthily, the existence of such a puzzling measurement category with
unknown measurement procedures cannot be dismissed as an artefact of the
Alper-Narens theorem focusing on continua, i.e., structures that are isomor-
phic to the positive reals. For instance, one would discover even more such
categories if one focused, instead, on structures that are isomorphic to the
positive rationals (see Cameron, 1989; Macpherson, 1996).

Admittedly, the Alper-Narens theorem is remarkable in more than one
way. Narens himself, for instance, finds most remarkable the restriction,
under seemingly general assumptions, to merely three measurement cate-
gories. Thus, he writes: “this theorem provides some insight into why so

6



few scale types have appeared in science” (Narens, 2002, p. 55). I, for one,
find most remarkable the unexpected expansion of the space of measure-
ment categories to some categories that have not yet appeared, and might as
well never appear, in scientific practice. The two interpretations differ only
in emphasis. On either reading, the Alper-Narens theorem directly con-
flicts with the view according to which RTM contributes to the philosophy
of measurement and the philosophy of science by articulating and studying
measurement procedures. The result also provides a striking illustration of
the kind of issues which, in the best interest of the philosophy of science,
the theory of measurement can explore, when it is ready to go beyond the
metrological viewpoint.

3 The Case of Irrelevant Measurement Procedures

I now argue that, even when RTM focuses on the case of known measurement
procedures, it is sometimes in such a way that the procedures are essentially
irrelevant. I illustrate this with another little-known result which would
demand more philosophical attention and which I will call, in this paper,
the Alper-Luce theorem (see, e.g., Luce et al., 1990, Thm. 20.7, p. 124;
also Luce, 2001, Thm. 5). Initially, this result was a lemma of the Alper-
Narens theorem, discussed in the previous section. However, as Luce was
instrumental in showing (hence my naming the result after not only Alper,
who first proved the result, but also Luce), it is of self-standing interest.

Recall the definition of a continuum given in the previous section. Next,
define a “translation” as an automorphism of the structure that keeps fixed
either all, or none, of the points of the underlying domain. Equivalently,
think of translations as admissible transformations of a given initial numer-
ical assignment that keep fixed either all, or none, of the numerical values
initially assigned. Finally, recall the definition of a simple continuum. Then,
the Alper-Luce theorem can be stated as follows: a continuum is simple if and
only if its translations form a so-called “homogeneous Archimedean ordered”
group. Mathematically, this means two things. First, an abstract variant
of the Hölder theorem can be applied to the set of translations itself.4 In
essence, translations themselves can be ordered and combined with one an-
other, like concatenable rigid rods which one would try to measure. This
is the “Archimedean ordered group” part of the statement. Second, the set
of translations, although generally a strict subset of the set of all automor-
phisms, suffices here to satisfy the condition defining homogeneity. Thus,
given any two points in the domain of the structure, the set of translations
is rich enough to always provide an automorphism that maps one point into
the other. In particular, with respect to this set, no point proves structurally

4Specifically, it is the most abstract, i.e., group-theoretic, variant of the Hölder theorem
(see, e.g., Krantz et al., 1971, Thm. 2.5, p. 53) that is relevant here.
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incomparable to all others. This is the “homogeneous” part.
For my purposes, the key point is that the Alper-Luce theorem applies

across a very broad range of existing measurement procedures. Indeed, no-
tice that it follows from the previous section that the Alper-Luce theorem
amounts to a characterization of the ratio, hybrid, and interval categories,
taken together. Focus away, for the sake of the present argument, from the
unknown procedures of the hybrid category. Then, the Alper-Luce theorem
can be interpreted as revealing some interesting unity across existing mea-
surement procedures as different as that of, say, length, temperature, time,
or cardinal utility, to name but a few. The primitive data required by these
various kinds of measurement are obviously very different, and so are the
basic operations which they traditionally involve. Accordingly, any overarch-
ing unity between them is anything but trivial. In order to reveal this unity,
however, the specificities of the various measurement procedures are volun-
tarily abstracted away. Indeed, thinking about what unites a given class of
measurement procedures should sometimes demand abstracting away from
the particular features of these procedures far beyond what would qualify
as an idealized account of these procedures. Now, the unity revealed by the
Alper-Luce theorem might be of no interest to the practicing scientist. But
it is valuable information for the philosopher of science. For instance, some
authors go as far as to consider that since most attributes which we regard
as truly quantitative are measured on either an interval or a ratio scale,
this theorem delineates a general metaphysics of quantity. See in particular
Michell, 1999, p. 208ff, where special emphasis is given to one important
corollary of the theorem, namely, the one that constitutes a characterization
of the ratio category, specifically. However ambitious one’s philosophical in-
terpretation of the Alper-Luce theorem, the following point will hold. The
theorem uncovers some philosophically interesting unity across a wide vari-
ety of measurement procedures not in spite of, but thanks to, its consciously
abstracting away from the particulars of any given procedure.

A final comment is in order. The Alper-Luce theorem vividly illustrates
the significant changes that occurred in RTM after the publication of Krantz
et al., 1971. One might also refer to the time elapsed between this publication
and that of Luce et al., 1990, i.e., the first and the last volume of the series
to which these references belong. These changes, which the pioneering work
of Narens was instrumental in bringing about, have led the RTM literature
to increasingly focus on the uniqueness side of representation theorems. In a
nutshell, while the first main wave of RTM scholarship focused primarily on
existence and only derivatively on uniqueness, the second wave reversed this
emphasis.5 As Narens and Luce put it, this has been “a bit of a revolution
within [the RTM revolution] itself” (Narens and Luce, 1993, p. 128). Taking

5With the benefit of hindsight, this important turn is insufficiently emphasized even in
Díez, 1997a; 1997b—an otherwise remarkably comprehensive survey of the history of RTM.
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better account of this latter wave of RTM scholarship limits the bite of
the metrological critique. This is what the present section illustrates more
simply than the previous one. The illustration is simpler inasmuch as RTM
is here presented as directly abstracting away from the particulars of known
measurement procedures, rather than more adventurously pointing towards
the location of unknown measurement procedures.

4 The Case of Unspecified Measurement Procedures

At this juncture, it is important to realize that the content of the two previ-
ous sections remains compatible with the following analysis. The metrological
critique may not apply to the uniqueness side of the RTM literature, but—so
the analysis goes—when it comes to the existence side of the literature, at
least, the critique must have a bite. After all, did I not previously highlight
that Krantz and co-authors seem to grant that “the method of construct-
ing φ is precisely the measurement procedure” (Krantz et al., 1971, p. 15)?
Thereby (the analysis goes on), the RTM approach, which they pioneered,
seems in principle exposed to the critique according to which its existence
proofs do not spell out measurement procedures in sufficient detail.

In the present section, I will argue against the substance of the preceding
analysis and the philosophical perspective offered by Krantz and co-authors
in the passage quoted. My argument is based on representation theorems,
the existence claim of which is proved in a mathematically non-constructive
fashion—non-constructive representation theorems, for short. Admittedly,
there are several standards for non-constructiveness in mathematics. One
standard is that a proof is non-constructive if it invokes the Axiom of Choice,
or some weakening thereof (e.g., Jech, 1979). According to another standard,
a proof is non-constructive if, as in the case of proofs of existence by contra-
diction, it establishes the existence of a certain mathematical object without
showing how to construct it, or to find it, based on the pre-existing objects
(e.g., Beeson, 1985). The latter standard is more stringent than the former,
but it is also more intuitive in that it applies more widely. The difference be-
tween these and more refined standards will not be crucial for my purposes.
Non-constructive representation theorems of all varieties seem directly ex-
cluded by Krantz and co-authors in the passage quoted above. Indeed, it
is easily evidenced that they favoured thoroughly constructive proofs (e.g.,
Krantz et al., 1971, fn. 1 p. 42; p. 62). The case of non-constructive repre-
sentation theorems was more readily explored by other contributors to RTM.
Focusing on the more stringent and more applicable standard for simplicity,
I now explain why non-constructive representation theorems are particularly
instructive.

The following example comes from mathematical psychology and psy-
chophysics. Consider a subject who can rank the relative intensity of some
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stimuli, but only when the difference exceeds a certain constant threshold.
Standard examples are pitch height or light brightness perception. This
happens to instantiate a so-called “semi-ordered” structure (Luce, 1956). A
semi-order is a complete binary relation, the asymmetric part of which is
transitive, but not the symmetric part, with distinctive constraints on the
composition of one part with the other (specifically, on the extent of the
symmetric part when composed with the asymmetric part). The specific
patterns of intransitivity thus induced reflect the imperfect discrimination
capacities. This contrasts with any of the structures considered hitherto,
that all featured weak orders, i.e., complete and fully transitive binary rela-
tions. Now, consider a finite set X and let < denote a binary relation over X,
with asymmetric part �. Then it can be shown that < is a semi-order if
and only if there exists a function φ : X → R≥0 and a constant threshold
δ ∈ R≥0 such that, for any x, y ∈ X, the following representation holds:

x � y ⇔ φ(x) > φ(y) + δ. (3)

The above representation can be compared with condition i) in representa-
tion (1), that corresponds to the particular case where δ = 0. This particular
case can be interpreted here as indicating perfect discrimination capacities.6

The example of semi-orders is relevant to the present discussion be-
cause there are two very different proofs of the above existence result (e.g.,
Fishburn, 1970, Sec. 2.4, Ex. 4.18; in more detail, Fishburn, 1985, Chap. 7).
One proof is, like the one previously sketched for the Hölder theorem, thor-
oughly constructive. It provides an algorithm for assigning numbers to the
elements of X. The algorithm is based on the fact that a semi-order in-
duces an associated weak order, the representation of which can be built so
as to deliver the desired numerical assignment. Thus, exploiting only the
semi-order properties, the algorithm leads to representation (3). By con-
trast, the other proof is non-constructive according to the more stringent
of the previously mentioned criteria. The proof starts by recasting the ex-
istence problem as an abstract linear algebra problem. It then invokes a
powerful result of this field, called the Theorem of the Alternative, to offer
a proof of existence by contradiction. To wit, one branch of the alternative
implies the non-existence of representation (3), which is shown to contradict
the assumed semi-order properties, while the other branch of the alternative
implies that the desired representation exists. Given the non-constructive
nature of the argument, it can be said that although this constitutes a proof
of existence, the proof leaves the underlying measurement procedure entirely
unspecified. I take this lack of specification to be particularly unsatisfactory
from a metrological viewpoint.

6The uniqueness properties of representation (3) is a delicate topic, especially when X
is finite. More details are in Suppes et al., 1989, Sec. 16.2.
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I do not mean to enter here into any general discussion of the respec-
tive merits of constructive and non-constructive proofs. I merely want to
highlight that, as far as the specific purposes of RTM are concerned, it is
often unclear whether the latter should be considered inferior to the for-
mer. Importantly, this is not merely a reflective point in the philosophy of
measurement. This also applies to at least some of the empirical uses of
RTM from the point of view of practicing scientists. Indeed, notice that
results like the axiomatization of representation (3) have the following em-
pirical function (other applications of such axiomatization are discussed in,
e.g., Pirlot and Vincke, 1997, Chap. 2): they permit testing whether the dis-
crimination model in representation (3) can be applied to a given subject
faced with a given set of stimuli. This might be empirically unwarranted, as,
for instance, when the subject’s discrimination capacities are limited, but
under the constraint of a threshold function that is not constant, or even
deterministic, across all stimuli comparisons. This is exactly what an ax-
iomatization of (3) permits checking. Crucially, to that end, it is immaterial
whether the characterization result has been established in a constructive or
a non-constructive fashion. Indeed, thinking about whether a given measure-
ment procedure is possible need not always coincide with trying to sketch
it in a stylized fashion. As a case in point, even when it leaves the poten-
tial measurement procedure entirely unspecified, an axiomatization of (3)
enables one to test whether the perceptual judgments of a given subject are,
in principle, measurable as they appear in a model of perception with a con-
stant discrimination threshold. The existence results of RTM are essentially
concerned with this preliminary empirical step dedicated to testing measur-
ability. Thereby, and most strikingly when their proof is non-constructive,
these results stand as useful reminders of the fact that there is more to actual
measurement than the careful implementation of a measurement procedure.

Non-constructive representation theorems thus bring out a feature which
they share with constructive representation theorems—when available—and
that is characteristic of RTM at large. As Narens proposes to summarize
it, RTM is concerned not with delivering “description[s] of empirical mea-
surement”, but with providing “qualitative, axiomatic characterizations of
quantitative situations” (Narens, 2002, p. 305). This serves empirical pur-
poses that can be related, but not reduced, to those attached to the concrete
implementation of a measurement procedure.

Conclusion

According to the metrological critique of the representational theory of mea-
surement (RTM), RTM poorly describes the measurement procedures actu-
ally followed in science, and thereby it offers the philosophy of science with
limited insights on measurement. This is an invitation to refine our under-
standing of RTM and how it contributes to the philosophy of measurement.
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I have argued that the metrological critique is at least partly irrelevant.
It is not RTM’s goal to accurately describe, be it in idealized form, the
measurement procedures to be found in actual scientific practice. I have
illustrated this with three limit cases where, in various ways, RTM can be
said to investigate measurement without providing any measurement proce-
dure. The first two cases illustrate, from different angles, the importance
of uniqueness topics in RTM. The last case illustrates the relevance of non-
constructive existence proofs in RTM. Taken together, the cases substantiate
the claim according to which RTM is concerned more with measurability than
with measuring, as well as they illustrate the importance of distinguishing
between the former and the latter.

More generally, such cases deliver valuable, non-metrological insights for
the general philosophy of science. Thus, echoing the title of Mari, 2000, they
invite philosophers of measurement to go, whenever relevant, “beyond the
metrological viewpoint”. This is naturally not to advocate that the metrol-
ogy community should change its research agenda. This is to advocate that
the RTM community should keep its own, and to remind philosophers of
science that they can tap either source, and still others, for complementary
insights on measurement.
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