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Abstract Most studies of motifs of biological regulatory networks focus on the analysis of asymp-
totical behaviours (attractors, and even often only stable states), but transient properties are rarely
addressed. In the line of our previous study devoted to isolated circuits [Remy et al., 2003], we con-
sider chorded circuits, that are motifs made of an elementary positive or negative circuit with a
chord, possibly a self-loop. We provide detailed descriptions of the boolean dynamics of chorded
circuits versus isolated circuits, under the synchronous and asynchronous updating schemes within
the logical formalism. To this end, we address the description of the trajectories in the dynamics of
isolated circuits with coding techniques and adapt them for chorded circuits. The use of the logical
modeling gives access to mathematical tools (group actions, analysis of recurrent sequences, cod-
ing of trajectories, specific abacus...) allowing complete analytical analysis of basic yet important
motifs. In particular, we show that whatever the chosen updating rule, the dynamics depends on
a small number of parameters.

Advance notice Most properties related to isolated circuits enounced in this paper can be found
without proof in [Remy et al., 2003]. These proofs are included here. Moreover, a summary of the
main results related on isolated and chorded circuits can be found in [Remy et al., 2016].

The proofs and results presented in this paper go deeply into mathematical details, with combi-
natorics and coding arguments and tools developed in a series of propositions and remarks. Such a
precise description allows a very fine understanding of the dynamics of the model seen as a discrete
events system, and how it functions. Anyway, the reader may choose the level of reading; it is
possible to capture the main results stated in the theorems without going into all details.

1 Introduction

Motivation Biological processes are complex systems, involving a large number of components in
strong non-linear interactions. Dynamical behaviors of cells may be viewed as emergent properties
of the underlying biological interaction networks. Hence, systems biology approaches aim at study-
ing biological interaction networks to get insight of the cell functioning and a better understanding
of biological processes. Regulatory networks are usually represented in terms of signed, directed
graphs, whose nodes represent molecular components, and edges interactions between them (typi-
cally activations or inhibitions). These static graphs, called regulatory graphs (RG), are endowed
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with a set of mathematical parameters coding for the dynamics, and defining a finite dynamical
system (FDS) associated to a transformation of a state space. Clearly, this FDS contains the struc-
ture of the underlying interaction network (i.e. the RG), namely the edges between components,
their direction and sign (+ for activation, - for inhibition). Different FDS may correspond to the
same RG, but the topological structure of the RG constraints the possible dynamical behaviors of
the system, particularly in term of asymptotical behavior (e.g. an acyclic graph can only generate
a unique stable state [Robert, 1986, Shih and Dong, 2005]). One of the challenging task is to em-
phasize and describe these links between properties of the dynamics (FDS) and properties of the
topology of the RG. A way to address this question is to focus on specific topological motifs (i.e.
small subnetworks) present in the graph, and their role in the dynamics. Famous examples are the
regulatory circuits, also called feedback loops or feedback circuits, known to play significant dynam-
ical roles [Thomas and D’Ari, 1990]. In particular, positive regulatory circuits (involving an even
number of negative interactions) have been associated with multistability, and more generally with
the occurrence of multiple attractors, which may account for biological differentiation phenomena.
On the other hand, negative regulatory circuits (involving an odd number of negative interactions)
have been associated with sustained periodic behaviours (e.g. homeostasis) [Thomas, 1981]. Hence,
clearly, the complexity of the dynamics comes from the circuits. By the way, most important known
biological motifs contain circuits [Alon, 2007].

In this context, it is relevant to have a very precise knowledge of the behaviour of these motifs.
This paper presents an exhaustive analysis providing precise mathematical description of dynamics
of circuits, compared with those of chorded circuits. These motifs, in which a single edge is added
to a circuit (chord, or short-cut), are largely present in real biological networks. Such comparison
allows to understand the impact of edgetic alterations in the RG. Indeed the outcome of diseases
may be the consequence of network alterations [Baëza et al., 2015].

Hence, to each motif is associated a proper dynamics. When embedded in a RG, a motif may
be perturbated by the influence of incoming regulations: it is said functional whenever its expected
dynamics is conserved. This functionality is strongly context-dependant. An in-depth knowledge of
motifs contributes to the analysis of their functionality [Remy and Ruet, 2006, Comet et al., 2013].

Basic glossary Classical terms of graph theory can be found in [Bang-Jensen and Gutin, 2008].
Moreover, we will use in this manuscript the following terminology:

• Isolated (elementary) circuit: a connected directed graph with every vertex of in-degree and
out-degree equal to 1 (see Figure 1, left);

• Circuit: a subgraph of a regulatory graph amounting to an isolated circuit;

• Chorded circuit: circuit with a chord, possibly a self-loop (see Figure 1, right).

Notations and definitions

Notations 1. • For a ∈ {0, 1}, a = 1− a;

• For a ∈ {0, 1} and ε ∈ {±1}, aε =
{

a if ε = +1,
a if ε = −1.
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• For any n ≥ 1 and x ∈ {0, 1}n, x = (x1, . . . , xn) and xj = (x1, . . . , xj−1, xj , xj+1, . . . , xn).

Definitions 1. A state is an element x = (x1, . . . , xn) of X = {0, 1}n.
For any transformation T : X → X, and x ∈ X, we will consider the updating set

UpdT (x) = {i ∈ {1, . . . n} ; (T (x))i ̸= xi}.

A state x is stable if UpdT (x) = ∅. Hence, a stable state is a state invariant under the action
of T .

Remark 1. The stable states are fixed points of the transformation T . The unstable fixed points
are not captured within the logical modelling (cf [Snoussi and Thomas, 1993]).

In this work, we will be concerned with two types of regulatory graphs, whose vertices g1, g2, . . . , gn
are called components, endowed with a transformation of X (see Figure 1):

• Isolated circuits Cn(ε1, . . . , εn), with n ≥ 2 and for i ∈ {1, . . . , n}, εi ∈ {±1}. The sign of
Cn(ε1, . . . , εn) is given by the product ς =

∏n
i=1 εi.

The associated transformation is S, defined by: S(x1, x2, . . . , xn) = (xεnn , xε11 , . . . , x
εn−1

n−1 ).

• Chorded circuits CC⊥
n,q(ε1, . . . , εn; ε

(s)
n−q), with n − q ≥ 1, q ≥ 1, ⊥: {0, 1} × {0, 1} → {0, 1},

and for i ∈ {1, . . . n}, εi ∈ {±1}, ε(s)n−q ∈ {±1}.

The graph CC⊥
n,q(ε1, . . . , εn; ε

(s)
n−q) contains two circuits, a longer one Cn(ε1, . . . , εn) with sign

ς =
∏n

i=1 εi, and a smaller one Cn−q(ε1, . . . , εn−q−1, ε
(s)
n−q) with sign ς(s) = ε

(s)
n−q

∏n−q−1
i=1 εi.

The chorded circuit is said coherent if the signs of these two embedded circuits are identical
(ς ς(s) = +1); otherwise, it is said incoherent (ς ς(s) = −1).

The associated transformation S⊥ is defined by:

S⊥(x1, . . . , xn−q, . . . , xn) = (xεnn ⊥ x
ε
(s)
n−q

n−q , x
ε1
1 , . . . , x

εn−1

n−1 ) .

The considered chorded circuits are related to any given boolean function ⊥, but in this work we
deal with the cases ⊥∈ {and, or, xor} = {∧,∨,⊕}. Furthermore, the case n−q = 1 corresponds
to the situation where the chorded circuit is realised by a self-loop in the regulatory graph, also
called self-regulation of g1. All these instances are meaningful in biology.

For T = S and T = S⊥, the choice of updating rules determines the definition of dynamics.
We consider here two updating rules:

• the synchronous dynamics, with a simultaneous change of all the coordinates of the state x
specified by UpdT (x): any state has exactly one successor (possibly itself), and the dynamics
is deterministic;

• the asynchronous dynamics, with at most one coordinate change at a time: a state x has as
many successors as the cardinal of UpdT (x), and so the dynamics is non-deterministic.
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Figure 1: The two regulatory graphs considered: isolated circuit Cn(ε1, . . . , εn) (left); chorded
circuit CC⊥

n,q(ε1, . . . , εn; ε
(s)
n−q) (right).

We represent the dynamics by a directed graph, called the state transition graph (STG); the set
of nodes of the STG is X (the set of states), and each edge links two consecutive states in the
dynamics. In the synchronous case, the STG is also called the synchronous graph, which is nothing
else but the graph of the transformation. The synchronous graph of the transformation S (resp.
S⊥) is denoted by ξ (resp. ξ⊥). In the asynchronous case, the STG is also called the asynchronous
graph; it will be denoted by ξa for the transformation S, and ξ⊥a for S⊥.

Remark 2. We start giving a priori signs to the interactions. In case of isolated circuits, this
univocally identifies the dynamics. However, in the presence of multiregulated components, the
dynamics may be more complex, and signs depending on the context can be infered from the logical
rules. This happens in xor situation, where these local signs may differ in some contexts from the
signs defined a priori.

2 Sections summary

In Section 3, we give a complete description of synchronous STGs of isolated cicuits and chorded
circuits, and we compare them.

The synchronous STG of an isolated circuit is studied in Section 3.1. It encompasses vertex-
disjoint cycles involving states with the same number of coordinates called for change, i.e. the same
number of ”updating calls”. The STG can be hierarchically organised in levels corresponding to
this number, which is even in the case of positive circuits, and odd in the case of negative circuits.
The global topology of the STG (number of cycles by level and their lengths) depends only on the
number of components and the sign of the circuit.

The synchronous STG of a chorded circuit is studied in Section 3.2. Comparing the syn-
chronous STG of a chorded circuit with the one of its long circuit reveals that only a subset of
states, called short-cut sensitive states (scs-states), behaves differently.

The dynamics obtained with or and and rules are symmetrical: ξ∧ can be obtained from ξ∨

by switching 0 and 1 for all component values. The topology of the STG depends on the number
of components, the place of the shortcut, the signs of the two intertwinted circuits. In contrast,
the topology of the STG obtained with the xor rule depends only on the number of components
and the place of the shortcut.
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In case of or and and logical rules, the synchronous STG contains terminal cycles:
- If the long circuit is positive, these cycles are found in the synchronous STG of the long

circuit. If the chorded circuit is coherent (positive small circuit), there are two stable states; if it is
incoherent (negative small circuit), there is only one stable state.

- If the long circuit is negative, the terminal cycles differ from those obtained for the long circuit.
If the chorded circuit is incoherent (positive small circuit), there is only one stable state; if it is
coherent (negative small circuit), there is no stable state.

Accordingly, a coherent chorded circuit and its corresponding long circuit have the same number
of stable states.

In the case of the xor rule, the synchronous STG is constituted of vertex-disjoint cycles. It
contains only one stable state, and cycles with pseudo-random sequence of states, whatever the
signs of the circuits.

Section 4 is analogous to Section 3 in the asynchronous case.
The asynchronous STG of an isolated circuit, studied in Section 4.1, is a connected graph.

Connections between vertex-disjoint cycles of a same level (defined in Section 3.1) create strongly
connected components, gathering states with the same number of successors. Only the two extremal
levels may be constitued of two disconnected states (cf Figure 6). The presence of two stable states
(and no cyclic attractor) caracterizes positive isolated circuits, and the presence of a cyclic attractor
(and no stable state), negative ones.

The asynchronous STG of a chorded circuit is studied in Section 4.2. As obtained in Section
3, the topology of the STG, and thus the dynamical properties, depend only on the sign of the two
circuits in case of or and and rules. The topology of the STG and the dynamics obtained with
the xor rule depends only on the number of components involved.

In case of or and and rules, the STG is obtained from that of the long circuit by changing the
direction of edges between pairs of sensitive states, if the small circuit is not a self-loop. Otherwise,
edges are suppressed or created. A coherent chorded circuit and its corresponding long circuit have
the same number and type of attractors, and in particular the same number of stable states. When
the chorded circuit is incoherent (the two circuits of different signs), there is a unique attractor (a
stable state).

The introduction of a short-cut skews the symmetrical dynamics of isolated . For example, in
case where both long and small circuits are positive, the basin of attraction of one of the stable
states is increased at the expense of the other one.

In case of xor logical rule, the asynchronous STG of a chorded circuit encompasses a unique
stable state as sole attractor.

Figure 2 summarizes the results.

Remark 3. For the sake of clarity, we use the term ”circuit” when we consider the regulatory
graph, and ”cycle” when we consider the STG, even if they are identical in terms of graph theory.

3 Synchronous dynamics

In this section we present a complete description of synchronous graphs ξ and ξ⊥, and compare
them.
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Isolated circuits and/or chorded
circuits

xor chorded circuits

Vertex-disjoint cycles
In each cycle, states with
the same number of
updating calls

Terminal cycles Vertex-disjoint cycles
Long pseudo-random
cycles
One stable state

S
y
n
ch

ro
n
o
u
s
S
T
G Positive circuits

Even numbers of
updating calls

Two stable states

Positive long circuits
Terminal cycles from the
synchronous STG of the
long circuit
• Coherent chorded
circuit
Two stable states
• Incoherent chorded
circuit
One stable state

Negative circuits
Odd numbers of

updating calls
No stable state

Negative long circuits
• Coherent chorded
circuit
No stable state
• Incoherent chorded
circuit
One stable state

Connected level structure
Levels form the SCCs
(except perhaps for the
two extremal levels), and
gather states with the
same number of successors

Deduced from the
asynchronous STG of the
long circuit
↪→ deleting or creating
edges if the short-circuit is
a self-loop
↪→ inverting edges
otherwise

Deduced from the
asynchronous STG of the
long circuit
↪→ deleting or creating
edges if the small circuit is
a self-loop
↪→ inverting edges
otherwise

A
sy

n
ch

ro
n
o
u
s
S
T
G Positive circuits

Even numbers of
successors

Two stable states

Positive long circuits
• Coherent chorded
circuit Two stable states
• Incoherent chorded
circuit One stable state

One stable state

Negative circuits:
Odd numbers of

successors
One terminal SCC

Negative long circuits
• Coherent chorded
circuit One terminal
SCC
• Incoherent chorded
circuit One stable state

Figure 2: Comparison of the structure of boolean synchronous and asynchronous dynamics of
isolated circuits (first column) and chorded circuits (second and third columns). SCC stands for
Strongly Connected Component.
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3.1 Synchronous dynamics of the isolated circuit Cn(ε1, . . . , εn)

From now on, the indices are considered modulo n, in other words they are elements of Z/nZ
(classes of integers modulo n). Moreover σ stands for the increment of 1 on Z/nZ.

Proposition 1. The synchronous application S is a one-to-one transformation (or permutation)
of X = {0, 1}n, and the synchronous graph ξ is composed of disconnected cycles.

Proof. The application S maps each state x = (x1, . . . , xn) ∈ X to a unique state y = Sx, where
(Sx)i+1 = (xi)

εi . Therefore S is a permutation of the finite set X, its inverse application being
given by (S−1y)i = (yi+1)

εi . Consequently, its graph ξ is composed of disconnected cycles.

The following properties concerning the sets UpdS(x) will lead to a complete description of
graph ξ.

Proposition 2. Given a state x, the set UpdS(Sx) is obtained from UpdS(x) by the action of σ :
UpdS(Sx) = σ(UpdS(x)).

Proof. By the definition of UpdS , the index j+1 is an element of UpdS(Sx) as soon as (S2x)j+1 ̸=
(Sx)j+1. This is equivalent to x

εj−1εj
j−1 ̸= x

εj
j , i.e. x

εj−1

j−1 ̸= xj . Thus, the assertion j + 1 ∈ UpdS(Sx)
is equivalent to j ∈ UpdS(x).

Proposition 3. Let P be a subset of {1, . . . , n} with k elements.

1. In the case of positive circuit, if k is even, there exists exactly two states x and y in X such
that UpdS(x) = UpdS(y) = P , which are mirroring each other (y = x̄). In particular, there
exists two stable states (case k = 0). If k is odd, there is no state x such that UpdS(x) = P .

2. In the case of negative circuit, if k is odd, there exists exactly two states x and y in X such
that UpdS(x) = UpdS(y) = P , which are mirroring each other (y = x̄). If k is even, there is
no state x such that UpdS(x) = P . In particular, there is no stable state.

Proof. Let P be a subset of {1, . . . , n} with k elements, and let us denote ηi = −εi if (i+ 1) ∈ P ,
and ηi = εi otherwise.
Then, as soon as its first coordinate x1 is given, a state x satisfies UpdS(x) = P if and only if x2 =
xη11 , x3 = xη22 = xη1η21 , . . . , xn = x

ηn−1

n−1 = x
η1η2...ηn−1

1 , with the additional condition x1 = xη1...ηn1 , i.e.∏n
i=1 ηi = +1.

• If k is even, then
∏n

i=1 εi =
∏n

i=1 ηi = +1 requires a positive circuit; two mirroring states
x and y are then satisfying UpdS(x) = UpdS(y) = P , one with x1 = 0 and the other with
x1 = 1. In particular, there are two stable states if the circuit is positive.

• If k is odd, then
∏n

i=1 εi = −
∏n

i=1 ηi = −1 requires a negative circuit; as in the previous
case, two mirroring states are then associated to P . In particular, there is no stable state if
the circuit is negative.

Proof of Lemma 1 relies on the theory of group actions (see for example [Lang, 1997] - page
25).
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Lemma 1. Let P be a subset of {1, . . . , n} with k elements, m the smallest positive integer such
that σm P = P , and δ = km

n ; then δ is an integer.

Proof. Let us identify {1, . . . , n} and Z/nZ. The group Z/nZ acts on subsets P of Z/nZ with
k elements by translation: r.P = σrP . The isotropy group of P for this action, Stab(P ) = {r ∈
Z/nZ;σr P = P}, is a subgroup of Z/nZ with d = n

m elements. Moreover, the equality σm P = P
forces P to be union of classes of Z/nZ modulo Stab(P ), which implies that d divides k.

Proposition 4. Let P be a subset of {1, . . . , n} with k elements, m the smallest positive integer
such that σm P = P , and δ = km

n .

1. If the circuit is positive and k is even, the number of states x such that UpdS(x) = σr P , for
some natural integer r, is equal to 2m. These states are spread, in the synchronous graph ξ,
either in 2 cycles of length m if δ is even, or in one cycle of length 2m if δ is odd.

2. If the circuit is negative and k is odd, the number of states x such that UpdS(x) = σr P , for
some natural integer r, is equal to 2m. These states are spread, in the synchronous graph ξ,
in one cycle of length 2m.

Proof. We use notation of proofs above, and we suppose that k is even if the circuit is positive,
and odd otherwise.
By previous properties, for a fixed natural integer r, there are two mirroring states x and y satisfying
UpdS(x) = UpdS(y) = σr P . So, there exist 2m states x such that UpdS(x) = σr P for some natural
integer r.
These 2m states are spread either in one cycle, or in two cycles having same length, depending on
whether Smx is equal to x or its mirror. To determine in which situation we are, it is sufficient to
compare (Smx)m+1 and xm+1. But we have

(Smx)m+1 = x
ε(m+1)−1...ε(m+1)−m

(m+1)−m = xε1...εm1

and
xm+1 = xη1...ηm1 ,

so that (Smx)m+1 = xm+1 if and only if ε1 . . . εm = η1 . . . ηm, i.e. if and only if δ = k
d is even.

Thus, Proposition 3 and 4 allow to give a description of the structure of the synchronous
dynamics of the isolated circuits as follows.

Theorem 1. Let ς be the sign of Cn(ε1, . . . , εn).

1. If ς = +1, the synchronous graph ξ involves, for each even integer k ≤ n, self mirroring cycles
and pairs of mirroring cycles regrouping all the states with k updating orders. In particular,
ξ involves two mirroring stable states.

2. If ς = −1, the synchronous graph ξ involves, for each odd integer k ≤ n, self mirroring cycles
and pairs of mirroring cycles regrouping all the states with k updating orders. In particular,
ξ involves no stable state.

Remark 4. This structure leads naturally to gather states x for which UpdS(x) has k elements. We
call ”states of the kth level” the states x such that #UpdS(x) = k (see section 4.1 and particularly
Theorem 8).
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We now focus on iterates of a given state x under S. As seen previously, the sequence (Six)i≥0

is periodic with shortest period m or 2m, depending on the parity of δ. Remark that this period is
dependant on x.

Proposition 5. Let x be a state.

1. If the circuit is positive, we have Snx = x, and the sequence (Six)i≥0 is periodic with period
n.

2. If the circuit is negative, we have Snx = x, and the sequence (Six)i≥0 is periodic with period
2n.

Proof. This is the immediate consequence of the equality (Sx)i+1 = (xi)
εi .

Finally, we give a specific representation of the sequence (Six)i≥0 of iterates of x, helpful to
study the case of chorded-circuits (section 3.2). These iterates are laid out in a rectangular array
with n columns and an infinite number of lines (see Figure 3, left). Remark that the diagonals
form a periodic sequence (δi)i∈N taking values in a set of two elements, [0] = 00ε10ε1ε2 . . . 0ε1...εn−1

and its mirror [1] = 11ε11ε1ε2 . . . 1ε1...εn−1 . We extend the sequence (δi)i∈N on {−1, . . . ,−(n − 1)},
so that δi = [x

ε1...ε−i

−i+1 ].

The following Proposition 6 is obvious thanks to Proposition 5, and has an interesting direct
consequence on the dynamics of Cn(ε1, . . . , εn) (see Theorem 2 in synchronous case, and Theorem
7 in asynchronous case).

Proposition 6. Let ς denote the sign of Cn(ε1, . . . , εn). Given a state x and i ≥ 1 − n, let ui be
the element of {0, 1} such that δi = [ui], so that ui = (Si(x))1 for i ≥ 0. The sequence (ui)i≥1−n is
periodic and follows the recurrence relation

ui = uςi−n, for i ≥ 1.

Theorem 2 is a corollary of Proposition 4. The proof presented uses techniques that will be
further adapted for the study of chorded circuits (see Theorem 3).

Theorem 2. The topology of ξ depends only on n and the sign ς of Cn(ε1, . . . , εn): the number of
cycles of ξ and the lengths of these cycles depend only on these values.

Proof. Given initial conditions for the sequence (ui)i≥1−n introduced in Proposition 6, that is given

(u1−n, . . . , u0), there is a relationship between the iterates of the state x = (u0, u
ε1
−1, u

ε1ε2
−2 , . . . , u

ε
1...εn−1

1−n )

under S and (ui)i≥1−n, given by the equalities Si(x) = (ui, u
ε1
i−1, u

ε1ε2
i−2 , . . . , u

ε
1...εn−1

i+1−n ) for i ≥ 0. There-
fore, varying the initial conditions provides sequences (ui)i≥1−n which fully describe the topology
of ξ, in which the cycles are linked to their periodic behaviour.

3.2 Synchronous dynamics of the chorded circuit CC⊥
n,q(ε1, . . . , εn; ε

(s)
n−q)

The addition of a chord in the circuit creates a short-cut. We compare the dynamics of chorded

circuits CC⊥
n,q(ε1, . . . , εn; ε

(s)
n−q) with those of circuits Cn(ε1, . . . , εn) to emphasize the effects of the

short-cut. For this we should naturally consider the states x for which S⊥(x) ̸= S(x).
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Definition 1. A state x is a short-cut sensitive state (or a scs-state) if S⊥(x) ̸= S(x), i .e. if

xεnn ⊥ x
ε
(s)
n−q

n−q ̸= xεnn .

The synchronous graph ξ⊥ is obtained from ξ by diverting for each scs-states x the edge from

x to S(x) toward S(x)
1
; this allows to describe the topology of ξ⊥ from the one of ξ.

In the same way as in subsection 3.1, we represent the sequence (S⊥i(x))i≥0 in an array with
n columns and an infinite number of lines (see Figure 3, center and right). The diagonals form a
sequence (δi)i∈N taking values in the set of two elements, [0] = 00ε10ε1ε2 . . . 0ε1...εn−1 and its mirror
[1] = 11ε11ε1ε2 . . . 1ε1...εn−1 . We can extend the sequence (δi)i∈N on {−1, . . . ,−(n − 1)}, so that
δi = [x

ε1...ε−i

−i+1 ]. This representation is convenient to prove the following result, providing a key
ingredient for the study of attractors in the synchronous dynamics.

Proposition 7. Let ς denote the sign of Cn(ε1, . . . , εn), and ς(s) the sign of Cn−q(ε1, . . . , εn−q−1, ε
(s)
n−q).

Given a state x, let ui be the element of {0, 1} such that δi = [ui], for i ≥ 1−n, so that ui = (S⊥i(x))1
for i ≥ 0. The sequence (ui)i≥1−n follows the recurrence relation

ui = uςi−n ⊥ uς
(s)

i−n+q , for i ≥ 1.

Moreover, the sequence (ui)i≥1−n is ultimately periodic.

Proof. For i ≥ 1, we set up the relation ui = uςi−n ⊥ uς
(s)

i−n+q from the fact that (S⊥i(x))1 =

(S⊥(i−1)(x))εnn ⊥ (S⊥(i−1)(x))
ε
(s)
n−q

n−q , and that (S⊥(i−1)(x))n is the component of δi−n of rank n, and

(S⊥(i−1)(x))n−q the component of δi−(n−q) of rank n− q.
The fact that (ui)i≥1−n is ultimately periodic is an immediate consequence of the fact that {0, 1}n
is a finite set.

Theorem 3. The topology of ξ⊥ depends only on n, q and the signs ς of Cn(ε1, . . . , εn) and ς(s) of

Cn−q(ε1, . . . , εn−q−1, ε
(s)
n−q); in particular the number and the nature of attractors of the synchronous

dynamics of CC⊥
n,q(ε1, . . . , εn; ε

(s)
n−q) depend only on these values.

Proof. Given initial conditions for the sequence (ui)i≥1−n introduced in Proposition 7, that is given

(u1−n, . . . , u0), there is a relationship between the iterates of the state x = (u0, u
ε1
−1, u

ε1ε2
−2 , . . . , u

ε
1...εn−1

1−n )

under S⊥ and (ui)i≥1−n, given by the equalities S⊥i(x) = (ui, u
ε1
i−1, u

ε1ε2
i−2 , . . . , u

ε
1...εn−1

i+1−n ) for i ≥ 0.
Therefore, varying the initial conditions provides sequences (ui)i≥1−n which fully describe the topol-
ogy of ξ⊥. In particular, the attractors of the dynamics are linked to the ultimately periodic behavior
of this sequences.

Remark 5. In addition to the equalities S⊥i(x) = (ui, u
ε1
i−1, u

ε1ε2
i−2 , . . . , u

ε
1...εn−1

i+1−n ) used in the previous

proof, it must be noted that for i ≥ 1 the state S⊥i(x) is a scs-state if and only if ui ̸= uςi−n.

Finally, the following proposition is obvious, but should be pointed out and will be completed
in the cases ⊥∈ {and, or, xor} in next subsections.

Proposition 8. The cycles of the synchronous dynamics of Cn(ε1, . . . , εn) not including any scs-

state of CC⊥
n,q(ε1, . . . , εn; ε

(s)
n−q) are attractors of the synchronous dynamics of CC⊥

n,q(ε1, . . . , εn; ε
(s)
n−q).

10



3.2.1 Synchronous dynamics of the chorded circuits and and or

The following property shows that the dynamics of S∨ can be immediately deduced from the
dynamics of S∧. Thus, without loss of generality, we only consider the case S∧.

Proposition 9. The dynamics of S∨ is deduced from the dynamics of S∧ by mirroring.

Proof. Let us denote by mir the transformation X → X which associates x to x. From the
equality a ∨ b = ā ∧ b̄, it follows that S∨ = mir ◦ S∧ ◦mir, and consequently, for k ≥ 1, (S∨)k =
mir ◦ (S∧)k ◦mir. This proves the property.

In the following, we compare the dynamics of CC∧
n,q to the one of Cn.

In case of CC∧
n,q, the scs-states x are those for which xεnn ∧x

ε
(s)
n−q

n−q ̸= xεnn , in other words (xn, xn−q) =

(1εn , 0ε
(s)
n−q). Consequently, the synchronous graph ξ∧ is obtained from ξ by diverting for each scs-

states x the edge from x to S(x) toward S(x)
1
, so that the first coordinate of S∧(x) is equal to

0.
In addition, it is interesting, to specify the topology of ξ∧, to determine the antecedents x of a

state y ∈ X by the transformation S∧, namely the states x such that S∧(x) = y.

Proposition 10. Let y be an element of X.

• if y1 = 1 and yn−q+1 = 0εn−q ε
(s)
n−q , then y has no antecedent by S∧,

• if y1 = 0 and yn−q+1 = 0εn−q ε
(s)
n−q , then y has 2 antecedents, the state x such that S(x) = y,

and the scs-state xn,

• otherwise y has 1 antecedent, the state x such that S(x) = y.

Proof. If x verifies S∧(x) = y, i .e. (xεnn ∧x
ε
(s)
n−q

n−q , x
ε1
1 , . . . , x

εn−1

n−1 ) = (y1, y2, . . . , yn−q, . . . , yn), then for
i = 1, . . . , n − 1 the components xi are univocally determined by the equality xi = yεii+1, but the

last component xn satisfies the constraint xεnn ∧ x
ε
(s)
n−q

n−q = xεnn ∧ y
εn−q ε

(s)
n−q

n−q+1 = y1. Therefore,if y1 = 1

and y
εn−q ε

(s)
n−q

n−q+1 = 0, then y has no antecedent by S∧; if y1 = 0 and y
εn−q ε

(s)
n−q

n−q+1 = 0, then y has 2
antecedents, the unique state x such that S(x) = y, and xn; otherwise, y has 1 antecedent, the
unique state x such that S(x) = y.

We are interested in the sequence (S∧ix)i≥0, in order to determine the attractors of the syn-
chronous graph ξ∧. In the notation of Proposition 7, the sequence (ui)i≥1−n associated to x is

given by ui = uςi−n ∧ uς
(s)

i−n+q, for i ≥ 1.
For the purpose of next result, we recall that the 2-adic valuation v2(m) of a non-zero integer

m is the highest exponent α such that 2α divides m.

Theorem 4. Let ς be the sign of Cn(ε1, . . . , εn), and ς(s) the sign of Cn−q(ε1, . . . , εn−q−1, ε
(s)
n−q).

1. If ς = +1, the synchronous dynamics of the chorded circuit CC∧
n,q(ε1, . . . , εn; ε

(s)
n−q) involves

two stable states if ς(s) = +1, and one stable state if ς(s) = −1. Moreover, the attractors of
this dynamics are the cycles of the synchronous graph ξ of Cn(ε1, . . . , εn) not including any

scs-state of CC∧
n,q(ε1, . . . , εn; ε

(s)
n−q).
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2. If ς = −1, this dynamics involves one stable scs-state if ς(s) = +1, and no stable state if
ς(s) = −1. Moreover:

• In the case ς(s) = +1, none of the attractors is a cycle of the synchronous graph ξ if and
only if v2(q) ̸= v2(n).

• In the case ς(s) = −1, none of the attractors is a cycle of the synchronous graph ξ if and
only if v2(q) ≤ v2(n).

Proof. We have already noted that the cycles of ξ without any scs-state are attractors of the

synchronous dynamics of CC∧
n,q(ε1, . . . , εn; ε

(s)
n−q) (see Proposition 8). Moreover, Theorem 3 enables

to restrict the study of attractors to four ”generic” examples, namely CC∧
n,q(+1, . . . ,+1,±1;±1).

1. If ς = +1, let x be an element ofX, and (ui)i≥1−n the sequence associated to x as above. Then
the n-tuple (uj+n, uj+n+1, . . . , uj+2n−1) is obtained from (uj , uj+1, . . . , uj+n−1) replacing by
0 the components equal to 1 related to scs-states of the sequence (S∧ix)i≥0 (see Remark
5). Thus the number of 0 in (uj+kn, uj+kn+1, . . . , uj+(k+1)n−1) increases with k, and becomes
constant for k great enough. From then onwards, the sequence (ui)i is periodic with period
n, so that (S∧ix)i no longer contains scs-states, and the conclusion follows.

To study the number of stable states, we assume that ε1 = · · · = εn = +1. Based on the
foregoing, these states are among the stable states of Cn(+1, . . . ,+1), that is (0, . . . , 0) and

(1, . . . , 1). It is then easy to verificate that either ε
(s)
n−q = +1 and both are stable states of

CC∧
n,q(+1, . . . ,+1; ε

(s)
n−q), or ε

(s)
n−q = −1 and only (0, . . . , 0) is suitable.

2. If ς = −1, it is easily seen that concerning CC∧
n,q(+1, . . . ,+1,−1;+1) the scs-state (0, . . . , 0)

is the only stable state, and that there is no stable state for CC∧
n,q(+1, . . . ,+1,−1;−1).

• If ς(s) = +1, consider an element x of X, and (ui)i≥1−n the associated sequence, which
satisfies ui = ui−n∧ui−(n−q). Using similar arguments as those given in the case ς = +1

and ς(s) = −1, the (n-q)-tuple (uj+(n−q), uj+(n−q)+1, . . . , uj+2(n−q)−1) is obtained from
(uj , uj+1, . . . , uj+(n−q)−1) replacing by 0 the components equal to 1 related to terms of

(ui)i such that ui = u−1
i−n ∧ ui−(n−q) = 0 and ui−(n−q) = 1. Thus the number of 0

increases with k in (uj+k(n−q), uj+k(n−q)+1, . . . , uj+(k+1)(n−q)−1), and becomes constant
for k great enough. From then onwards, the sequence (ui)i is periodic with period (n−q).

We suppose now that the iterates S∧i(x) are for i great enough nodes of a cycle of ξ, that
is ui+n = ui, according to Remark 5. This condition leads to the following implications:
for i great enough, ui = 0 implies ui+q = 1, and, shifting right by n indices, ui = 1
implies ui+q = 0. Suppose that v2(q) > v2(n); then there exists a value of k such that
(2k + 1)q is of the form 2hn, in contradiction with ui+(2k+1)q = ui = ui+2hn for i
great enough: none of the attractors is a cycle of ξ. Suppose that v2(q) < v2(n); then
v2(n− q) = v2(q) < v2(n), and there exists a value of k such that k(n− q) is of the form
(2h+1)n, in contradiction with ui+k(n−q) = ui = ui+(2h+1)n for i great enough: none of
the attractors is a cycle of ξ.

Lastly, suppose that v2(q) = v2(n) = α; then let (ui)i≥1−n be a sequence of zeros and
ones such that ui+2α = ui, for i ≥ 2α + 1 − n. It can then be easily seen that this
sequence is associated to a state, node of an attractor which is a cycle of ξ.
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• If ς(s) = −1, similarly, the iterates S∧i(x) are nodes of a cycle of ξ if and only if ui+n = ui
for i great enough, which gives this time that ui = 0 implies ui+q = 0, and thus ui+kq = 0
for k ≥ 0; shifting right by n indices shows that ui = 1 implies ui+kq = 1 for k ≥ 0.

But then, if v2(q) ≤ v2(n), there exists a value of k such that kq is of the form (2h+1)n,
in contradiction with ui+kq = ui = ui+(2h+1)n for i great enough: none of the attractors
is a cycle of ξ.

Now, suppose that v2(q) > v2(n), and remark that if kq is of the form r+(2h+1)n, and
k′q of the form r′+2h′n, with 0 ≤ r, r′ < n, then r = r′ gives (k−k′)q = (2(h−h′)+1)n,
which contradicts the supposition that v2(q) > v2(n). Therefore kq and k′q have different
remainders modulo n, which allows to construct states which iterates under S∧ are nodes
of a cycle of ξ, and completes the proof.

Remark 6. 1. In the case ς = ς(s) = +1, it is easy to give a more detailed description of the
attractors. Indeed, using the generic example CC∧

n,q(+1, . . . ,+1;+1), the states contained in
attractors are the states x = (x1, . . . , xn) such that xk = 0 implies xk+q = 0, considering
the indices modulo n. Given the fact that multiples of q take n

gcd(n,q) values modulo n, if
moreover n and q are relatively prime, then the two stable states are the only attractors of

the synchronous dynamics of CC∧
n,q(ε1, . . . , εn; ε

(s)
n−q); this is in particular the case when the

short-cut is a self-activation of g1.

In the case ς = +1 and ς(s) = −1, we can consider the generic example CC∧
n,q(+1, . . . ,+1;−1),

for which the states contained in attractors are the states x = (x1, . . . , xn) such that xk = 1
implies xk+q = 0, considering the indices modulo n. This implies for instance that the stable

state is never the only attractor of the synchronous dynamics of CC∧
n,q(ε1, . . . , εn; ε

(s)
n−q).

2. If ς = −1, the synchronous dynamics is more complicated, involving for the most part cycles
that were not present in the case of an isolated circuit.

The case ς = −1 and ς(s) = +1 should be brought closer to the case ς = +1 and ς(s) = −1,

switching roles of Cn(ε1, . . . , εn) and Cn−q(ε1, . . . , εn−q−1, ε
(s)
n−q), as it is done in the proof of

theorem 4.

Remark 7. In cases or and and, a coherent chorded circuit have the same number of stable states
than its corresponding long isolated circuit. An incoherent chorded circuit has only one stable state.

Figure 4 provides illustrations of these results in the situation n = 4, and q = 1 in cases (II)
and (III), q = 3 in case (IV).

3.2.2 Synchronous dynamics of the chorded circuit xor

First of all, the boolean function ⊕ is identified with the addition modulo 2 on the finite field with
two elements F2 = {0, 1}.

We compare the synchronous dynamics of CC⊕
n,q to the one of Cn.

In case of CC⊕
n,q, the scs-states x are those for which xεnn ⊕x

ε
(s)
n−q

n−q ̸= xεnn , in other words xn−q = 1ε
(s)
n−q .

Consequently, the synchronous graph ξ⊕ is obtained from ξ by diverting for each scs-state x the
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edge from x to S(x) toward S(x)
1
. The difference with the ∧ and ∨ cases is that the first coordinate

of S⊕(x) can take any value (0 or 1).

Proposition 11. The transformation S⊕ is a one-to-one transformation of X, and the synchronous
graph ξ⊕ is composed of disconnected cycles.

Proof. If x verifies S⊕(x) = y, i .e. (xεnn ⊕ x
ε
(s)
n−q

n−q , x
ε1
1 , . . . , x

εn−1

n−1 ) = (y1, y2, . . . , yn−q, . . . , yn), then
for i = 1, . . . , n − 1 the components xi are univocally determined by the equality xi = yεii+1. The

last component xn satisfies xεnn ⊕x
ε
(s)
n−q

n−q = xεnn ⊕y
εn−q ε

(s)
n−q

n−q+1 = y1. This gives xn = (y1⊕y
εn−q ε

(s)
n−q

n−q+1 )εn ,

so that xn is also completely determined, and S⊕ realises a permutation of X. The graph ξ⊕ is
thus composed of disconnected cycles.

Following Proposition 7, we have ui = uςi−n ⊕ uς
(s)

i−n+q . Let us remark that

• either ς = ς(s), and ui = ui−n ⊕ ui−n+q for i ≥ 1,

• or ς ̸= ς(s), and the sequence (vi)i≥1−n = (ui ⊕ 1)i≥1−n satisfies vi = vi−n ⊕ vi−n+q for i ≥ 1.

Thus either (ui)i≥1 is a linear recurring sequence over the finite field F2, or both sequences
(ui)i≥1 and (vi)i≥1 are mirroring and (vi)i≥1 is a linear recurring sequence over F2. The statement
of Theorem 3 is thus simplified in case of xor rule in Theorem 5:

Theorem 5. The topology of ξ⊕ depends only on n and q; in other words, the number and the
lengths of the cycles of ξ⊕ depend only on these values.

Linear recurring sequences over finite fields received an increasing interest due to the wide
field of their applications, so that their mathematical properties are well known. We refer to
[Lidl and Niederreiter, 1986] for mathematical details.

The sequence u (or v depending on the (in)coherence) follows a linear recurrence relation asso-
ciated to the polynomial Xn +Xq + 1 over F2. For a better readability, it is useful to recall that
the order of a non constant polynomial P over F2 is the smallest positive integer e such that P
divides Xe − 1; the polynomial P is said to be primitive if its order is equal to 2m − 1, where m is
the degree of P .

Theorem 6. The synchronous dynamics of the chorded circuit CC⊕
n,q(ε1, . . . , εn; ε

(s)
n−q) involves one

stable state, (0, . . . , 0) if ς = ς(s), and (1, . . . , 1) otherwise. The state x∗ = (1, 0ε1 , 0ε1ε2 , . . . ,
0ε1...εn−1) in the case ς = ς(s), and the state (0, 1ε1 , 1ε1ε2 , . . . , 1ε1...εn−1) in the case ς ̸= ς(s), lead to
a cycle of maximal length r∗ of ξ⊕, where r∗ is the order of the polynomial Xn +Xq + 1 over F2.
The length r of any other cycle divides r∗.

In the particular case where P is irreducible, all the cycles other than the one reduced to the
stable state have same length, equal to r∗. Moreover, if the polynomial Xn +Xq + 1 is primitive,
then ξ⊕ is composed of two cycles, a cycle of length 1 corresponding to the stable state, and a cycle
of length r∗ = 2n − 1.

Proof. According to previous proposition and remarks, the equalities a⊕b = ā⊕ b̄ and a⊕ b = a⊕ b̄
show that it is sufficient to study the stable states of CC∧

n,q(+1, . . . ,+1;+1), which gives the state
(0, . . . , 0).
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In the case ς = ς(s), the state x∗ = (1, 0ε1 , 0ε1ε2 , . . . , 0ε1...εn−1) defines a sequence (ui)i≥1−n

which is the so called ”impulse response sequence in F2 satisfying ui = ui−n ⊕ ui−n+q ”. In
the case ς ̸= ς(s), the state (0, 1ε1 , 1ε1ε2 , . . . , 1ε1...εn−1) defines a sequence (ui)i≥1−n which leads to a
sequence (vi)i≥1−n defined as above, and (vi)i≥1−n is the impulse response sequence in F2 satisfying
vi = vi−n ⊕ vi−n+q .

Then the proposition is easy to check from well known properties of linear recurring sequences
over F2 (see [Lidl and Niederreiter, 1986]).

Some illustrative examples of values of n and q are presented below.

Example 1. Tables of primitive binary trinomials are available (see [Hansen and Mullen, 1992]),
in connection with research on random numbers generators and Mersenne prime numbers. For
instance, for (n, q) = (5, 2), (9, 4), (41, 3), (98, 11), (998, 121), (1508, 599)..., the trinomial Xn+Xq+
1 is primitive, and ξ⊕ includes a cycle of length 2n − 1. The same holds for Xn +Xn−q + 1, i.e.
for (n, q) = (5, 3), (9, 3), (41, 38), (98, 87), (998, 877), (1508, 909)...

Example 2. If n = 6 and q = 1 or 5, then Xn + Xq + 1 is primitive of order 63, which gives 1
stable state and 1 cycle of length 63.

If n = 6 and q = 3, then Xn +Xq + 1 is irreducible of order 9, which gives 1 stable state and 7
cycles of length 9.

If n = 6 and q = 2 or 4, then Xn+Xq +1 = (X
n
2 +X

q
2 +1)2, where X

n
2 +X

q
2 +1 is primitive

of order 7, and Xn + Xq + 1 is of order 14, which gives 1 stable state, 1 cycle of length 7 and 4
cycles of length 14.

4 Asynchronous dynamics

This section is devoted to the complete description of asynchronous graphs ξa and ξ⊥a , and their
comparison. This relies on the structure of ξ and ξ⊥.

4.1 Asynchronous dynamics of the isolated circuit Cn(ε1, . . . , εn)

Theorem 7. The topology of ξa depends only on n and the sign ς of Cn(ε1, . . . , εn); in particular
the number and the nature of attractors of the asynchronous dynamics depend only on these values.

Proof. Let us consider two circuits Cn(ε1, . . . , εn) and Cn(ε′1, . . . , ε′n) of sign ς, and let us denote
S and S′ the related transformations. Then, given initial conditions (u1−n, . . . , u0), the sequences
(ui)i≥1−n introduced in Proposition 6 are the same for both circuits, but associated to the iterates

of the states x = (u0, u
ε1
−1, u

ε1ε2
−2 , . . . , u

ε1...εn−1

1−n ) and x′ = (u0, u
ε′1
−1, u

ε′1ε
′
2

−2 , . . . , u
ε′1...ε

′
n−1

1−n ) respectively.
Thus the synchronous graph of Cn(ε′1, . . . , ε′n) is obtained from the one of Cn(ε1, . . . , εn), keeping the
edges, by a one-to-one transformation τ of the set X = {0, 1}n of nodes associating x′ to x. More

precisely, τ is defined by τ(x1, . . . , xn) = (x1, x
ε1ε′1
2 , . . . , x

ε1...εn−1ε′1...ε
′
n−1

n ), and satisfies τ ◦S = S′ ◦τ .
This implies that for i ∈ {1, . . . n} the equality (S(x))i ̸= xi is equivalent to (S′(τ(x)))i ̸= xi,
namely that UpdS(x) = UpdS′(τ(x)), and proves that the topology of the related asynchronous
graphs are the same.

Remark 8. Remark that Theorem 7 can be extended. First, the result does not depend of the
choice of the updating rules. Moreover, the map τ involved in the proof of Theorem 7 satisfying
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S′ = τ ◦ S ◦ τ−1 is an isometry of the hypercube [0, 1]n, being composed of hyperplane symmetries
transforming a state (x1, . . . , xn) into xj = (x1, . . . , xj−1, xj , xj+1, . . . , xn) for some fixed element
j of {1, n}. Hence, for a fixed sign, the asynchronous dynamics associated to Cn(ε1, . . . , εn) are
isometrical [Glass, 1975].

Let us recall that the synchronous graph ξ of Cn(ε1, . . . , εn) is composed of disconnected cycles
which can be gathered into levels, and that the kth level is made up of the states x for which
UpdS(x) has k elements. As we demonstrate below, these levels play a significant role in the
structure of the asynchronous graph ξa.

The sets UpdS(x) are contained in {1, . . . , n}, and until the end of this paragraph we consider
these integers modulo n.

Proposition 12. If there is an arc in ξa from the state x = (x1, . . . , xi−1, xi, xi+1, . . . , xn) towards
the state y = (x1, . . . , xi−1, x

−1
i , xi+1, . . . , xn), then we have:

UpdS(y) =

{
(UpdS(x)\{i}) ∪ {i+ 1} if i+ 1 /∈ UpdS(x),
UpdS(x)\{i, i+ 1} if i+ 1 ∈ UpdS(x).

In particular, #UpdS(y) = #UpdS(x) or #UpdS(y) = #UpdS(x)− 2.

Proof. We recall (cf. proof of Proposition 3) that a state x and its corresponding set UpdS(x) are
linked for j = 1, . . . , n through the equalities xj = x

η1...ηj−1

1 , where

ηj = ηj(x) =

{
εj if j + 1 /∈ UpdS(x),
−εj otherwise .

We define in the same way the numbers ηj(y). As states x and y differ only on the ith coordinate,
we have ηi−1(x) = −ηi−1(y), ηi(x) = −ηi(y), and ηj(x) = ηj(y) for all j /∈ {i − 1, i}. We deduce
UpdS(y) from these equalities.

Remark 9. Proposition 12 can be seen as a circular abacus in which each movement corresponds
to an arc of ξa. Hence, each path in ξa can be coded with an initial state x(1) together with the
sequence of movements trigged in the abacus UpdS(x

(1)), . . . , UpdS(x
(k)).

The following proposition and lemmas are used to provide the complete description of the
strongly connected components of ξa.

Proposition 13. If there is an arc in ξa from the state x towards the state y, then there is an arc
from the state S(x) towards the state S(y).

Proof. Let x = (x1, . . . , xn) be a state such that i ∈ UpdS(x); we have S(x) = (xεnn , xε11 , . . . , x
εn−1

n−1 )
and we have seen that i+ 1 ∈ UpdS(S(x)) (cf. Proposition 2). Hence, there is a link from x towards
y = (x1, . . . , xi−1, x

−1
i , xi+1, . . . , xn) and from S(x) towards z = (xεnn , xε11 , . . . , x

εi−1

i−1 , x
−εi
i , x

εi+1

i+1 , . . . , x
εn−1

n−1 )
in the graph ξa. We just have to remark that z = S(y) in order to conclude.

Lemma 2. Let’s assume that k ̸= 0 and k ̸= n, and let P1 and P2 be subsets of {1, . . . , n} with k
elements. Then for any state x for which UpdS(x) = P1, there exists a path in ξa from x towards
a state y for which UpdS(y) = P2.

Proof. By Proposition 12 above, it is easily seen that there is a path in ξa from x towards a state z
for which UpdS(z) = {1, . . . , k}, and a path from z towards a state y for which UpdS(y) = P2.
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Lemma 3. Let us assume that k ̸= 0 and k ̸= n. If a state x satisfies the condition UpdS(x) =
{1, . . . , k}, then there exists a path in ξa from x to the state x.

Proof. By Proposition 12, there is a path in ξa from x towards a state x(1) for which UpdS(x
(1)) =

{1, . . . , k − 1, k + 1}, a path from x(1) towards a state x(2) for which UpdS(x
(2)) = {1, . . . , k −

2, k, k+1}, and so on, until a path from a state x(k−1) towards a state x(k) for which UpdS(x
(k)) =

{2, . . . , k + 1}.
At this step of the process, with the notation x = (x1, . . . , xn), we have x

(k) = (x1, . . . , xk, xk+1, . . . , xn).
A path then links in ξa the state x(k) towards a state x(k+1) = (x1, . . . , xk+1, xk+2, . . . , xn) for which
UpdS(x

(k+1)) = {2, . . . , k, k+2} ; a path links x(k+1) towards a state x(k+2) = (x1, . . . , xk+2, xk+3, . . . , xn)
for which UpdS(x

(k+1)) = {2, . . . , k, k+3}, and so forth until x, for which UpdS(x) = {1, . . . , k}.

Lemma 4. Let’s assume that k ̸= 0 and k ̸= n. If a state x satisfies the condition #UpdS(x) = k,
then there exists a path in ξa from x towards the state x.

Proof. By Lemma 2, there exists in ξa a path from x towards a state y for which UpdS(y) =
{1, . . . , k}, and a path from y towards a state z for which UpdS(z) = UpdS(x). Proposition 3 then
gives z = x or z = x.
In the case z = x, we have obtained a path from x towards x.
In the case z = x, there is a path from y towards y by Lemma 3. To a path from y towards z, given
by Lemma 2 and denoted by y → y(1) → · · · → y(r) → z = x , relates a path y → y(1) → · · · →
y(r) → z = x, and we have obtained in the second case a path from x towards x, which completes
the proof.

Theorem 8. The asynchronous graph ξa is connected.

1. For k = 0 and k = n, the vertices of the kth level of the synchronous graph ξ (if this level
exists) form the strongly connected components of ξa reduced to a single vertex.

2. When k ̸= 0 and k ̸= n, the vertices of the kth level of the synchronous graph ξ (if this level
exists) form a strongly connected component of ξa.

Proof. We see at once the cases k = 0 and k = n, which are clear from Proposition 12.
The previous study of the levels of ξ (see Proposition 3) and Lemmas 2-4 establish the fact that
for k ̸= 0 and k ̸= n the vertices of the kth level of the synchronous graph ξ (if this level exists)
form a strongly connected subgraph of ξa.
Proposition 12 then shows that the only edges between strongly connected components of ξa reduced
to a single vertex and strongly connected subgraphs of ξa formed by the vertices of the other levels
of ξ link vertices of the kth level towards vertices of the (k − 2)th level: this proves that the
asynchronous graph ξa is connected, and completes the proof.

Consequently, one has the following proposition, describing the attractors.

Proposition 14. The attractors of the asynchronous dynamics of Cn(ε1, . . . , εn) are two stable
states in the case of a positive isolated circuit, and a single cyclic attractor in the case of a negative
isolated circuit.
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4.2 Asynchronous dynamics of the chorded circuit CC⊥
n,q(ε1, . . . , εn; ε

(s)
n−q)

First of all, as already noted, we show that the topology of the asynchronous graph ξ⊥a of S⊥

depends essentially on the signs of the associated isolated circuits.

Theorem 9. The topology of ξ⊥a depends only on n, q and the signs ς of Cn(ε1, . . . , εn) and ς(s)

of Cn−q(ε1, . . . , εn−q−1, ε
(s)
n−q); in particular, the number and the nature of attractors of the asyn-

chronous dynamics of CC⊥
n,q(ε1, . . . , εn; ε

(s)
n−q) depend only on these values.

Proof. The proof is the same as that of Theorem 7, considering chorded circuits CC⊥
n,q(ε1, . . . , εn; ε

(s)
n−q)

and CC⊥
n,q(ε

′
1, . . . , ε

′
n; ε

′(s)
n−q) such that the signs of the related associated isolated circuits are the same,

and their related transformations S⊥ and S⊥′
.

Then, given initial conditions (u1−n, . . . , u0), the sequences (ui)i≥1−n introduced in Proposition
7 are the same for both

Remark 10. Here again, the proof shows more generally that the topology of the state transition

graph of CC⊥
n,q(ε1, . . . , εn; ε

(s)
n−q) depends only on n, q, on the sign ς of Cn(ε1, . . . , εn) and on the

sign ς(s) of Cn−q(ε1, . . . , εn−q−1, ε
(s)
n−q), whatever the choice of updating rules defining the dynamics.

In the following proposition, we describe the modifications in order to obtain the asynchronous
graph ξ⊥a of S⊥ from the asynchronous graph ξa of S. The dynamics is modified only for the
scs-states, in the following way:

Proposition 15. Let us denote by E(ξa) (resp. E(ξ⊥a )) the set of edges of ξa (resp. ξ⊥a ).Then, for
every scs-state x,

• if (x, x1) ∈ E(ξa), then (x, x1) ̸∈ E(ξ⊥a );

• if (x, x1) ̸∈ E(ξa), then (x, x1) ∈ E(ξ⊥a ).

Proof. Given a state x, let us recall that S⊥(x) =

{
S(x)

1
if x is a scs-state,

S(x) otherwise.

Proposition 15 is an immediate consequence of these equalities.

Remark 11. If n − q ̸= 1, the transformation described in Proposition 15 remains to inverse the
edges between the pairs of scs-states of the form {x, x1}.

If n− q = 1 (self-regulation of g1), the transformation described in Proposition 15 remains, for

every scs-state x, to delete the edge between x and x1 if ε
(s)
1 = +1, and to add one if ε

(s)
1 = −1 .

Hence, ξ⊥a can easily be deduced from ξa, applying the modifications described above.

Notations 2. • Elements of sets UpdS(x) are considered modulo n.

• {1, . . . , n}+1 represents the subset of the even integers of {1, . . . , n}.

• {1, . . . , n}−1 represents the subset of the odd integers of {1, . . . , n}.

• As before, ς stands for the sign of Cn(ε1, . . . , εn).
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• For ς ∈ {−1,+1}, k ∈ {1, . . . , n}ς and i ∈ {0, 1}, we denote by z(k,i) the state such that

z
(k,i)
1 = i, and UpdS(z

(k,i)) = {n− k + 2, . . . , n− 1, n, 1} (Proposition 4 ensures the existence
of such a state). Hence, #UpdS(z

(k,i)) = k.

In addition, if ς = +1 and i ∈ {0, 1}, we denote by z(0,i) the states s.t. z
(0,i)
1 = i, and

UpdS(z
(k,i)) = ∅ (stable states with respect to S).

The interest of introducing these states appears in the following lemmas and propositions, giving
valuable information on the structure of ξ⊥a .

Lemma 5. If k ≥ 2, there is an edge from z(k,i) to z(k−2,i) common to ξa and ξ⊥a .

Proof. This is a direct consequence of Proposition 12, and Proposition 15 and the fact that the
first coordinate is not affected moving from z(k,i) to z(k−2,i).

Lemma 6. For i ∈ {0, 1}, let x be a state such that x1 = i and #UpdS(x) = k, with k ̸= 0 and
k ̸= n. There exists a path from x to z(k,i) common to ξa and ξ⊥a .

Proof. By Proposition 12, and considering the fact that 2 /∈ UpdS(z
(k,i)), it is easily seen that there

is a path in ξa from x towards z(k,i) s.t. for any state y of this path #UpdS(y) = k and the first
coordinate of y stays constant equal to i. This implies by Proposition 15 that the path is common
to ξa and ξ⊥a .

Theorem 10. 1. The asynchronous graph ξ⊥a is connected.

2. Moreover ξ⊥a involves at most two terminal strongly connected components (stable states or
cyclic attractors).

3. If ς = +1, these components (distinct or not) contain respectively z(0,0) and z(0,1). If ς = −1,
theses components (distinct or not) contain respectively z(1,0) and z(1,1).

4. Their basins of attraction contain respectively at least all states x s.t. x1 = 0, and at least all
states x s.t. x1 = 1.

Proof. The description of terminal SCCs and basins of attraction is an immediate consequence of
the previous lemmas.

Item 4 of the proposition then shows that the existence of an edge in ξ⊥a between states differing
by their first coordinate implies the connectivity of ξ⊥a .

Except in the case n − q = 1 and ε
(s)
1 = +1, Remark 11 shows that there are edges common

to ξa and ξ⊥a between such states. In the case n − q = 1, ε
(s)
1 = +1, the scs-states are the states

x = (x1, . . . , xn) s.t. x
εn
n ⊥ x1 ̸= xεnn . Let a and b be distinct elements of {0, 1} such that a ⊥ b = a

(such elements exist for ⊥∈ {∧,∨,⊕}). Then the state x = (b, x2, . . . , xn−1, a
εn) is not a scs-state,

and 1 ∈ UpdS(z
(k,i)). This completes the proof.

We are going to precise the number and the nature of these attractors in the cases of chorded
circuits and, or and xor. Let us remind that stable states are the same in the synchronous and
the asynchronous dynamics.
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4.2.1 Asynchronous dynamics of the chorded circuits and and or

The Proposition 9 shows that the asynchronous dynamics of S∨ is deduced from the one of S∧ by
mirroring, and therefore we continue to detail the case and.
We recall in this case the result of Theorem 9 : the topology of ξ∧a depends only on n, q and the

signs ς of Cn(ε1, . . . , εn) and ς(s) of Cn−q(ε1, . . . , εn−q−1, ε
(s)
n−q).

In the previous paragraph, we have seen how to obtain ξ∧a from ξa (Proposition 15):

• If n − q ̸= 1, we have to change the direction of the edges between the pairs of scs-states of
the form {x, x1}.

• In the special case n − q = 1, if x is a scs-state, that is (xn, x1) = (1εn , 0ε
(s)
1 ), then x1 is

not a scs-state, S(x) = (1, xε11 , . . . , x
εn−1

n−1 ) and S∧(x) = (0, xε11 , . . . , x
εn−1

n−1 ). Thus, if ε
(s)
1 = 1

(self-activation of g1), we have to delete the edges from all the scs-states x towards the states

x1, and if ε
(s)
1 = −1 (self-inhibition of g1), we have to create edges from all the scs-states x

towards the states x1.

The following proposition precises the number and the nature of attractors.

Proposition 16. Let ς be the sign of Cn(ε1, . . . , εn), and ς(s) the sign of Cn−q(ε1, . . . , εn−q−1, ε
(s)
n−q).

1. If ς = +1, the attractors of the asynchronous dynamics of the chorded circuit CC∧
n,q(ε1, . . . , εn; ε

(s)
n−q)

are two stable states if ς(s) = +1, and one stable state if ς(s) = −1.

2. If ς = −1, the attractors of the asynchronous dynamics of the chorded circuit CC∧
n,q(ε1, . . . , εn; ε

(s)
n−q)

are one stable state if ς(s) = +1, and a single cyclic attractor if ς(s) = −1.

Proof. From Theorem 10, the number of attractors is one or two.

1. If ς = +1 and ς(s) = +1, there exists two stable states, as proved in Theorem 4.

If ς = +1 and ς(s) = −1, Theorem 9 enables to restrict the study of attractors to the case
CC∧

n,q(+1, . . . ,+1,+1;−1). In this case, the state z(0,0) = (0, . . . , 0) is stable, whereas there

is an edge from z(0,1) = (1, . . . , 1) to (0, 1, . . . , 1). This implies by Theorem 10 that the stable
state z(0,0) constitutes the single attractor.

2. If ς = −1, Theorem 4 shows that there is one stable state. Wathever the sign of ς(s), one of
the states z(1,i) is not a scs-state, and there is an edge of commutation of its first coordinate
in ξ⊥a . This proves by Theorem 10 that the stable state constitutes the single attractor.

Remark 12. In other words, in the cases and and or, a coherent chorded circuit and its corre-
sponding long circuit have the same number and type of attractors, whereas an incoherent chorded
circuit has a unique attractor which is a stable state.
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The dynamics of Cn(ε1, . . . , εn) clearly presents a symmetry by mirroring, whatever the choice

of updating rules defining the dynamics. In CC⊥
n,q(ε1, . . . , εn; ε

(s)
n−q), this symmetry is disturbed by

the short cut. Let us recall that the bassin of attraction of an attractor is the set of states x for
which there exists a path from x towards a state of the attractor (not including the states of the
attractor). In the case ς = ς(s) = +1, we present the way the short cut creates a strict bassin of
attraction for one of the two stable states of ξ∧a , that is a set of states that do not belong to the
bassin of attraction of the other stable state.

As a matter of convenience, we first focus on the chorded circuit CC∧
n,q(+1, . . . ,+1,+1;+1).

The scs-states are then the states x s.t. (xn, xq) = (1, 0). Following the notations of the beginning
of the section, let us recall that the dynamics involves the two stable states z(0,0) = (0, . . . , 0) and
z(0,1) = (1, . . . , 1). More generally, z(k,0) = (0, . . . , 0, 01, . . . , 01) - with k

2 occurences of ”1” - and

z(k,1) = (1, . . . , 1, 10, . . . , 10) = z(k,0), for k ∈ {1, . . . , n}+1.

Lemma 7. In the graph ξ∧a associated with CC∧
n,q(+1, . . . ,+1,+1;+1), all the states x /∈ {z(0,0), z(0,1)}

are in the bassin of attraction of z(0,0).

Proof. Let us remark that the state z(2,1) = (1, . . . , 1, 0) is not a scs-state, considering that

(z(2,1))n = 0. Thus there is an edge from z(2,1) to z(2,1)
1
in ξ∧a , which gives the result by Lemmas

5 and 6.

Lemma 8. In the graph ξ∧a associated with CC∧
n,q(+1, . . . ,+1,+1;+1), the bassin of attraction of

z(0,0) includes all the states x /∈ {z(0,0), z(0,1)}. The bassin of attraction of z(0,1) includes 2n−2q−1
states, so that 2q − 1 states form a strict bassin of attraction of z(0,0).

Proof. Let x be a state such that x1 = 0 and #UpdS(x) = k, with k ≥ 2. Then the state
x does not belong to the bassin of attraction of z(0,1) if and only if UpdS(x) is contained in
{n− q+1, n− q+2, . . . , n, 1}, so that any path from x to a state y such that 1 belongs to UpdS(y)
makes y be a scs-state s.t. y1 = 0, and y1 cannot be updated. The number of elements of the strict
bassin of attraction of z(0,0) is thus

∑
0<k≤q+1

k∈{1,...,n}+1

(
q+1
k

)
= 2q − 1, by an easy calculation.

Theorem 11. In the asynchronous dynamics of the chorded circuit CC∧
n,q(ε1, . . . , εn; ε

(s)
n−q), with

ς = ς(s) = +1, the bassin of attraction of one of the two stable states, denoted by z0, includes all
the states except z0 and the other stable state z1. The bassin of attraction of z1 includes 2n− 2q − 1
states, so that 2q − 1 states form a strict bassin of attraction of z0.

Proof. This theorem is a direct consequence of Theorem 9 and the two previous lemmas.

Remark 13. Therefore, when the value of n is fixed, the strict bassin of attraction of z0 is all the

greater given that the circuit Cn−q(ε1, . . . , εn−q−1, ε
(s)
n−q) is small.
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4.2.2 Asynchronous dynamics of the chorded circuit xor

First of all, there is an interesting corollary of Theorems 5 and 9.

Proposition 17. The topology of ξ⊕a depends only on n and q.

We have already describe the way to get ξ⊕a from ξa (Proposition 15):

• If n − q ̸= 1, we have to change the direction of the edges between the pairs of scs-states of
the form {x, x1}.

• In the special case n− q = 1, if x is a scs-state, that is x1 = 1ε
(s)
1 , then x1 is not a scs-state,

S(x) = (xεnn , xε11 , . . . , x
εn−1

n−1 ) and S⊕(x) = (x−εn
n , xε11 , . . . , x

εn−1

n−1 ). Thus, if xn ̸= 1ε
(s)
1 εn , we

have to delete the edge from x towards x1, and if xn = 1ε
(s)
1 εn , we have to create an edge from

x towards x1.

We now precise the attractors.

Proposition 18. The attractors of the asynchronous dynamics of the chorded circuit CC⊕
n,q(ε1, . . . , εn; ε

(s)
n−q)

are reduced to a single stable state.

Proof. Proposition 17 enables to restrict the study of attractors to CC∧
n,q(+1, . . . ,+1,+1;+1). In

this case, the state z(0,0) = (0, . . . , 0) is a stable state, and there is an edge from z(0,1) = (1, . . . , 1)

to z(0,1)
1
= (0, 1, . . . , 1) in ξ⊕a . Then Theorem 10 and previous lemmas give the result.

Remark 14. Hence, in the case of the xor logical rule, the asynchronous STG of a chorded circuit
encompasses a unique stable state as sole attractor, as in the case of incoherent chorded circuits
and and OR. This should be related to the fact that using a xor rule amounts to introduce dual
regulations, which may be considered as a particular case of incoherent chorded motif.

5 Conclusion

Biological networks, and in particular regulatory networks, are more and more large and complex,
integrating the huge quantity of biological data and knowledge increasingly available. Hence, even
using qualitative formalisms as Boolean models, we face combinatorial explosion problem keeping us
from doing exhautive analysis. Among strategies used to cope with this problem, functional motifs
analysis is useful and efficient to understand the emergence of dynamical properties and identify
the main actors. Circuits are basic structures of such motifs, as they are known to be necessary for
the appearance of complex dynamical properties (as multistability or sustained oscillations).

The work presented here gives an exhaustive, precise and general description of the Boolean
dynamics of circuits and chorded circuits. The use of combinatorics, group actions and graph
theory make links between synchronous and asynchronous dynamics, and emphasize features of the
structure of the STG (e.g. symmetries). The dynamics of isolated and chorded circuits depend
only on few parameters (the length, sign and logical rules for chorded circuits).

This work paves the way for studies of more general and complex motifs, by adding edges or
coupling circuits for instance. A fine knowledge of the proper dynamics of isolated motifs is a
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prerequisite for the study of their functionality, i.e. to know if they keep their dynamical properties
when embedded in a large graph, and in which conditions. Furthermore, this study point out
invariants that lead to a classification of boolean FDS relying on these invariants. Thus, the study
of all the dynamics could be reduced to a representative per class, as emphasized in the proofs
hereby. In fine, the analysis of complex regulatory networks can be eased by a decomposition
in modules (or motifs) whose dynamics is exhaustively described. This leads to the problem of
recomposition of networks (functionality of modules).
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[Remy et al., 2016] Remy, É., Mossé, B., and Thieffry, D. (2016). Boolean Dynamics of Com-
pound Regulatory circuits. In Rogato, A., Guarracino, M., and Zazzu, V., editors, Dynamics of
Mathematical Models in Biology Bringing Mathematics to Life, pages 43—-53. Springer.
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A Appendix

Hierarchical Transition Graph of circuits and chorded circuits: a compressed
representation of the asynchronous dynamics

When possible, it is useful to generate the Hierarchical Transition Graph (HTG), a compressed
representation of the dynamics [Bérenguier et al., 2013]. It provides a large scale vision of the
trajectories, emphazing the main switches and cyclical behaviours, and loosing the detailed in-
formation of the STG. Its construction is in the same vein as the strongly connected component
graph, for which each node represents all the nodes of the STG belonging to a same complex
strongly connected component (SCC). But asynchronous STGs generated from biological networks
used to contain many ”single SCCs” (i.e. composed of only one element) and the SCC graph
remains large. The HTG compresses further the graph by gathering all the single SCCs leading to
the same complex SCCs and attractors. There is an edge between two nodes H1 and H2 of the
HTG if and only if there exists an edge in the STG between an element of H1 and an element of
H2 (see [Bérenguier et al., 2013] for more details). Thus, HTG provides an efficient compressed
visualisation of the STG, and thereby emphasizes the main structure and key decision points of the
dynamics.

In the case of circuits and chorded circuits, the structure of the HTG can be easily achieved by
the description of the asynchronous graph; significant examples are shown in Figure 6.
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1
11
111
1111
11111
111111
1111111
11111111
111111111
1111111111
01111111111
101111111111
1101111111111

x → 11101111111111
S(x) 11110111111111
S2(x) 11111011111111

11111101111111
11111110111111
11111111011111
11111111101111
11111111110111
11111111111011
11111111111101
11111111111110
11111111111111
01111111111111
10111111111111
11011111111111

S15(x) = x 11101111111111
...

...
01111111111
101111111111
1101111111111

x → 11101111111111
(scs) 11110111111111

01111011111111
10111101111111
11011110111111
11101111011111

(scs) 11110111101111
01111011110111
10111101111011
11011110111101
11101111011110

(scs) 01110111101111
00111011110111
10011101111011
11001110111101
11100111011110

(scs) 01110011101111
00111001110111
10011100111011
11001110011101
11100111001110

(scs) 01110011100111
00111001110011
10011100111001
11001110011100
01100111001110

(scs) 00110011100111
00011001110011
10001100111001
11000110011100
01100011001110

(scs) 00110001100111
00011000110011
10001100011001
11000110001100
01100011000110

(scs) 00110001100011
00011000110001
...

ss → 00000000000000

1
0 1
1 0 1
1 1 0 1

x (scs) 1 1 1 0 1
(scs) 0 1 1 1 0
(scs) 1 0 1 1 1

0 1 0 1 1
(scs) 1 0 1 0 1

0 1 0 1 0
(scs) 0 0 1 0 1

0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

(scs) 0 0 1 0 0
1 0 0 1 0
0 1 0 0 1

(scs) 1 0 1 0 0
1 1 0 1 0

(scs) 0 1 1 0 1
(scs) 0 0 1 1 0

1 0 0 1 1
1 1 0 0 1

(scs) 1 1 1 0 0
(scs) 1 1 1 1 0
(scs) 1 1 1 1 1
(scs) 0 1 1 1 1
(scs) 0 0 1 1 1

0 0 0 1 1
1 0 0 0 1
1 1 0 0 0

(scs) 0 1 1 0 0
(scs) 1 0 1 1 0

1 1 0 1 1
x (scs) 1 1 1 0 1

Figure 3: Iterations of the synchronous transformations These arrays represent the synchronous
trajectories from the state x. Left: isolated circuit C(n = 14, ς = +1); Center: chorded circuit with and
rule CC∧(n = 14, q = 9, ς(s) = +1, ς = +1); Right: chorded circuit with xor rule CC⊕(n = 5, q = 2). The
short-cut sensitive states are indicated with the abbreviation (scs), the stable state with ss.

25



Regulatory Graph Synchronous STG
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Figure 4: Regulatory graphs and their synchronous dynamics, with and or xor rules for chorded
circuits. (I) a 4-components positive isolated circuit; (II) a coherent positive chorded circuit; (III) an
incoherent chorded circuit; (IV) a positive circuit with a coherent self-regulation. Colors distinguish the
disjoints synchronous cycles of the STG of the isolated circuit, and the way they are spread in the different
cases of chorded circuits. Dashed arrows stand for transitions with more than two updated components; red
arrows represent transitions with only one component updated (conserved in the asynchronous STG).
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Regulatory graph Synchronous STG
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Figure 5: Regulatory graphs and their synchronous dynamics, with and rules for chorded
circuits. (I) a 4-components negative isolated circuit; (II) a coherent chorded circuit; (III) an incoherent
chorded circuit; (IV) a negative circuit with a coherent self-regulation. Colors distinguish the disjoints
synchronous cycles of the STG of the isolated circuit, and the way they are spread in the different cases of
chorded circuits. Dashed arrows stand for transitions with more than two updated components; red arrows
represent transitions with only one component updated (conserved in the asynchronous STG).
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Figure 6: Regulatory graphs and their asynchronous dynamics, with and rules for chorded
circuits. From left to right: regulatory graph; state transition graph (STG), and hierarchical transition
graph (HTG, compression of STG; cf Appendix A). Terms ”cc” and ”i” stand for cyclic and irreversible
components, respectively, while the number written after ”#” corresponds to the number of states encom-
passed by the component. (I) a 4-components positive isolated circuit; (II) a coherent positive chorded
circuit; (III) an incoherent chorded circuit; (IV) a positive circuit with a coherent self-regulation. Nodes of
the STG of the same color are gathered in the same node of the corresponding HTG.
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