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Abstract

In 1981 Unruh proposed that fluid mechanical experiments could be used

to probe key aspects of the quantum phenomenology of black holes. In par-

ticular, he claimed that an analogue to Hawking radiation could be created

within a fluid mechanical ‘dumb hole’, with the event horizon replaced by a

sonic horizon. Since then an entire sub-field of ‘analogue gravity’ has been

created. In 2016 Steinhauer reported the experimental observation of quan-

tum Hawking radiation and its entanglement in a Bose-Einstein condensate

analogue black hole. What can we learn from such analogue experiments? In

particular, in what sense can they provide evidence of novel phenomena such

as black hole Hawking radiation?
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1 Introduction

1.1 Types of Evidence

Different modes of inference can be understood as producing different types of ev-

idence in various senses.1 One sense is pragmatic: evidence produced by different

modes of inference can be split into different practical types in terms of the differ-

ent forms of action it rationally licences. Evidence based upon highly speculative

inferences is of a different practical type to evidence based upon highly reliable

inferences in that, for example, it cannot rationally licence risky actions. Even if

one is a professional astrologer, one should not decide to cross a busy road whilst

blindfolded based upon ones horoscope! As in everyday life, so in science. Evidence

based upon principles of parsimony or judgments of mathematical beauty is of a

different practical type to that based upon inductive generalisation of appropriately

validated experimental results. Whilst both have significant heuristic significance

1In our view, there is not presently available any fully philosophically satisfactory account of
evidence in science. Similar sentiments are expressed by (Cartwright et al. 2010). Here we offer
our own proto-account based upon intuitions regarding the different types of evidence. More
complete accounts, inadequate to our present purposes, are (Achinstein 2001) and (Roush 2005).

2



for science, only the latter can be defended as a rational basis for the design of a

nuclear power plant. This much is difficult to contest.

Problems begin when we consider modes of inference that are neither highly

speculative nor provenly reliable. Take computer simulation. In what sense do

computer simulations produce a different type of evidence to experiments? Are

simulations any less a reliable guide to action than experiments? In some cases it

seems not. We can and do build things based upon the evidence of computer sim-

ulations. We might not, however, think about computer simulations as producing

evidence of a form that can confirm a scientific theory. Rather such an evidential

role is often taken to be the providence of experiment. That is, although, in terms

of the practical actions it licences, evidence based upon computer simulations might

be taken to be of the same type as that based upon experiments, prima facie, the

two types of evidence should be understood as being of different epistemic types.

Prima facie, only evidence drawn from experiment can be taken to be of the type

that is potentially confirmatory.2 This creates a particular problem when we are

in a situation where experimental evidence is hard to come by. How do we test a

theory when we are unable to perform experiments to probe the class of phenomena

to which its predictions relate?

One idea, much discussed in the recent literature, is that we can obtain evidence

that is of a (potentially) confirmatory epistemic type by non-empirical means. For

example, arguments based on the observation of an absence of alternative theories

are claimed to, in certain circumstances, confer confirmatory support upon theories,

such as String Theory, whose predictions we cannot currently directly empirically

test (Dawid 2013; Dawid et al. 2014). A different approach to the problem con-

firming theories beyond the reach of direct empirical testing is to consider analogue

experiments. In this paper we will consider the idea of using analogue experiments

as a means of performing an ersatz empirical test of an important untested the-

oretical predictions of modern physics. We will consider whether or not evidence

gained from analogue experiments can be of the same epistemic type as evidence

gained from conventional experiment. We will do this by comparison with evidence

produced by speculative inferences that is of a type that cannot be understood as

confirmatory: evidence based upon arguments by analogy. We will largely set aside

questions concerning the characterisation of confirmation itself.3

2There are, in fact, good arguments that evidence from computer simulation and experiment
are of the same epistemic type. See (Parker 2009; Winsberg 2009; Beisbart and Norton 2012) for
discussion of this issue in the literature.

3Major approaches to confirmation theory (according to a relatively standard classification) are:
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1.2 Analogue Experiments

Our story starts with one of the most celebrated theoretical results of twentieth cen-

tury physics: Hawking’s (1975) semi-classical argument that associates a radiative

flux to black hole event horizons. Although almost universally believed by con-

temporary theoretical physicists, testing of this prediction of gravitational Hawking

radiation is verging on the physically impossible. The temperature of Hawking

radiation associated with a solar mass black hole is of the order of one hundred

million times smaller than the temperature of the cosmic microwave background.

Trying to detect astrophysical Hawking radiation in the night’s sky is thus like

trying to see the heat from an ice cube against the background of an exploding

nuclear bomb. Short of the construction of terrestrial micro-black holes (Scardigli

1999; Dvali and Redi 2008), any direct experimental test of Hawking’s prediction is

effectively physically impossible.

The genesis of analogue gravity comes from the problem of trying to indirectly

test Hawking’s argument. Inspired by the analogy with sound waves in a waterfall,

Unruh (1981) showed that Hawking’s semi-classical arguments can be applied to

sonic horizons in fluids. This work spurred the creation of an entire sub-field of ‘ana-

logue gravity’ that features theoretical, and in some cases experimental, condensed

matter analogues to a variety of systems including both Schwarzschild black holes

and the entire universe (Barceló et al. 2011). The most crucial experimental results

thus far have been achieved by Steinhauer (2014, 2016) working with Bose-Einstein

condensates at the Technion in Israel. The experiment reported in the 2016 paper

is particularly significant and, as discussed in Section §5, can reasonably be inter-

preted as the first conclusive confirmation of the existence of quantum Hawking

radiation in an analogue system.

It remains to seen, however, what such analogue experiments in fact tell us

about gravitational systems. In particular what kind of evidence regarding the

‘target systems’ (i.e. black holes) do we gain based upon experiments on the ‘source

systems’ (i.e. Bose-Einstein condensates). Can analogue experiments provide us

with evidence of the same epistemic type as conventional experiments? Or should

we think of them as speculative inferences, producing evidence of the same epistemic

type as arguments by analogy? In this paper we will attempt to answer such

questions, partially drawing inspiration from the work of Dardashti et al. (2015,

confirmation by instances, hypothetico-deductivism, and probabilistic or Bayesian approaches.
See (Crupi 2013) for more details. For related discussion of different concepts of evidence see
(Achinstein 2001).
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2016).

Ultimately, we will conclude that there is a plausible theoretical basis to ‘exter-

nally validate’ analogue black hole experiments such that a BEC analogue black hole

can be taken to ‘stand in’ for an astrophysical black hole. This gives us one example

where analogue experiments can provide us with evidence of the same confirmatory

epistemic type as conventional experiments. It does not, however, speak to the

question of the significance of confirmation. Is it reasonable to think, in quantitive

terms, that analogue experiments can provide a comparable degree of confirmation

to conventional experiments? Can they be substantially confirmatory rather than

merely incrementally confirmatory? Such questions bring us beyond the scope of

the present paper. However, there are reasons to be optimistic. As shown by a

recent analysis in terms of Bayesian confirmation theory (Dardashti et al. 2016),

given experimental demonstration of an array of analogue Hawking effects across a

variety of different mediums the degree of confirmation conferred can be amplified

very quickly. It is thus very plausible to think of analogue experiments prospective

means for providing confirmatory support that is substantial, rather than merely

incremental.

2 Analogy and Experiment

Consider the following two examples of successful scientific practice.4 In 1934 it was

observed by a pharmacologist named Schaumann that the compound meperidine

had the effect of inducing an S-shaped curved tail when given to mice. This effect

was only previously observed when morphine was given to mice. Together with the

similarity in chemical structure, this analogy between the drugs lead Schaumann

to reason that meperidine might share morphine’s narcotic effects when given to

humans. This then proved to be the case. A Bose-Einstein condensate (BEC) is

an exotic form of matter that Bose (1924) and Einstein (1924, 1925) predicted to

exist for a gas of atoms when cooled to a sufficiently low temperature. In 1995, the

experimental demonstration of the existence of a BEC was provided using super-

cooled dilute gases of alkali atoms (Anderson et al. 1995). The crucial observation

was a sharp increase in the density of the gas at a characteristic frequency of the

lasers used for cooling.

The type of inference and type of evidence involved in our two examples are

4The first example is taken from (Bartha 2013) and the second example is taken from (Franklin
and Perovic 2015, Appendix 3).
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very different. The inference towards Meperidine having narcotic effects is based

upon an argument by analogy. The inference towards the existence of Bose-Einstein

condensation is based upon an experimental result. Arguments by analogy are stan-

dardly understood as producing evidence of a type that is not capable of providing

confirmatory support to scientific claims. Rather they are speculative inferences.

Contrastingly, experimental results are standardly understood as producing evi-

dence of a type that is capable of providing confirmatory support to scientific claims.

Philosophical analysis sheds light on the reasoning behind such inuitions. First let

us rationally reconstruct the argument by analogy made by Schaumann:

P1. Morphine is similar to Meperidine on in terms of having similar chemical

structure and having the effect of inducing an S-shaped curved tail when

given to mice

P2. Morphine has the effect of being a narcotic when given to humans.

C. Therefore, Meperidine will also have the feature of being a narcotic when

given to humans

Clearly such an argument is deductively invalid. Moreover, as an inference pattern,

it does not met the epistemic standard usually expected of a reliable inductive

inference. For this reason we should not think of arguments by analogy as producing

evidence of the same epistemic type as reliable inductive inferences. Rather, it

seems reasonable to take arguments by analogy to establish only the plausibility

of a conclusion, and with it grounds for further investigation. This is in line with

Salmon (1990) and Bartha (2010, 2013). From this perspective, the importance

of analogical arguments is their heuristic role in scientific practice – they provide

‘cognitive strategies for creative discovery’ (Bailer-Jones 2009).

Despite their significance and ubiquity within scientific practice the philosophical

consensus is that epistemically speaking the role of evidence produced by analogical

arguments is null. In contrast, experimental results are usually taken as the key

exemplar of epistemically valuable evidence in science. In particular, experimental

evidence is the form of evidence that is invoked in the confirmation of theories.

However, philosophical analysis reveals good reasons to think that experimental re-

sults taken on their own do not in fact provide epistemic evidence of such unalloyed

quality.

Following the work of authors such as Franklin (1989), it is valuable to re-
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consider the epistemological foundations of experimental science.5 In particular, we

can ask questions such as: i) How do we come to believe in an experimental result

obtained with a complex experimental apparatus?; and ii) How do we distinguish

between a valid result and an artefact created by that apparatus? One of the key

ideas in the epistemology of experiment is that to assess the evidence gained from

experimentation, we must examine and evaluate the strategies that scientists use

to validate observations within good experimental procedures. Following Winsberg

(2010) we can make an important distinction between two different types of vali-

dation in the context of experimental science: An experimental result is internally

valid when the experimenter is genuinely learning about the actual system they are

manipulating – when, that is, the system is not being unduly disturbed by out-

side interferences; An experimental result is externally valid when the information

learned about the system being manipulated is relevantly probative about the class

of systems that are of interest to the experimenters.

Consider the case of the 1995 experiments that were taken to provide conclu-

sive evidence for the existence of BECs on the basis of experiments on supercooled

dilute gases of alkali atoms. The internal validity of the experiments relates to the

question of whether or not the results obtained genuinely reflect the fact that the

particular supercooled dilute gases of alkali atoms experimented upon were behav-

ing as BECs. The external validity of the experiments relates to the question of

whether or not the inferences regarding the particular source systems experimented

upon (particular supercooled dilute gases of alkali atoms) can be reliably generalised

to the wide class of target systems that the theory of BECs refers to. Experimental

results can only be reasonably be taken to constitute evidence that is of an epis-

temic type that makes it suitable for confirmation on the assumption that they have

been both internally and externally validated. While the idea that an experimental

result must be internally validated is rather a familiar one, the notion of external

validation is not as frequently discussed – particularly by actual experimental scien-

tists. In the end, external validation is the crucial link from an experimental result

to the use of this result as a token of the type of epistemic evidence relevant to

the confirmation of general scientific statements. Clearly, an experiment that is not

internally validated does not produce evidence of an epistemic type that renders it

suitable for confirming any scientific hypothesis. On the other hand, an experiment

that is internally validated but not externally validated produces evidence of an

5See (Franklin and Perovic 2015) for a full review.
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epistemic type that can confirm specific statements regarding the particular system

experimented upon, but cannot confirm statements regarding the wider class of

systems that the experiment is designed to probe. As such, theoretical arguments

for external validation are almost always going to be a necessary requirement for

integrating experimental results into scientific knowledge.

This brief discussion of analogy and experiment is intended to provide a prospec-

tus for a philosophical analysis of analogue experiments. The key question in the

epistemology of analogue experimentation is whether there are arguments that can

provide a suitable form of external validation. If there are no such arguments, then

we should not consider analogue experiments as providing evidence regarding the

relevant ‘target systems’ (black holes in the Hawking radiation case) that is of the

same epistemic kind as (externally validated) experiments. In such circumstances

analogue experiments would have a more heuristic role, like arguments by analogy,

and could not in principle be used to produce evidence used for the confirmation of

general scientific statements regarding the target system. However, if arguments for

external validation can be found and justified in cases of analogue experimentation

then we can legitimately think about analogue experiments as providing evidence

of the same epistemic type as conventional (externally validated) experiments.

Significantly, this question is distinct to any question of the strength of evidence.

It may be the case, in either a conventional experiment or analogue experiment,

that the validation procedure is not highly reliable, in which case the evidence

will be of the same epistemic type, but of a different strength. While questions

regarding strength of evidence suggests immediately an analysis in terms of Bayesian

confirmation theory along the lines of (Dardashti et al. 2016), we hold that questions

of type of evidence can be answered independently of such probabilistic modes of

analysis.

3 The Hawking Effect

In this section we will present the formal details behind the Hawking effect as

instantiated in gravitational systems, fluid dynamical systems and Bose-Einstein

condensates. For the most part we will follow the account of (Barceló et al. 2011).

which is also a good source to find supplementary details.
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3.1 Gravitational Hawking Effect

In a semi-classical approach to gravity we consider a quantum field within a fixed

spacetime background. For this modelling framework to be valid it is assumed that

we are considering quanta of wavelengths much larger than the Planck length. In

the simplest semi-classical model we consider a massless scalar field operator φ̂ that

obeys a wave equation of the form gab∇a∇bφ̂ = 0. We can expand the scalar field

in a basis of orthonormal plane wave solutions:

φ̂ =

∫
dω(âωfω + â†ωf

∗
ω), (1)

where fω = 1√
2
e−i(ωt−kx) and âω, â†ω are creation and annihilation operators for

modes of some frequency ω. The creation and annihilation operators allows us to

define both a vacuum state, âω|0〉 = 0, and a number operator, N̂ω = â†ωâω, in

this particular basis. We call a vacuum state defined for the scalar field at past

null infinity, J −, the ‘in’ state, and a vacuum state defined for future null infinity,

J +, the ‘out’ state. In general, the ‘in’ state need not appear as a vacuum state

to observers at positive null infinity: it may contain a flux of ‘out-particles’ which

one can calculate simply by determining the Bogoliubov coefficients between the

solutions expressed in the ‘in’ and ‘out’ basis:

in〈0|(N̂ out
ω )|0〉in =

∫
dω′|βωω′|2. (2)

What Hawking’s 1975 calculation shows is that, for a spacetime which features

the establishment of an event horizon via gravitational collapse leading to a black

hole, one can derive the asymptotic form of the Bogoliubov coefficients and show

that it depends only upon the surface gravity of the black hole denoted by κG.

Surface gravity is the magnitude of the acceleration with respect to Killing time of

a stationary zero angular momentum particle just outside the horizon. Hawking’s

calculation implies that a black hole horizon6 has intrinsic properties that are con-

nected to a non-zero particle flux at late times. The spectrum of this flux obeys

the relation:

〈N̂Black Hole
ω 〉 =

1

e
2πω
~κG − 1

TBH = ~κG/2π (3)

Crucially, the functional form of this spectrum is thermal in the sense that it takes

6Giddings (2016) has argued that we should trace the origin of Hawking radiation to a ‘quantum
atmosphere’ some distance away from the horizon. The implications of this idea for analogue black
hole experiments is an interesting issue to consider.
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a characteristic Planckian blackbody energy form for the temperature TBH . Black

holes, it turns out, are hot!

3.2 Hydrodynamic Hawking Effect

Consider a classical fluid as a continuous, compressible, inviscid medium and sound

as an alternate compression and rarefaction at each point in the fluid. The points

are volume elements and are taken to be very small with respect to the overall fluid

volume, and very large with respect to the inter-molecular distances. The modelling

framework of continuum hydrodynamics is thus only valid provided fluid density

fluctuations of the order of molecular lengths can be ignored. The two fundamental

equations of continuum hydrodynamics are the continuity equation, which expresses

the conservation of matter:

∂ρ

∂t
+∇ · (ρ~v) = 0, (4)

and the Euler equation, which is essentially Newtons second law:

ρ
(∂~v
∂t

+ (~v · ∇)~v
)

= −∇p, (5)

where ρ is the mass density of the fluid at a particular point, ~v is the velocity of

the fluid volume element, and p is pressure.

If the fluid is barotropic and locally irrotational Euler’s equation reduces to a

form of the Bernoulli equation. We identify sound waves in the fluids with the

fluctuations (ρ1, p1, ψ1) about the background, which is interpreted as bulk fluid

motion. The linearised version of the continuity equation then allows us to write

the equation of motion for the fluctuations as:

1√
−g

∂

∂xµ
(
√
−ggµν ∂

∂xν
ψ1) = 0, (6)

where we have defined the acoustic metric

gacousticµν =
ρ0

csound


−(c2sound − v20)

... −(v0)j

. . . · . . .

−(v0)
i ... δij

 . (7)

Propagation of sound in a fluid can be understood as being governed by an
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acoustic metric of the form gµν . The close similarity between the acoustic case

and gravity can be seen immediately if we consider the Schwarzschild metric in

Painleve-Gullstrand coordinates:

gSchwarzschildµν =


−(c20 − 2GM

r
)

... −
√

2GM
r
~rj

. . . · . . .

−
√

2GM
r
~ri

... δij

 . (8)

This similarity can be transformed into an isomorphism (up to a factor) given

certain conditions on the speed of sound in the fluid and the fluid density and

velocity profiles. The role of the black hole event horizon is now played by the

effective acoustic horizon where the inward flowing magnitude of the radial velocity

of the fluid exceeds the speed of sound. The black hole is replaced by a dumb hole.

Unruh’s crucial insight in his 1981 paper was that once the relevant fluid-

spacetime geometric identification has been made, there is nothing stopping one

from repeating Hawking’s 1975 semi-classical argument, only replacing light with

sound. The result is that while, in the gravitational Hawking effect a black hole

event horizon is associated with a late time thermal photonic flux, in the hydrody-

namic Hawking effect a dumb hole sonic horizon can be associated with a late time

thermal phononic flux.

3.3 BEC Hawking Effect

Following the same line of reasoning as Unruh’s original ideal fluid argument, Garay

et al. (2000) derived a BEC Hawking Effect using appeal to the hydrodynamic

approximation of a BEC. Consider the Gross-Pitaevskii equation that can be derived

by applying a mean field approximation to the many body QM description of a BEC:

i~
∂ψ(r, t)

∂t
= − ~2

2m
∇2ψ(r, t) + V (r)ψ(r, t) + U0|ψ(r, t)|2ψ(r, t) (9)

= HGPψ(r, t), (10)

where V (r) is an external potential. U0 = 4π~2a/m is the effective two two particle

interaction, with a and m the scattering length and atomic mass. From this one

can obtain a Madelung-type expression of the form:

∂v

∂t
= − 1

nm
∇p−∇

(v2
2

)
+

1

m
∇
( ~2

2m
√
n
∇2
√
n
)
− 1

m
∇V, (11)
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where ψ = feiφ, n = |ψ|2, p = n2U0/2, and v = ~
m
∇φ. Consider the quantum

pressure term:
1

m
∇
( ~2

2m
√
n
∇2
√
n
)
.

When variations in the density of the BEC occur on length scales much greater than

the healing length, ξ = ~/(mnU0)
1
2 , the quantum pressure term can be neglected

and we recover the usual classical Euler equation for an irrotational fluid. Now

consider a ‘second quantised’ field theoretic description of the (weakly interacting)

BEC, where the Hamiltonian is expressed in terms of creation and annihilation

operators for Bosons, ψ̂†(r) and ψ̂(r). We can decompose the quantum field into a

classical ‘bulk’ field and a quantum fluctuation:

ψ̂(r, t) = ψ(r, t) + φ̂(r, t). (12)

The Gross-Pitaevskii equation can be recovered as the equation for the classical

field ψ(r, t), when the backreaction with the quantum fluctuation can be neglected.

What Garay et al. (2000) showed was that in the limit where we have no backreac-

tion and the quantum pressure term can be neglected, linearized fluctuations in the

BEC will couple to an effective acoustic metric of the same form as that derived by

Unruh for the hydrodynamic case. In this limit the derivation of the BEC Hawking

effect then follows the same pattern as that for hydrodynamics and gravity.

In the Bogoliubov description of a (weakly interacting) BEC one assumes that

the backreaction of the classical field with the quantum excitations is small but non-

negligible and includes only terms which are at most quadratic in φ̂(r, t).7 In the

Bogoliubov description fluctuations are no longer governed by an effective acoustic

metric, rather elementary excitations correspond to eigenvalues of the Bogoliubov

operator:

L =

(
HGP − µ+ U0|ψ|2 U0ψ

2

−U0ψ
?2 −HGP + µ− U0|ψ|2

)
, (13)

where µ is the chemical potential. Impressively, it has been shown by Recati et al.

(2009) that one can still derive an analogue Hawing effect for an inhomogeneous

BEC when treated in the Bogoliubov description. This particularly interesting since

in this regime there is no longer technically an analogy with the gravitational case

since the ‘surface gravity’ is formally infinite. The authors note:

7See Pethick and Smith (2002) for a detailed textbook treatment of the Bogoliubov description
of BECs.
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It is remarkable to note that [the results] still give the typical thermal

behaviour of Hawking radiation even though one is not allowed to use

the gravitational analogy. (Recati et al. 2009, p.6)

There is thus an interesting sense in which the BEC Hawking effect is robust to

the breakdown in the hydrodynamic description at lengths scales smaller than the

healing length.

4 The Trans-Planckian Problem and Universality

In the standard calculation of the Hawking temperature exponential gravitational

red-shift means that the black hole radiation detected at late times (i.e. the outgo-

ing particles) must be taken to correspond to extremely high frequency radiation at

the horizon. Such a ‘trans-Planckian’ regime is the dominion of theories of quan-

tum gravity, and is thus well beyond the domain of applicability of the modelling

framework we are using. This problem with ‘trans-Planckian’ modes has a direct

analogue in the BEC case in terms of the failure of the hydrodynamic limit – we

cannot assume that the perturbations have wavelengths much larger than the heal-

ing length. Of course since the results of Recati et al. (2009) show that the BEC

Hawking effect is suitably robust, we have good reasons not to worry too much

about the ‘trans-Planckian’ problem for the BEC analogue model. But whereas the

Bogoliubov description gives us microphysical understanding of a BEC, we do not

have an equivalently trustworthy theory for the microphysics of spacetime or, for

that matter, fluids.

We can, however, attempt to model the effect of the underlying microphysics on

linear fluctuations by considering a modified dispersion relation. This idea originally

comes from Jacobson (1991, 1993), who suggested that one could use a modified

dispersion relation to understand the breakdown of continuous fluid models due

to atomic effects. The question of particularly importance is whether or not an

exponential relationship actually holds between the outgoing wave at some time

after the formation of the horizon, and the wavenumber of the wave packet (Unruh

2008). Using numerical simulations it was first shown by Unruh (1995) that the

altered dispersion relation in atomic fluids does imply that the early time quantum

fluctuations that cause the late-time radiation are not in fact exponentially large.

A related analytical argument was later applied to the gravitational case by Cor-

ley (1998). What is more desirable, however, is a set of general conditions under
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which such effective decoupling between the sub- and trans- Planckian physics can

be argued to take place. One interesting proposal in this vein is due to Unruh

and Schützhold (2005).8 The ‘universality’ results of Unruh and Schützhold show

that possible trans-Planckian effects can be factored into the calculation of Hawk-

ing radiation via a non-trivial dispersion relation. In particular, they consider a

generalised Klein-Fock-Gordon equation for the scalar field of the form:(
∂t + ∂xv(x)

)(
∂t + v(x)∂x

)
φ̂ =

(
∂2x + F (∂2x)

)
φ̂ (14)

with F the non-trivial dispersion relation and v either the local velocity of free

falling frames measured with respect to a time defined by the Killing vector of the

stationary metric or the position dependent velocity of the fluid. They use complex

analytic arguments to show that the Hawking flux is robust under the modified

dispersion relation – essentially this is because the dominant terms in the relevant

integral are entirely due to the discontinuity caused by the horizon of the black hole

(or its analogue). What Unruh and Schützhold establish is that the Hawking effect

does not, to lowest order, depend on the details of underlying physics, given certain

modelling assumptions.9

5 The Technion Experiments

Based upon the most recent of a series of experiments10 at the Technion (Israel

Institute of Technology), Steinhauer has claimed to have observed BEC Hawking

radiation. This observation is based upon measurement of the density correlations in

the BEC that are understood to ‘bear witness’ to entanglement between Hawking

modes outside the sonic horizon and partner modes inside the sonic horizon. In

this section we will provide some background to these results before concluding our

analysis by considering the potential for the Technion experiments to function as

evidence for gravitational Hawking radiation.

The first key idea we must introduce in order to understand the theoretical

8For further work on these issues, using a range of different methodologies, see Himemoto and
Tanaka (2000), Barceló et al. (2009) and Coutant et al. (2012).

9For example, the evolution of the modes is assumed to be adiabatic – the Planckian dynamics
is supposed to be much faster than all external (sub-Planckian) variations

10Three particular landmark experimental results achieved by Steinhauer (and in the first case
collaborators) are the creation of a BEC analogue black hole (Lahav et al. 2010), the observation
of self-amplifying Hawking radiation in an analogue black-hole laser (Steinhauer 2014) and the
observation of quantum Hawking radiation and its entanglement (Steinhauer 2016).
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context of Steinhauer’s work is the idea of entanglement as a ‘witness’ to Hawking

radiation. It is plausible to think of the Hawking effect for black holes in the terms

of creation of correlated pairs of outgoing quanta triggered by the event horizon

formation (Balbinot et al. 2008; Schützhold and Unruh 2010; Parentani 2010). The

particles that featured in our treatment of the Hawking effect in §3 correspond to

escaping modes that make up one half of each pair of quanta. These ‘Hawking

modes’ are each correlated with (rather ill-fated) ‘partner modes’ that are trapped

inside the event horizon and forever lost. It is thus understandable that in the

gravitational context the Hawking modes are the centre of attention. Contrastingly,

when considering the Hawking effect in an analogue context the regions separated

by the horizon are not causally disconnected: unlike in the case of an event horizon,

in principle an observer can have access to both sides of a sonic horizon. The key

idea is that by measuring correlations between modes inside and outside horizon,

we can detect the signature of Hawking radiation in an analogue black hole. In

particular, if we can establish that there is entanglement between the modes, then

we have strong evidence for the existence for quantum Hawking radiation within

the relevant analogue system.

The next important idea is that in the case of a BEC analogue black hole

the entanglement between the Hawking and partner modes can be measured by

considering the density-density correlation function between spatial points either

side of the horizon (Steinhauer 2015). This is highly important from a practical

perspective since there exist high precision techniques for measuring point by point

densities of a BEC by considering phase shifts of a laser beam shone through it.

Formally, the relationship between the entanglement of the modes and the density

correlations can be established by re-writing a given measure of the non-separability

of the quantum state 4, in terms of density operators ρk, for modes of wavenumber

k. For example, in his treatment Steinhauer (2015, 2016) considers the simple

measure:

4 ≡
〈
b̂u†kH b̂

u
kH

〉〈
b̂d†kp b̂

d
kp

〉
−
∣∣b̂ukH b̂dkp∣∣, (15)

where b̂ukH is the annihilation operator for a Bogoliubov excitation with wave number

kH , localised in the subsonic ‘downstream’ region outside the event horizon. The

letters u, d, H and p thus stand for upstream (supersonic), downstream (subsonic),

Hawking modes and partner modes respectively. Using the Fourier transform of

the density operator we can re-express such a non-separability measure in terms of

correlations between u and d density operators for the kH and kp modes. We can

15



thus measure 4 purely by measuring density correlations in the BEC on either side

of the sonic horizon. If 4 is negative then the correlations are strong enough to

indicate entanglement, and thus the quantum signature of Hawking radiation.

In his landmark experiment Steinhauer used a BEC of 87Rb atoms confined

radially by a narrow laser beam. The horizon was created by a very sharp poten-

tial step which is swept along the the BEC at a constant speed. Significantly the

length scales are such that the hydrodynamic description of a BEC is appropriate:

the width of the horizon is of the order of a few times bigger than the healing

length. The main experimental result consists of an aggregate correlation function

computed based upon an ensemble of 4,600 repeated experiments which were con-

ducted over six days. Given some reasonable assumptions (for example modes at

different frequency are assumed to be independent of each other) the experiments

can be interpreted as establishing an entanglement witness to Hawking radiation in

BEC.

6 Dumb Hole Epistemology

Three notions of validation are relevant to the Technion experiments described

above. The first, and most straightforward, is internal validation. Was Steinhauer

genuinely learning about the physics of the particular sonic horizon within the par-

ticular 87Rb BEC that he was manipulating? Various sources of internal validation

are apparent from the description of the experimental set up given, not least the

repetition of the experimental procedure nearly five thousand times. Given this,

the evidence gained from from the experiments conducted can be categorised as of

the appropriate epistemic type to be used to confirm specific statements regarding

the particular BEC that was experimented upon. The next question relates to ex-

ternal validation of the Technion experiments as experiments in the conventional

sense. Can the particular sonic horizon that was constructed, within the particu-

lar 87Rb BEC, stand in for a wider class of systems – for example, all BEC sonic

horizons within the realm of validity of the hydrodynamic approximation to the

Gross-Pitaevskii equation, regardless of whether the relevant systems have been (or

even could be) constructed on earth. Given this set of systems obeys the ‘reasonable

assumptions’ of the Steinhauer experiments, such as modes at different frequency

are assumed to be independent of each other, then we can also externally validate

the experiments. This means, with relevant qualifications, the evidence produced
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by the experiments conducted can be categorised as of the appropriate epistemic

type to be used to confirm general statements regarding the class of BECs with

sonic horizons. Thus, so far as the status as conventional experiments go, it rea-

sonable to take the Technion experiments to be internally and externally validated

based upon purely upon Steinhauer’s report.

The details provided in the report do not, however, function as external vali-

dation of the Technion experiments as analogue experiments. That is, without fur-

ther argument we do not have a link from the class of source systems (BECs with

sonic horizons) to the class of target systems (astrophysical black holes). Thus,

when considered in isolation the evidence from the Technion experiments cannot

be categorised as of the appropriate epistemic type to be used to confirm general

statements regarding astrophysical black holes. Rather, when considered in isola-

tion, regarding such statements, it is of the same epistemic type as evidence derived

from speculative inferences. Although it might reasonably be argued to be evidence

that is, in some sense, more convincing or valuable than that produced by many

such inferences, in confirmatory terms it is equally null.

The question of external validation of dumb hole experiments as as analogue

experiments is where the universality arguments of Unruh and Schützhold can

be brought in. If accepted, the theoretical universality arguments of Unruh and

Schützhold would function as external validation for the Steinhauer experiments.

They provide a theoretical basis for taking the source system of the Technion exper-

iments (a BEC analogue black hole) to stand in for a wider class of target systems

(black holes in general including other analogue models and gravitational black

holes). In this sense, they give us a possible basis to upgrade the epistemic type of

the experimental evidence, such that it can be used to confirm general statements

regarding astrophysical black holes.

This should not, perhaps, be as surprising a statement as it sounds. After all,

almost by definition, this is what universality arguments mean: they are theoretical

statements about the multiple-realisability of a given phenomenon, and so imply

that certain features of the phenomenon in one exemplification will be present in

all others. That said, it is difficult not to be wary of the speed and strength of

this kind of conclusion. This mode of external validation is almost completely

unlike those used in more conventional experiments and, as such, it should be

treated rather sceptically for the time being. Arguably, the importance of the

Technion experiments lies in their future rather than immediate evidential value.
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In particular, given experimental demonstration of an array of analogue Hawking

effects across a variety of different mediums, one could become increasingly confident

in the universality arguments and thus, in turn, in the external validation of the

experiments as analogue experiments.11

We can thus conclude that there is a plausible theoretical basis to ‘externally

validate’ analogue black hole experiments such that a BEC analogue black hole can

be taken to ‘stand in’ for an astrophysical black hole. This gives us one example

where analogue experiments can provide us with evidence of the same confirmatory

epistemic type as conventional experiments. It does not, however, speak to the

question of the significance of confirmation. Is it reasonable to think, in quantitive

terms, that analogue experiments can provide a comparable degree of confirmation

to conventional experiments? Can they be substantially confirmatory rather than

merely incrementally confirmatory? Such questions bring us beyond the scope of

the present paper. However, there are reasons to be optimistic. As shown by a

recent analysis in terms of Bayesian confirmation theory (Dardashti et al. 2016),

given experimental demonstration of an array of analogue Hawking effects across a

variety of different mediums the degree of confirmation conferred can be amplified

very quickly. It is thus very plausible to think of analogue experiments prospective

means for providing confirmatory support that is substantial, rather than merely

incremental.

Acknowledgement

I am deeply indebted to Radin Dardashti, Richard Dawid, Stephan Hartmann, and

Eric Winsberg for discussions and collaborative engagement without which this

paper could not have been written. I am also thankful to the audience at the Why

Trust a Theory? workshop in Munich for insightful questions, to Bill Unruh for

providing me with some useful details about the Technion experiments, and to Erik

Curiel for various helpful discussions about black hole thermodynamics.

References

Achinstein, P. (2001). The book of evidence, Volume 4. Cambridge Univ Press.

11There are grounds for optimism in this regard on a number for fronts. See Philbin et al. (2008,
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Dardashti, R., S. Hartmann, K. Thébault, and E. Winsberg (2016). Con-

firmation via Analogue Simulation: A Bayesian Account. http://philsci-

archive.pitt.edu/12221/ .

Dawid, R. (2013). String theory and the scientific method. Cambridge University

Press.

Dawid, R., S. Hartmann, and J. Sprenger (2014). The no alternatives argument.

The British Journal for the Philosophy of Science, axt045.

Dvali, G. and M. Redi (2008). Black hole bound on the number of species and

quantum gravity at cern lhc. Physical Review D 77 (4).

Einstein, A. (1924). Quantentheorie des einatomigen idealen gases. Sitzungs-

berichte der Preussische Akadmie der Wissenschaften, 261–267.

Einstein, A. (1925). Quantentheorie des einatomigen idealen gases. Sitzungs-

berichte der Preussische Akadmie der Wissenschaften, 3–14.

Franklin, A. (1989). The neglect of experiment. Cambridge: Cambridge University

Press.

Franklin, A. and S. Perovic (2015). ‘Experiment in physics’. In E. N. Zalta (Ed.),

The Stanford Encyclopedia of Philosophy (Summer 2015 ed.).

Garay, L., J. Anglin, J. Cirac, and P. Zoller (2000). ‘Sonic analog of gravitational

black holes in Bose-Einstein condensates’. Physical Review Letters 85 (22), p.

4643.

Giddings, S. B. (2016). Hawking radiation, the stefan–boltzmann law, and uni-

tarization. Physics Letters B 754, 39–42.

Hawking, S. W. (1975). ‘Particle creation by black holes’. Communications in

mathematical physics 43 (3), 199–220.

Himemoto, Y. and T. Tanaka (2000). ‘Generalization of the model of Hawking

radiation with modified high frequency dispersion relation’. Physical Review

D 61 (6), p. 064004.

20



Jacobson, T. (1991). ‘Black-hole evaporation and ultrashort distances’. Physical

Review D 44 (6), 1731.

Jacobson, T. (1993). ‘Black hole radiation in the presence of a short distance

cutoff’. Physical Review D 48 (2), 728–41.

Lahav, O., A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, and J. Stein-

hauer (2010). Realization of a sonic black hole analog in a bose-einstein con-

densate. Physical review letters 105 (24), 240401.

Liberati, S., A. Prain, and M. Visser (2012). Quantum vacuum radiation in op-

tical glass. Physical Review D 85 (8), 084014.

Nguyen, H., D. Gerace, I. Carusotto, D. Sanvitto, E. Galopin, A. Lemâıtre,
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