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Abstract I introduce an extension of the Lewis-Skyrms signaling game, anal-
ysed from a dynamical perspective via simple reinforcement learning. In David
Lewis’ (1969) conception of a signaling game, salience is offered as an expla-
nation for how individuals may come to agree upon a linguistic convention.
Brian Skyrms (2010) offers a dynamic explanation of how signaling conventions
might arise presupposing no salience whatsoever. The extension of the atomic
signaling game examined here—which I will refer to as a salience game—
introduces a variable parameter into the atomic signaling game which allows
for degrees of salience, thus filling in the continuum between Skyrms’ and
Lewis’ models. The model does not presuppose any salience at the outset, but
illustrates a process by which accidentally evolved salience is amplified, to the
benefit of the players. It is shown that increasing degrees of salience allow
populations to avoid sub-optimal pooling equilibria and to coordinate upon
conventions more quickly.

Keywords Signaling Games · Salience and Focal Points · Communication
Conventions

1 Introduction

To communicate meaningfully, members of a population must cooperate. That
is, they must agree upon some convention: one individual ought to use a word
or signal to mean one thing if most other individuals in the population use
that word or signal in the same way. As such, conventional language use in a
population can be modeled with game-theoretic tools. This idea gives rise to
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the signaling game, due to Lewis (1969). To explain how communication con-
ventions might be learned or might evolve, contemporary scholars—following
the initial work of Skyrms (1996, 2004, 2010)—have examined families of dy-
namic evolutionary and learning models which are supposed to capture readily
observable communicative phenomena in both human and non-human popu-
lations.

Lewis’ model presupposes some sort of (shared) salience—e.g., prior agree-
ment, precedent, natural salience, etc.—in order for individuals to come to
have ‘mutually concordant expectations’ about what others might do in a
particular situation, thus allowing them to reach a convention by coordinat-
ing. In contrast, Skyrms’ model presupposes no shared salience. Skyrms shows
that, even without shared salience, effective communication can evolve under
a variety of starting conditions for a number of different dynamics.

Lewis’ model highlights both the social nature of communication and the
arbitrariness of the meanings associated with individual signals. From this
point of view, linguistic conventions can be understood as stable outcomes of
repeated interactions. However, this view turns out to be theoretically unten-
able for explanatory purposes due to the strength of its assumptions. That is,
agents in his model are presupposed to be computationally unbounded insofar
as his model makes strong cognitive assumptions about common knowledge
and rationality which cannot be appealed to in order to quell skeptical worries
about how communication might arise prior to having a language in place with
which to agree upon the necessary conventions.

Though Skyrms’ model sidesteps these overly strong rationality assump-
tions, we might note that no shared salience whatsoever is as much of an ide-
alization as salience’s being used as the sole explanatory mechanism. Further,
little has been said about the possibility for allowing for degrees of salience,
or how an evolving signal becomes salient for an individual over time.

In this paper, I introduce an extension of the signaling game, analysed from
a dynamical perspective via simple reinforcement learning, which I will refer
to as a salience game. Specifically, this model introduces a variable parameter
into the atomic signaling game, which in turn allows for degrees of salience in
the signaling game. As such, this model treats Lewis’ and Skyrms’ respective
models as limiting cases for salience and fills in a continuum of ‘game space’
between them.

Importantly, the model does not presuppose any shared salience at the
outset, but illustrates a process by which accidentally evolved salience is am-
plified, to the benefit of the players. This sort of approach to modeling allows
us to make more realistic assumptions, thus increasing the explanatory value of
the results obtained. This is despite the fact that the model itself presupposes
very little in excess of Skyrms’ sparse model. A practical consequence is that
increasing degrees of salience allows individuals to avoid sub-optimal pooling
equilibria and to coordinate upon conventions significantly more quickly, as
we will see.

Section 2 gives a brief overview of the mechanics of the signaling game and
compares the respective models of Skyrms and Lewis. In particular, we will
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focus on simple reinforcement learning. Section 3 introduces the notion of a
Schelling focal point in order to motivate the assumptions that will be made
concerning salience. Section 4 introduces the intuitive and formal background
for the simulations that were run, with the particular methodology being out-
lined in Section 4.1. The results of these simulations are given in Section 4.2.
With regard to the data obtained from these agent-based simulations, the re-
sults are presented with an eye toward average expected payoff (Section 4.2.1),
speed of convergence (Section 4.2.2), and pooling equilibria (Section 4.2.3). We
find that the higher the probability of salience selection, the faster signaling
equilibria are achieved, and that this effect is non-linear in integer frequencies.
Finally, Section 5 concludes with a philosophical discussion of this result and
the significance of this model.

There are at least two natural interpretations of what this model is sup-
posed to show. On the one hand, we might regard the model as giving a
parameter that measures salience out in the world, with the result that an in-
crease in salience (or an increase in awareness of salience for a constant degree
of salience) allows for individuals to agree upon conventions more quickly. On
the other hand, we might interpret the model as giving a formal analogue for
something akin to demonstration, at least in a specific kind of communication
context. The latter result is closely related to previous work by Barrett and
Skyrms (2017) on a constituent of self-assembling games, which they refer to
as cue-reading games.

2 The Lewis-Skyrms Signaling Game

This section offers a definition and brief historical overview of the signaling
game. For a more detailed introduction to simple signaling games and their
extensions, see Skyrms (2010).

2.1 Classical Game Theory and the Lewis Signaling Game

The signaling game was introduced by Lewis (1969) to explain how linguistic
conventions might arise without there already being a language in place.1

Using the tools of classical game theory, he formalized interactions in which
two players use arbitrary signals to transmit information. This provides a
naturalistic account of the emergence of meaning. The simplest case for a
signaling game is one in which there are two players (called the Sender and
Receiver), two states of the world (called s1 and s2), two possible signals or

1 In this respect, Lewis is responding to skeptical arguments put forth by, e.g., Russell
(1922) according to which a new word can be adopted into a language by convention, but a
language cannot arise out of a convention. Quine (1967) promotes a similar skepticism that
“it is not clear wherein an adoption of the conventions, antecedent to their formulation,
consists” (123). See also, Alston (1964).
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messages (called m1 and m2), and two possible actions (called a1 and a2).
This is referred to as a 2× 2 signaling game.2

When agents play a signaling game, nature picks a state of the world
at random. In the simplest case, we will assume all states are equiprobable,
and so nature is unbiased. The sender observes the state of the world and
sends a signal to the receiver. The receiver cannot see which state of the
world obtains, but she sees which signal is sent. (As such, this is a game of
imperfect information.) The receiver then performs one of the possible actions.
We stipulate that a1 is ‘appropriate’ in s1 and that a2 is ‘appropriate’ in s2.
Both the sender and receiver receive a payoff of 1 just in case ai is performed
in si, and they both receive a payoff of 0 otherwise. The extensive form of the
2× 2 signaling game is given in Figure 1.
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Fig. 1: The extensive form of the simple 2 × 2 signaling game. Each node
denotes a choice point for a given player, and each branch denotes the possi-
bilities available to her at that point. The dotted lines indicate the receiver’s
information set.

The cases wherein the sender and receiver perfectly coordinate are referred
to as the signaling systems of the signaling game. The 2 × 2 game has two
possible signaling systems. These are shown in Figure 2. In general, the n× n
signaling game has n! possible signaling systems.3

For the symmetric signaling game, where the number of states, signals, and
acts coincide, the signaling systems correspond to the strict Nash equilibria of
the game. As such, they are supposed to be self-enforcing. Lewis’ model thus
highlights both the social nature of communication and the arbitrariness of
the meanings associated with the individual signals. From this point of view,
linguistic conventions can be understood as the stable outcomes of repeated
interactions.

2 I will also refer to this as an atomic 2-game. This terminology is due to Steinert-Threlkeld
(2016).

3 Lewis (1969) proves that, in a signaling game with m states and n signals (n ≥ m),
there are n!/(n−m)! possible signaling systems. For m = n, as we have here, it follows that
there are n! possible signaling systems.
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Fig. 2: The Two Signaling Systems of the 2× 2 Game

While it is not explicit in his discussion of language, Lewis (1969) considers
repetition implicitly in the following sense. A signaling game is, at bottom, a
coordination problem. From Lewis’ analysis, a coordination problem can be
solved via mutually concordant expectations—high-order expectations about
what others might do, what others might expect each other to do, etc. When
the same type of coordination problem is repeated, the repetition itself might
make some equilibrium salient over and above the others—namely, those that
worked in the past. This notion of precedent gives rise to a “metastable self-
perpetuating system of preferences, expectations, and actions” (42). We will
discuss this further in Section 3.

Even so, Lewis’ model of conventions makes strong cognitive assumptions
about common knowledge and rationality. In particular, if we assume that
agents cannot coordinate via prior agreement, then we will need to build some-
thing like natural salience into our model. Here, a signal is salient insofar as it
is a uniquely and preeminently conspicuous coordination equilibrium (1969, p.
38). Note that this further requires the assumption that the agents in the sig-
naling game notice that one equilibrium is salient, expect the other to notice,
etc. Note further that it is unclear exactly how one signaling system should be
said to be more salient than any other, without baking the solution directly
into the problem. (We will discuss this further in Section 3.) As such, Lewis
does not have the resources to explain exactly how a signaling system could
come to be adopted as the convention of a population.

2.2 Evolution and Reinforcement Learning

Following the initial work of Skyrms (1996, 2004, 2010), contemporary scholars
have examined the signaling game in evolutionary and learning contexts, thus
weakening the rationality assumptions inherent in the classical structure upon
which Lewis’ model is built.

In particular, we will be concerned with a simple reinforcement learning
model due to Roth and Erev (1995).4 Roth-Erev learning is based on Richard
Herrnstein’s (1970) matching law, under which the probability of an actor’s
choosing a particular action is proportional to its accumulated rewards. This

4 For more on evolutionary dynamics, see, for example, Hofbauer and Huttegger (2008),
Huttegger, et al. (2010), and Skyrms (2010).
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in turn is a formalization of the law of effect, due to Thorndike (1905, 1911,
1927).5

Simple reinforcement learning in this sense can be understood as so-called
‘urn-learning’. We might now imagine that the sender has two urns at her
disposal—one of these is labeled ‘s1’ and the other ‘s2’. Each urn contains a
ball labeled ‘m1’ and a ball labeled ‘m2’. Similarly, the receiver has two urns—
which are labeled ‘m1’ and ‘m2’—each containing balls labeled ‘a1’ and ‘a2’.
See Figure 3.

s1

m1 m2

s2

m1 m2

(a) Sender Urns

m1

a1 a2

m2

a1 a2

(b) Receiver Urns

Fig. 3: Simple Reinforcement Learning Model

The game now proceeds as follows. Nature picks a state of the world at
random. The sender sees the state of the world and selects a ball at random
from the corresponding urn—s1 or s2. The sender then sends the chosen signal
to the receiver, who then selects a ball at random from her corresponding urn—
m1 or m2. If the act was appropriate for the state, then both the sender and
receiver reinforce their behaviour by adding a ball of the same type as the one
chosen to the urn from which it was chosen. If the act was not appropriate for
the state, then they do nothing.6

Instead of a one-off interaction, the game is now repeated. In this way,
the addition of a given ball in a given urn makes it more likely that a mes-
sage [act] will be chosen when a particular state [message] obtains. As such,
over time the messages come to carry meaning—or at least information.7 In
spite of its simplicity and relative lack of (e.g., rationality) assumptions, this
reinforcement learning model is extremely effective for learning how to signal.8

Argiento et al. (2009) show that in the simplest 2× 2 signaling game, with
equiprobable states, the sender and receiver converge toward one or the other
signaling system with probability 1 under this sort of learning dynamic. There-
fore, in the limit the players coordinate perfectly. Further, after only 300 plays,

5 For a detailed introduction to reinforcement learning from a computational perspective,
see Sutton and Barto (1998).

6 This is in the simplest case. There are ways of extending the model to include negative
reinforcement wherein the sender and receiver discard a ball if it did not lead to a positive
payoff. See Skyrms (2010) for an overview of this and several other possible extensions.

7 Skyrms (2010) uses Kullback-Leibler divergence to quantify the amount of information
a given message carries.

8 On the real-world effectiveness of simple learning, Schultz et al. (1997) show that
dopamine neurons in certain areas of primate brains seem to implement a reasonably similar
learning procedure. See also Schultz (2004) and Glimcher (2011).
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the communicative success rate of the sender and receiver is approximately 0.9,
on average (Skyrms, 2010).

Note that we have introduced the dynamic signaling game with an agent-
based model and a stochastic dynamics. If we assume that populations are
infinite (and so continuous), then it is possible to give, explicitly, a system of
differential equations governing the evolution of the population with respect
to proportions of strategies—e.g., the replicator dynamic. This gives rise to
a deterministic model. The mean-field dynamics of this particular stochastic
model (Roth-Erev reinforcement learning) is a version of the (deterministic)
replicator dynamic.9 However, we focus exclusively on the stochastic agent-
based learning dynamic.

2.3 Pooling and Partial Pooling Equilibria

In the extended n × n signaling game it is not certain that a population will
arrive at a signaling system. Requiring a communicative success rate of at least
0.8, Barrett (2006) shows that for n = 3, 4, failure to converge to a signaling
system occurs at rates of 0.096 and 0.219, respectively. For n = 8, failure to
converge occurs at a rate of 0.594—so, in this case, most runs result in sub-
optimal signaling strategies. This is due to the existence of so-called ‘pooling
equilibria’ in the signaling game.10

Completely pooling equilibria are strategies in which the sender [receiver]
simply ignores the state [message] and performs a particular action. For exam-
ple, a completely pooling strategy for a sender is to always send m1 regardless
of the state. In this case, signals carry no information. Partial pooling equilib-
ria can occur when the dimension of the signaling game n > 2. Figure 4 shows
examples of partial pooling outcomes for a 3× 3 signaling game.11

Pawlowitsch (2008) gives a complete characterization of these partial pool-
ing equilibria and shows (assuming the replicator dynamic) that the partial
pooling equilibria in fact have basins of attraction with positive measure. Even
though the replicator dynamic in a population setting and simple reinforce-
ment constitute different models, it turns out that learning and evolution are
closely related.12 So, these results are indeed robust.

9 See Beggs (2005) and Hopkins and Posch (2005).
10 Two caveats ought to be noted here. First, even in the 8×8 game, the players communi-

cate better than chance (where the expected payoff is 0.125). Second, if the communicative
success rate is relaxed to 0.75, then failure to converge to a signaling system drops drastically
to 0.046. (This highlights the need for a certain attentiveness when building our models.)
Further, when states are not equiprobable, pooling equilibria can still be reasonably effec-
tive. However, when state probabilities are very asymmetric, the signal may carry little to
no information. See Skyrms (2010) and Hofbauer and Huttegger (2008).
11 See Huttegger et al. (2010).
12 As was noted above, Beggs (2005) and Hopkins and Posch (2005) show that the mean-

field dynamic of Roth-Erev learning is a version of the replicator dynamic. See also Schreiber
(2001) for an analysis of the connection between the replicator dynamic and Pólya urns more
generally.
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Fig. 4: Two Partial-Pooling Strategies for the 3× 3 Game

Skyrms (2010) shows how partial pooling can be avoided by introducing a
correlation mechanism to his simple model. Huttegger et al. (2010) show that
adding mutation to the (e.g., replicator) dynamic will destabilize total pooling
equilibria and also appears to destabilize partial pooling equilibria by reducing
the size of the attracting region.13

As was noted, salience is also a possible mechanism by which individuals
might coordinate (and so avoid pooling equilibria). In this case, we do not
change the underlying dynamics of the game, but we change the choice rule for
the sender and receiver. The purpose of the subsequent section is to introduce,
in more detail, what we mean by salience in order to better understand how
it will be utilized in our own model.

3 Salience and Focal Points

Schelling (1960) showed that individual agents can often coordinate their be-
haviour without communicating by taking advantage of certain salient features
of the world. For example, when asked to choose a time and a place to meet
in New York City, an absolute majority of respondents chose Grand Central
Station for the location, and almost all respondents chose 12:00 noon for the
time. Schelling concludes that

[p]eople can often concert their intentions or expectations with oth-
ers if each knows the other is trying to do the same. Most situations
. . . provide some clue for coordinating behavior, some focal point for
each person’s expectation of what the other expects him to expect to
be expected to do. (57)

Though Schelling’s experiments are not rigorous, his general observations have
been replicated in a controlled environment.14

However, Schelling’s focal points require some sort of mutual expectation
about what individuals expect others might do in a particular problem. As
such, this process requires an individual to engage in high-order reasoning

13 See also Barrett (2006).
14 See Mehta et al. (1984a) and Mehta et al. (1984b).
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about others’ expectations about her expectation about others’ expectations,
etc.

Lewis (1969) writes at length about mutually concordant expectations and
this type of high-order reasoning about others’ expectations.15 In particular,
for Lewis, coordination requires some sort of salience. Salience may come in
several forms, with varying degrees of strength. ‘Prior agreement’ is perhaps
the strongest form of salience, though, as was stated above, this will not help
to quell skeptical concerns about the conventionality of language. ‘Precedents’
constitute another, weaker, type of salience to the extent that two individuals
who have come across a certain situation before may simply do what worked
last time. Lewis (1969, p. 57) notes that “past conformity to a convention is
a basis for common knowledge of a tendency to go on conforming”. Finally,
natural salience may be a basis for common knowledge, but this will be weaker
still insofar as it will generate weak higher-order expectations about what
others may do.16

One major difference between Lewis’ classical signaling game and the evo-
lutionary signaling game is that the latter does not impose strong rationality
assumptions. In the Roth-Erev learning model, each signal is initially equally
likely for a given state, and each act is initially equally likely for a given signal.
As such, there is no salience whatsoever built into this model. Skyrms (2010, p.
8) acknowledges that “there may be signaling systems in nature which got an
initial boost from some sort of natural salience”, however he wants to assume
less in order to strengthen the generality of his model. Thus, his justifica-
tion for assuming no salience is that this constitutes a “worst-case scenario”
wherein signaling systems are purely conventional (p. 8).

In considering the worst-case scenario, Skyrms’ point is not that salience
does not exist in nature, nor that it actually played no role in the evolution
of effective communication systems in nature. Rather, the purpose of presup-
posing no salience whatsoever is to show that even in the worst conceivable
case, coordination is still at least possible. In the same way that correlation
or mutation may help a population to evolve toward effective communication
more quickly, or may help to avoid partial pooling, so too may some degree of
salience.

In particular, some level of salience between zero in Skyrms’ model, and the
over-reliance on salience in Lewis’ model, deserves some attention insofar as no
salience whatsoever is as much of an idealization as salience being used as the
sole explanatory mechanism. Rather than making any presuppositions about

15 As a paradigm case, Lewis writes that

I may reasonably expect you to realize that, unless I already know what you expect
me to do, I may have to try to replicate your attempt to replicate my reasoning. So I
may expect you to try to replicate my attempt to replicate your attempt to replicate
my reasoning. So my own reasoning may have to include an attempt to replicate
your attempt to replicate my attempt to replicate your attempt to replicate my
reasoning. And so on. (27-8)

16 Schelling (1960) notes that determining focal points of a coordination problem often
relies more on imagination than logic.
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salience in this model, we ask the questions: How much salience is sufficient to
avoid partial pooling or to allow communication to evolve more quickly? How
much more efficient does salience make the evolution of communication? How
might salience itself evolve—i.e., how might an evolving signal become salient?

Little has been said about the possibility for some salience, and it is unclear
whether the classical game-theoretic approach even allows for such a concept.
However, it is an advantage of the evolutionary approach to signaling games
that we can make sense of this notion and subsequently investigate it. As
a result, we are able to examine how agents might be expected to exhibit
behaviour which takes advantage of this salience by chance. We explore such
an extension in the subsequent section.

4 The Model

The motivation underlying this model is to supplement the atomic signaling
game with a salience parameter to fill in the continuum between Lewis’ and
Skyrms’ respective idealizations.

The model described above for the atomic signaling game under simple
reinforcement learning allows the sender and receiver to take advantage of
evolved salience as the game progresses and actions are reinforced. For exam-
ple, suppose a signaling game has progressed in such a way that the sender’s
probabilities are as shown in Figure 5. In this case, the probability that the

States

Messages
m1 m2

s1 0.500 0.500
s2 0.500 0.500

(a) Initial Propensities

States

Messages
m1 m2

s1 0.999 0.001
s2 0.003 0.997

(b) Evolved Propensities

Fig. 5: Sender Probabilities

sender will send m1 given that nature chooses s1 is 0.999, and the probability
that she will choose m2 given s2 is 0.997. Hence, we might say that m1 has be-
come salient for the sender when s1 obtains. Similarly, m2 has become salient
for the sender when s2 obtains. In this sense, the sender takes advantage of a
salience that was not initially present, but has evolved through the learning
process. That is to say, a precedent has been set through simple trial-and-error.

The salience game works exactly like the atomic signaling game, except it
includes a salience parameter which amplifies the accidentally evolved prece-
dents that are already present in the atomic game, to the advantage of the
sender and the receiver.

As with the atomic 2× 2 signaling game, in the 2× 2 salience game there
are two states of the world (called ‘s1’ and ‘s2’), two possible signals or mes-
sages (called ‘m1’ and ‘m2’), and two possible actions (called ‘a1’ and ‘a2’).
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We further stipulate a salience parameter, µ, which can be interpreted as a
probability or a frequency. On a normal round of game-play (with probability
(1− µ)), the sender and receiver play as was described in Section 2.2: Nature
picks a state of the world at random, the sender chooses an initially random ac-
tion, and both the sender and receiver reinforce their choices just in case they
coordinate. As the game continues, the probabilities with which they choose
their respective messages or actions change proportional to the accumulated
rewards for coordination.

However, with some probability (the salience parameter, µ), the sender
[receiver] uses a different choice procedure. In this case, the sender [receiver]
chooses randomly from the set of most-likely signals [actions] given the par-
ticular state [signal]—i.e., the sender [receiver] chooses from a set of signals
[actions] that are most salient in the given context. As such, with probability
(1−µ), the choice rule is given by the normal Roth-Erev reinforcement learn-
ing procedure—choosing stochastically based on their respective probabilities,
which are proportional to the accumulated rewards. However, with probability
µ, the sender and receiver use a “greedy” choice rule to pick whatever action
is most probable (i.e., most salient). If no unique action is most salient, they
ignore less-probable actions and randomize over the remaining actions.

To clarify what is happening in the salience case, let Msj = {m1, . . . ,mn}
be the set of possible signals for a given state, sj , from which the sender
chooses. (Note: symmetric remarks will apply for the set Amj

= {a1, . . . , an}
from which the receiver chooses an action for a given message, mj .) For each
given state, there is an associated vector of probabilities,

P(mi|sj) = 〈p(m1 | sj), . . . , p(mn | sj)〉,

that a given signal is chosen in that state, with
∑n
i=1 p(mi|sj) = 1. The key

distinction between the atomic choice function and the salience choice function
is as follows: in the atomic case, the sender chooses from the entire set, Msj ,
with the likelihood of choosing a particular signal, mi, being given by the
associated weight, p(mi | sj), for that signal in state sj—again, this probability
is proportional to the accumulated reward thus far. However, in the salience
case, the sender chooses rather from the following set:

M ′
sj = arg max

mi

P(mi|sj).

For the n-game with n > 2, there are three distinct cases to consider,
depending on the cardinality of the set M ′

sj : (i) |M ′
sj | = 1, (ii) 1 < |M ′

sj | < n,

and (iii) |M ′
sj | = n.17 In the singleton case, (i), there is only one signal to

choose, and so the sender chooses that signal. This might be understood as
a particularly salient signal given the state, though we will say more about
interpretation in Section 5. The other extreme is case (iii): since no signal is
most likely (all signals are equiprobable, and M ′ = M), there is no salience to

17 Note, if n = 2, then case (ii) is excluded.



12 Travis LaCroix

rely upon, and therefore the sender must choose randomly between all possible
signals. In this case the sender’s choice procedure is de facto atomic.18

In case (ii), the sender does not have a uniquely salient signal, but ignores
unlikely signals. This, in effect, reduces the dimension of the game for a given
round. Since the probability of arriving at a signaling system is greater for
lower-dimensional games, this small degree of salience can have a significant
impact on the eventual outcome of the game.

Table 1: Three Possibilities for the Sender in the Salience Game

m1 m2 m3

s1 0.33 0.33 0.33 Case (iii)
s2 0.20 0.40 0.40 Case (ii)
s3 0.80 0.05 0.15 Case (i)

By way of a concrete example, consider the possible sender strategy for a
3×3 game by some given play of the game, shown in Table 1. In this example,
we have

M ′
s1 = {m1,m2,m3},

M ′
s2 = {m2,m3}, and

M ′
s3 = {m1},

corresponding to cases (iii), (ii), and (i), respectively. With probability (1−µ),
she chooses (atomically) according to the accumulated reward. Thus in s1,
she chooses uniformly between m1, m2, and m3. In s2, she chooses m1 with
probability 0.2, she chooses m2 with probability 0.4, etc. Finally, in s3, she
chooses m1 with probability 0.8, she chooses m2 with probability 0.05, etc.

With probability µ—i.e., the salience case—she greedily chooses the most
probable or most salient message. In s3, m1 is particularly salient, and so the
sender chooses this signal. In s2, m1 is unlikely. However, there is no uniquely
salient signal. Thus, the sender chooses from the set {m2,m3}, with each
message being equiprobable. As such, it is as if the sender were playing a 2×2
game on this particular round. Finally, in s1 no salience has evolved yet, and
so the sender effectively uses the atomic choice procedure.

In case (iii), the sender is a de facto atomic sender. This highlights the
fact that no salience here is presupposed at the outset. Rather, the salience of
a particular signal [act] given a particular state [signal] changes as the game-
play proceeds. We do not stipulate that, e.g., signal i is salient in state j:
the salience evolves as a function of the actor’s evolving individual choices
and so becomes salient as time goes on. The model illustrates a particular
process through which accidentally evolved salience is amplified. In the atomic
signaling game, we may also understand the process as an evolution of some

18 Technically, she chooses according to her accumulated reward; however, in this case all
messages are equiprobable, so this is tantamount to randomizing over all available messages.
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salience. In particular, early random salience is amplified by way of increasing
weights in general. However, the process of amplification here is stronger.

Before outlining the results for the salience game, we note that the rein-
forcement learning procedure here is effectively the same as Roth-Erev rein-
forcement learning, as was outlined in Section 2.2, to the extent that there
are no additional presuppositions going in to the model. The only difference
between the atomic game and the salience game is that with probability µ,
the choice rule is different.

The choice rule that we have described is taken as an analogue for salience
to the extent that “most probable” is understood as “most salient”. There
are, of course, other parametric choice functions that might be used here.
For example, Blume et al. (2002) introduce a softmax function as an alter-
native choice rule for Roth-Erev reinforcement learning. This approach de-
fines an exponential response rule, where the probabilities are proportional to
the exponential of accumulated rewards rather than the accumulated rewards
themselves. Generally, the accumulated rewards are multiplied by a constant,
λ—the reciprocal of λ is sometimes called the “temperature”. When λ is 0,
the reciprocal is infinite, so the choice rule is uniform among the possibilities.
Similarly, when λ is arbitrarily large, the reciprocal approaches 0, and the act
with the largest accumulated reward is chosen with the highest probability.

Therefore, as λ → ∞, the softmax choice rule thus defined mirrors our
greedy “salience” choice rule. In this sense, the choice rules are similar under
a particular context; however, though softmax performs similarly in certain
contexts to the choice rule we have defined here, it is less clear how we might
interpret this choice rule in the context with which we are concerned—namely,
modeling salience.19 In the next section, we present our simulation results to
show the effect of salience.

4.1 Method

Numerical simulations of simple reinforcement learning with only positive re-
inforcement payoffs equal to 1 were run. Since we are particularly interested
in the short-term evolution of the game, each run consists in 10, 000 individual
plays of the game, and we take an average of the results of 1000 runs. Though
this is a reasonably low number for a simulation of this sort, it was chosen to
make apparent the difference in speed of learning between the atomic game
and varying amounts of salience. In order to get a better picture of the limiting

19 That is to say, as a bit of mathematical machinery, the softmax choice rule might have
arrived at the same results; however, the extent to which these results are explanatory (at
least in a ‘how possibly’ sense) are going to be limited by our ability to interpret this choice
rule as having some natural analogue. See Blume et al. (2002) and Skyrms’ (2010) discussion
for further explication of softmax choice.
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behaviour of these simulations, a significantly larger number of trials per run
would be necessary.20

In order to get a reasonably complete picture of how salience affects the
expected payoffs and convergence toward signaling, we examine cases in which
the salience parameter is µ = 0.00, 0.01, 0.025, 0.05, 0.10, 0.15, 0.20, 0.25, 0.50
and 1.00. Note that when µ = 0.00, the model is identical to Skyrms’ model,
where there is zero initial salience. When µ = 1.00, the salience is not assumed,
but an initial success sets a strong precedent which individuals then rely upon
for all future plays. As such, this is a version of Lewis’ model, which relies upon
precedents rather than natural salience. In order to examine the robustness of
the results across more complex games, we look at several dimensions of the
signaling game, with n = 2, 3, 4, 5, 6, 7 and 8.

4.2 Results

The following subsections display graphical and tabular data of the results of
the simulations for a variety of statistics which may be of interest. In particular,
we examine the average expected payoff for 1000 runs by the end of the 10, 000
plays for each parameter in order to get a general measure of performance.
We also compare the speed of convergence to a cutoff parameter between the
atomic game and the salience game. Finally, we compare the proportion of runs
that fail to reach this cutoff parameter between the atomic and the salience
game by examining the pooling effects for varying degrees of salience.

4.2.1 Average Expected Payoff

The average expected payoffs for 1000 runs across the parameters examined is
summarized in Table 2. A graphical display of these data is shown in Figure 6.

As can be seen, an increase in salience results, in general, in an increase
in expected payoff for the players. However, this is not necessarily true in
lower-dimensional cases. In particular, when n = 2, we see that the salience
parameter for µ = 0.05, 0.10, 0.15, 0.20, 0.25 has lower expected payoff than
the atomic game (µ = 0.00). However, the difference here is negligible: it is, on
average, smaller than 0.0030. As such, the slight clustering above and below
the atomic expected payoff is likely a result of the low number of trials that
were run. The expected payoff is sufficiently close in this case that we can
reasonably say, in general, that allowing for salience is at least as efficient as
in the 2-game. Similarly, with the exception of the cases where µ = 0.01, n = 3
and µ = 0.025, n = 4, respectively, a monotonic increase in salience results in
a monotonic increase in expected payoff for n = 3, 4, 5, 6, 7, 8.

In fact, we can prove both of these observations analytically. In order to
do so, we introduce the following formal definitions.

20 The simulations were run with Python 2.7, and the data from the simula-
tions was compiled and interpreted with MatLab. The code can be found here:
github.com/travislacroix/demonstrator-game.

https://github.com/travislacroix/demonstrator-game
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Dimension of Game, n
2 3 4 5 6 7 8
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µ

0.00 0.9866 0.9413 0.9080 0.8819 0.8624 0.8417 0.8172
0.01 0.9867 0.9359 0.9169 0.8907 0.8679 0.8504 0.8319
0.025 0.9879 0.9421 0.9163 0.8946 0.8750 0.8599 0.8469
0.05 0.9847 0.9453 0.9218 0.9049 0.8840 0.8784 0.8685
0.10 0.9843 0.9507 0.9296 0.9189 0.9158 0.9119 0.9002
0.15 0.9821 0.9547 0.9418 0.9434 0.9351 0.9359 0.9257
0.20 0.9824 0.9703 0.9616 0.9558 0.9531 0.9509 0.9415
0.25 0.9850 0.9728 0.9704 0.9719 0.9656 0.9609 0.9564
0.50 0.9986 0.9967 0.9950 0.9924 0.9891 0.9848 0.9802
1.00 0.9996 0.9988 0.9976 0.9960 0.9940 0.9915 0.9887

Table 2: Average Expected Payoff Across Parameters

Fig. 6: Average Expected Payoff Across Parameters

Definition 1 The communicative success rate (expected payoff) for
the atomic n-game is given by

π(σ, ρ) =
∑
s∈S

P (s)
∑
a∈A

u(s, a) ·

(∑
m∈M

σ(s)(m) · ρ(m)(a)

)
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where s ∈ S,m ∈M , and a ∈ A are states, messages, and acts (respec-
tively), with |S| = |M | = |A| = n; the sender strategy, σ, is a function
mapping states to a probability distribution over messages; the receiver
strategy, ρ, is a function mapping messages to a probability distribution
over acts; P (s) is a probability distribution over states (uniform in our
case); and u(s, a) is a utility function—the Kronecker delta, δs,a, in this
case.21

Recall that the choice rule for the salience n-game is differentiated from
the atomic n-game in the following way: When there is no uniquely salient
message given the state for the sender, she chooses a message proportional
to that state’s accumulated rewards.22 (Note that similar remarks hold for
the receiver choosing an act based on a message.) When there is a subset
of messages that are equiprobable, the sender randomizes over the subset,
rather than the entire set of messages. Finally, when there is a uniquely salient
message (one message that is most probable), the sender simply picks that
message.

For simplicity, let us assume the probability distribution over each message
has a uniquely salient state (whose probability is higher than all the other
messages, given that states).23 The sender and receiver always coordinate when
they choose greedily in this case, since their probability distributions change at
the same time. Thus, we can define (under this assumption) the communicative
success rate for the salience n-game as follows.

Definition 2 The communicative success rate for the salience n-game
is given by

πµ(σ, ρ) = (1− µ)π(σ, ρ) + µ

That is, the sender and receiver obtain expected payoff π(σ, ρ) with
probability (1− µ)—i.e., when they play the game as usual—and they
coordinate perfectly with probability µ—i.e., when they play the salience
game.

With these definitions in hand, we can easily prove the following two proposi-
tions.

Proposition 1:
The communicative success rate for the salience n-game is at least as
successful as the atomic n-game, with equality just in case µ = 0 or
π(σ, ρ) = 1.

21 See Huttegger (2007) or Steinert-Threlkeld (2016) for a detailed formal characterization
of the signaling game in general.
22 The case where all messages are equiprobable amounts to randomizing over all the

messages, which would mean that the expected payoff is equivalent to the communicative
success rate π(σ, ρ) for the atomic n-game, as given in definition 1 above.
23 Note that this is a fairly strong simplifying assumption. However, this allows for a

significantly more concise proof. It would be fairly straightforward to accommodate “in
between” cases in the definition for the communicative success rate. However, this would
have to be done recursively on the dimension of the game for a fully general proof. Thus,
for space considerations we help ourselves to this assumption.
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proof:
Assume that µ ≥ 0. Then it follows that µ(1 − π(σ, ρ)) ≥ 0.
This is true because 0 ≤ π(σ, ρ) ≤ 1, given our utility function,
u(s, a), so it follows that 0 ≤ (1 − π(σ, ρ)) ≤ 1. If we distribute
the µ term, we see that µ−µ(π(σ, ρ)) ≥ 0. Adding π(σ, ρ) to both
sides of this inequality gives us π(σ, ρ)−µ(π(σ, ρ))+µ ≥ π(σ, ρ).
Finally, factoring out the π(σ, ρ) on the left side of the inequality
gives us (1−µ)π(σ, ρ)+µ ≥ π(σ, ρ). However, by Definition 2, we
have (1 − µ)π(σ, ρ) + µ := πµ(σ, ρ). Therefore, by substitution,
we have

πµ(σ, ρ) ≥ π(σ, ρ)

with equality just in case µ = 0 or π(σ, ρ) = 1, which is what we
wanted to show. �

Proposition 2:
The communicative success rate πµ(σ, ρ) is a monotonically increasing
function of µ.

Proof:
Assume that µ′ > µ. Then it follows that µ′(1 − π(σ, ρ)) >
µ(1 − π(σ, ρ)). This is true because 0 ≤ π(σ, ρ) ≤ 1, given our
utility function, u(s, a). It follows that 0 ≤ (1 − π(σ, ρ)) ≤ 1.
Distributing the µ′ term on the LHS of the inequality, and the
µ term on the RHS of the inequality gives us µ′ − µ′π(σ, ρ) >
µ−µπ(σ, ρ). Adding a π(σ, ρ) term to both sides of the inequality
(and reordering terms) gives us π(σ, ρ)−µ′π(σ, ρ)+µ′ > π(σ, ρ)−
µπ(σ, ρ) + µ. By factoring out the π(σ, ρ) on the left- and right-
hand sides of the inequality, we obtain (1 − µ′)π(σ, ρ) + µ′ >
(1− µ)π(σ, ρ) + µ. Thus, by definition, we have

πµ
′
(σ, ρ) > πµ(σ, ρ)

for µ′ > µ, which is what we wanted to show.

�

Even if we do not assume that each state has a uniquely most-probable
signal, it should be clear that because of the reduction in dimensionality, the
expected payoff is increased; however, the argument would be more compli-
cated in this case.

4.2.2 Speed of Convergence

We also examine the speed at which the various games reach or exceed a
particular cutoff parameter—in this case, 0.90—by the end of the run (10,000
trials). The run failure rate for 1000 runs across the parameters examined is
summarized in Table 3.
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Dimension of Game, n
2 3 4 5 6 7 8
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µ

0.00 0.033 0.173 0.331 0.498 0.624 0.741 0.860
0.01 0.032 0.186 0.296 0.464 0.604 0.723 0.818
0.025 0.027 0.169 0.302 0.440 0.573 0.685 0.771
0.05 0.036 0.164 0.284 0.401 0.514 0.607 0.664
0.10 0.032 0.138 0.254 0.338 0.390 0.429 0.511
0.15 0.036 0.127 0.202 0.224 0.287 0.302 0.365
0.20 0.038 0.082 0.130 0.166 0.194 0.210 0.276
0.25 0.028 0.074 0.094 0.094 0.127 0.155 0.164
0.50 0.001 0.004 0.005 0.008 0.015 0.025 0.033
1.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3: Run Failure Rates Across Parameters (0.9 Cutoff)

The cutoff parameter chosen here is 0.9. For theoretical purposes, this is
excessively high, and the relevant cutoff parameter is going to vary depending
on the dimension of the game. However, 0.9 was chosen simply for consistency
of results across the salience parameters—i.e., for ease of comparison. The
numbers in Table 3 do not mean that, e.g., 33 of the atomic 2-game runs failed
to converge to a signaling system, but simply that by the 10,000th trial they
failed to have an expected payoff of at least 0.9. In this way, the data in Table 3
speaks to the speed at which the players learn to communicate efficiently. As
we can see, an increase in salience generally translates to an increase in speed of
learning how to signal. To illustrate this clearly, we can compare, for example,
the failure rates in the 8 × 8 game. In the atomic game, very few of the runs
have achieved effective communication. However, an increase in salience by
0.05, 0.10 and 0.15 results in approximately 150%, 250% and 350% increases
in successes, respectively. As such, salience allows individuals to learn how to
effectively communicate more quickly—again, with an increase in frequency of
salience resulting, in general, in an increase of speed.

Unsurprisingly, we find quantitative similarities in the lower dimensional
cases as we did with the expected payoffs of these games (4.2.1). That is,
with the exception of the cases where µ = 0.01, n = 3 and µ = 0.025, n = 4,
respectively, a monotonic increase in salience results in a monotonic decrease
in failures for n = 3, 4, 5, 6, 7, 8.

In particular, we may note that, while an increase in salience (generally)
translates to a decrease in failures across parameters, the difference between
salience rates of µ = 0.00 and µ = 0.05 is significantly higher, for example,
than an increase in salience rates between µ = 0.20 and µ = 0.25. So, there
is not a linear relation between differences in salience rates and differences in
success rates. However, in general, we ought to note that higher dimensional
games tend to have significantly higher increases in success. For example, for
a 5% increase in salience, µ = 0.05 sees a 7.03%, 19.32%, and 29.26% increase
in success for n = 4, 5, 6, respectively, as compared with µ = 0.00. As such,
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in several of these simulations we see that salience is more effective in more
complex games than it is in less complex games.

We analyse the variance with a factor of µ × n using a linear regression
model to determine whether there is a statistical interaction effect between the
variables for salience and dimension. The results in Figure 7 show the effect of
increasing salience on failure rates does appear to depend in some way upon
the dimension of the game.
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Fig. 7: Interaction Effect Between Salience and Dimension

We might wonder why this is the case. Note that a small increase in dimen-
sion corresponds to a significant increase in the strategy space of the game.

For an n×n signaling game, there are n2n combinations of strategies. Thus,
there are 713 more strategy combinations in the 3×3 game than there are in the
2×2 game, but there are 280, 796, 753, 637, 807 more combinations of strategies
in the 8 × 8 game than there are in the 7 × 7 game. As such, it makes sense
that salience would have a larger effect on higher-dimensional games: we said
above that the salience choice function effectively reduces the dimension of the
game for that particular choice. This corresponds to a significant reduction in
the strategy space for the player. Thus, coordination happens more quickly.24

24 Note that, under a deterministic dynamics with a continuous population, one can give
a measure of the basins of attraction for the partial pooling equilibria. However, we have
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4.2.3 Pooling Equilibria

The cutoff parameter that one chooses is important insofar as the expected
payoff of reasonably effective pooling equilibria is going to vary depending on
the dimension of the game. For example, in the atomic 3-game, the optimal
solution is one of the six signaling systems that, in the limit, has an expected
payoff arbitrarily close to 1. However, there will be some pooling equilibria
such that, if the expected payoff by the ith trial exceeds the theoretical payoff
of these pooling equilibria, then the players have already “escaped” the poly-
morphic trap, and will eventually converge to a signaling system. When states
are equiprobable, the most efficient pooling equilibrium in, e.g., the atomic
3-game, has an expected payoff of 0.666667. As such, if the expected payoff by
the ith trial is, e.g., 0.75, then the population will eventually arrive at a signal-
ing system with an expected payoff of 1. Note that there are several different
polymorphic traps that have this expected payoff—however, for mathematical
purposes, they are equivalent.

However, if the dimension of the game is higher, then there are going to
be a larger number of pooling equilibria,25 and the most effective pooling
equilibria are going to have an expected payoff closer to the optimal solution.
For example, the expected payoff of the most optimal sub-optimal equilibrium
in the atomic 8-game is 0.875. Thus, if a run exceeds this payoff by the ith
trial, then it is convergent toward an optimal solution.

Figure 8 compares the threshold of sub-optimal pooling equilibria for the
actual expected payoff of the 1000 runs of each game with n = 6. The vertical
dashed lines indicate the expected payoff for sub-optimal pooling equilibria.

Here, we note that as µ increases, there is more weight on signaling systems
and less weight on partial pooling equilibria. Furthermore, given that the time-
scale is the same for each combination of parameters, we can compare the rate
at which the individuals escape these pooling equilibria. As can clearly be seen,
by the 10, 000th trial significantly more runs end up with a higher expected
payoff, and as the salience increases the speed with which we arrive at the
respective payoffs increases.

The rate of convergence toward equilibria shown here is reasonably quicker
across the variety of salience rates, with an increase in salience resulting (gen-
erally) in an increase in efficiency. Again, since we only examined short-term
results for 10,000 iterations per run, it is not necessarily the case that the
runs which appear to be converging to sub-optimal equilibria will stay there.

focused here on an agent-based reinforcement learning model, which is stochastic, and so
no such measure exists for the way this model was presented. Given the relation between
the mean-field dynamic for Roth-Erev reinforcement learning and the replicator dynamic,
it would be theoretically possible to obtain such a measure for the salience game and so to
show analytically whether and how these basins of attraction decrease; however, this would
be fairly costly with regard to space considerations. We still believe the results shown in
this section serve as illuminating gesture in that direction.
25 In fact, this number will grow super-exponentially as the dimension of the game in-

creases, in the same way that the number of signaling systems in a particular game grows
super-exponentially as the dimension of the game increases.
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Fig. 8: Pooling Around Optimal and Sub-Optimal Strategies for a 6 × 6 Sig-
naling Game

Similar results hold across the various dimension parameters, with the intu-
itive outcome that more salience tends the data toward the right of the graph,
and similarly for lower dimensional games, where convergence happens with
greater certainty.

5 Concluding Remarks

We might note the following interpretation of what we mean by salience in
this paper. It appears that the type of salience to which Schelling refers, in his
discussion of focal points, is an objective salience. To the extent that Lewis is
couching his discussion of salience in terms of Schelling’s work (and similarly,
to the extent that Skyrms is discussing salience in terms of Lewis’ work), this
objective feature of salience seems to be inherited by each of these models.

However, because of the asymmetric information inherent to the signaling
game—the sender knows the state of the world, but the receiver does not—it
appears that the salience we are concerned with here is a psychological (or
subjective) rather than an objective notion of salience. Namely, the features of
a particular message that may seem salient to the sender, given her knowledge
of the state of the world, might not be salient to the receiver—e.g. a signal
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with context may seem particularly salient for that context, but without the
additional contextual information, it may seem random.

In the terms of our model, internal salience is created for both the sender
and receiver by the rewards generated by their past behaviour. Due to the
informational asymmetry between the sender and receiver, we might think that
the salience available to the sender is not available to the receiver. There is
indeed a non-zero probability that the sender and receiver will evolve different
saliences early on in the game.26 However, we note that this is a game of
pure coordination. As such, most of the time, the sender and receiver will
evolve a shared salience, since they only reinforce their behaviour when they
coordinate. Furthermore, this is a self-correcting process—they cannot evolve
“opposite” saliences because they would then fail to coordinate and so not
reinforce their behaviour (i.e., this is unstable).27

As such, the asymmetry of information in the signaling game makes it
appear that we are concerned with a subjective salience as opposed to an
objective salience (and so diverge from the usual interpretation of salience in
the sense of Schelling). However, since the game is one of pure coordination,
the subjective saliences that get evolved are often going to be shared. As a
matter of mechanics, I do not believe the distinction is a significant one.

Furthering this point, we might regard the model as giving a parameter
that measures salience “out in the world”, with the result that an increase in
salience allows for individuals to agree upon conventions more quickly. This is a
metaphysical, and so objective understanding of salience, wherein the matter of
fact about whether a particular state of the world has some salience is going to
vary.28 On the other hand, we might interpret the variable salience parameter
as modeling a constant degree of salience in the world, about which the agents
in the game are variably aware—or, likewise, we might say the agents are only
intermittently motivated to attend explicitly to what might be most mutually
salient. This is an epistemic interpretation of salience, wherein the matter of
fact is that a given state of the world is always salient, but actors do not always
notice. This is more akin to the subjective notion of salience. Again, though
there may be some interesting philosophical consequences lurking about, I do
not believe anything significant turns on this distinction for our purposes here.

26 For a concrete example: suppose on the first round, choosing stochastically, nature picks
s1, the sender picks m1, and the receiver picks a1. They coordinate, and so reinforce their
behaviour. Suppose on the second round, choosing stochastically, nature picks s2, the sender
picks m1, and the receiver picks a2. They coordinate again, and so reinforce again. Now,
message 1 is salient in both states for the sender, but no act is salient for any message for
the receiver.
27 The self-correcting nature of the salience game is most apparent when we set µ = 1.

In the first round, nothing is salient for anyone, so both the sender and receiver effectively
choose randomly. However, if they coordinate, it becomes impossible for them to use salience
in different ways because this will lead to miscoordination, and so will never be reinforced.
28 To see how this might be the case, we might think that a landmark is a naturally salient

feature of some geography. We might think such a landmark is always salient in the objective
interpretation; however, it may be obscured by fog (for example).
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If we suppose that the sender and receiver have already started to evolve
toward a signaling system—i.e., each state has a unique “most probable” signal
and each message has a unique “most probable” act—then a second interpre-
tation of our model is that the salience parameter gives a formal analogue for
something akin to demonstration in communication contexts. In this case, we
might understand the salience game as modeling an interaction of the follow-
ing sort: an individual sees the state of the world and sends a signal to another
individual while subsequently performing the appropriate action for that par-
ticular state of the world. In this case, coordination always happens. In the
salience game, if the sender and receiver have already started to evolve likely
dispositions toward a signaling system, then they will always coordinate when
taking advantage of salience. Thus, we interpreted the salience parameter as
modeling some degree of salience; however, since the sender and receiver al-
ways coordinate when the signal and act are mutually salient, we can interpret
this special case as something akin to demonstration, as was just described.29

This interpretation is closely related to previous work by Barrett and
Skyrms (2017) on a constituent of ‘self-assembling games’, which they refer
to as cue-reading games. The cue-reading game is effectively a signaling game
where the sender’s dispositions are already fixed at the outset. As such, the
receiver must evolve to take advantage of this fixed disposition. (Note that
under this model we can interpret a sender as the receiver of nature’s signal,
where nature has a fixed disposition.) However, in the salience game, we do
not presuppose that the sender has a fixed disposition at the outset. Rather,
the sender evolves a disposition based on precedent—namely, accumulated
rewards.

Several questions surrounding social learning arise with respect to salience
in nature. In particular, the model we examined here is concerned primar-
ily with how and whether such salience will help effective communication to
evolve—and so help individuals in a population avoid sub-optimal pooling
strategies, converge toward a convention more quickly, etc.—and if so, to what
degree?

We saw that Skyrms’ initial motivation in examining signaling from a dy-
namic learning perspective was to consider the “worst case scenario in which
natural salience is absent and signaling systems are purely conventional” (2010,
p. 8). However, the models examined here are also ones in which the signaling
systems are purely conventional. The salience is not presupposed but evolves
naturally as a result of the learning dynamic. The main difference between
the atomic signaling game on this learning dynamic and the salience game,
then, is that the variant choice function allows individuals to take advantage of
their own learning efforts in order to create salience from a purely conventional
signal.

29 Note that we stipulate that they evolve up some dispositions at the outset, so that we
are not building meaning into the model. The signals are still arbitrary, and so conventional,
but in the salience case, when a signal is salient the sender might demonstrate this, and both
the sender and receiver coordinate and reinforce.
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Further, though salience presupposes little more than the simple reinforce-
ment learning model—only the choice function of the actors is different—it
has several desirable properties over and above the atomic signaling game
with simple reinforcement learning. Namely, a small amount of salience can
help players learn to signal more quickly, and salience can help individuals to
avoid sub-optimal equilibria. This is a practical consequence of our results. In
particular, this has to do with the evolution of signaling conventions specifi-
cally.

A theoretical consequence of this result is that this sort of approach to
modeling—taking advantage of parametrization, rather than making assump-
tions about certain components of the model—allows us to make more realistic
assumptions about the phenomena we are trying to model. This parametric
methodology thus has consequences for the explanatory value of the model
itself. In particular, we have avoided some idealization and obtained results
for a continuum of possibilities. Now, we can can say within some interval of a
given parameter, what sort of phenomena we would expect to see in a natural
setting and how subtle changes to the parameter will affect the outcomes of
the game.
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