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Abstract

Based on the PBR theorem about the reality of the wave function,
we show that the wave function assigned to a cognitive system, which
is used to calculate probabilities of thoughts/judgment outcomes in
quantum cognitive models, is a representation of the cognitive state
of the system. In short, quantum cognition implies quantum minds.
Furthermore, the principle of psychophysical supervenience requires
that a quantum mind must supervene on a quantum brain.

1 Introduction

Quantum cognition is a theoretical framework for constructing cognitive
models based on the mathematical principles of quantum theory. Due to
its success in explaining paradoxical empirical findings in cognitive science,
quantum cognition has been the subject of much interest in recent years
(see Wang et al, 2013; Yearsley and Busemeyer, 2016 for helpful reviews).
However, it is still unknown what quantum cognitive models tell us about
the underlying process of cognition. It is widely thought that quantum
cognition is only an effective theory of cognition, where the actual brain
processing may take place in an essentially classical way. In this paper, we
will show that this cannot be true. Based on the recent advances in the
research of quantum foundations, especially the PBR theorem about the
reality of the wave function, we will show that the wave function assigned
to a cognitive system such as our brain, which is used to calculate proba-
bilities of thoughts/judgment outcomes in quantum cognitive models, is a
real representation of the cognitive state of the system. In short, quantum
cognition implies quantum minds. Moreover, the principle of psychophysical
supervenience further implies that our brain is a quantum computer.
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2 The PBR theorem

Quantum theory, in its minimum formulation, is an algorithm for calculating
probabilities of measurement results. The theory assigns a mathematical
object, the so-called wave function or quantum state, to a physical system
prepared at a given instant, and specifies how the wave function evolves with
time. The time evolution of the wave function is governed by the Schrödinger
equation, whose concrete form is determined by the properties of the system
and its interactions with environment. The connection of the wave function
with the results of measurements on the system is specified by the Born
rule, which roughly says that the probability of obtaining a particular result
is given by the modulus squared of the wave function corresponding to the
result.

At first sight, quantum theory as an algorithm says nothing about the
actual state of a physical system. However, it has been known that this is
not true due to the recent advances in the research of the foundations of
quantum mechanics (see Leifer, 2014 for a comprehensive review). First, a
general and rigorous approach called ontological models framework has been
proposed to determine the relation between the wave function and the actual
state of a physical system (Spekkens 2005; Harrigan and Spekkens 2010).
The framework has two fundamental assumptions. The first assumption is
about the existence of the underlying state of reality. It says that if a physical
system is prepared such that the quantum algorithm assigns a wave function
to it, then after preparation the system has a well-defined set of physical
properties or an underlying ontic state, which is usually represented by a
mathematical object, λ. In general, the wave function assigned to a physical
system ψ corresponds to a probability distribution p(λ|ψ) over all possible
ontic states of the system.

In order to investigate whether an ontological model is consistent with
the quantum algorithm, we also need a rule of connecting the underlying
ontic states with measurement results. This is the second assumption of
the ontological models framework, which says that when a measurement
is performed, the behaviour of the measuring device is determined by the
ontic state of the system, along with the physical properties of the mea-
suring device. Concretely speaking, for a projective measurement M , the
ontic state λ of a physical system determines the probability p(k|λ,M)
of different results k for the measurement M on the system. The con-
sistency with the quantum algorithm then requires the following relation:∫
dλp(k|λ,M)p(λ|ψ) = p(k|M,ψ), where p(k|M,ψ) is the Born probability

of k given M and the wave function ψ.
Second, several important ψ-ontology theorems have been proved in the

ontological models framework (Pusey, Barrett and Rudolph, 2012; Colbeck
and Renner, 2012, 2017; Hardy, 2013), the strongest one of which is the
Pusey-Barrett-Rudolph theorem or the PBR theorem (Pusey, Barrett and
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Rudolph, 2012). The PBR theorem shows that when assuming indepen-
dently prepared systems have independent ontic states, the wave function
assigned to a physical system must be a representation of the ontic state of
the system in the ontological models framework. This auxiliary assumption
is called preparation independence assumption.

The basic proof strategy of the PBR theorem is as follows. Assume
there are N nonorthogonal states ψi (i=1, ... , N), which are compatible
with the same ontic state λ.1 The ontic state λ determines the probability
p(k|λ,M) of different results k for the measurement M . Moreover, there is a
normalization relation for any N result measurement:

∑N
i=1 p(ki|λ,M) = 1.

Now if an N result measurement satisfies the condition that the first state
gives zero Born probability to the first result and the second state gives zero
Born probability to the second result and so on, then there will be a relation
p(ki|λ,M) = 0 for any i, which leads to a contradiction.

The task is then to find whether there are such nonorthogonal states and
the corresponding measurement. Obviously there is no such a measurement
for two nonorthogonal states of a physical system, since this will permit
them to be perfectly distinguished, which is prohibited by quantum theory.
However, such a measurement does exist for four nonorthogonal states of
two copies of a physical system. The four nonorthogonal states are the
following product states: |0〉 ⊗ |0〉, |0〉 ⊗ |+〉,|+〉 ⊗ |0〉 and |+〉 ⊗ |+〉, where
|+〉 = 1√

2
(|0〉+ |1〉). The corresponding measurement is a joint measurement

of the two systems, which projects onto the following four orthogonal states:

φ1 = 1√
2
(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉),

φ2 = 1√
2
(|0〉 ⊗ |−〉+ |1〉 ⊗ |+〉),

φ3 = 1√
2
(|+〉 ⊗ |1〉+ |−〉 ⊗ |0〉),

φ4 = 1√
2
(|+〉 ⊗ |−〉+ |−〉 ⊗ |+〉), (1)

where |−〉 = 1√
2
(|0〉 − |1〉). This proves that the four nonorthogonal states

are ontologically distinct. In order to further prove the two nonorthogonal
states |0〉 and |+〉 for one system are ontologically distinct, the preparation
independence assumption is needed. Under this assumption, a similar proof
for every pair of nonorthogonal states can also be found, which requires more
than two copies of a physical system (see Pusey, Barrett and Rudolph, 2012
for the complete proof).

Here it is worth emphasizing that the PBR theorem only involves prepare-
and-measure experiments, in which a system is prepared in a wave function
and is then immediately measured. Thus it is independent of how the wave

1It can be readily shown that different orthogonal states correspond to different ontic
states. Thus the proof given here concerns only nonorthogonal states.
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function changes after a measurement. In other words, the PBR theorem
is independent of whether the collapse postulate is true or not, and it ap-
plies to the quantum algorithm with the collapse postulate or without the
collapse postulate.

To sum up, the PBR theorem shows that quantum theory as an algorithm
also says something about the actual state of a physical system. It is that
under the preparation independence assumption, the wave function assigned
to a physical system, which is used for calculating probabilities of results of
measurements on the system, must be a representation of the actual state
of the system in the ontological models framework.

There are two possible ways to avoid the result of the PBR theorem.
One is to deny the preparation independence assumption. Although this
assumption seems very natural, it may be rejected in some ontological mod-
els (Lewis et al, 2012). The other is to deny that an isolated system has a
real physical state, which is objective and independent of other systems in-
cluding observers, i.e. dening the first assumption of the ontological models
framework. Indeed, this assumption is rejected by Quantum Bayesianism or
QBism (Fuchs et al, 2014) and other pragmatist approaches to quantum the-
ory (Healey, 2017), where the wave function represents information about
possible measurement results or it is only a calculational tool for making
predictions concerning measurement results.

3 Implications for quantum cognition

Let’s now analyze the possible implications of the PBR theorem for under-
standing quantum cognition.

In its most conservative form, quantum cognition is only an algorithm
for calculating probabilities of thoughts/judgment outcomes. In order to un-
derstand the underlying process of cognition in the brain, we need a similar
ontological models framework for cognitive systems. The first assumption
of the framework is about the existence of cognitive states. It says that
when quantum cognition assigns a wave function to a cognitive system, the
system has a well-defined cognitive state, which can be represented by a
mathematical object, λc. This assumption is accepted by quantum cogni-
tive models explicitly or implicitly. If one denies this assumption, then it will
be impossible to understand the underlying process of quantum cognition.2

The second assumption is that when a measurement/judgment is made,
the behaviour of a cognitive system is determined by the cognitive state of

2Note that denying this realistic assumption will pose more serious difficulties for un-
derstanding macroscopic cognitive systems than for understanding microscopic physical
systems such as atoms. We cannot directly perceive the microscopic objects after all.
But we can directly perceive macroscopic objects, and we also have self-awareness. Thus
it is arguable that QBism and other pragmatist approaches to quantum theory are not
applicable here.
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the system, along with the concrete measurement setting such as asked ques-
tions or evidence presentation. Concretely speaking, for a measurement M ,
the underlying cognitive state λc of a cognitive system determines the proba-
bility p(k|λc,M) of different results k for the measurement M on the system.
The consistency with the quantum algorithm in quantum cognitive models
then requires the following relation:

∫
dλcp(k|λc,M)p(λc|ψ) = p(k|M,ψ),

where p(k|M,ψ) is the Born probability of k given M and the wave function
ψ. This assumption is necessary for connecting the underlying cognitive
states with the results of measurements. If denying this assumption, then
we cannot investigate whether an ontological cognitive model is consistent
with the quantum algorithm, and as a result, we cannot understand why the
quantum algorithm works and what it tells us about the underlying process
of cognition.

In addition, there is also an auxiliary assumption besides the above on-
tological models framework for cognitive systems, namely the preparation
independence assumption. It says that independently “prepared” cognitive
systems have independent cognitive states. This assumption holds true in
quantum cognitive models.3

Then, quantum cognition satisfies the three preconditions of the PBR
theorem, namely (1) the quantum algorithm; (2) the ontological models
framework; and (3) the preparation independence assumption. Thus, like
the proof of the PBR theorem, we can prove that the wave function assigned
to a cognitive system such as our brain, which is used to calculate proba-
bilities of thoughts/judgment outcomes in quantum cognitive models, is a
real representation of the cognitive state of the system. This means that
human minds and their dynamics are not classical but quantum in quantum
cognition (Wendt, 2015).

We may go further by resorting to the principle of psychophysical super-
venience, which says that the mental properties of a system cannot change
without the change of its physical properties.4 By this principle, if the
mental state of a brain obeys the quantum dynamics, then the underlying
physical state of the relevant part of the brain will also obey the quantum
dynamics. In other words, our brain is a quantum computer (Hameroff and
Penrose, 1996; Hagan et al., 2002; Fisher, 2015).

4 Conclusions

Based on the ontological models framework and the PBR theorem, we have
shown that the wave function assigned to a cognitive system such as our

3It has been argued that the reality of the wave function can also be proved without
resorting to this assumption (Gao, 2017, 2018).

4Here supervenience is used in its standard definition. A set of properties A supervenes
on another set B in case no two things can differ with respect to A-properties without
also differing with respect to their B-properties (McLaughlin and Bennett, 2014).
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brain in quantum cognitive models is a real representation of the cognitive
state of the system. In short, quantum cognition implies quantum minds.
Moreover, when assuming the principle of psychophysical supervenience, a
quantum mind must supervene on a quantum brain.

This result is surprising and beyond the expectations of most people
working in quantum cognition. There exist two possibilities. One is that
quantum cognitive models turn out to be true. This seems to be supported
by recent work (Wang et al, 2014). In this case, the validity of these models
will imply that our brain is indeed a quantum computer. The other is that
quantum cognitive models turn out to be false. In this case, these models will
have no implications on the nature of our mind and brain. In our view, the
second possibility cannot yet be excluded. We hope a crucial experiment in
cognition and decision making, like the double-slit experiment in physics, can
be made in the near future to determine whether or not quantum cognition
is real.
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