
ADAMS' THESIS AND THE LOCAL INTERPRETATION OF

CONDITIONALS

Abstract. Adams' Thesis states that the probability of a conditional is the prob-
ability of the consequent conditional on the antecedent. S. Kaufmann introduced
a rival \local" method for calculating strength of belief in a conditional that, ac-
cording to a claimed majority, squares better with intuition in some circumstances.
He also gave a wagering example purporting to show that it is sometimes \advan-
tageous to follow the local interpretation". We challenge the intuitions, expose an
error in the example and critique Kaufmann's semantics for the local interpretation.

1. Local Probabilities for Conditionals

Stefan Kaufmann (2004) introduces a method for predicting \strength of belief" (of a
purported majority of speakers) in some conditionals. It (the method) is intended as
a complement to (and sometime rival of) the so-called Adams Thesis (Adams 1996,
p. 3), according to which the \probability" of a conditional A ! C should be the
conditional probability P (CjA). Kaufmann presents a scenario in which one is about
to draw a ball from one of two bags. The likelihood of drawing from each bag, as
well as the contents of each bag, are given in the following table.

P (Bag X) = 1

4
P (Bag Y ) = 3

4

10 red balls, 10 red balls,
9 of them with a black spot 1 of them with a black spot

2 white balls 50 white balls

Kaufmann asks whether strength of belief in

(1) If I pick a red ball, it will have a black spot

ought to be `high', `�fty-�fty', or `low'. Kaufmann writes:

The judgment of nine out of ten informants to whom I posed this question
in an informal survey, as well as my own intuition, is that the answer
should be `low'.

Accordingly, Kaufmann postulates a new, \local" method of calculating a probability
for (1). This method may be motivated as follows. Consider an \expert" who knows
which bag is in play. (Kaufmann doesn't resort to this device, but it's useful.) By
Expert Reection, one's strength of belief in (1) ought to be the expectation of the
expert's strength of belief in (1). If it's Bag X, the expert's strength of belief in
(1) will be 9

10
(Kaufmann assumes that speakers do defer to conditional probability,

conditional on the bag being �xed), and if it's Bag Y the expert's strength of belief
in (1) will be 1

10
. So strength of belief in (1) (says Kaufmann) might plausibly be

(2) Pl(R! B) = P (R! BjX)P (X) + P (R! BjY )P (Y )
1
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= P (BjRX)P (X) + P (BjRY )P (Y ) = ( 9

10
)(1

4
) + ( 1

10
)(3

4
) = 3

10
.

(See Section 2 for more on the above display.) Here of course B =Black Spot, R =Red,
etc. Kaufmann contrasts (2) with what he calls the \global" interpretation (i.e. the
interpretation consistent with The Thesis):

(3) Pg(R! B) = P (BjRX)P (XjR) + P (BjRY )P (Y jR) = P (BjR) = 6

10
.

He calls the move from P (X) in (2) to P (XjR) in (3) an \abductive inference to the
best explanation for the (hypothetical) observation that the ball is red," observing
that \This step is evidently not performed by those who give the conditional (1) a
`low' rating."

Michael Zhao (2015) and Justin Khoo (2016) have o�ered putative characterizations
of the conditions under which a \local" reading exists. In Section 3 we present
contrasting conditional pairs that cast doubt on the adequacy of these theories. One
member of each pair is paradigmatically locally interpretable and the other looks to
be so interpretable if the �rst is, yet giving both members the local interpretation feels
incoherent. The lesson, we suggest, is that those who employ the local interpretation
haven't thought carefully enough about how their resulting attitudes �t together
with other attitudes they would adopt in similar situations according to similar rules.
These troubles for the local interpretation are compounded in Section 4, where it is
shown that Kaufmann's one attempt to demonstrate that the local interpretation can
be employed as a basis for rational decision in some circumstances where local and
global interpretations come apart founders on a mathematical error.1

A separate issue is that Kaufmann (2004) doesn't say what conditional sentences
mean (e.g., whether they have truth conditions). Kaufmann (2009) addresses this
gap, but for reasons we shall give in Section 5, the resulting semantics has at least
one serious aw. Taking cues from the exposition in Kaufmann (2004), we recover
what we believe to have been Kaufmann's intention. To this end, we substitute for a
model of van Fraassen (1976), from which the semantics of Kaufmann (2009) derives,
an alterative model that turns out to be isomorphic to one developed by Andrew
Bacon (2015). (We shall give a di�erent, more notationally e�cient, presentation.2)

2. Triviality, Total Probability and the Resilient Equation

In the �rst line of (2) there appears to be an appeal to the law of total probability

P (A) =
nX
i=1

P (Bi)P (AjBi) for any partition fB1; : : : ; Bng (TP )

1Kaufmann's rhetoric places a great deal of importance on this example{he essentially concedes
that if there aren't scenarios where speakers are justi�ed in basing decisions on locality, there is
no reason to think that the local interpretation isn't a mere fallacy. Douven (in his footnote 4)
misdiagnosed Kaufmann's example as a case in which true credence and rational action come apart.

2Briey, we employ a countable set of ordinals as indexing set, whereas Bacon uses the natu-
rals. So while there is an isomorphism between the models, Bacon must continually speak of an
\equivalence" between \sequences" and \sequence of sequences", etc. Since any mapping that might
establish this equivalence would encrypt the important orderings that are essential to the model, the
approach involving ordinals (or some other su�ciently structured countable set) is more natural.
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over the partition fX; Y g, with A the conditional (R ! B). In the second line,
meanwhile, the identity P (R ! BjX) = P (BjRX) is used; Fitelson (2015) refers
to this identity as the \Resilient Equation". The conjunction of these practices,
taken as generally valid rules, has been shown to imply \triviality" by David Lewis
(1976). Lewis employs (TP ) for A! C over the partition fC;:Cg. This appears to
commit Thesis defenders who accept the Resilient Equation to the absurd conclusion
P (A! C) = P (C), which shows in its turn that no Thesis-friendly probability space
admits of a three cell measurable partition fE1; E2; E3g with positive measure cells:
otherwise, one could set A = E1 [ E2 and C = E1 [ E3.

Thesis defenders therefore face a choice. Either they must disavow that (TP ) applies
to conditionals, or they must disavow the Resilient Equation. Though Kaufmann
doesn't defend The Thesis in all contexts, he does believe that the global reading
\generally accords well with pre-theoretical intuitions" and is typically available.
Put to the same choice, then, he disavows (as generally valid; see Kaufmann 2004 p.
585 line 20) the Resilient Equation. For though he uses it in (2), he notes that it is
`not warranted by an \o�cial" rule of the probability calculus', suggesting that its
legitimacy there is exceptional.3 Even so, as a sometime employer of this equation,
he feels obligated to at least address the threat of \triviality", writing \I do not claim
that conditionals have local interpretations with respect to just any variable."

Lewis (1976) discusses two types of Thesis proponents{those for whom conditionals
are propositions, so that their \probabilities" are true probabilities, and those for
whom conditionals are not propositions, so that their \probabilities" are \assertabil-
ities", \felicities" or other \ersatz probabilities".4 The former are obligated to deny
the Resilient Equation; the latter are obligated to deny the Law of Total Probabil-
ity (as applied to conditionals). Those who believe conditionals to be propositions
believe them to be highly context-sensitive; those who believe they aren't employ
a highly non-classical notion of (ersatz) conditional probability. Stalnaker and Van
Fraassen are of the �rst type, Adams is of the second. Kaufmann's position, which
is laid out in Kaufmann (2009), is ultimately something of a hybrid{he takes condi-
tionals to have \valuations" that are sometimes truth values (i.e. 0 or 1) but can be
intermediate (i.e. lie strictly between 0 and 1). On the other hand, he de�nes these
valuations to be the expected values of true propositions lying in a more elaborately
structured space. This, together with the fact that he uninchingly employs the Law
of Total Probability (and ags use of the Resilient Equation as exceptional) suggests
to us that he essentially views conditionals as genuine, context sensitive propositions.

Kaufmann (2009) uses a model of van Fraassen (1976) as a \baseline" for his own
semantics for conditionals. This model was engineered for the speci�c purpose of
con�rming The Thesis without lapsing into triviality, a property we believe Kaufmann

3Douven (2008) appears to agree, stating that the �rst line of (2), \being a mere application of
the law of total probability, is unassailable."

4The latter proponents needn't commit on what these ersatz probabilities amount to. All that is
necessary is that their assignment be descriptive of (appropriately vetted) speaker usage. So, they
may regard \P (CjA) = x" as a formal paraphrase of an utterance such as \the probability of A! C

is x". Such theorists wouldn't discuss \strengths of belief in" conditionals at all, if speakers didn't.
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intended his baseline to exhibit.5 However, there is a problem here. For whereas
Kaufmann (2009) intends a semantics for arbitrarily nested conditionals, van Fraassen
(1976) is explicit that he does not know whether his model con�rms The Thesis for
arbitrary nestings. (And in fact, it does not.) In an appendix we suggest that, since
it does not, a similar model due to Andrew Bacon (2015) is the proper baseline for
Kaufmann's semantics.

3. On the conditions under which the local interpretation is salient

Existing theories about when the local interpretation gains traction with speakers
(see in particular Zhao 2015 and Khoo 2016) tend to focus on the existence of an ap-
propriate \background variable" or \background partition". In this section, we'll give
examples where A ! B is predicted to have a salient local reading with respect to
some background partition, but where the assumption that :A! B has such a read-
ing with respect to the same background partition as well can lead to an intuitively
incoherent combination of attitudes. This suggests, at the least, that the conditions
under which such readings arise is more nuanced than has been acknowledged.

Assume for example that after the draw mentioned in (1) you'll continue to draw
balls from the (same) bag, without replacement. We take the status of (1) to be the
same in this revised scenario; in particular it still has local probability 3

10
with respect

to fX; Y g. Consider:

(4) If I pick a red ball �rst, the �rst red ball picked will have a black spot; and

(5) If I pick a white ball �rst, the �rst red ball picked will have a black spot

Here are three possible responses to (4)/(5) consistent with the view that the local
reading is salient for (1).

First response: The local reading is salient for (1), but isn't for (4). This seems
wrong, because (4) is equivalent to (1), in the sense that (4) and (1) have probabilis-
tically equivalent antecedents, and their consequents are probabilistically equivalent
conditional on their consequents. So the two propositions must have the same local
probability, 3

10
, which (owing to the equivalence), ought to have similar \salience".

Second response: The local reading is salient for (4), but isn't for (5). This too seems
wrong{there isn't any special relationship between \Red" (as opposed to \White")
and the background partition. At any rate if it were right, it would be a phenomenon
missed by every theory we are aware of concerning when the local reading is salient.

Third response: It's coherent to have equal strengths of belief in (4) and (5). But
that's no good, because no speaker, if they thought they would be interpreted in this
way, would utter (4) in the �rst place. Rather, they would utter the far more direct
the �rst red ball picked will have a black spot, which has true probability equal to 3

10
.

Local interpretation implausibly reduces strength of belief in this conditional (and
similarly for a wide range of others) to strength of belief in the consequent.

5Kaufmann introduces several emendations to the model allowing Thesis-violating readings; we
leave it to an enterprising reader to verify that one could, if one cared to, make similar emendations
to the alternate baseline we recommend here.
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Assuming there are no other possible responses to (4)/(5) consistent with the view
that strength of belief in Kaufmann's original example can be coherently given by the
local interpretation, the moral is clear: namely, that strength of belief in Kaufmann's
original example cannot coherently be given by the local interpretation after all.

Other examples in the literature can be treated along similar lines. Consider for
example the following scenario from Zhao (2015).

Subway. ...waiting at the subway stop...you suddenly realize that you're
not certain which day of the week it is. But you have an impression that
it's the weekend, which causes you to be...2

3
sure that it is. ...on weekends,

trains arrive...every half hour but are usually pretty empty; on weekdays,
trains arrive once every �ve minutes and are generally crowded. How likely
is it that if a train arrives in the next �ve minutes, it will be crowded?

Zhao answers \The intuitive answer seems to be: not very". But consider the fol-
lowing conditionals, which have equal local probabilities relative to the background
partition fweekday; weekendg:

(6) If the next train does arrive in the next �ve minutes, it will be crowded; and

(7) If the next train does not arrive in the next �ve minutes, it will be crowded

The choices are as before. Either (6) doesn't have a salient local reading, which would
be odd since it is equivalent to something that supposedly does, or (6) does and (7)
doesn't, which violates a clear symmetry6, or it's �ne that both do, i.e. it's okay to
have not lesser strength of belief in (7) than one has in (6)...indeed okay that strength
of belief in both reduces to that in their common consequent, the next train will be

crowded. (In which case, as before, why utter the antecedent at all?)

Yet another example from Kaufmann (2009):

(8) If you strike the match, it will light

The setup is that the match is probably wet, a struck wet match is less likely to light
than a struck dry match, and you are more likely to strike a dry match than you
are to strike a wet match. My strength of belief in (12) obviously won't change if I
determine to strike the match if you don't. So:

(9) If you strike the match, it will light when struck

(10) If you don't strike the match, it will light when struck

This is a pair for which the local interpretivist faces the same bad alternatives.7

Kaufmann's (2009) treatment of more complex sentences does little to bolster the
case for the local interpretation. Consider for example the sentence

(11) Harry will pass the test if he takes it, and he will win in the show if he is
selected

6Of course, if one assumes that trains necessarily arrive every �ve minutes on weekdays, the
antecedent of (7) entails weekend, potentially breaking symmetry. (We aren't this literal though.)

7A referee suggested that this example relies on a \somewhat awkward reading of a rightnested
conditional". We don't agree that the reading is awkward, and in any event \it will light when
struck" is not a conditional, whence (9) and (10) aren't rightnested conditionals.
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Here Harry is either intelligent (probability .25) or not (probability .75). An in-
telligent person will pass the test with probability .9; respectively win in the show
with probability .9 (conditional on taking the test; respectively being selected for the
show). For a not-intelligent person these conditional probabilities are both .1. If we
knew Harry to be intelligent, it seems we might assign (11) probability 9

10
� 9

10
= 81

100
;

if we knew Harry to be not intelligent, it seems we might assign (11) probability
1

10
� 1
10

= 1

100
. Accordingly, Kaufmann assigns (11) probability :25(:81)+:75(:01) = :21.

Though (11) has the syntax of a conjunction, note the similarity to locality (with
fintelligent; not intelligentg playing the role of background partition). So if intuitions
do support .21 for (11), does this create sympathy for the local interpretation?

We think not. For (11) has no \abductive inference" involved in its interpretation,
and treating fintelligent; not intelligentg as a background partition for locality leads
to familiar troubles for \nearby" conditionals that do. Suppose for example that we
learn that Harry will take the test and be selected for the show, and consider

(12) If Harry passes the test then he will win on the show

It seems clear that most speakers who would be inclined to report any strength of
belief for (12) would report a high one. (Imagine approaching the limiting case in
which the relevant conditional probabilities aren't .9 and .1, but 1 and 0.) Indeed,
most would report high strength of belief in

(13) If Harry passes the test then he will win on the show, and if he fails the test
he will lose on the show

as well. But if one treats fintelligent; not intelligentg as a local partition, one assigns
(13) probability .09 and (12) probability .3, which is implausibly equal to that of

(14) If Harry fails the test then he will win on the show

So...whence the intuitive appeal of .21 for (11)? We believe that this appeal (to those
for whom it has any) derives from the fact that .21 is just the global probability of

(15) If Harry takes the test and is selected for the show, he will pass the test and
win on the show

Another phenonemon speakers sympathetic to the local interpretation need to explain
away is that it can violate the following desideratum for strength of belief measures.8

Weights: Suppose fA1; : : : ; Ang is a partition of event space. For any event C,
minfP (Ai ! C) : i = 1; : : : ; ng � P (C) � maxfP (Ai ! C) : i = 1; : : : ; ng.

8A referee brashly rejected Weights, citing grounds that its violation in the example discussed
here looks to be something like a typical case of the so-called \Simpson Reversal". That isn't right,
though there is a relationship between Simpson Reversals and the issues under discussion. Recall
that a \Simpson Reversal" is a case in which a weighted average

P
i2I

uiai is larger than another
weighted average

P
i2I

wibi even though ai < bi for every i 2 I. A popular example: David Justice
had a higher batting average than Derek Jeter in both 1995 and 1996, yet Jeter had the higher
aggregate batting average over that two-year span. So if one were about to watch a randomly
chosen major league at-bat from that two year period and chose to regard \year of at-bat" as a
suitable background variable, only the global interpretation would assign If Jeter is the batter, he

will get a hit higher probability than If Justice is the batter, he will get a hit.
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Note that if Weights is satis�ed, P (C) is always a weighted average of the values
P (Ai ! C).9 To motivate the independent plausibility of Weights, consider the
pre-theoretical awkwardness of the following combination of attitudes:

(i) strength of belief in \if we watch the game then we'll order pizza" is 1

2
;

(ii) strength of belief in \if we don't watch the game then we'll order pizza" is 1

2
;

(iii) strength of belief in \we'll order pizza" is 1

3
.

Such combinations are realized under local interpretation. Consider the following:

P (Bag X) = 1

2
P (Bag Y ) = 1

2

10 red balls, 20 red balls,
9 of them with a black spot 2 of them with a black spot

20 white balls 10 white balls
2 of them with a black slot 9 of them with a black spot

Suppose you are about to start picking a balls uniformly at random from whichever
of the two bags is before you. According to the local interpretation:

(I) strength of belief in \if I pick a red ball �rst, the �rst ball picked will have a
black spot" is 1

2
;

(II) strength of belief in \if I pick a white ball �rst, the �rst ball picked will have
a black spot" is 1

2
;

(III) strength of belief in \the �rst ball picked will have a black spot" is 11

30
.

Academics having a theoretical story to tell about local interpretation may simply
point to their models in order to \explain" such examples, but most rationally com-
petent speakers will (pre-theoretically) reject these combinations of attitudes out of
hand. If that's right, then the theorists need to explain why it isn't a strike against
their theories{which were presumably developed in order to predict the attitudes of
speakers{that they don't appear to do a very good job of prediction in such cases.

4. On a book of bets said to support the local interpretation

In Section 7 of his paper, Kaufmann writes:

Assuming that the present proposal is descriptively correct, it raises a
deeper question: Is it an account of a fallacy{one that is committed widely
and systematically, but fallacious nonetheless{or is the departure from
(The Thesis), at least in some circumstances, the \correct" interpretation
of a conditional? (...) Are there situations in which it would be detrimental
to base one's actions upon (The Thesis) and advantageous to follow the
local interpretation? A negative answer would not imply that the local
interpretation is not what speakers use, but only that it is not what they
should use.

Kaufmann claims that the answer is \not negative". In support of this claim, he sets
up the following scenario. At time 0, B pays a bookie P (CjA). X's return on the
wager is: P (CjA) if :A, 1 if AC, 0 if :CA. B regards this wager as fair.

9This is trivial; every element of a closed bounded interval is a weighted average of its endpoints.
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Between time 0 and time 1, both B and the bookie will learn whether A is true, but
if in fact A is true the bookie will �nd out, in addition, \in what way" it is true,
i.e. which of AX1; : : : ; AXn is true, \where the Xi are the values of some variable X
that we take to be causally relevant.... The conditional probability of C is not evenly
distributed over all AXi, and X does not causally depend on A." B will not have
this additional information, but does know that the bookie will have it.

At time 1, B perceives her expected net payo� to be zero. (If :A she knows that
payo� to be exactly zero, and if A she knows it will be 1�P (CjA) if C and �P (CjA)
otherwise, the former with probability P (CjA).) The bookie's expected payo�, how-
ever (from her own perspective), can be positive or negative. If negative, she would
like to make a new bet to exactly cancel the �rst.

Although this bet looked fair to B prior to the o�er of it, the mere fact that the bookie
wants to make it is evidence, for B, that she should not. Kaufmann claims (equation
30 in his paper) that the bookie's expected payo� at time 0 is now curiously inuenced
by B's refusal to do business with the bookie at time 1. Indeed, he claims that it
is now \the weighted sum of these posterior payo�s for each Xi:

P
Xi2X

(P (CjA) �
P (CjAXi))P (Xi)."

That isn't right. Expected payo� for the bookie onAXi is indeed P (CjA)�P (CjAXi),
but on :AXi it is zero. The correct time zero expectation is therefore

X
Xi2X

(P (CjA)� P (CjAXi))P (AXi)

=
X
Xi2X

�P (CA)
P (A)

�
P (AXi)�

X
Xi2X

�P (CAXi)

P (AXi)

�
P (AXi) = P (CA)� P (CA) = 0:

The fair price for the wager, then, is Pg((A ! C) = P (CjA), not Pl(A ! C) as
Kaufmann (based on the fact that

P
Xi2X

(Pl(A ! C) � P (CjAXi))P (Xi) = 0)
claims. It is implicit that Kaufmann thinks the fair price is the probability we should
assign the conditional A! C, so this is actually an argument for The Thesis.

5. Appendix: Baseline Semantics for the Local Interpretation

Thesis proponents face pitfalls. For an example, assume that fA;B;C;Dg partitions
event space into equal measure events. A Thesis literalist might be tempted to write

P (:D ! A) = P (Aj:D) =
1

3
(5.1)

6=
1

2
= P (A _D)P (AjA) + P (B _ C)P (AjB _ C)(5.2)

=P (A _D)P (:D ! AjA _D) + P (B _ C)P (:D ! AjB _ C):(5.3)

Passage from (5.2) to (5.3) goes, e.g., by the Resilient Equation which, recall, says
that P (X ! Y jZ) = P (Y jXZ) in general. A Thesis defender ought (so it might
seem) to endorse the Resilient Equation, because if she were to learn Z, her new
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probability function would be Q(�) = P (�jZ), and the resilient equation looks to
follow in a line or two from Q(X ! Y ) = Q(Y jX). However, if we accept the
Resilient Equation then (5.1)-(5.3) appears to violate the Law of Total Probability.

Thesis proponents have two options for explaining this away that are worth consider-
ing. On the �rst, indicative conditionals aren't propositions, and have neither truth
conditions nor true probabilities. On this view, it would be better to write, say,

P �(:D ! A) = P (Aj:D) =
1

3

6=
1

2
= P (A _D)P �(:D ! AjA _D) + P (B _ C)P �(:D ! AjB _ C):

Here P �(Z ! W jK) = P (W jZK) (by de�nition) whenever Z and K are classical
events (i.e. sentences containing no occurence of \!"). P � might be said to denote
\assertability", \felicity", \strength of belief" or some other such notion, and would
not be assumed to obey the probability axioms. It would have a few probability-like
features (whatever is inherited from its de�nition), but lack others. Changing to P �

the instances of P evaluated at conditionals in (5.1)-(5.3) would thus eliminate the
apparent violation of the Law of Total Probability there. Lewis (1976) writes:

Adams himself seems to favor this hypothesis about the semantics of condi-
tionals. ...I have no conclusive objection to the hypothesis that indicative
conditionals are non-truth-valued sentences, governed by a special rule of
assertability that does not involve their non-existent probabilities of truth.
I have an inconclusive objection, however: ...(a) need to explain away all
seeming examples of compound sentences with conditional constituents.

Such compound sentences appear to be well-formed and sometimes useful. (\That
car is old, and if you honk its horn, a fuse will blow out.") Under the current proposal,
either one should say that such sentences don't admit of ersatz probabilities (Adams'
choice), or employ highly non-classical rules for their employment, e.g.10

P �((A! C) ^B) = P (BjA)P �(A! CjB)

=P (BjA)P (CjAB) = P (BCjA) = P �(A! BC):

The proponent of such a rule will, in particular, deny the more familiar-looking
identity P �((A ! C) ^ B) = P (B)P �(A ! CjB). On either account, the following
\Total Law of Probability for Conditionals" replaces the usual Law:

P �(A! C) =
nX
i=1

P (BijA)P
�(A! CjBi) for any partition fB1; : : : ; Bng: (TPC)

10This account of ersatz probabilities for conjunctions appears to avoid disaster (we believe it
sidesteps triviality arguments such as that Fitelson 2015), but isn't particularly intuitive; note for
example that it can happen that P �((A! C)^B) > P (B). Adams' course seems to us preferable.
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Note the corresponding identity P (CjA) =
Pn

i=1 P (BijA)P (CjABi). So this method
of explaining away (5.1)-(5.3) is to hold onto the Resilient Equation and simply assert
that the law corresponding to the Law of Total Probability for conditionals is (TPC).

The second method is to relinquish the Resilient Equation by giving conditionals
truth conditions (and hence true probabilities) in accord with The Thesis. This is
the approach of van Fraassen (1976). Van Fraassen's modestly Thesis-friendly model
is relevant to our discussion because Kaufmann (2009) uses it as a \baseline" for his
own semantics. The example we shall use to show that van Fraasen's model doesn't
con�rm The Thesis for arbitrary conditionals wreakes havoc with Kaufmann's model
as well. The plan for the rest of this section, then, is to demonstrate where Thesis
failure lies in van Fraassen's model, bring the correlative problems for Kaufmann's
model into relief, and to �nally propose a new baseline for the local interpretation.

LetN denote the set of natural numbers with zero. Let (A; P ) be the agent's personal
probability space (here A is a �nite Boolean algebra of \classical events" and P a
probability function having domain A). For each n 2 N, independently sample xn,
an atomic event in A, in accord with the probability function P . (One says that one
is conducting \Bernoulli trials".) Let Q be product measure on the set of functions
taking N to the set of atomic events in A.

Given the complete sampling fxn : n 2 Ng, an event A 2 A0 = A is true at
n if and only if xn � A. A conditional having the form A ! C, meanwhile, is
true at n if and only if xn+k � C, where k is the least natural number such that
xn+k � A. (This is of course an inductive de�nition.) Finally, for any sentence A, let
P (A) = Q(\A is true at 0").

Van Fraassen showed that this model elicits The Thesis for conditionals of the forms
A ! B, (A ! B) ! C and A ! (B ! C). He further says (1976, p. 280) of
such models that \although I do not know that the Thesis fails in them for more
complicated conditionals, I expect it does". Our �rst task is to verify van Fraassen's
\failure" intuition. In particular, we shall show that in a case where A is generated
by three non-trivial atoms A, B and C, The Thesis fails for the conditional

Q =
�
(:B ! A)! :B

�
! A:

Lemma 1. If (:B ! A)! :B is false then Q is true almost surely.

Proof. Let k > 0 be the minimum index at which (:B ! A) ! :B is true.
(Obviously there is such k with probability 1.) We need to show that A is true at
k. Since (:B ! A) ! :B is false at k � 1 and true at k, it must be the case that
(:B ! A) is true at k � 1 and :B is false at k � 1. (Otherwise, (:B ! A) ! :B
would come out true at k � 1, since the (:B ! A) world nearest to k � 1 would be
the (:B ! A) world nearest k, which by hypothesis is a :B world.)

Since :B ! A is true at k � 1 and :B is false, :B ! A must be true at k. (The
:B world closest to k is the :B world closest to k � 1, which by hypothesis is an A
world.) But (:B ! A) ! :B is also true at k, so its consequent :B is true at k.
Therefore (since :B ! A is true at k) A is true at k, as desired.
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Lemma 2. P (Aj(:B ! A)! :B) < 1.

Proof. Since A and C are non-trivial events and worlds 0 and 1 are independent
on non-conditionals, there is strictly positive probability that C is true at 0 and A is
true at 1. In such a case :B ! A will be false at 0 and true at 1. So 1 will be the
:B ! A world closest to 0 and it is a :B world, so (:B ! A) ! :B is true at 0.
Thus P (:A ^ ((:B ! A) ! :B)) > 0, so that P (:Aj(:B ! A) ! :B) > 0 also.
Since P (Aj(:B ! A)! :B) = 1� P (:Aj(:B ! A)! :B), we are done.

Lemma 3. Suppose that :E entails E ! A almost surely, P (:E) > 0 and P (AjE) <
1. Then P (E ! A) > P (AjE).

Proof. P (E ! A) = P (:E) + P (AE) > P (:E)P (AjE) + P (E)P (AjE) = P (AjE).

With these lemmas in place we can now easily see why The Thesis fails for the
conditional Q. To begin, let E be Q's antecedent, i.e. (:B ! A) ! :B. Then
:E entails Q = E ! A almost surely by Lemma 1, and P (AjE) < 1 by Lemma 2.
Finally, we have P (:E) > 0. For there is a strictly positive probability that B is true
at 0 and A is true at 1, in which case the closest :B world to 0 is 1, where A is true,
meaning that :B ! A is true at 0. But :B is false, so (:B ! A) ! :B is false.
Therefore, by Lemma 3 we have P (Q) = P (E ! A) > P (AjE), and we are done.

This example is a problem for Kaufmann's (2009) semantics. To illustrate the trouble,
imagine a situation in which P (A) = 10�20 and P (B) = 1� 10�10. Then Kaufmann
assigns (see Kaufmann 2009, Theorem 5) E = (:B ! A)! :B probability equal to
P (:B), i.e. P (E) = 10�10, and so by Lemma 1 must assign Q = E ! A probability
at least that of :E, i.e. P (E ! A) � 1 � 10�10. But that P (E ! A) should be so
close to 1 seems intuitively unacceptable, given that A is vastly less likely than E.11

Fortunately, there's a way to tweak van Fraassen's model so as to bring it into con-
formity with The Thesis for arbitrary conditionals. Note however that the resulting
model (cf. Bacon 2015) uses di�erent \closeness" relations for conditionals of di�erent
complexities, and therefore does not employ Stalnaker's semantics precisely.

Again let N denote the set of natural numbers (with zero) and let (A; P ) be the
agent's personal probability space (A is a �nite Boolean algebra). Denote by 
 the

set of ordinal numbers f
Pk

i=0 ni!
i : k 2 N; n1; : : : ; nk 2 Ng. For each � 2 
,

independently sample x�, an atomic event in A, in accord with P . Let Q be product
measure on the set of functions taking 
 to the set of atomic events in A.

Given the complete sampling fx� : � 2 
g, an event A 2 A0 = A is true at � if and
only if x� � A. A degree 1 conditional, i.e. a conditional having the form A ! C,
where A;C 2 A0, is true at � if and only if x�+k � C, where k is the least natural
number such that x�+k � A. Let A1 be the Boolean algebra generated by A0 and the
degree 1 conditionals. A degree 2 conditional is a conditional not having lesser degree
and having the form A! C, where each of A;C 2 A1. Such a conditional is true at
� if and only if x�+k! � C, where k is the least natural number such that x�+k! � A.
Let A2 be the Boolean algebra generated by A1 and the degree 2 conditionals.

11A referee on the example: \the author has badly misunderstood...bizarre" etc. I nevertheless
maintain (contra said referee) that it exhibits an unwelcome feature not anticipated by Kaufmann.
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Continue in this fashion. Having constructed the �nite Boolean algebra Am, de�ne a
degree m+ 1 conditional to be a conditional not having lesser degree and having the
form A! C, where each of A;C 2 Am. Such a conditional is true at � if and only if
x�+k!m � C, where k is the least natural number such that x�+k!m � A. Let Am+1

be the Boolean algebra generated by Am and the degree 1 conditionals. Finally, for
any sentence A, let P (A) = Q(\A is true at 0").

The proof of Thesis con�rmation is trivial. For sentences A and B, let m be the
least natural number such that fA;Bg � Am. (So that A ! B is a degree m + 1
conditional.) Let x = P (A) and let y = P (A ^ B). The event \A ! B is true at
0" is the disjoint union of the events \A ^ B is true at 0", \A is false at zero and
A^B is true at !m", \A is false at zero and !m and A^B is true at 2!m", .... Thus
P (A! B) = Q(\A! B true at 0") = y+(1� x)y+(1� x)2y+ � � � = y

x
= P (BjA).

This proof highlights the role of the independence of the trials: the truth of A at 0
shouldn't correlate with the truth of A at any other � = k 2 N (for classical events
A); the truth of A ! B at 0 shouldn't correlate with the truth of A ! B at any
other ordinal � = k! (for classical events A, B), etc.
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