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Abstract:  The Darwinian protolanguage hypothesis is one of the most popular theories of the 
evolution of human language. According to this hypothesis, language evolved through a three stage 
process involving general increases in intelligence, the emergence of grammatical structure as a result 
of sexual selection on protomusical songs, and finally the attachment of meaning to the components 
of those songs. The strongest evidence for the second stage of this process has been considered to 
be birdsong, and as a result researchers have investigated the existence of various forms of grammar 
in the production and comprehension of songs by birds. Here, we argue that mating dances are 
another relevant source of sexually-selected complexity that has until now been largely overlooked 
by proponents of Darwinian protolanguage, focusing especially on the dances of long-tailed 
manakins. We end by sketching several lines of research that should be pursued to determine the 
relevance of mating dances to the evolution of language. 
 
1. Introduction 

Comparisons between humans and animals have long been guided by the idea that only humans possess a 

genuine or full-blown language faculty—though if we want to understand how human language evolved, we 

must study its precursors in non-human animals. Spoken language leaves no direct archaeological evidence, so 

biologists since Darwin have tried to puzzle out the trajectory of language’s evolution in hominids by looking 

for its components and prerequisites in other species. Reflection on homologies and analogies can ground 

inferences as to which components of our language faculty presuppose others, which selection pressures 

favor the evolution of each component, and which components are uniquely human.   

In a landmark article, Hauser, Chomsky, and Fitch (2002) marshal empirical evidence in favor of a 

particular set of answers to these questions.  They hypothesize that the faculty of language can be understood 

in a broad and narrow sense.  The Faculty of Language in the Broad sense (FLB) includes a sensory-motor 
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system, a conceptual-intentional system, and recursive grammatical competence.  They further propose that 

only the recursive grammatical competence is uniquely human, dubbing it the Faculty of Language in the 

Narrow sense (FLN).  Their favored theory is thus that our hominid ancestors excelled at the other 

components of FLB, and later the recursive computational core of FLN evolved uniquely in hominids, 

allowing our ancestors to modify and integrate these earlier components to produce and understand the 

infinite variety of human linguistic productions.  Their hypothesis thus presents a somewhat linear account of 

the evolution of language, beginning with the earlier components of FLB and continuing on through FLN 

(though further adaptations for the “externalization” of FLN could have come still later—Berwick & 

Chomsky, 2017). 

 An obvious but still unresolved question about this evolutionary story concerns the centrality of 

vocalization to the evolution of FLB and FLN.  The classic Darwinian account—developed more recently by 

Fitch (2010, 2013)—grants pride of place to vocalization, offering birdsong as the most promising place to 

look for selection pressures favoring grammatical competence in nonhuman animals. This “musical 

protolanguage” hypothesis deploys comparative analyses of birdsong to justify a three-stage story about the 

evolution of human language:  first, selective pressures spurred a general increase in intelligence and 

associative memory; second, sexual selection favored the production and comprehension of complex patterns 

in mating calls (with only the most complex or beautiful calls earning copulation privileges); and third—this, 

perhaps being a uniquely human step in the trajectory—some “unusually wise ape-like animal” would notice 

that symbolic meanings could be attached to the components of structured songs, so that when recombined 

in novel but rule-governed ways, our ancestors could consider and discuss never-before-experienced 

situations and experiences.   

Despite the vivacity and popularity of this account, it is not yet established whether the components 

of FLB or FLN evolved to serve specifically vocal-auditory modalities in hominids.  Hauser, Chomsky, & 

Fitch emphasize a number of specifically vocal/auditory adaptations involved in human language, especially 

our excellent capacities for phonemic discrimination, vocal control (with a descended larynx), and vocal 

imitation.  However, the most promising work on protolinguistic communication in chimpanzees involves 
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instead gestures, suggesting that many of the components of FLB might have evolved to guide non-vocal 

behaviors in hominids and only later have been co-opted for use in spoken language (Scott-Phillips et al., 

2015).1  Hauser, Chomsky, and Fitch also review work in this area, and further consider the possibility that 

components of FLB originally performed non-linguistic functions, and that the recursive core of FLN might 

have evolved to serve non-vocal purposes like numerical understanding, tool-use, or social cognition. Thus, 

perhaps the strongest line of evidence that vocalization is “special” in the evolution of language (and 

specifically grammatical complexity) remains the comparative analysis of birdsong.   

Our goal in the present paper is to argue that a broader survey of evidence from non-mammals could 

also support non-vocal hypotheses about the evolution of language.  Specifically, the same kinds of sexual 

selection pressures thought to favor grammatical complexity in songs apply to a variety of other non-

vocal/auditory modalities, from plumage displays (Bortolotti, Blas, Negro, & Tella, 2006), to the highly 

articulated bower decoration strategies of bowerbirds (Borgia, 1995; Day, Westcott, & Olster, 2005), to the 

layered olfactory signals produced by orchid bees (Eltz, Sager, & Lunau, 2005).  Here, we review and 

investigate the prospects for a particularly alluring source of sexually-selected but non-vocal complexity in 

birds:  the elaborate mating “dances” of Pipridae, or manakin birds.2  The Pipridae are comprised of fifty-two 

species of bird distributed through the American tropics. As a result of advances in high-speed photography 

and new field observations (Fusani, Giordano, Day, & Schlinger, 2007), researchers have learned that the 

males of many manakin species perform a variety of extended, elaborately organized, and fast-paced 

courtship dances, ranging from traditional leks, to long solitary displays, to cooperative displays involving 

multiple males (Lukianchuk and Doucet, 2014). As a comparison case for the evolution of language, of 

particular interest are the complexity and flexibility of the dances, especially whether their structures follow 

                                                           
1 Notably for the present thesis, chimpanzee gestural communication has been analyzed as a form of dance (Donald, 
1991, 1998; King, 2009). 
2 Following practice in the empirical literature, we will often refer to the manakin mating displays as “dances”, keeping in 
mind that the degree of similarity between these displays and the most elaborate forms of human dance is one of the 
issues to be empirically and philosophically evaluated in the present paper.  There is no ideal terminology with which to 
begin, as some of the other options (such as “courtship” or “mating” display) may also be deemed unduly 
anthropomorphic.  So long as we do not begin by interpreting “dance” in an “anthropofabulous” manner (Buckner, 
2013), it is as good a starting point as any.  
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hierarchical patterns or rules.  We will here primarily focus on the acquisition and organization of dance-

patterns in long-tailed manakins (Chiroxiphia linearis), which exhibit some of the most complex dances. 

As we are just now beginning to characterize the “moves” and “choreography” of these dances, it is 

currently unknown whether manakin courtship displays are organized according to grammatical rules.  Our 

goal in this paper is two-fold: 1) to make the case that manakin courtship displays provide a fruitful 

comparison in the study of the evolution of language, and 2) to provide specific suggestions for empirical 

researchers who wish to investigate the relevance of manakin mating dances to the evolution of language.  To 

be clear, our goal is not to argue that uniquely human language traits (i.e., FLN or more specifically Merge—

Berwick & Chomsky, 2015) appear in mating displays, nor do we here offer new arguments for a 

gradualist/bootstrapping account of the evolution of grammar (as opposed to a more minimalist/saltational 

account now favored by some Chomskyans).  Rather, we here evaluate the evidential parity of song and dance 

for the precursors of full-blown human language in the second, sexual-selection stage of the Darwinian 

protolanguage hypothesis.   

In short, our case is directed at readers who already find grammatical analysis of birdsong to be 

relevant to the evolution of hominid language, and we urge those readers to also consider the support that 

similar analyses of mating dances may provide for non-vocal origins hypotheses.  Of particular interest will be 

the ways that the dances differ in their development, performance, and supporting neural mechanisms 

compared to vocal displays in songbirds, and whether these differences add up to the irrelevance of courtship 

dances to language.  Our verdict on this question will ultimately be mixed:  the dances do differ in some 

critical ways, but are also similar in other subtle but significant ways.  As a result, our view is that comparisons 

between dances and protolinguistic vocal behaviors mutually enrich our understanding of the evolutionary 

forces governing language-like complexity in both vocal and non-vocal motor productions, and this question 

merits much more research. 

 The structure of this paper is as follows.  Section 2 reviews the musical protolanguage hypothesis and 

the role that birdsong has played in our biological understanding of language, focusing especially on the 

different classes of grammar that birdsong can exhibit.  Section 3 describes in more detail the relevant 
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features of courtship dances of long-tailed manakins.  Section 4 explores the similarities and differences 

between full-body dances and vocal performances, arguing that dances could be grammatically structured in 

relevant ways—with some important caveats.  Section 5 concludes by describing several variants of three 

broad classes of empirical investigation—roughly, on performer effects, audience effects, and neural 

correlates—that could be conducted as the next step to determine whether manakin dances are grammatically 

structured in the relevant ways.   

2.  Musical Protolanguage and the Evolution of Grammar 

The evolution of language was a central focus of Darwin’s attention in The Descent of Man (1871), because he 

knew the staunchest opposition to his theory of evolution by natural selection would come from students of 

the “science of language” like Max Müller.  Müller (1861) held that language was the “Rubicon which divides 

man from beast,” the feature of human cognition that would never be amenable to evolutionary analysis.  The 

reasoning behind this skepticism is traceable at least back to Descartes, and probably even further back to the 

Stoics, who emphasized the infinite variety of meaningful linguistic constructions that humans can easily 

produce and understand.  Behind this purportedly systematic ability to produce an infinite variety of 

structured thoughts and sentences was an understanding of grammar, supposed by these thinkers to be the 

core of the uniquely rational human soul.  Just as Descartes assumed that our infinite productive capacity had 

to outstrip the capacities of any physical mechanism, Müllerians supposed it must outstrip the means of any 

cumulative modification and selection, creating a qualitative gap that no gradualist theory of evolution could 

bridge. 

 Darwin took the skeptical challenge posed by this line of reasoning seriously, and rebutting it was 

one of the main goals of the Descent.   The first step of his rebuttal recast language as a faculty involving the 

cooperation of several different mechanisms, rather than the operation of monolithic rational soul.  These 

mechanisms included general neural resources for intelligence and associative learning, anatomical structures 

for vocal production and control, and an instinct to learn structured patterns in vocal productions during a 

critical period in development.  This multi-component view of language was inspired by Darwin’s extensive 

observations of animal communication in nature—especially of birdsong.   
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Darwin’s theory of evolution made it possible to articulate two different ways that language-like 

complexity in birdsong (and, as we shall see, in dance) could be relevant to human language: 1) the capacities 

producing the complexity could be homologies, deriving from a common ancestor, or 2) they could be 

analogies, having evolved convergently in different lineages.  Since humans and birds diverged from their last 

common ancestor over 300 million years ago, homology in this case is unlikely for any traits but very general 

precursors of language such as motor control or domain-general learning mechanisms.  Darwin himself spoke 

of birdsong as the “nearest analogy to language,” but even analogies can tell us much about developmental 

trajectories and general selection pressures that could have favored grammatical complexity in our own 

ancestors.  Here, Darwin was particularly drawn to the way that juvenile songbirds pass through a critical 

developmental period involving “babbling”—an “instinctive tendency to speak” (55)—and later experiment 

with novel combinations of vocal components (and their effects on listeners) before mature adult patterns 

emerge.  This construal deftly provided a role for both nature and nurture in the emergence of language, 

articulating a middle-ground in the stark divide between nativist and “blank slate” positions that stymied 

earlier debates.  Furthermore, by casting language as a gradually developing multi-component faculty rather 

than focusing on its mature adult manifestations, he rendered gradualism about the phylogeny of language 

more plausible.  Each component in the language faculty could have its own evolutionary scenario with its 

own selection pressures (which Fitch pithily dubs “evolutionarios”—Fitch, 2010).   

 With these components in place, Darwin was then in a position to sketch a multi-stage sequence for 

the evolution of human language that explained not only the presence of analogous traits in birds, but also the 

absence of them in our nearest primate ancestors.  Darwin first posited a stage of general increase in 

intelligence, perhaps arising from social and technological factors.  Next, Darwin posited that our ancestors 

went through a period of intense selective pressure on vocal calls.  As with birdsong, these pressures would 

have favored more complex, music-like calls—perhaps for the purposes of territorial defense, but even more 

likely for purposes of mating.  This selection pressure would have fueled the rapid evolution of ever-more-

structured—and perhaps, ever more beautiful (Prum, 2012)—songs.  In the third and final stage, our 

ancestors would have learned to attach meaning to the components of these complex song-structures—
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originally through onomatopoeia and acoustic imitation, but eventually through arbitrary and culturally-

acquired symbolic associations—such that we could use these songs to talk about novel states of affairs.  This 

finally marks the transition to meaningful, fully human speech—as von Humboldt put it, the stage at which 

man became “a singing creature, only associating thoughts with tones” (von Humboldt, 1836, 76).   

 Each stage of this story could be elaborated into further, more gradual steps, each grounding further 

increases in the faculties presupposed in the previous steps; but the key stage for present purposes is the 

sexual selection for more complex song structure in Stage 2 (and so we will not discuss Stage 1 or 3 further 

here).  One form that more gradual iteration might take here would concern grammatical transitions and 

relations between song components.  If the female birds could somehow distinguish and prefer mate 

candidates whose displays exhibited greater grammatical complexity, this would induce a pressure for not just 

longer songs with more varied components, but also for those components to be organized into more 

sophisticated grammatical structures. Fitch and other researchers have here mapped birdsong into different 

classes of grammar studied in linguistics.  A primary question of the present investigation is whether it makes 

sense to look for such grammars in mating dances as well, and whether we in fact see selection pressures for 

more complex dance-grammars in manakins. 

For readers without a background in linguistics, it will help to review a key distinction amongst 

different classes of grammar (readers already familiar with the literature on grammar in animal vocalizations 

can probably skip to the next section).  The weakest class in this hierarchy is finite state grammars (FSGs), 

which can be fully specified by transition probabilities between a fixed number of elements. On the next level 

of this hierarchy are phrase structure grammars (PSGs—also called “context-free” grammars). A PSG can 

embed sequences within other sequences, and thereby create complex hierarchical structures that respect 

long-distance dependencies between phrases in a sequence (Fitch & Hauser, 2004). Both kinds of grammar 

are commonly denoted by symbolic shorthand, where capital letters like “A” and “B” indicate syntactic 

component types (such as particular phonemes or repeatable song components) and exponents indicate the 

potential for a pattern to be repeated. Because each element with an exponent can be repeated different 

numbers of times, a simple finite specification is capable of fitting an infinite number of distinct sequences.   
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A simple example of an FSG is (AB)n, which can produce sequences of symbols such as AB, 

ABABAB, ABABABAB...and so on. The basic pattern “AB” can be repeated an indefinite number of times, 

but there is no structural dependency between any two instances of the pattern.  In other words, the structure 

of such sequences possesses only one layer, as shown in Figure 1. The corresponding example of PSG is 

AnBn, where the shared exponent indicates that the phrase must have the same number of As that it does of 

Bs. This specification can produce sequences of symbols such as AB, AABB, AAABBB...and so on.  In this 

case, there is a long-distance dependency between the sub-patterns—to follow this rule, the overall sequence 

must contain the same number of As and Bs.  Thought of in generative terms, the grammar can be given an 

inductive specification: 

1.  AB is grammatical (base case) 

2. If XY is grammatical, then X+AB+Y is grammatical (inductive step). 

3. No other sequences are grammatical (closure step). 

Because the product of step 2 can be re-applied as input to its next iteration, the structure of such sequences 

can thus involve multiple layers of recursion, with each layer “center-embedded” in the phrase of the 

previous layer, as demonstrated by Figure 2.  

 

Figure 1.  A parse tree for the FSG for the (AB)n pattern. (Reproduced from Fitch & Hauser 2004, 378) 

 

 

Figure 2.  A PSG parse tree for the AnBn grammar. (Reproduced from Fitch & Hauser 2004, 378)  
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FSGs are not complex enough to generate all structures of human language, some of which involve 

at least PSG-level complexity. For example, in English we have higher-order phrase such as “if...then”. When 

we use phrases like this, we can embed an indefinite number of grammatical phrases within the ellipses; but 

so long as we use one antecedent “if” phrase in the sentence, we must complete the higher-order pattern by 

using a consequent “then” phrase later in the sentence.3 The number of antecedents and consequents in the 

sentence must match. This kind of long-distance dependence and hierarchical structure between “if” and 

“then” cannot be captured by any FSG. Therefore, when Hauser, Chomsky, & Fitch say that recursion is the 

key component of human language, what they mean is that the recursion generated by at least a grammar on 

the PSG level is the key component of FLN.  

This hypothesis would thus be challenged by the discovery that some nonhuman species are capable 

of producing or perceiving recursive sequences with a grammar higher than the FSG level. However, even if 

they are right that humans alone possess PSG and higher grammars, convergently evolved precursors of these 

grammars might be of interest in understanding how our ancestors evolved more elaborate grammars–

whether through periods of iterative bootstrapping from less to more complex grammars, or by providing a 

selection pressure to drive the spread of FLN/Merge after a single, saltational mutation.  Furthermore, their 

hypothesis implies a further question: did the human capacity for producing and perceiving recursion evolve 

specifically for spoken or even gestural language, or to support entirely different forms of structured 

behavior—navigation, tool use, social cognition, or dance choreography—and was only later exapted for use 

in spoken language?  

Both lines of question have been investigated empirically by looking for grammatical understanding 

in animals such as tamarins, keas, pigeons, and starlings. Such investigations can focus on two different 

aspects of grammatical understanding:  production and comprehension. The first line studies behavior 

producers to determine if any animal can structure behavior according to a grammar higher than FSG level. 

However, merely finding such patterns in behavior would not prove that they were produced by recursive 

rules or generative forms of representation, for the patterns could merely be the product of reflex or some 

                                                           
3 Of course in actual spoken language, either the “if” or the “then” can be implicit (i.e. “I’ll go to the store if we are out 
of milk.”)   
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other inflexible mechanism.  A second line of investigation intended to resolve this question would focus on 

comprehension, by building artificial stimuli that follow grammars higher than the FSG level, and testing 

animals’ sensitivity to whether a variety of novel patterns follow those grammatical rules. These experiments 

typically take the form of playback of grammatical artificial stimuli until animals should have habituated to the 

new grammar, and then playing similar but novel sequences that violate the grammar to see if the animals 

notice the mistakes.   

The typical artificial FSG learned and tested in such experiments is (AB)n, and the typical artificial 

PSG learned and tested in the experiment is (A)n(B)n. In order to be able to compare the test results between 

FSG and PSG, and to eliminate the influence of any factors other than the grammar, the testers must control 

and match the other aspects of the signals, such as their number and length (both grammars possess only two 

elements, A and B) and the overall frequency with which each component appears in the sequence. So far, 

many animals have passed the test with an artificial FSG.  Results for PSGs, however, have been more mixed.  

Cotton-top tamarins apparently failed to discriminate the PSG violations in matched artificial stimuli, whereas 

European starlings and other birds appeared to succeed at this task (Abe & Watanabe, 2011; Gentner, Fenn, 

Margoliash, & Nusbaum, 2006).  

However, critics have recently responded to the positive PSG results in animals by noting that the 

(A)n(B)n tests are still ambiguous, because the comprehension results could also be generated by alternative, 

first-order parse-trees that do not involve recursive center-embedding (Corballis, 2007; Fitch, 2010--and see 

Figure 3).  The debate over the application of the (A)n(B)n test to birdsong raises important epistemological 

issues and calls for more research, but we need not resolve these questions here.  At any rate, center-

embedding has probably been overemphasized in this literature; it is relatively rare in human languages, and it 

reflects only one amongst many different kinds of recursive grammatical construction (Corballis, 2007).  

Moreover, forms of grammatical complexity short of context-free recursion should still be of biological 

interest if our goal is to understand the full evolutionary trajectory of language.  As such, we here argue that 

we should explore a wider variety of grammatical patterns and open this search to non-vocal animal behaviors 

as well.   
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Figure 3.  Alternative parse-tree for AnBn sequence that does not involve long-distance dependencies, 
(reproduced from Corballis, 2007, 700). 
   

To begin the transition from vocal productions to dance, an argument for the relevance of grammatical 

recursion in intentional motor movements is offered by Vicari & Adenzato (2014). They list the four features 

exhibited by recursion in human language –self-embedding, long-distance dependence, identity preservation, 

and discrete infinity—and argue that all of these features can be found in non-vocal forms of intentional 

action.  For present purposes, the most important aspect of Vicari and Adenzato’s argument is the idea that 

motor intentions can possess hierarchically-structured, recursive goals. The plans for achieving these goals 

can be structured like grammatical vocal productions, with components that can only be specified in terms of 

layered sub-intentions that may have to be repeatedly iterated until a sub-goal is achieved.   

To provide another relevant comparison, this is one of the reasons that tool-use has also been studied as 

an alternative domain in which recursive faculties might evolve; archaeologists have sought such layered sub-

intentions in the archeological record of tool manufacture, using advances in flint-knapping techniques as 

indirect evidence for the evolution of recursive thinking in our Paleolithic forebears.  Notably, around the 

same time period that modern human language is thought to have evolved, the archaeological record shows 

the spread of a new “Levallois flake” technique for flint-knapping, which archaeologists argue requires forms 

of recursive thinking.  Levallois tools appear to show that our ancestors suddenly developed the ability to 

implement a complex knapping strategy that requires repeating steps in sequence until a desired subgoal is 

achieved, as nested in a hierarchically structured pattern (Figure 4).  Like grammatical patterns, such motor 

plans have repeatable, reidentifiable subcomponents, hierarchical organization, and can be used to generate a 
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potentially infinite number of variations by changing the number of times that patterns (and subpatterns) are 

iterated.  We should thus ask many of the same empirical questions—what kind of grammatical organization 

do they possess, is the organization flexible, and how is the structure represented by the organisms producing 

and comprehending those patterns—about complex motor movements as well. 

. 

Figure 4.  The steps of a Levallois flake production; each step may involve repetition in context to achieve a 
desired outcome before moving on to the next step, and many variations in end product are available to 
produce different kinds of tools or points. Illustration reprinted from (O’Neil, 2012) with permission from 
the author, who retains all rights. 

 
3.  The Mating Dances of the Long-Tailed Manakin 

There are at least two places we can look for grammatical structure in non-vocal behavior in animals. 

The first place, as noted above, is animal tool construction, and this line of thought has already been explored 

in the case of New Caledonian crows (Taylor, Hunt, Holzhaider, & Gray, 2007). The second place is the 

production of long sequences of complex actions, as is found in the mating displays of many birds. Notably, 

mating dances slot into a Darwinian protolanguage story even more neatly than tool use, for the forms of 

sexual selection acting on the dances may be extremely similar to those acting on songs.  Research on humans 

has shown that females observing male dances can make fine discriminations in the motor performance and 

variation with which moves can be performed, lending support to the idea that dance structure might have 

played an important role in sexual selection in hominids as well (Barske, Schlinger, Wikelski, & Fusani, 2011; 

Neave et al., 2011). In evaluating the hypothesis that grammatical competence found in language may have 
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evolved in mating dances, we will focus especially on the long-tailed manakin, which produces some of the 

most complex mating dances yet found in nature.   

As with many lekking species, male long-tailed manakins gather in a display area, where they exhibit their 

courtship dances to onlooking females.  The center of the courtship zone is a primary display perch, where 

the dances usually begin.  While long-tailed manakins sometimes perform solo routines, a particularly 

interesting feature of their dances is that they are often and most successfully performed in pairs.  Each pair 

involves a dominant alpha male and a subordinate beta male.  The full display consists of three or more 

“phases”:  first, if partners are being recruited for the dance, the alpha male will sing a “teeamoo” call from the 

canopy above a perch, which attracts a beta to a perch; second, the alpha (and beta, if present) will engage in 

“toledo” calls which summon females to watch the dance;  third, performing males descend to the display 

perch and begin a “hopping” display, which can consist of many highly-skilled, coordinated movements; 

fourth, the dance typically proceeds to a butterfly display, which involves a distinct category of skilled physical 

maneuvers and typically ends with the alpha performing an “angel flight” movement followed by a “bow” 

motion; and fifth, if the female has remained through the entire display, copulation will occur.  Females also 

make some movements during the male’s performance, which may provide feedback on the female’s 

likelihood of copulation (Ward, 2012).  Notably, only the alpha male is allowed to breed at the end of a 

successful display, which raises questions about the adaptive benefits of the display for betas (DuVal, 2013). 

The different phases of the dance are of particular interest, for they may indicate that the display 

possesses a hierarchical grammatical organization.  While previous ethologists lacking current video recording 

technology only decomposed the dance into hopping and butterfly components, Lukianchuk and Doucet 

(2014) analyzed 2500 hours of video footage to extract 16 re-identifiable “moves” in the displays. Their 

criteria for typing a display element required that the behavior i) always be executed in a similar manner 

across males and display areas, ii) never be executed partially unless disrupted, iii) be performable in different 

combinations with other discrete behaviors immediately before or afterwards.  These criteria are important to 

the current investigation, for they provide us with the analogy of “words” for a dance grammar.  Moreover, 

the behaviors can be grouped into different grammatical supercategories of hopping and butterfly elements.  
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Elements performed during the hopping phase include the “stationary display”, “popcorn hop”, “leapfrog”, 

“buzz-weent”, and “tucked wing-flick”,  whereas elements performed during the butterfly phase include 

“butterfly flight”, “dart”, “bounce”, “bill wipe”, “upright posture”, “about face”, “lightning bolt”, “back-and-

forth”, “angel flight”, and “bows” (see Figure 5 for diagrams).  Though we do not emphasize this aspect here, 

the displays are also multi-modal; long-tailed manakins can produce 14 different vocalizations, and 

vocalizations during the display appear to be integrated with dance moves, rather than serving as separate or 

parallel components—though they may play some additional role in coordinating partners or enticing 

females.  The speed with which various components are performed also appears to be relevant to copulation 

success, though we will not discuss its influence here. 

Analyses of 92 different recorded displays allowed Lukianchuk and Doucet to build a probability matrix 

of transition likelihoods between different components of the dance moves, akin to the kind of transition 

matrices one might find in analyses of birdsong (see Figure 6).  They found that some components—leap-

frogs, back-and-forths, and tucked wing flicks—exhibited a high probability of being repeated, whereas 

others—lightning bolts and stationary displays—exhibited high probabilities of transitioning to specific other 

components.  All but one of the elements showed a high probability of directly preceding at least one other 

element, and many elements were not easily predicted by any preceding elements.  Some components were 

more likely to mark a transition between the hopping phase to the butterfly phase (i.e. buzz-weent or tucked 

wing flick), or between the butterfly phase to the copulation phase (which was 83% of the time preceded by a 

bow).  Though some aspects of the dance are highly stereotyped, other elements were not highly associated 

with any others, suggesting a considerable amount of flexibility in the displays.4  Moreover, there was a high 

degree of individual variation in the patterns presented in different displays, suggesting that females may have 

significant diversity of patterns to choose from when selecting mates.  Other research has shown that just a 

few males monopolize most matings (Stein & Uy, 2006), so if females are choosing on the basis of dance 

characteristics, then there is extreme pressure to produce the best dance. 

                                                           
4 For an overview of the cognitive and evolutionary significance of such behavioral flexibility, see (Buckner, 2015; 
Mikhalevich, Powell, & Logan, 2017). 
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Figure 5.  Elements of the long-tailed manakin Chiroxiphia linearis courtship display: a) two males 
performing leapfrogs, with lower male performing stationary display; b) male exhibiting buzz-weent display 
on primary display perch (shaded), followed by a set of tucked wing flicks on a perch below; c) male 
performing butterfly flight towards perch, followed by a bounce upon landing; d) arrow depicting flight 
pattern of s-shaped dart, followed by an about face upon landing; e) male exhibiting bill wipes; f) male 
exhibiting back and-forth displays; g) arrow depicting flight pattern of lightning bolt, followed by an upright 
posture upon landing; h) male performing frenzied flutter; and i) male performing an angel flight and landing 
in a bow position (Illustrations by K.C. Lukianchuk, reproduced from Lukianchuk & Doucet, 2014, p733). 
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Figure 6.  First-order transition probabilities amongst dance elements during successful dances, reproduced 
from Lukianchuk & Doucet (2014, 738).  Shaded boxes are elements in the “hopping” portion of the display, 
and unshaded boxes are in the “butterfly” portion of the display. 

 
4. Grammar in Dance? Promise and Problems 

Are such dances organized according to grammatical rules?  At present, we simply do not yet know, as 

researchers have only begun to analyze the structure of the dances.  However, it is tempting based on the 

first-order transition probabilities already documented to suggest that the structure of such dances might be 

captured by a generative grammar.  For example, consider the following set of rules (specified in Backus-

Naur Form): 

1.  <Dance> ::= <teeamo call> <toledo call> <hopping display> <butterfly display> <copulation> 

2. <hopping display> ::= <stationary display> | <popcorn hop> | <leapfrog> | <buzz-weent> 

|<tucked wing-flick> | <hopping display>  

3. <butterfly display> ::= <dart> | <bounce> | <bill wipe> | <upright posture > |<about face> | 

<lightning bolt> | <back-and-forth> | <angel flight> | <bow> | <butterfly display> 

These specifications already display FSG-level recursive complexity, allowing indefinite iterations of moves 

within a display phase.  The transition probabilities displayed in Figure 6, however, suggest further 
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complexity.  For example, is it a “rule” that the hopping display always ends with a butterfly flight?  Should 

the butterfly display always end with a bow?  Is there a distinction between components that are to be 

multiply iterated and those that are not?  Is there any relationship between the number of iterations of a 

repeatable component in one section of the dance and another repeatable component that occurs in a later 

section?  If such long-distance dependency exists, how much must be planned by the performer, how much is 

determined by responses of the females during the dance, and how much is simply spontaneous?  Moreover, 

the fact that the high-speed dances are coordinated between a dominant and subordinate male makes it 

especially likely that any complexity must be represented and communicated by the cooperators to one 

another before the performance.  So to these questions we should add more about the means of coordination 

between the alpha and beta male, and whether their dominance relationship plays any role in planning, 

directing, and practicing the choreography of the dance. 

 Does it even make sense, however, to look for linguistic grammars in a sequenced, full-body motor 

activity like dance; or is this extension of linguistic terminology to a different domain likely to lead only to 

confusion (Bowling & Fitch, 2015)? We have already described the way in which the dances may be broken 

down into repeatable syntactic components that can be recombined in flexible ways.  In fact, such analyses 

mirror grammatical analyses of explicitly choreographed dances in humans, such as classical ballet, where 

dance components are similarly broken down into a lexicon of moves so that phrases and patterns can be 

explicitly formulated (Graham, 1973; Starr & Cunningham, 1968; Stevens & McKechnie, 2005).  

Anthropologists have also speculated that human dance can serve as a form of symbolic communication, with 

physical motions especially suited to kinematic onomatopoeia in its beginnings, but later moving into a more 

symbolic and ritualized form of communication, as is found for example in the hula story-forms of the 

Polynesian diaspora, or the war haka of the Maori (Armstrong, 1964; Pukui, 1942).  When working out 

evolutionarios for the components of modern human language, mating dances thus possess at least as much 

prima facie anthropological relevance as birdsong. 

 We must, however, acknowledge the differences in the anatomical and neural demands of dance as 

compared to vocalizations—though these differences can be a “bug” or a “feature”, depending upon how 
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one stands on wider debates concerning the embodied and embedded nature of cognition (Barrett, 2016; 

Clark, 1999).  In most cases, vocalizations are a comparatively low-energy activity involving only a small 

portion of the body: the facial muscles, vocal tract, and breathing system.  The vocal production system is 

also very flexible; once trained up, there is little energetic cost to experimenting with novel combinations, 

which can be produced on the fly with little interference between components.  When there is such 

interference—for example, if one finds it necessary to quickly assert that “Sally sells sea shells by the sea 

shore”—it is a notable exception that proves the rule.  Dance, by comparison, is an energetically expensive 

activity that involves the entire body.  The moves themselves are difficult to perform, and it may require years 

of practice to perfect a particular form or combination.  Moreover, there is kinematic interference between 

components, involving factors like balance, positioning, and muscle fatigue.  While a skilled speaker can often 

utter novel sentences for hours without physical fatigue, even an expert dancer may be exhausted after nine 

or ten double Fouettés en Tournant or Grand Jeté.  For these reasons, concerns about embodiment and 

environmental embedding of dance activities should receive special attention in the comparative study of 

mating dances as a source of grammatical understanding.  It may be, for example, that certain elements go 

unrepeated not because the birds lack the grammatical competence to do so, but rather because it would be 

physiologically or spatially impractical to repeat the move.  Correspondingly, grammatical understanding 

involving such components may take different forms than it does with speech.  Though we may occasionally 

think about the context in which we speak—a loud, crowded train station may make a poor site for an 

important conversation—in most cases, the background conditions for speech are ignored.   

Conversely, though, apparent grammatical understanding may be a byproduct of physiological 

demands, spatial demands, or occurrent signaling not performed intentionally as part of a dance structure, or 

even represented anywhere in the manakin’s nervous system.  One of the central motivations for the 

cognitive revolution was the purported “stimulus-independence” of language, so if apparent grammatical 

complexity is found to be controlled by external stimuli or spatial/kinesthetic constraints, this might be seen 

to obviate the need for any cognitive representation of grammar.  For example, it may be that moves 

involving wingflaps are repeated simply because flapping wings is such a common and automatic activity in 
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the bird’s life, or hops between branches may be repeated in even numbers because it is a spatial constraint of 

the mating display that the bird must return to the original perch to proceed.  Even if such constraints do 

drive the apparent structure of the dances, this should not automatically rule out the possibility that the 

computational level of description is appropriate or that the behavior exhibits a grammar.  However, 

proponents of this argument should explicitly consider these possibilities by noting the required concessions 

to embedding and embodiment, and offer rebuttals that preserve the relevance of externalized dance 

structure to the evolution of vocal or gestural human speech. 

 One useful comparison here might be between an expert orator and an expert gymnast: what are the 

differing demands that their expertise places on their bodies, and how do the constraints differ in the way that 

they can demonstrate their expertise?  An expert orator may be able to perform for hours, extemporize on a 

variety of different topics with ease, and show little physiological specialization to her task.  An expert 

gymnast, on the other hand, may have great difficulty improvising a routine on the fly, and expertise in one 

gymnastic category may not generalize well to another.  For example, an Olympic gymnast spends months 

specializing a routine for the parallel bars, and this degree of specialization will typically not generalize easily 

to another routine or another activity like the uneven bars (indeed, we already know that the quality of dances 

in golden-collared manakins is affected by the removal of single perch from their display area—Coccon, 

Schlinger, & Fusani, 2012).  Their musculature, flexibility, reflexes, “muscle memory”, and physiological 

responses will be highly attuned to the specific demands of their practiced activity.  A gymnast’s routine may 

thus indeed follow a grammar, but the influence of that grammar would be expressed more in the 

choreography and practice of that routine, rather than the relatively stereotyped performance. It can thus 

appear that the demands of speech and dance are quite different indeed. 

A rebuttal can be offered on the part of a dance-based evolutionario, however, that similar tensions 

are present on the original Darwinian musical protolanguage hypothesis—for the fair comparison here is not 

an expert orator, but rather an expert crooner or bard.  By hypothesis, the “songs” in the second stage of this 

evolutionario that earned mates would have been much more difficult to perform than pedestrian speech, and 

only the songs of the most skilled performers would end in copulation.  The highest levels of human artistic 
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vocal performance—the fair comparisons with classical ballet—still require years of practice to attain, are 

often practiced extensively before performance, and cannot be performed without the right anatomy (with a 

few Dylanesque exceptions aside).  Perhaps only later in the third stage (and beyond) of the Darwinian story 

was speech exapted into a more relaxed form of performance where only the clear transmission of phonemes 

(together with perhaps other features like intonation and mood) mattered for successful communication. 

 Finally, we should consider differences in the neural correlates of skilled speech and dance.  These 

demands are already known to vary in both humans and birds, and these differences may be relevant to the 

arguments of homology or analogy.5  Some of the strongest evidence for the uniqueness of human 

grammatical processing, for example, comes from evidence that Broca’s Area in the left interior frontal gyrus 

is specialized for syntactic processing (Grodzinsky, 2000).  Supposing that the human form of Broca’s area 

evolved uniquely in our near ancestors raises more questions about its evolutionario, however, and other 

animals possess homologues and analogues in “Area 44” that have similar functions.  A wide examination of 

the imaging literature on Area 44 in humans and animals reveals a range of possible functions that are more 

broadly consistent with the idea that syntax can emerge in both language and motor planning.  For example, 

in humans and monkeys, activation in Area 44 has also been correlated with non-vocal activities like motor 

imagery, object manipulation, motor preparation, digit sequence learning, and complex motor planning in 

“Tower-of-Hanoi” type problems (Müller & Basho, 2004).   

Recent “rewiring” and “reuse” hypotheses in the study of brain evolution lend further credence to 

the compatibility of the dance hypothesis with a functional role for syntactic processing of Area 44 in adult 

humans.  These views hold that neural plasticity routinely results in brain areas with older, more general 

“workings” being pressed into service for a variety of different domain-specific functional roles through 

plasticity in evolution and development (Anderson, 2010).  Work on the motor theory of vocal learning in 

                                                           
5 Despite the vast evolutionary distance between humans and birds, we should entirely foreclose the possibility that 
neural structures controlling components of FLB or even important precursors to FLN could be homologous.  Even 
though the architecture of the avian brain is radically different from that of mammalian brains—birds lack a neocortex 
and white matter—some brain areas like the hippocampus (implicated in higher cognitive functions like declarative 
memory, transitive inference, sequence learning, and spatial cognition) do appear to be homologous, and there may be 
more subtle functional or architectural similarities.  For reviews of such comparisons, see (Güntürkün & Bugnyar, 2016; 
Reiner et al., 2004). 
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songbirds—which finds that the song nuclei in three distantly related songbird groups evolved as a 

specialization of a pre-existing motor pathway (Feenders et al., 2008)—provides evidence that such rewiring 

of motor learning areas did in fact occur in the evolution of three distantly related species, strongly 

supporting comparative evidential parity between song and dance.  Current neuroscientific evidence on 

language processing in humans is thus more compatible with the dance hypothesis than might initially be 

supposed, and raises further questions as to why the same brain region would be involved in both vocal and 

non-vocal tasks, questions that could be answered by the dance hypothesis.   

Another line of relevant evidence can be obtained from comparative studies of the respective masses 

of brain areas across songbirds and manakins.  These studies assess correlations between the size of the brain 

or brain regions and increased complexity in song or dance (Airey, Castillo-Juarez, Casella, Pollak, & 

DeVoogd, 2000; Lindsay, Houck, Giuliano, & Day, 2015; Nowicki, Searcy, & Peters, 2002).  In the case of 

songbirds, increased song complexity is correlated with increased brain size in the “song system”, which in 

zebra finches includes “area X” of the avian striatum (X), the high vocal center (HVc), and the robust nucleus 

of the archistriatum (RA) (Mooney, 1999).  Manakins, by contrast, show specializations in the male motor 

control circuitry and female visual processing centers of the brain (Day, Fusani, Kim, & Schlinger, 2011), 

such as the cerebellum (CB) and arcopallium (AP), respectively.  Overall brain size is correlated with 

increased complexity of dances across a variety of manakin species (Lindsay et al., 2015), though it is not 

currently known whether the size-complexity relationship is confined to particular motor regions of the brain 

or reflects a more coordinated brain-wide expansion.  “Complexity” in these studies was also operationalized 

in terms of an aggregated combination of number of moves in a dance, presence of cooperation, complexity 

of display arena, and number of concomitant sounds in repertoire.  To our knowledge, no studies have yet 

looked specifically for the neural correlates of grammatical complexity in dances, and it may be that the 

specific neural correlate of sequence pattern complexity is more constrained.   

5. Experiments:  The Next Steps 

Though the evidence so far is suggestive, the current verdict must be agnosticism:  we do not yet know how 

close a comparison can be made between mating dances and protolinguistic vocal productions in a Darwinian 



 

22 
 

approach to language.  As such, we end the paper by sketching future lines of investigation that should be 

pursued—in parallel to the existing lines on vocal production described above—to determine the relevance of 

mating dances to the evolution of language.  As mentioned above, these experiments are broadly broken 

down into producer effects, observer effects, and neuroscientific studies.   

5.1 Producer effects 

The first line of investigation into producer effects would be to perform more thorough observation and 

analysis of existing dance structure, looking especially for higher-order and long-distance dependencies 

between dance elements.  There is already good evidence that some forms of FSG grammar exist in the 

manakin dances, such as a distinction between repeatable and non-repeatable elements.  Given that 

“lexicons” of dance moves have already been proposed by various researchers for particular species, we could 

now construct a centralized database of dance patterns encoded in this lexicon from collected video 

recordings.  These pattern databases could then be statistically analyzed to look for more complex forms of 

grammatical structure in their transition probabilities.   

Crucially, however, a different kind of analysis is needed than that already performed by Lukianchuk 

& Doucet.  Their analysis aggregated first-order transition probabilities across the dances of many different 

individuals; but Chomskyans have long stressed the irrelevance of this kind of probabilistic analysis to their 

program, as it would not detect hierarchical organization, especially if such organization varied from 

individual to individual.  More powerful kinds of analysis are needed, especially forms that could test 

hypotheses about different ways to generate sequences hierarchically.  Two promising avenues would be data-

oriented parsing methods like Bayesian program induction and deep learning, both of which excel at 

discovering hierarchical organization in complex  input sequences (Bod, 2009; Lake, Salakhutdinov, & 

Tenenbaum, 2015).  A disadvantage of such methods is that they can require large input corpora, which we 

do not yet possess. 

Exploring the details of these methods here would consume an entire paper, however; more useful 

for present purposes would be elaboration on the kind of structures these analyses might expect to find, such 

as: 
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A. Iterable Multi-Move Sequences 

Is there a dance variation that repeats a hop and a wing flick a given number of times—a substructure like 

(<hop><wing flick>)n—in a context before moving on to another move sequence?  How common are such 

patterns?  Do all individuals display the same iterable patterns and simply combine them in different orders, 

or is there a large degree of intra-individual variation in pattern choice? 

B. Sub-Sequence Openers and Closers 

Are there “rules” regarding moves that must begin or end particular phases or sequences of the dance?  If 

iterable components occur in a given context, but must be preceded or succeeded by particular moves, this 

suggests hierarchical sequence organization.  Existing observations in long-tailed manakins strongly suggest 

that the teeamoo and toledo calls must precede the hopping phase, and that a bow usually precedes copulation.  

However, it is unknown whether these patterns reflect arbitrary grammatical preferences, or rather universal 

features of dances for a given species induced by organizational and spatial demands of the cooperative 

display or copulation.   

 It may prove difficult to determine a unique analytical category for openers and closers—i.e. whether they 

should be seen as serving a grammatical role as a syntactic type in a dance’s structure, or serve merely as a 

pragmatic requirement in recruiting other birds to view or partner in the dance.  However, such confusion 

over an element’s linguistic category would not be unique to dance.  For example, linguists have similarly 

debated whether prosody should be seen as playing primarily grammatical, semantic, or pragmatic roles.  

Speakers of many languages raise tone when beginning a statement and drop tone at its end; should these 

prosodic elements be seen as syntactic components of the spoken sentence’s grammatical structure, or 

pragmatic moves in auditory segmentation to grab listener’s attention and then signal the termination of a 

message, to aid in conversational turn-taking (Price, Ostendorf, Shattuck-Hufnagel, & Fong, 1991; Selting, 

1996)?  In fact, theorists should consider the possibility that dance openers and closers (and prosody) play 

roles in multiple distinct analytical categories simultaneously. 

C. Long Distance Dependencies 
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For particular dances, are there higher-order correlations between the number of times that an iterable move 

or sequence is repeated in one section of the dance, and the number of times a different iterable move or 

sequence is repeated in a later section of the dance?  For example, is there any structure of the AnBn form that 

would begin to suggest PSG-level grammatical complexity?  Given the fact that such patterns should be 

expected to vary from performer to performer, the kind of analysis needed is one that could use free 

parameters to fit higher-order patterns, to determine whether a higher-order hypothesis fits recorded dance 

structures better than first-order alternatives. 

 The discovery of any of these patterns in the dance databases would support the position that mating 

displays deserve as much attention in the evolution of grammatical structure as birdsong. However, not even 

the discovery of all of these patterns would definitively demonstrate that the manakin dances exhibit PSG-

level grammatical complexity, for these analyses would run into the same kind of epistemological problems as 

the AnBn tests in birdsong.  The problem is that the PSG-level grammar hypothesis is ultimately about the 

functional or computational organization of a system—how it represents the patterns it can produce—and 

general considerations about the infinite number of ways that one might produce the same pattern show that 

no amount of analysis of output patterns alone can definitively establish the function that the manakins 

compute.  These doubts raise more general considerations of parsimony, idealization, functional abstraction, 

and inference to the best explanation that would take us well beyond the scope of this paper (Franks, 1995; 

Zednik & Jäkel, 2016).  We can, however, discuss other forms of experimentation that might provide stronger 

evidence concerning the representational format of the manakins dance-plans, should they exist.  

D. Flexible Recovery from Interruption  

One class of experiment would be those that interrupt the male manakin’s display while already underway to 

see how they recover.  Do they need to start back from the beginning of a display, or can they pick up where 

they left off?  Is there evidence that the remainder of the display continues to fit patterns expected from long-

distance dependencies (should any exist) to patterns in the earlier part of the display?  There is a further 

ecological concern about the experiment that the male manakins may opt not to pick up where they left off 
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not because they do not represent the rest of the intended pattern, but rather because they know that only a 

flawless, completed dance will impress a female. 

 One kind of preliminary experiment in this vein has already been performed on golden-collared 

manakins.  Coccon, Schlinger, and Fusani (2012) disrupted the dances of male golden-collared manakins (a 

solo-performing species) by placing a branch on one of their display perches as a form of obstruction.  The 

idea behind the experiment was to test whether the manakins could adapt their display to the presence of the 

obstruction.  The males in this case performed longer displays that omitted a key element inviting females to 

copulate, suggesting that the dances cannot be adapted on the fly.  Though other species of manakin may be 

more flexible, this experiment shows that we should not expect to find grammatical flexibility at the time of 

performance; if present, it would rather have to be at the time that the moves are planned or practiced.  An 

interesting precedent for experimental design is provided by this experiment, however—they used the same 

males’ behavior before the court was disrupted as a control for their post-disruption behavior.  This is one 

important way that experimental methodologies may overcome the challenge that each individual may favor a 

differently choreographed pattern to its dance.  The experiment further suggests that in at least this species, 

once practiced the dance patterns are relatively stable for that individual at the time of performance. 

E. Flexibility at Learning/Practice 

The final kind of producer effect discussed here pertains to structural flexibility exhibited at the time that the 

dances are learned or practiced.  Unfortunately, little is currently known about the development of dance 

structure.  Male long-tailed manakins have a relatively long lifespan of 12-18 years, but do not develop full 

display plumage or reach sexual maturity until 3-5 years of age (McDonald, 1993)—though they begin 

practicing dance elements alone and with partners much earlier.  Prior observations suggest that male 

manakins begin to choreograph and practice their dances at the beginning of each mating season, first at low 

speed, gradually increasing speed through practice until they achieve extreme speed and precision (Coccon et 

al., 2012).  Upon reaching sexual maturity, males engage in an extensive process of partner selection and 

bonding.  Dominance at dance sites is largely determined by age and experience; it typically takes males 6-10 
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years establish a stable relationship as an “apprentice” to an alpha who routinely performs dances for females 

(Trainer, McDonald, & Learn, 2002).  

 In this and other cooperatively displaying species, there is speculation that the subordinate males improve 

their own ability to perform and sequence dance moves during their apprenticeships (DuVal, 2013; Foster, 

1981).  Though to our knowledge no long-term longitudinal studies have been performed on coordination or 

learning of specific dance structures by betas from alphas, one study was conducted on call frequency 

matching in long-tailed manakin displays (Trainer et al., 2002).  This study found no evidence of short-term 

accommodation in partners’ song frequencies, though it did find that with increased age non-alpha song 

competence increased, variability in song structure amongst partners decreased, and frequency matching 

among partners increased.  This supports a hypothesis not of rapid learning and accommodation, but more 

long-term adjustments akin to the acquisition of expertise.  It is not known, however, whether the 

congruence amongst partners develops as a result of imitation, sheer practice, or mutual attunement; and this 

study did not focus on grammatical structure in either song or dance.   

 Another important form of flexibility to investigate at the time of learning/practice is thus whether and 

how younger males acquire dance-patterns from watching or participating in dances involving more dominant 

males.  Are patterns acquired and added to prior routines one move at a time, all-at-once, or in sequenced 

chunks?  Perhaps the latter would be the most suggestive in overcoming skepticism about mere patterns 

found in behavioral output, because it would show that the birds themselves, in the process of learning the 

patterns, chunk those elements together, rather than learning to sequence individual moves together by rote.  

For example, if an onlooker observed a male performing a dance with an AnBn pattern in the hopping phase 

of the dance, and modified its own pattern by adding this whole chunk at once rather than by adding one A 

and B element at a time after repeated observations until the dances matched, then this would suggest that the 

onlooker understood that pattern as a chunk, and could plan to perform it as a chunk before practicing it as a 

series of individual moves.  Conversely, observations that onlookers added such patterns one move at a time 

would provide evidence against grammatical understanding of the dance sequences, as it would be like a child 
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learning to play a piano melody by rote practice gradually adding one note at a time, with no knowledge of the 

overall sequence or musical structure of the phrase.    

F.  “Negative Evidence” 

Some of the strongest evidence for hierarchical grammatical structure in mating displays might be 

derived from what we fail to find in exhaustive search.  Some of the strongest evidence for hierarchical 

grammar in human language comes from the fact that certain patterns or parsings that would cohere with 

first-order probabilistic expectations do not occur (so-called “negative evidence”—Penke & Rosenbach, 

2004).  For example, in English certain strings like “John thinks Sally is taller than himself” do not occur 

despite cohering with local probabilistic expectations.  Moreover, certain parsings of sentences are 

grammatically impossible; for example, we can parse the sentence “John saw the man from Texas” in exactly 

two ways—either John saw the man from a Texan vantage point, or John saw a Texan man, but there is no 

reading of the sentence that would assert that John is Texan.6  In short, some of the strongest evidence for 

hierarchical dependence in dance might come from the absence of certain patterns that might otherwise be 

expected on the basis of first-order transition probabilities.   

5.2  Observer Effects 

An even more promising source of evidence for grammatical understanding might come from the way that 

females process the dances in making copulation decisions.  Since the females do not perform the highly-

skilled dances themselves, we may face fewer confounds between grammatical understanding and motor 

specializations (though again this would only be a deal-breaker on the assumption, contra embodied-

embedded ideas, that such motor specializations could not constitute grammatical understanding).  Moreover, 

though females have the opportunity to observe many dances by males, they evaluate finished products from 

many different onlookers, and they may select a pattern for copulation the first time they see it.  Thus, even if 

it is unlikely for physiological reasons that the males would improvise a highly novel pattern in a display at the 

time of performance (as opposed to the time of acquisition/practice), females may prefer a highly novel 

pattern the first time they have seen it if it demonstrates more grammatical complexity.  We thus move to 

                                                           
6 We are grateful to an anonymous reviewer for suggesting these examples. 
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discuss different ways to look for such flexible understanding in onlooking females, as well as forms of data 

that would speak against such grammatical understanding. 

A. Dependencies Between Grammatical Patterns and Copulation Success 

The most obvious source of evidence for grammatical understanding in females would be the finding that the 

forms of grammatical pattern and sequencing discussed in section 5.1 are highly determinative of copulation 

decisions by females.  For example, are females more likely to offer copulation in response to some particular 

pattern, even on the first time they see it?  Are they more likely to fly away from the observation position or 

otherwise demonstrate a lack of interest when grammatical patterns are violated?  Existing research already 

suggests that females prefer more complex sequences of  moves (Lindsay et al., 2015), but other studies have 

found that courtship preferences in some manakin species can be predicted largely by milliseconds-level 

speed differences with which components of the display are performed (Barske et al., 2011).  In other words, 

the dances can be seen to display information to potential mates about both neuromuscular 

coordination/power and cognitive flexibility, and part of what remains to be determined is the degree to 

which each factor determines copulation success in each species.   

 Though it is debated whether the female manakin’s courtship decisions are based on the ability of the 

dances to broadcast fitness or simply because they provide the females with aesthetic pleasure (Prum, 2012), 

an initial adaptationist hypothesis about this tradeoff between neuromuscular fitness and cognitive complexity 

might be that both features will be relevant in most species, though the balance will be determined by the 

distinctive ecological pressures each species confronts.  For example, in species facing high predation risk, 

mere motor strength and speed might be most important.  For species that need to hunt or escape predators 

by darting quickly through dense canopy, coordination between motor and visual processing might be most 

important.  For more social species or those that face difficult foraging challenges, cognitive complexity 

might dominate, on the assumption that cognitive demands of mastering dominance hierarchies or foraging 

maps are more important to reproductive fitness (and the social and spatial lives of long-tailed manakins may 

be quite complex indeed—Edelman & McDonald, 2014; McDonald, 2010).  These are merely speculative 

“just so” stories, but they are offered to illustrate that we should not expect a simple answer to this question, 
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and the most suggestive evidence might come from comparing predictors of copulation success to ecological 

pressures across species.   

It is worth explicitly connecting this point to those about negative evidence in the previous section.  

Specifically, one obstacle to extending methods from human linguistics to the study of mating dances is that 

mating dances almost surely have no semantic significance, so some of the ways that linguists analyze human 

speech for semantic coherence may be inapplicable.  However, there may be a useful analogy between 

grammaticality and copulation success that could be exploited in future research.  Namely, copulation success 

could provide a proxy as to whether a female judged a male’s dance to be “grammatically correct”.  Are there 

some patterns that fit first-order probabilistic expectations, but never result in copulation success?  This 

linkage is at present speculative, but researchers might keep it in mind when studying dance-patterns.   

B. Guidance/Control of Female Responses Over Male Dance Structure  

Another important factor to investigate would be the ongoing influence of female responses on the structure 

of the dance, should any exist.  Females in many manakin species actively participate in the courtship display, 

either by performing their own moves, shifting position, or merely by continuing to watch instead of flying 

away.  The degree to which males can modulate their performance in response to female cues is not currently 

known.  For example, it might be that males move on to the next phase of a dance once receiving sufficiently 

positive feedback from females, or it may be that they increase the number or speed of moves when females 

begin to appear disinterested.  Evidence that dance structure is largely determined spontaneously by female 

responses should be seen as evidence against the centralized representation of grammatical structure by males 

or females, as such structure would only emerge from the embodied cooperation between the birds.  Again, 

however, it bears repeating that fans of embodied/embedded influences on cognition, and “second-person” 

interactions in human social cognition might see this emergent quality as a feature rather than a bug (Barrett, 

2016; De Jaegher, Di Paolo, & Gallagher, 2010).   

C. Playback/Artificial Stimuli 

One of the most alluring possibilities and challenges in this line of research would be playing videos of dances 

to females in controlled conditions to gauge their responses.  This kind of experiment would mirror those 
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already conducted on birdsong—for example, by habituating females to dance-grammars from playbacks of 

real or artificially constructed stimuli, to determine whether they treat dances that match or violate the 

patterns from various grammars differently.  However, there are serious practical challenges facing the 

execution of analogous studies with dance.  For one, it is already known that females are very good at 

discriminating slight differences in male dances.  It is unknown whether animals are sensitive to an “uncanny 

valley” for artificial stimuli or specifically where it might exist (Mori, MacDorman, & Kageki, 2012), and it 

could be a challenging practical problem to replay real stimuli or construct artificial stimuli that the females 

did not reject for grammatically-irrelevant reasons.   

 Such experiments would involve showing females recordings or animations on video displays.  There is 

general reason to suppose that birds can process visual information presented in this manner, even in a mate-

choice context (Lea & Dittrich, 2000; Ophir & Galef, 2003; Patterson-Kane, Nicol, Foster, & Temple, 1997).  

If the stimuli consist of recorded male dances, however, then experimenters would have to simply wait until 

males produced the relevant patterns and replay those dances over and over again to habituate the females.  It 

would also be difficult to control for the non-grammatical features of the stimuli such as length and speed of 

movement performances, since there is so much variation in natural dances and females are able to make 

such fine discriminations along these variables.  This raises the question of artificial stimuli.  It might be 

possible to create artificial dances with the desired qualities by stitching together frames from real dances or 

producing CGI animations of dancing males.  The generation of such artificial dance videos would be more 

challenging than artificial sound stimuli, for which considerable expertise already exists in biology and 

ethology, and it is unknown whether female manakins would reject these videos.  However, a number of 

different labs in animal psychology and ethology have recently recruited individuals with expertise in video 

editing and computer animation to generate animations that have been successfully deployed in experiments 

on animal cognition, including research on mating preferences with intelligent birds like parrots (Bian, 

Chandler, Laird, Pinilla, & Peters, 2017; Moravec, Striedter, & Burley, 2010; Scherer, Godin, & Schuett, 2017; 

Woo & Rieucau, 2011).  Thus, while it would be difficult to exactly replicate the structure of experiments 
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performed on artificial grammar in birdsong, animations could provide one of the most powerful methods to 

test hypotheses about grammar in dance. 

5.3  Neural Comparisons 

Because it would be difficult to exactly replicate the designs of experiments on grammatical structure in 

birdsong, some of the strongest support for the dance protolanguage hypothesis might come from study of 

birds’ brains.  Specifically, we should compare neuroanatomical metrics of various brain areas (whether size 

or number of neurons--Olkowicz et al., 2016) between manakins exhibiting more grammatically complex 

dances and those with less grammatically complex dances.  The dance grammar hypothesis would hold that 

we should expect to find higher scores on neuroanatomical metrics in areas correlated with cognitive 

flexibility and grammatical understanding in birds with more grammatically complex dances, and higher 

scores on neuroanatomical metrics for cerebellar and motor areas in birds with less grammatically complex 

dances.  Such candidate areas associated with cognitive and grammatical flexibility include Area X of the LPO 

and the NCL (Güntürkün, 2005; Watanabe, 2006).  

6.  Conclusion 

We have here made the case that the elaborate mating dances of manakins and other lekking birds may be—

like birdsong—an important comparison case in the study of the evolution of language.  These dances appear 

to demonstrate many of the same selection pressures favoring increased grammatical complexity as birdsong, 

and exhibit as much prima facie anthropological relevance.  Though current findings are suggestive, we do 

not yet see anything to challenge the dominant view that PSG-level complexity is uniquely human, probably 

supported by a kind of push-down stack architecture in Broca’s Area (Fitch, 2014).   However, particular tests 

for this kind of computational structure in animals—such as tests for AnBn center-embedding design in 

auditory stimuli—have been overemphasized, and other relevant sources of sexually-selected complexity like 

dance have been neglected.  The more interesting comparative questions now concern the precursors for the 

evolution of such a computational structure, the selection pressures that favor them, and the specific kinds of 

grammatical structure that might emerge as a result (even if they fall short of center-embedding).  In this 
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essay, we hope to have brought together the considerations and concerns that would support fruitful 

investigation of these questions in a promising, non-vocal domain. 
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