
Leibniz Equivalence, Newton Equivalence,
and Substantivalism

Oliver Davis Johns⇤

Abstract

Active diffeomorphisms map a differentiable manifold to itself. They
transform manifold points and objects without changing the system of local
coordinates used to represent those objects. What has been called Leib-

niz Equivalence is the assertion that, although active diffeomorphisms do
change manifold objects, they do not change what is called the "physical
situation" being modeled by those objects. This paper introduces the con-
trasting idea of Newton Equivalence, which asserts that the different values
of manifold objects produced by active diffeomorphisms do model different
physical situations. But due to the assumption of general covariance, these
different physical situations are all equally possible. They represent phys-
ically different situations all of which could happen. This paper compares
these two interpretations of active diffeomorphisms, and comments on their
importance in the substantivalism debate.
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1 Introduction

As he was working toward the field equation of general relativity, Einstein de-
vised a thought experiment which convinced him that a generally covariant
field equation could have multiple solutions.1 He imagined a special but plau-
sible case in which the energy-momentum tensor source term would vanish in
a region he called a hole. A transformation that was an identity everywhere
except the hole would then modify the solution in the hole region without any
change to the sources. Stachel noted that Einstein had at first referred to this
transformation as what translates as a coordinate transformation, and later, per-
haps in response to criticism, as a point transformation.

2 Stachel suggested that
the former term referred to diffeomorphic changes of local coordinates, and
the latter term referred to what he called active diffeomorphisms, those that
transform manifold points without changing the local coordinate system.3

In spite of Einstein’s hole argument, the final form of his field equation is
generally covariant. Einstein resolved this dilemma by asserting that the multi-
ple solutions must all represent the same physical reality.

A decades old but still influential paper by Earman and Norton4 suggested
that Einstein’s hole argument should be generalized. The Earman-Norton gen-
eralization makes no use of the detail of Einstein’s special energy-momentum
tensor source. Instead, it elevates Einstein’s resolution of his dilemma, his as-
sertion that multiple solutions represent the same physical reality, to a general
principle referred to as Leibniz Equivalence: "Diffeomorphic models represent
the same physical situation."5 It is clear from context that the term "diffeomor-
phic models" here refers to models related to each other by Stachel’s active
diffeomorphisms.

Whereas Einstein did not address the case of differential equations other
than his own field equation, the Earman-Norton paper asserts that the princi-
ple of Leibniz Equivalence also applies to "...Newtonian spacetime theories with
all, one, or none of gravitation and electrodynamics; and special and general
relativity, with and without electrodynamics."6 Einstein’s resolution of his hole
argument dilemma is thus generalized into an assertion about the effect of ac-
tive diffeomorphisms in essentially all differential geometric physical models.

The task of the present paper is to suggest that Leibniz Equivalence is not the
only possible interpretation of active diffeomorphisms. We suggest an alternate

1See Chapter 5 of Torretti (1996) and Chapter 5 of Stachel (2002).
2Torretti (1996), Section 5.6, page 164; Stachel (1986).
3Using Einstein’s form of his thought experiment, Johns (2019) outlines a mathematical proof

that active diffeomorphisms can produce multiple solutions of the field equation of general relativity
with the same energy-momentum source. However, it is also suggested that some of these solutions
can be rejected as spurious, leading in some cases to a unique result.

4Earman and Norton (1987). Examples of its influence include recent papers by Muller (1995)
completing, and by Schulman (2016) and Weatherall (2018) refuting, the "hole argument." These
papers refer to the Earman and Norton (1987) generalization rather than to Einstein’s version of it.
See also the current encyclopedia article, Norton (2015).

5Earman and Norton, op. cit., page 522.
6Earman and Norton, op. cit., page 516.
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interpretation called Newton Equivalence that is more in keeping with current
practice in theoretical physics. In this interpretation, the changes of manifold
objects produced by an active diffeomorphism do change the physical situation.
But, due to general covariance, the new physical situation produced by an active
diffeomorphism, while different, is equally possible.

Since the dispute here is between two alternate interpretations of active dif-
feomorphisms, it is essential to state clearly what the term means. To establish
notation and avoid misunderstandings, Sections 2 and 3 review the underly-
ing differential geometric definitions. Section 4 then summarizes the points of
agreement between the Leibniz and Newton interpretations, the basic facts that
are to be differently interpreted.

Section 5 provides two illustrative examples of the use of active diffeomor-
phisms in physics. Sections 6 and 7 use those examples to argue for and against
the Newton and Leibniz interpretations.

Section 8 discusses Earman and Norton’s argument that substantivalism fails
because it requires denial of Leibniz Equivalence. It is shown that Newton
Equivalence, which does deny Leibniz Equivalence, escapes the unfortunate
consequences proposed by these authors. This section also shows that the at-
tempt to derive indeterminism from the denial of Leibniz Equivalence fails to
generalize the Einstein hole argument.

Section 9 summarizes the paper’s conclusion that Newton Equivalence is a
straightforward and correct interpretation of active diffeomorphisms, and is
consistent with current practices in theoretical and experimental physics. Also,
while choice of the Leibniz interpretation binds one to a rejection of substan-
tivalism, choice of the Newton interpretation frees one from that binding and
allows one to remain agnostic on this important issue.7

2 Passive Diffeomorphisms

Modern differential geometry makes a distinction between manifold objects and
the coordinate objects that represent them in various systems of local coordi-
nates.8 Thus, given a differentiable manifoldM of dimension m, a point x 2M
is a manifold object represented in different systems of local coordinates (here
denoted as unprimed or primed local coordinates) by

x = (x1, . . . , xm) =  (x)

x0 = (x01, . . . , x0m) =  0(x) (2.1)

where  and  0 are different homeomorphic mappings from M to Rm. The
definition of a smooth differentiable manifold is that both the relation eqn (2.2)

7With the current situation in theoretical physics (for example, the unknown nature of dark
energy, the lack of a satisfactory quantum theory of gravity), it seems important not to restrict the
models that theorists may try.

8To make this important distinction clear, throughout this paper manifold points and objects will
be written in bold roman type, while coordinate objects will use non-bold italic.
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between any two systems of local coordinates,

x0 =  0 �  �1(x) (2.2)

and its inverse, must be continuously differentiable to arbitrary order.9
Functions f :M ! R mapping manifold points x to real numbers are mani-

fold objects that have local coordinate representations f = f� �1 and f 0 = f� 0�1

related by
f (x) = f(x) = f 0(x0) (2.3)

Smooth functions are defined as those for which f (x) in some arbitrary system
of local coordinates (and therefore in all such systems) is continuously differen-
tiable to arbitrary order.

Tangent vector fields V(x) are manifold objects that map smooth functions to
real numbers. These manifold objects are represented in unprimed and primed
local coordinates, respectively, by

V(x) =
mX

i=1

Vi(x) @/@xi and V 0(x0) =
mX

i=1

V 0i(x0) @/@x0i (2.4)

The functions Vi(x) and V 0i(x0) are called the components of V(x) in the two
systems. The relation between manifold and coordinate objects is defined as

mX

i=1

Vi(x)
@ f (x)
@xi = V(x) f (x) = V(x) f(x)

= V 0(x0) f 0(x0) =
mX

i=1

V 0i(x0)
@ f 0(x0)
@x0i

(2.5)

Note that, by nearly universal custom, the operation of tangent vectors on func-
tions is written in operator form with no parentheses around the function. The
components of a vector field in the unprimed and primed systems are related by

V 0i(x0) =
mX

j=1

@x0i

@x j V j(x) (2.6)

Second rank covariant tensor fields are manifold objects g(x) that bilinearly
map an ordered pair of tangent vector fields U(x) and V(x) to real numbers,
denoted g(x)

�
U(x),V(x)

 
. These manifold objects also have local coordinate rep-

9The transformation from x to x0 is a diffeomorphic change of local coordinates. We will refer
to this transformation as a passive diffeomorphism, since it does not change the manifold object x.
The term gauge transformation is also sometimes used in the literature. This paper takes "passive
diffeomorphism," "gauge transformation," and "diffeomorphic change of local coordinates" to refer
to the same transformation, eqn (2.2).
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resentations

mX

i=1

mX

j=1

gi j(x)Ui(x)V j(x) = g(x)
�
U(x),V(x)

 

=

mX

i=1

mX

j=1

g0i j(x0)U0i(x0)V 0 j(x0) (2.7)

The components of g(x) in unprimed and primed systems are related by

g0i j(x0) =
mX

k=1

mX

l=1

gkl(x)
@xk

@x0i
@xl

@x0 j (2.8)

Riemannian manifolds (M, g) use such a second rank covariant tensor field
to define a metric.10 The invariant inner product of two vector fields is a mani-
fold object defined as

D
U(x),V(x)

E
= g(x)

�
U(x),V(x)

 
(2.9)

Other forms and tensors are defined similarly. The important point is that
passive diffeomorphisms do not change manifold objects, but only change the
local coordinates and components used to represent them. For this reason, dif-
ferential geometric models in theoretical physics universally assign reality only
to manifold objects. Since they do not change these manifold objects, passive
diffeomorphisms therefore do not change the physical reality being modeled. A
magnetic field is not identified with its components Bi(x) or B0i(x0). It is mod-
eled by a manifold object B(x) that does not change when the local coordinate
system is changed.

3 Active Diffeomorphisms

Active diffeomorphisms are the opposite of passive diffeomorphisms. Passive
diffeomorphisms change the system of local coordinates, but do not change
the manifold objects. Active diffeomorphisms change the manifold objects but
do not change the system of local coordinates being used to represent those
manifold objects.

Active diffeomorphisms are a special case of a more general differential ge-
ometric construction, the differentiable mapping � :M ! N from manifoldM
to manifold N . In general, the two manifolds may have different dimensions,
and the mapping need not have an inverse.

An active diffeomorphism is defined to be a differentiable, invertible map-
ping from M to itself rather than to some other manifold N , with the target

10The term Riemannian manifold is assumed to include semi-Riemannian manifolds.
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manifold therefore having the same dimension and the same system of local
coordinates.11

The mapping is � : M ! M with manifold points x and x̃ before and after
the mapping related by x̃ = �(x). In terms of local coordinates x̃ =  (x̃) and
x =  (x), the active diffeomorphism is12

x̃ =  � � �  �1(x) (3.1)

The mapping is defined to be diffeomorphic; both eqn (3.1) and its inverse are
continuously differentiable to arbitrary order.

Note that the transformed local coordinate values x̃ =
⇣
x̃1, . . . , x̃m

⌘
=  (x̃)

differ from the original local coordinate values x = (x1, . . . , xm) =  (x). This is not
because of a change of the local coordinate system but because the represented
manifold object x has been transformed to a new manifold object x̃ = �(x).
The unchanged local coordinate system is defined by the same homeomorphic
mapping  before and after an active diffeomorphism.

If manifold object f(x) is a smooth function defined on M, then there is an
actively transformed smooth manifold object f̃ = f � ��1 with

f̃(x̃) = f(x) (3.2)

called the push-forward of f by � and denoted f̃ = �⇤f. The original function f
is also called the pull-back of f̃ by �, and is denoted f = �⇤ f̃. In terms of local
coordinates, the relation between these functions is given by f̃ (x̃) = f (x).

Tangent vectors can also be pushed forward or pulled back.13 The push-
forward Ṽ = �⇤V, or equivalently the pull-back V = �⇤Ṽ, is defined by

Ṽ(x̃) f̃(x̃) = V(x) f(x) (3.3)

In terms of local coordinates, Ṽ(x̃) f̃ (x̃) = V(x) f (x). The component transforma-
tion, here written as a push-forward, is

Ṽ i(x̃) =
mX

j=1

@x̃i

@x j V j(x) (3.4)

In Riemannian manifolds the metric tensor also can be equivalently pushed
forward g̃ = �⇤g or pulled back g = �⇤g̃. The definition is

g̃(x̃)
�
Ṽ(x̃), W̃(x̃)

 
= g(x)

�
V(x),W(x)

 
(3.5)

11This paper uses the term active diffeomorphism, from Stachel (1986). Einstein evidently called
them what translates as point transformations. Differential geometric texts not aimed specifically at
the general relativity community do not even discuss active diffeomorphisms, limiting themselves
to the general case with � : M ! N transforming between different manifolds. Several texts for
general relativists refer to active diffeomorphisms as simply diffeomorphisms with no modifier. We
will always precede the word diffeomorphism with a modifier, passive or active, to avoid confusion
as to which one is intended.

12Objects after transformation by an active diffeomorphism will be denoted by a tilde over them,
for example x̃ and x̃.

13Unlike the general case where the mapping � possibly had no inverse and hence some relations
were ill defined, active diffeomorphisms have inverses and hence both pull-back and push-forward
are always well defined.
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for any general pair of tangent vectors. The component relation, here expressed
as a push-forward, is

g̃i j(x̃) =
mX

k=1

mX

l=1

gkl(x)
@xk

@x̃i

@xl

@x̃ j (3.6)

In pre-general-relativistic differential geometry, a Riemannian metric is a
fixed part of the definition of a Riemannian manifold, denoted (M, g). But
the metric �⇤g pushed forward by an active diffeomorphism could possibly be
different from that fixed metric of the manifold. Thus, in pre-general-relativistic
physics, in order to preserve general covariance it is necessary to restrict active
diffeomorphisms to those that do not change the Riemannian metric,14 those
with �⇤g = g. Such active diffeomorphisms are called isometric.

15 In general
relativity, however, the metric is unknown until the Einstein field equation is
solved. So there is no need to restrict active diffeomorphisms in this way. In
general relativity, the active diffeomorphism is of the form � : (M, g)! (M, �⇤g)
with no isometric restriction on �.

3.1 Generation of Active Diffeomorphisms

Some of the machinery of Lie Group theory can be borrowed to generate active
diffeomorphisms from given tangent vector fields. A useful class of active dif-
feomorphisms can be constructed by considering the mapping �⌧ along a given
tangent vector field V(x).16

Given a chosen starting point x 2 M, let a smooth mapping (0, ⌧1) ! M
define a curve x(⌧) starting from x(0) = x. In terms of local coordinates, this is
x(⌧) =  (x(⌧)). Differentiating this curve with respect to ⌧ gives what is some-
times called a "velocity" tangent vector, whose components are ẋi(⌧) = dxi(⌧)/d⌧.
Given a general tangent vector field V(x), a curve whose velocity matches that
tangent vector for every ⌧ 2 (0, ⌧1) is defined by the set of differential equations

ẋi(⌧) = Vi(x(⌧)) where i = 1, . . . ,m (3.7)

whose solution x(⌧) can be described as an integral curve or "field line" of V(x)
passing through x(0) = x. The corresponding field line in the manifold is then
x(⌧) =  �1(x(⌧)).

Since the tangent vector field is assumed to be defined at all points of M,
we can consider the family of all such field-line curves beginning at every point
x 2M. Consider an active diffeomorphic mapping �⌧ :M !M which simulta-

neously carries each x in M into an x(⌧) along the particular field line starting
14See Lee (1997), page 24. For example, in three-dimensional models with a fixed Euclidean

metric, the only permissible active diffeomorphisms are rigid translations and rotations. A four-
dimensional model with a fixed Minkowski metric permits only rigid translations, rotations, and
boosts.

15In terms of local coordinates and components, an isometric active diffeomorphism has g̃i j(x̃) =
gi j(x̃).

16Section 39 of Arnold (1978), pages 68-70 and Chapter 9 of Lee (2013), and pages 27-32 and
250-251 of O’Neill (1983).
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at that x. When ⌧ = 0, this mapping is the identity mapping �0 = I. When ⌧ > 0,
mapping �⌧ will move each point x of M along the appropriate field line to a
new point x̃ = x(⌧) = �⌧(x). Expressing the same mapping in local coordinates,
each point x =  (x) is moved by active diffeomorphism ✓⌧ =  � �⌧ �  �1 into a
new point x̃ = x(⌧) = ✓⌧(x).

If V(x) is a so-called Killing Vector Field,17 then by definition the active
diffeomorphism �⌧ is isometric. Generation of more general active diffeomor-
phisms with g̃ = �⇤g , g requires that V(x) not be a Killing Vector Field.

3.2 Associated Passive Diffeomorphisms

An active diffeomorphism transforms manifold point x with local coordinate val-
ues x =  (x) to a new manifold point x̃ = �(x) with new local coordinate values
x̃ =  (x̃). For each active diffeomorphism there is an associated passive diffeo-
morphism. If the active diffeomorphism is applied first, and then the associated
passive diffeomorphism is applied, the end result is that the local coordinates
are returned to their original numerical values. The associated passive diffeo-
morphism does not change the manifold point x̃, but undoes the change of
local coordinate values produced by the active diffeomorphism. It follows from
eqn (2.2) and eqn (3.1) that the required associated passive diffeomorphism is
x̃00 =  00 �  �1(x̃) where  00 =  � ��1. When it is used as described above, the
final result is x̃00 = x.

It may seem that after this sequence nothing has changed. The local coordi-
nates are back to their original values. Examination of the transformation rules
for functions, tangent vectors, and general tensors shows that after the above
sequence, the final components of these coordinate objects are also returned to
their original numerical values. However, the correct reading is not that nothing

has changed but that everything has changed, both the manifold objects and the
system of local coordinates used to represent them. Due to general covariance,
everything has changed in a consistent manner.

4 Uncontested Points

Newton equivalence and Leibniz equivalence are two different interpretations
of active diffeomorphisms and their use in physics. But the two interpretations
agree on the following points.

1. Coordinate objects change when the local coordinate system is changed by
a passive diffeomorphism (a diffeomorphic change of local coordinates);
manifold objects do not. Therefore, differential geometric models in the-
oretical physics universally assign reality only to manifold objects.

2. Passive diffeomorphisms do not change manifold objects. Therefore pas-
sive diffeomorphisms do not change the physical reality being modeled.

17Lee (2013), page 345.
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3. Active diffeomorphisms change manifold objects. Whether this change is
a true change of the physical situation being modeled is a point of con-
tention between the two interpretations. But both agree that the manifold
objects are modified by active diffeomorphisms.

4. Let a generally covariant model of an experiment consist of the set of man-
ifold objects A = (a1, . . . , an) and the outcome of the experiment consist of
the set of manifold objects B = (b1, . . . ,bk). If an active diffeomorphism
is performed on the model, the result will be a model consisting of trans-
formed manifold objects Ã = (ã1, . . . , ãn) with the transformed outcome
manifold objects B̃ = (b̃1, . . . , b̃k). If A produces B, then Ã produces B̃.
Colloquially speaking, due to general covariance nothing is "broken" by
the active diffeomorphism and the model will still "work" as before the
active diffeomorphism was done.

5. As described in Section 3.2, any active diffeomorphism can be followed by
an associated passive diffeomorphism that returns the local coordinates
and components to their original numerical values.

5 Two Examples of Active Diffeomorphisms

Discussion of abstract issues like the role of active diffeomorphisms in differ-
ential geometry is often aided by concrete examples of what the abstractions
actually produce. Sections 6 and 7 will make reference to the following two ex-
amples showing the effect of active diffeomorphisms on simple physical models.

5.1 Example 1

2

B

x

x

1

~

x

x

1

2

B

2

x

x

1

2

~B

x" 1x"

Figure 5.1: a, b, and c.

Figure 5.1a shows a model of an experiment containing a uniform magnetic
field B(x) in a three-dimensional Euclidean space,18 viewed from a system of
local coordinates in which the magnetic field has the components (B1, 0, 0). The

18Or, equivalently, Examples 1 and 2, and the example in Section 7.5, show time slices of limited,
approximately Minkowskian, regions of spacetime. See Section 10.3 of Rindler (2006).
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field lines are shown as dashed lines, and a typical field value is shown as an
arrow. An active diffeomorphism is generated using the methods of Section 3.1
using a tangent vector field V(x) with components (0,�x2, x1, 0). This vector
field generates an orthogonal rotation by angle ⌧. This active diffeomorphism
is assumed to be the identity everywhere except in the apparatus. Applying this
active diffeomorphism with ⌧ = ⇡/4 produces Figure 5.1b. The local coordinate
system (possibly defined by the edges of the table) is unchanged, but the field
lines are now at a 45� angle. A typical actively transformed field value B̃ is
shown. Figure 5.1c is the same as Figure 5.1b, except that the associated pas-
sive diffeomorphism has now been added, giving the local coordinate axis lines
shown as x001 and x002. The actively transformed field lines are in the direction
of the x001 axis, as described in Section 3.2, and B̃00i = Bi for i = 1, 2, 3.

5.2 Example 2

f

f

x

x
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B
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2

f

x

x1

2

A

Bf
~

~
f

f

x

~

1

2

x

A

B

~

Figure 5.2: a, b, and c.

Figure 5.2a shows a model in which a mass distribution, as viewed initially
on a hyperplane at time tA, has a circular cylindrical boundary fA. It later, as
viewed on a hyperplane at time tB, evolves into a circular cylindrical distri-
bution with larger boundary fB. An active diffeomorphism is generated using
the methods of Section 3.1 using the tangent vector field V(x) with components�
0, 0,

�
x1�3, 0

�
. Applying this active diffeomorphism with ⌧ = 1 to the model gives

Figure 5.2b in which the mass boundaries are distorted. But, as noted in point
4 of Section 4, due to general covariance the actively transformed initial bound-
ary f̃A will still evolve into the actively transformed final boundary f̃B. Note
that the distortion in Figure 5.2b is due to distortion of the manifold object it-
self; the local coordinate system is unchanged. Figure 5.2c shows the grid lines
of the associated reference system x00. In this distorted reference system, the
actively transformed mass distributions would have the same local coordinate
description as the original distributions had in Figure 5.2a.
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6 Newton Equivalence

Newton Equivalence holds that active diffeomorphisms that change manifold
objects necessarily change the physical reality being modeled by those objects.
However, due to general covariance, the different physical situations reached
by active diffeomorphisms are all equally possible. They model different but
equally possible physical situations.

Thus, in Example 1 above, Figure 5.1b with its rotated B̃ field models a
physically modified experiment. This accords with the usual practice in experi-
mental physics. If an experimenter finds that, with no change in the system of
local coordinates, the magnetic field is now pointing in a different direction, his
immediate conclusion is that something physical has changed. That the experi-
ment still behaves correctly is taken as evidence for invariance under rotations.
The fact that a rotation of reference system to match the changed magnetic
field, as in Figure 5.1c, would return the local coordinates of that field to their
original values would be taken as further evidence of rotational symmetry, and
would not change the conclusion about Figure 5.1b.

In Example 2 above, an astrophysicist observes the mass distribution in Fig-
ure 5.2a to evolve into a larger one of the same circular shape. Her generally
covariant model of this phenomenon can be transformed by an active diffeomor-
phism into a model that predicts the evolution of a distorted mass distribution
into a distorted larger one, as in Figure 5.2b. However, in the model or in actual
observation of the phenomena, the astrophysicist would never consider the two
figures to represent the same physical reality. Figure 5.2b represents a different
physical situation, but one that could happen given the validity of the generally
covariant model.

6.1 Symmetry and Identity

An argument for Newton Equivalence is its agreement with the treatment of
symmetry in physics. Active diffeomorphisms are a kind of symmetry operation
allowed by generally covariant physical models.19 The actively transformed
version of a successful model is another successful model, something that could
also happen. But the transformed model is not identical to the original one; it
models a different experiment that is also possible, related to the original one
by the symmetry but not identical to it.

In theoretical and experimental physics, great care is taken to distinguish
symmetry from identity. This distinction is particularly emphasized in discussion
of discrete symmetries like parity and time reversal. Parity symmetry means that
the parity transformed experiment is one that is also possible, i.e., is not prohib-
ited by the laws of physics. But it does not mean that original and transformed
experiments are identical, are physically the same. They are different. Parity

19A generally covariant model is one constructed using only manifold objects. Also, equalities
are only between manifold objects of the same tensorial character: scalar equals scalar, vector
equals vector, second rank covariant tensor equals second rank covariant tensor, etc. Thus an active
diffeomorphism transforms a generally covariant model into another generally covariant model.
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symmetry only means that the parity transformed experiment is one that can
happen without violating the laws of nature.20

The distinction between symmetry and identity is even more pointed in time
reversal invariance. Consider an experiment in which a particle fissions into
two daughter particles. Time reversal symmetry means that the inverse process,
two particles coalescing into one, is something that could possibly happen. The
laws of physics do not prohibit it. But it does not mean that this inverse process
is physically the same as the original one. It is different, and the experiment to
demonstrate the time reversed process could be very difficult to perform.

Newton Equivalence echos this strong distinction between symmetry and
identity found in theoretical physics. In a generally covariant model, an active
diffeomorphism is a symmetry operation that changes the physical situation
being modeled. The transformed model is then equally possible, something not
prohibited by the generally diffeomorphic laws of nature.

6.2 Observer and Apparatus

Another argument for Newton Equivalence is its agreement with the general
usage of coordinate objects and manifold objects in theoretical physics. The ap-
plication of differential geometry to physics is based on a distinction between
observer and apparatus. Local coordinates are the numbers resulting from the
observation of an apparatus. The possibility of observation of an experiment
from a viewpoint outside that experiment is fundamental to this distinction.
Since they modify manifold objects, active diffeomorphisms do change the val-

ues of the data collected from an experiment, but they do not transform the
system used by the observer to extract that data.

For example, let the magnetic field in Figure 5.1 be from an electromagnet
sitting on a laboratory table, with a system of local coordinates fixed to the
table. If that electromagnet apparatus is rotated by 45 degrees relative to the
laboratory table, the result is a physical change, as in Figure 5.1b. The system of
local coordinates is still fixed to the table, but the values of the local coordinates
have changed, due to the physical rotation of the apparatus.

In the Newton Equivalence interpretation, the apparatus is modeled by co-
ordinate independent manifold objects and the observation is modeled by local
coordinates. Seeing the local components of the magnetic field change from B
to B̃ with no change in the system of local coordinates, the observer correctly
concludes that a physical change has taken place. This use of active and passive
diffeomorphisms in differential geometry echos the usual practice in physics.

6.3 Agnosticism

The name Newton Equivalence was chosen to suggest a tenable interpretation of
active diffeomorphisms that is also consistent with current practice in physics. It

20For example, Section 15.11 of Bjorken and Drell (1965) says of the active parity transformation,
"If we invert the measuring apparatus, that is, consider a new physical system ... the dynamics of
the new system is the same as that of the original one, provided parity is conserved."
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is not intended to imply that an adherent of this interpretation must necessarily
take Newton’s side in the Newton-Leibniz debates of the early eighteenth cen-
tury.21 As discussed in Section 8 below, use of the Newton Equivalence interpre-
tation allows a researcher to remain agnostic about the substantivalist-relativist
debate.

7 Leibniz Equivalence

Leibniz Equivalence states that, "Diffeomorphic models represent the same phys-
ical situation."22 While an active diffeomorphism does change the manifold ob-
jects of a model, it is asserted not to change the "physical situation" being mod-
eled by those manifold objects. Thus the physical situation is not identified
with a particular set of manifold object values, but with an equivalence class of
manifold object values, a given set of values together with all the others reached
from it by application of any active diffeomorphism. Figure 5.1a and Figure 5.1b
thus are asserted to show the same physical situation. They are not models of a
different physical reality; rather they are just parts of the same physical reality.

Some support for Leibniz Equivalence comes from its resonance with Leib-
niz’ objections to Newton’s absolute space. If we imagine the experiment in
Figure 5.1 to be mounted in a closed room sitting on a turntable, then if some-
one rotates the turntable in the night while the experimenter sleeps, we would
go directly from Figure 5.1a to Figure 5.1c and the experimenter would not dis-
cern any changes to his experiment. In this case, the interior of the room is like
the experimenter’s Leibnizian universe and the rest of the Earth is like Newton’s
absolute space. But the analogy is flawed; there are discernible changes in the
physical situation. For example, the workers who rotated the laboratory in the
night would have observed the change, and would have carefully measured it
to be 45�. Also, Figure 5.1b would still require additional justification, since in
it only the apparatus is rotated, and the unchanged laboratory reference system
detects this change.

Leibniz Equivalence also holds Figure 5.2a and Figure 5.2b to show the same
physical situation. Here the difference is not one of a Leibnizian rigid transla-
tion of a whole universe. It is a distortion, of a sort that neither Newton nor
Leibniz would be likely to have imagined. The Leibniz interpretation ignores
the large variety of available active diffeomorphisms; active diffeomorphisms
can be much more general than the simple displacements argued by Leibniz.

7.1 Symmetry and Identity

Leibniz Equivalence erases the difference between symmetry and identity, the
concepts that theoretical physics seeks to keep distinct. The name of the Leibniz
Equivalence principle uses the word "equivalence" but the principle itself asserts

21See The Leibniz-Clarke Correspondence, Alexander (1956).
22Earman and Norton, op. cit., page 522. As noted in Section 1, their term "diffeomorphic models"

is to be interpreted as models related by active diffeomorphisms.
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identity, the "same" physical situation. As noted in Section 6.1 above, general co-
variance in differential geometry is a kind of symmetry principle; given general
covariance, applying an active diffeomorphism to a successful model produces
another model that is equally successful. In theoretical physics, such symmetry
transformations are carefully distinguished from identity. Leibniz Equivalence
removes this distinction; active diffeomorphisms merely move the model from
one to another member of an equivalence class, with both members represent-
ing the identical reality.

Thus, referring to Section 6.1 above, Leibniz Equivalence would say that an
electromagnet sitting on a laboratory table, and the same electromagnet after
the active diffeomorphism symmetry operation of rotation by 45 degrees rela-
tive to the table, both represent the identical physical situation. This interpreta-
tion diverges from the standard meanings of symmetry and physical situation in
physics.

7.2 Passive and Active

Leibniz Equivalence blurs the difference between passive and active diffeomor-
phisms. As noted in items 1 and 2 of Section 5, it is generally accepted that
passive diffeomorphisms do not change the physical reality being modeled. This
is because they do not change manifold objects, which are used exclusively
to model real quantities. Leibniz Equivalence extends this behaviour to active

diffeomorphisms, even though active diffeomorphisms do change manifold ob-
jects. It says that different manifold objects produced by active diffeomorphisms
"represent" the same physical situation. But, unlike coordinate objects which do
merely "represent" an underlying manifold object in some arbitrary local coor-
dinate system, the manifold objects themselves do not "represent" some deeper
reality; the manifold objects are the differential geometric model of that reality.
Changing them changes the reality being modeled.

7.3 Observer and Apparatus

In Section 4 of their paper, Earman and Norton deny the theoretical physicist’s
apparatus-observer distinction discussed in our Section 6.2. They assert: To

complete the dilemma we need only note that spatio-temporal positions by them-

selves are not observable. Observables are a subset of the relations between the

structures defined on the spacetime manifold. Thus we cannot observe that body b

is centered at position x. What we do observe are such things as the coincidence of

body b with the x mark on a ruler, which is itself another physical system. Thus

observables are unchanged under [active] diffeomorphism. Therefore [active] dif-

feomorphic models are observationally indistinguishable.
23

If applied only to a particular case—Leibniz’ rigid translation of the entire
universe relative to Newton’s absolute space—this assertion is a paraphrase of
Leibniz’ argument that the unobservability of a rigid translation of the entire

23Earman and Norton, op. cit., page 522.
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universe renders spatiotemporal position relative to Newton’s absolute space
meaningless. However, the application of the same argument to active diffeo-
morphisms is untrue in general.

Their concluding statement that "...observables are unchanged under [ac-
tive] diffeomorphism. Therefore [active] diffeomorphic models are observa-
tionally indistinguishable"24 is untrue for the general case of localized active
diffeomorphisms.25

Localized active diffeomorphisms can transform one part of
the universe while leaving the rest of it unmodified, and therefore are observ-
able from a viewpoint in the unmodified region.

To illustrate by a simple example, consider an apparatus sitting on a labora-
tory table. A localized active diffeomorphism now spatially translates the entire
apparatus across the table to a new position, but does not transform the table
or the rest of the universe. Newton Equivalence holds that this move across the
table is a real, observable physical change but, due to spatial translation sym-
metry, does not upset the working of the apparatus. If any part of the apparatus
initially had local coordinate xo in an unchanged and fixed system of local coor-
dinates (for example one defined by the table edges), after the move it will now
have a different local coordinate x̃o.

The Earman-Norton statement says that, since this move of the apparatus
across the table is done by an active diffeomorphism, the two positions of the
apparatus must be observationally indistinguishable. But, relative to the un-
transformed table, both the initial position of the apparatus, and its changed
position after the localized active diffeomorphism, are plainly observable and
distinguishable.

This example illustrates a general result. In the general case of localized ac-
tive diffeomorphisms there will always be a fixed reference systems, anchored
in the untransformed region, that will register changes, and thus render an
active diffeomorphism observable. It is untrue in general that "...[active] diffeo-
morphic models are observationally indistinguishable" as asserted in the above
quotation.

Another failure is that the above quotation’s application of Leibnizian rel-
ativity to active diffeomorphisms ignores complex distortions such as that in
Figure 5.2 that cannot be reduced to Leibnizian arguments about translation
with an unchanged relation of internal structures.

In summary, the Earman-Norton assertion quoted at the beginning of this
subsection is an unjustified extrapolation, from Leibnizian relativism in the par-
ticular case of the Newton-Leibniz debates, to all active diffeomorphisms. It
ignores the variety of available active diffeomorphisms, and is untrue for the
general case of localized active diffeomorphisms.

24By "diffeomorphic models," Earman and Norton mean models related by an active diffeomor-
phism.

25The term localized active diffeomorphism will be used here to denote active diffeomorphisms
whose domain is the whole manifold, but which act as the identity transformation outside of a
specified region of spacetime. Einstein’s active diffeomorphisms that are the identity except in a
"hole" are an example.

15



7.4 History

The principal argument for Leibniz Equivalence appears to be historical, that it
generalizes Einstein’s resolution of his hole argument dilemma. Einstein main-
tained that the different metric solutions to his field equation represent the same
physical reality. As expressed by Hawking and Ellis, "... the model for spacetime
is not just one pair (M, g) but a whole equivalence class of all pairs (M0, g0)
which are equivalent to (M, g)."26 Some general relativity texts also echo this
assertion, but, notably, others do not,27 preferring to move directly from the
field equation to its practical applications to cosmology.

It has been suggested by Johns (2019) that there may be a less drastic escape
from Einstein’s dilemma. The local coordinates used to write Einstein’s field
equation do not have any physical meaning until after a metric solution is found
that defines their relation to physical quantities. Therefore, it may be possible
to reject as spurious a metric solution that gives a physical meaning to its local
coordinates that violates a desired symmetry, for example spherical symmetry
for the Schwarzschild solution. In this way, as for any differential equation,
rejection of spurious solutions can lead to a unique solution.

Aside from the question of the necessity of Einstein’s solution to his hole
dilemma is the question of Earman and Norton’s generalization of that solution
to a principle covering virtually all uses of differential geometry in physics. Ein-
stein treated a specific example of a specific theory. Generalization of Einstein’s
solution to the principle of Leibniz Equivalence is by its nature an unprovable
assertion.

7.5 Extrapolation

Earman and Norton assert without further proof that "...[active] diffeomorphism
is the counterpart of Leibniz’ replacement of all bodies in space in such a way
that their relative relations are preserved."28 But active diffeomorphisms are far
more general than the rigid translation of the entire universe used by Leibniz.
As noted in Section 5.2, they can distort the transformed objects rather than
simply moving them, thus upsetting their "relative relations." And, as discussed
in Section 7.3, they can transform parts of the universe while remaining the
identity in other parts, thus permitting reference systems that render the trans-
formation observable. The extrapolation of Leibnizian relativism to all active
diffeomorphisms is unjustified.

These extrapolations will appeal to a researcher approaching the subject of
differential geometry from a Leibnizian perspective. A researcher viewing the
world through a Leibnizian lens may simply take the principle of Leibniz Equiv-
alence as a definition of the technical phrase physical situation, a phrase now
referring to an equivalence class of observationally distinct manifold objects re-
lated to each other by active diffeomorphisms. Then the Leibniz Equivalence

26Hawking and Ellis (1973), page 56.
27For example, Misner et al (1973), Weinberg (1972), and Rindler (2006).
28Earman and Norton, op. cit., page 521.
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principle becomes a tautology. Also such a researcher may want to replace the
physics term unobservable by the technical term operationally indistinguishable

defined by the assertion quoted at the beginning of Section 7.3. As noted in Sec-
tion 7.3, this redefinition would define the observable differences produced by
localized active diffeomorphisms to be observationally indistinguishable. With
these redefinitions, the principle of Leibniz Equivalence, together with the as-
sertion quoted at the beginning of Section 7.3, become true by definition.

But these extrapolations would produce an interpretation of differential ge-
ometry that misunderstands the generality of active diffeomorphisms, and is
significantly at variance with the usages in current theoretical and experimental
physics.

8 Substantivalism

In Section 3 of their paper,29 Earman and Norton state the "acid test" of substan-
tivalism to be the denial of the Leibnizian relativist proposition that the whole
universe displaced "three feet East" is the same universe. The Earman-Norton
arguments against substantivalism rest on their assertion that a substantivalist,
in denying this Leibnizian relativism, must also deny their Leibniz Equivalence
principle. Since Leibniz Equivalence is an extrapolation of Leibnizian relativism,
this assertion is true. But this does not imply the converse, that one who de-
nies Leibniz Equivalence must therefore deny Leibnizian relativism and take
Newton’s side in the Newton-Leibniz debates.30 Instead, Newton Equivalence
denies only Earman and Norton’s extrapolation, from Leibnizian relativism for
the universe, to their principle of Leibniz Equivalence for all active diffeomor-
phisms regardless of scale and type. An adherent to Newton Equivalence may
be, but need not be, a substantivalist.

We now consider the two arguments that Earman-Norton make against sub-
stantivalism. Each of them suggests an undesirable consequence resulting from
the denial of Leibniz Equivalence.

In their Section 4, titled "The Verificationist Dilemma,"31 Earman and Norton
argue that, since a substantivalist must deny Leibniz Equivalence, he or she is
committed to accept that the distinct states produced by active diffeomorphisms
are physically different, which runs counter to their argument, quoted at the
beginning of our Section 7.3, that such differences are observationally indistin-

guishable. Newtonian Equivalence does indeed consider the distinct states, i.e.,

the different values of manifold objects produced by active diffeomorphisms,
to be observably different. But, as discussed in Section 7.3, the Earman-Norton
claim that the differences produced by any active diffeomorphism must be un-
observable is based on a misunderstanding of the generality of available active

29Earman and Norton, op. cit., page 521.
30Leibniz Equivalence (LE) implies Leibnizian relativism (LR). Therefore substantivalism (not LR)

implies (not LE). But the converse, that (LR) implies (LE), is not provable. It is an extrapolation
that Newton Equivalence denies. Therefore (not LE) does not imply substantivalism (not LR).

31Earman and Norton, op. cit., page 522.
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diffeomorphisms, and is untrue in general. Thus Newton Equivalence escapes
the dilemma.

In their Section 5, titled "The Indeterminism Dilemma,"32 Earman and Nor-
ton argue that the substantivalist denial of Leibniz Equivalence commits one to
a "...radical local indeterminism."33 But their argument fails because it misun-
derstands Einstein’s proof of indeterminism.

Einstein’s proof requires a special experiment in which the energy-momentum
tensor source term Tµ⌫(x) in his field equation vanishes in a hole region. Then
an active diffeomorphism is carefully tailored to be the identity except in that

same hole region where Tµ⌫(x) vanishes. This matched active diffeomorphism
then changes the solution without changing the source,34 and can therefore be
used to prove indeterminacy of solution for that particular thought experiment.
The exact match of active diffeomorphism to source hole is essential to the ar-
gument. Without it, the active diffeomorphism also modifies the source term
and Einstein’s proof fails.35 The problem exposed by Einstein’s hole argument
is not multiple solutions per se, but multiple solutions all of which have the same

source; specification of a source does not specify a unique solution produced by
that source.36

But Earman-Norton do not assume a match between a source and what they
call an active "hole diffeomorphism." Thus their unmatched active diffeomor-
phisms change both the solution and the source. This is, of course, just what
one would expect in a well-defined theory. If the source changes, we have a
different experiment, and would therefore expect a different solution. What
Earman-Norton call "radical local indeterminism" is merely the correct action
of a symmetry principle. General active diffeomorphisms produce models of
possible new experiments with new sources and therefore new solutions.

Thus the Earman-Newton treatment of indeterminism does not generalize
Einstein’s version of the hole argument. Without an exact match of their active
"hole diffeomorphisms" to an energy-momentum source, the Earman-Norton
argument fails. With that match, it simply replicates Einstein’s version.

The Newtonian denial of Leibniz Equivalence avoids the unfortunate conse-
quences argued by Earman-Norton. Also, unlike a researcher who adopts Leib-
niz Equivalence and therefore must deny substantivalism and accept Leibnizian
relativism, a researcher adopting Newton Equivalence is not thereby committed
to either side in the substantivalist-relativist debate.

32Earman and Norton, op. cit., page 522.
33Earman and Norton, op. cit., page 524.
34Outside the hole, the active diffeomorphism is the identity and hence does not change the

source there. Inside the hole, the source is identically zero and hence is not transformed, since zero
tensors transform to zero tensors regardless of the active diffeomorphism applied.

35See Section 4 of Johns (2019).
36See, for example, Einstein’s 1913 letter to Ludwig Hopf, quoted on page 163 of Torretti (1996),

in which he says, "It is easily proved that a theory with generally covariant equations cannot exist if
we demand that the field be mathematically completely determined by matter." (Italics mine.)
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9 Conclusion

Leibniz Equivalence and Newton Equivalence are two different interpretations
of the set of agreed upon facts and practices listed in Section 4.

Newton Equivalence interprets active diffeomorphisms in a manner consis-
tent with current theoretical and experimental physics. Active diffeomorphisms
are taken to be symmetry operations that change manifold objects and there-
fore change the physical situation being modeled. But this changed physical
situation is one that is equally possible, that does not violate the generally co-
variant laws of nature. Newton Equivalence also permits a researcher to remain
agnostic about the relativist-substantivalist debate, thus avoiding restriction of
the choices available to a theorist facing current problems in theoretical physics
such as a quantum theory of gravity.

Leibniz Equivalence is based on an unjustified extrapolation of Leibnizian
relativism, applying it to all active diffeomorphisms, including localized active
diffeomorphisms that are non-identity only in limited regions, and those that
may distort the manifold rather than just translate it. This extrapolation requires
redefinition of the terms "physical situation" and "observationally indistinguish-
able," giving them meanings inconsistent with the usual practice in differential
geometry and physics. Also, a researcher adopting Leibniz Equivalence must
deny substantivalism, thus restricting the choices available to theorists.

These considerations would seem to favor Newton Equivalence. It is a
straightforward and unencumbered interpretation of active diffeomorphisms,
one that is consistent with the rules of differential geometry and with current
practice in theoretical and experimental physics.
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