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Abstract. Typically, public discussions of questions of social import exhibit two im-

portant properties: (1) they are influenced by conformity bias, and (2) the influence of

conformity is expressed via social networks. We examine how social learning on net-

works proceeds under the influence of conformity bias. In our model, heterogeneous

agents express public opinions where those expressions are driven by the competing

priorities of accuracy and of conformity to one’s peers. Agents learn, by Bayesian con-

ditionalization, from private evidence from nature, and from the public declarations of

other agents. Our key findings are that networks that produce configurations of social

relationships that sustain a diversity of opinions empower honest communication and

reliable acquisition of true beliefs, and that the networks that do this best turn out

to be those which are both less centralized and less connected.

1. Introduction

Epistemology is the study of true, justified, or reliable beliefs. Social epistemology

is the study of the effect of social structures and interactions on the emergence and

maintenance of such beliefs. Much of the recent work in social epistemology has been

in the application of game-theoretic techniques to modeling communities of rational

inquirers—epistemic communities—to see what incentive and interaction structures are

conducive to the outcomes of accuracy,1 efficiency,2 and equity.3

One of the most important domains of social inquiry is that of broad public discourse.

Which social policy will lead to better outcomes? Which political candidate is more

qualified for office? Typically, public discussion on such questions of import is influenced

by the human tendency of conformity. Individual decisions are informed and influenced

by peers; the presence of conformist bias in social discourse is well-studied, and well-

supported.4

We present a model of social inquiry where it exhibits two properties endemic to

matters of public discussion: (1) individuals are subject to varying degrees to conformity

bias, and (2) the influence of the pressure to conformity is expressed via social networks.

We examine how the structure of social ties in tandem with conformity bias can influence

the flow and reliability of information in matters of public opinion.

Date: August 20, 2019.
1 See Zollman (2007, 2009, 2013), Mayo-Wilson et al. (2013), and Rosenstock et al. (2017).
2 See Heesen (2017), Kitcher (1990, 1993), and Strevens (2003, 2013).
3 See O’Connor, Bright, and Bruner (O’Connor et al.), and Bruner and O’Connor (2016)
4 See Asch (1955), Bond and Smith (1996), and Morganand and Laland (2012).
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In our model, heterogeneous agents express public opinions where those expressions

are driven by the competing priorities of accuracy and of conformity. Agents learn, by

Bayesian conditionalization, from private evidence from nature, and from the public

declarations of other agents.

Several key findings emerge. We see that the most influential public declarations

are made by agents when they go against the consensus of their neighbors, but that

the most informative declarations, on average, are made by agents when their social

influences are balanced. This provides a unifying explanation for our results: networks

that produce configurations of social relationships that sustain a diversity of opinions

empower honest communication and hence reliable acquisition of the truth.

In related literature on network epistemology (Zollman 2007, 2013), less connected

networks are shown, under the right conditions, to increase the reliability of inquiry. In

those cases, greater connectivity can cause premature “lock-in” to consensus in epistemic

communities dealing with an exploration-exploitation trade-off. We arrive at a similar

moral by different means.

We show that networks are differentially conducive to informative communication

depending on the degree to which a community is divided in its publicly stated opin-

ions. When communities are most divided, more connected networks, such as complete

networks, do best. Whereas, when communities are near consensus, less connected

networks exhibiting low degree-centrality, such as circle networks, are optimal.

Across the networks literature, star networks have been shown to possess certain

optimality properties: they emerge as the product of various processes of strategic

network formation (Goeree et al. 2009; Barrett et al. 2017), can lead to efficient division

of cognitive labor (Goyal 2007; Zollman 2013), and can provide optimal conditions for

information dissemination (Goeree et al. 2009). In contrast, we find that, in the presence

of a modicum of conformity bias, star networks produce to the worst possible conditions

for social learning.

In §2, we explain our model. In §3, we present the long run success of learning in

the presence of conformist bias. In §4, we present simulations illustrating our central

results. In §5, we provide an analysis of the deeper patterns that unify and explain our

results. In §6, we conclude.

2. The Model: Caesar or Pompeia?

To animate our model, let us consider an anachronistic allegorical vignette. A commu-

nity of Roman citizens has come together to discuss which candidate is better qualified

for office. The candidates are Caesar and Pompeia. In discussing their beliefs, the citi-

zens are influenced, to varying degrees, by two competing motivations: the motivation

to say, honestly, who they believe is the better qualified candidate, and the motivation
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to agree with their neighbors, or, more particularly, those with whom they share social

or economic ties.

Each citizen varies with respect to the weight she places on each honesty and confor-

mity. On one extreme, we may find Titus the Truth-Teller, who speaks his mind, come

what may. Titus has come to believe—both from what is public knowledge, and from

his own private information and experiences—that it is Pompeia who is more likely to

be a better candidate. And so he declares as much, and he does so without any thought

or worry concerning the impact of his declaration on the social regard of his peers.

On the other extreme, we find Cassius the Conformist, for whom harmony with peers

is his sole concern. Making his true beliefs known does not enter the picture. Whichever

candidate his peers favor, Cassius favors. Now, it happens to be Caesar.

Most of the remaining citizens, however, are not so extreme in their dispositions,

but rather fall somewhere between Titus and Cassius. They care about making their

true beliefs known, to some degree, and also about harmony with their peers, to some

degree. Most make their declarations in a way that is contingent both on the strength

of their beliefs, and on the weight of the social pressures around them.

Imagine that there are two states of the world: θ and ¬θ. We can think of these as

corresponding to where one social policy will lead to better outcomes, or one political

candidate will be better suited to office.

Agents are interested in learning the true state of the world. This proceeds in two

ways: (1) They get private evidence σ ∼ fθ(σ) from Nature; we can think of these as

hearing some piece of news, or reasoning about an argument. And (2), they observe the

public declarations x−i ∈ {θ,¬θ}N−1 of other agents across the network. Declarations

indicate to others the state a declaring agent ostensibly believes to be true.

For each agent i, her payoffs are a convex combination of her truth-seeking orientation

αi and desire for conformity to her neighbors (1 − αi). Her payoff for a declaration

x ∈ {θ,¬θ} then is given by

Ui(x) = αiPi(x) + (1− αi)Ni(x)

where Pi(x) is agent i’s expectation of the truth of x given her current information, and

Ni(x) is the proportion of her neighbors that have also declared x.5

We can think of an agent i as engaged in two games simultaneously which determine

her payoffs in proportion to her type: a Bayesian learning game that contributes αi of her

payoff, where the data are the agent’s private evidence σ and others’ public declarations

x−i, and an ni-player pure coordination game that constitutes the remaining (1 − αi)
of her payoff, where ni is the count of agent i’s neighbors.

5 Note that an agent’s truth-seeking payoff for a declaration is for based on her expectation that it
corresponds to the true state of the world—agents do not know, and do not find out, whether their
assessments are accurate.
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(a) Complete network (b) Circle network

(c) Star network (d) Random network

Figure 1. Social networks with 10 agents.

Our epistemic community of N agents inhabits a society where their patterns of

shared social influence are described by a network. Here, nodes represent agents, and

neighbors are connected by edges. Standard networks include complete, circle, star, and

random networks (see Figure 1).

Networks vary with respect to the patterns of social influence they capture. The

complete network describes a social structure in which each agent has social ties with

every other. The circle describes a social structure in which each agent shares social ties

with exactly two other individuals. Note that complete and circle networks are special

cases of regular networks,6 where the regular network is of degree N − 1 and degree 2,

respectively. In contrast, the star network describes a centralized social structure, where

one individual (a central agent) has far more connections than the rest (the peripheral

agents), who are otherwise socially isolated.

Before the game, agent types (truth-seeking/conformity orientations) are drawn from

a continuous distribution:

α1, . . . , αN
iid∼ G with supp(G) = [0, 1]

And Nature randomly chooses the state of the world to be θ or ¬θ. Each state of the

world induces a distinct distribution from which evidence σ ∼ fθ(σ) may be drawn.

6 Regular networks are those in which all nodes are of the same degree, or number of edges. Here, this
will correspond to all agents having the same number of neighbors.
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Figure 2. Distributions fθ(σ), f¬θ(σ), of evidence σ, for each state of
the world θ and ¬θ.

The distributions fθ(σ) = 2σ and f¬θ(σ) = 2 − 2σ, depicted in Figure 2, are used

in our simulations due to their convenient functional form. More generally, however,

the distributions need only satisfy: mutual absolute continuity and unbounded evidence.

Mutual absolute continuity requires that both distributions agree on what subsets of

possible evidence have positive probability, meaning that no single piece of evidence

can falsify one or the other. And unbounded evidence give us that evidence has the

potential, in principle, to make one arbitrarily (though not completely) confident of

either state. We take this to be a reasonable assumption, as we want to allow that,

for any degree of belief shy of absolute certainty, there can—in principle—exist some

evidence, however unlikely, which is sufficiently compelling to produce that belief.

In each round, an agent is chosen at random to receive private evidence from Nature,

and to make a public declaration to be observed by the network. Upon receiving her

evidence, an agent updates her beliefs, via conditionalization, about the true state of

the world. This is done in the normal way, using Bayes’ rule

P (θ|σ,ht) =
P (σ|θ)P (θ|ht)

P (σ|θ)P (θ|ht) + P (σ|¬θ)P (¬θ|ht)

where P (σ|θ) is the likelihood of her new evidence σ given the state θ, and P (θ|ht) is

her prior on θ given the history of declarations at that time ht. Note that P (θ|ht) is

also the public belief at that time—the shared portion of individual beliefs about the

true state of the world constituted by the history of learning from public declarations.

To simplify exposition, assume the population begins with ignorance priors.7

Next, the agent calculates her utilities, given her truth-seeking orientation, chooses

her best response as a function of her private evidence and public prior (which, together,

7 An ignorance prior is a probability distribution assigning equal probability to all possibilities. Our
proofs will require only non-degenerate priors, and our simulations will employ a range of priors.
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(a) Nθ = 1

2αi(1− Pi(θ)) > 1

(b) Nθ = 1/2

Pi(θ) >
1
2

(c) Nθ = 0

2αiPi(θ) > 1

Figure 3. What is inferred from agent i’s declaration of θ, as captured
by condition (†), about her posterior belief Pi(θ) and truth-seeking ori-
entation αi, when different proportions of her neighbors Ni(θ) = 1, 1/2, 0
are making the same declaration.

form her posterior probability P (θ|σ,ht) over θ), and the composition of her neighbors:8

BRi(σ,Ni(x)) = arg max{Ui(θ), Ui(¬θ)}.

Following this, the other agents in the network observe her declaration, and update their

beliefs. To do so, they must consider the likelihood of her having made her declaration

given the composition of her neighbors, her likely evidence, her possible truth-seeking

orientations, and their own prior beliefs about the state of the world.

So, what precisely do agents learn from one another’s declarations? Well, when agent

i declares x = θ, others know that it was her best response to do so. It follows that

Ui(θ) > Ui(¬θ)

αiPi(θ) + (1− α)Ni(θ) > αi(1− Pi(θ)) + (1− αi)(1−Ni(θ))

αi(2Pi(θ)− 1) + (1− αi)(2Ni(θ)− 1) > 0. (†)

We can get an intuitive grasp of this inequality (†) by considering fixed values of

the proportion of the declaring agent’s neighbors who are also declaring θ (depicted in

Figure 3.). The shaded area captures the values of agent i’s truth-seeking orientation

αi (on the horizontal axis), and posterior belief Pi (on the vertical axis), that are

compatible with her having declared θ. That is, the region in which (†) is satisfied.

Consider the Ni(θ) = 1 case (Figure 3a). This is where all of the focal agent’s

neighbors are also declaring θ. Here, we see that a broad range of beliefs and truth-

seeking orientations are compatible with her having declared θ. What can be ruled out

(the area in white) is that it was not the case that she was both highly truth-seeking

and strongly believed in the truth of θ. Here, others do not learn much from observing

the focal agent’s declaration.

8 In the case of payoff ties, the agent chooses among her best responses at random.
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Figure 4. The content of an agent’s declaration, visualized as a
hyperboloid—corresponding to (†)—of the values of Nθ, αi, and Pi(θ)
for which she could have made her declaration.

Consider the Ni(θ) = 1/2 case (Figure 3b). This is where the focal agent’s neighbors

are evenly split; half declaring θ and half ¬θ. Here, the other agents infer that the focal

agent’s social influences are balanced, and so her truth-seeking orientation αi is no

longer relevant. Her declaration is now determined purely by her posterior belief. If

Pi(θ) > 1/2, then she would make the declaration she did, if not, she would not. Here,

others learn the direction of the focal agent’s belief, but not much about its strength.

Next, consider the Ni(θ) = 0 case (Figure 3c). This is where none of the focal

agent’s neighbors are declaring θ. Here, we see that only a narrow range of beliefs and

truth-seeking orientations are compatible with her declaration of θ. It must have been

the case that she was both highly truth-seeking, and possess a strong belief in the truth

of θ. Now, others learn both the direction and strength of the focal agent’s belief, and

through it about the strength of her evidence.

What happens when we put all this together? The hyperboloid in Figure 4 gives

us the delimited domain of the likelihood of an agent’s declaration. This captures

the reasoning we just covered as to the qualitative inferences agents make about one

another’s beliefs from their declarations. From this, the agents in the population update

their beliefs about the state of the world, in the normal way, using Bayes’ rule. (See

Appendix A for the mathematical details.)

In this way, rational agents learn from their own private evidence, the declarations of

other agents in the network, and the public belief about the true state evolves through

discussion and across the network.
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3. Truth in the Long Run

Our primary interest lies in dynamical analysis of the short-to-medium-run behavior

of social inquiry under conformist bias. Before we proceed to this analysis, however,

it may help us in this to understand the long-run trajectory of social learning under

conformity. What we find is that, in the long run, irrespective of social structure or

conformist bias, epistemic communities like the ones we have described will converge to

believing in, and publicly declaring, the true state of the world.

More precisely, given any social network, unbounded evidence, and the possibility of

sufficiently truth-seeking agents 1 ∈ supp(α), a community of Bayesian learners will,

with probability one, converge to knowing and declaring the truth in the long run. This

is captured by the following proposition and its corollary.

Proposition 1. An epistemic community learning about the state of the world will, in

the long run, converge in belief to the true state.9

Corollary 2. For such an epistemic community, converging in belief to the true state

implies converging to consensus in declaring the true state.

Convergence in beliefs follows from the fact that our agents learn via Bayesian con-

ditioning, that the true state is contained in each agent’s hypothesis set, and that agent

declarations are always to some degree informative as to the state of the world. Given

this, classical convergence results for Bayesian learning10 guarantee long run acquisition

of the truth.

Convergence in declarations follows from the fact that, given convergence in beliefs,

the community’s beliefs will inevitably pass a threshold such that a consensus on declar-

ing the true state cannot be escaped. Moreover, with enough time following the passing

of this threshold of belief, the population will almost surely traverse a positive proba-

bility path to consensus on the true state, whereupon it will never leave this consensus.

It may well be that “in the long run we are all dead,” [Keynes, 1923, p. 80] but

it can be helpful to confirm where we are headed. We have seen that our epistemic

communities will arrive at the truth in the limit of time, so we turn to short and

medium run analysis of social learning for a richer and more pressing picture of inquiry.

4. Truth and Conformity in the Short and Medium Run

What can be said about the short and medium run behavior of learning under confor-

mity? What role does social structure play in the reliable acquisition of true beliefs? To

answer these questions, we ran simulations of our model of epistemic communities en-

gaged in social learning and discourse. We recorded and analyzed the resulting behavior

9 All proofs can be found in Appendix A.
10 For an excellent exposition of the classic results, see Smith and Sørensen (2000).
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(a) (b)

Figure 5. Plots of the mean belief in the true state P (θ) (a), and
declaration of the true state θ (b), for each network type, and for network
sizes from 2 agents to 20. Note that the networks only become fully
distinct at N = 6. The dashed line represents performance in total
absence of any conformity.

over a parameter sweep of network types, population sizes, initial declarations, prior

beliefs, and distributions of the individuals’ truth-seeking and conformity orientations.

For the simulations, we varied the structure of social influences by placing our agents

on each complete, regular (of degree N/2), circle, star, and random (of mean degree

N/2) networks. We varied the number of agents N in the network from 2 agents (at

which all networks are essentially identical) to 20 agents. We considered when the initial

declarations of the society were at a consensus on the true state, a consensus on the false

state, and an even split. We varied the shared prior beliefs of the population between

relative confidence in the true state (P (θ) = 0.75), skepticism toward the true state

(P (θ) = 0.25), and ambivalence about the true state (P (θ) = 0.5). Each combination

of network structure, population size, initial declarations, and prior beliefs composed

one parameter setting.

For each parameter setting we ran 10,000 simulations where each simulation was

composed of 100 turns, and where each turn consisted of the following phases: (1) a

randomly selected agent receives her private evidence from Nature; (2) the agent updates

her private belief in light of this evidence; (3) the agent chooses her best response given

her beliefs, her neighbors’ declarations, and her truth-seeking/conformity orientation;
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(4) the agent makes her declaration to the network; (5) the other agents in the network

update their beliefs in light of her declaration.

Three regularities readily emerged from the data (see Figures 5a, 5b): (1) In all

simulations, the star network performed worse than all other standard networks in terms

of generating reliable belief in, and declaration of, the true state. (2) The circle network,

on the other hand, performed better than other standard networks on all counts. (3)

The other networks—complete, regular (of degree N/2), and random (of mean degree

N/2)—yielded middling performances, neither as good as the circle, nor as poor as the

star, with the regular network typically outperforming the random network, and the

random network outperforming the complete network.11

To make sense of these regularities in our simulation results, analytic treatment of

the model and its dynamics is needed. What should be obvious is that conformity bias

muddies the waters with respect to the information content of individuals’ declarations.

In the absence of conformity, our epistemic communities would rapidly and reliably

acquire the truth, and the underlying network structure would make no difference to

this learning.

What we will find is that different networks induce social configurations more or less

conducive to honest communication, and that this will also depend on the degree to

which the population is divided or unified in their public declarations.

5. Influence, Information, and Social Structure

To understand why different social networks are more or less conducive to the reliable

acquisition of true beliefs, we first need a measure of informativeness. For this, we

introduce the concepts of influence and informativeness of declarations, and show how

they are related.

We define the influence of a declaration x ∈ {θ,¬θ} as the difference between the

public belief in x before and after its declaration to the network, q(x|x)− q(x), where q

is the public belief. Next, we define the informativeness of a declaration x ∈ {θ,¬θ}, as

the reduction in uncertainty it produces with respect to its corresponding state when

starting from a maximal entropy prior, H(q|q(x) = 1/2) − H(q|x), where H is the

Shannon entropy function.

We now derive the fact that the informativeness of a declaration is monotonically

increasing in its influence on the public belief (see Lemma 9 in Appendix A). This

gives us that a declaration will be (minimally) maximally influential just in case it is

(minimally) maximally informative. We will use this fact repeatedly to infer the relative

informativeness of declarations from their influence.

11 In our simulation plots (Figure 5), we mark the performance of learning in the absence of any
conformity bias—that is, of unimpeded Bayesian learning—with a dashed line. We will continue to
compare our results to this control case, denoting the case of learning in the absence of conformity bias
in further plots (Figure 6, 7, 8) each time with a dashed line.
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Figure 6. The influence and informativeness of an agent’s declaration,
as a function of the proportion of her neighbor’s who are declaring the
same state.

Optimal Information From Going Against the Grain. Given our measures of

influence and informativeness, our first insight follows straightforwardly from our model

of agents learning via Bayesian conditioning under uncertainty about one another’s

evidence and truth-seeking orientations. It is that the most informative declarations—

those that have the most significant effect on the public belief—are those that “go

against the grain.” That is, those made by agents exactly when they deviate from the

consensus of their neighbors.

This insight is captured by the following proposition:

Proposition 3. The informativeness of an agent’s declaration is monotonically in-

creasing in proportion of her neighbors who are declaring the opposing state.

And since the minimum proportion of an agent’s neighbors who may declare in favor

of any state is zero, we have the following as an immediate corollary:

Corollary 4. The most informative declaration in favor of a state is one made by an

agent when she goes against the consensus of her neighbors.

This corresponds to the case in Figure 3, where Ni(θ) = 0, and is visualized by the

plot of information of declarations in Figure 6 where we see the change in belief by

the population in response to an agent’s declaration as a function of the proportion of

that agent’s neighbors who are declaring the same state.

When an agent deviates from the consensus of her immediate peers, it is inferred by

the broader network that she is both likely to be more truth-seeking and that she has
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Figure 7. The expected influence and informativeness of an agent’s
declaration, as a function of the proportion of her neighbor’s who are
declaring the same state.

received sufficiently strong evidence to justify the loss in social payoffs she incurred. No

other declaration is more influential on the public belief.

Optimal Expected Information From Conflicted Neighbors. We have seen what

that the most informative declarations occur when an agent goes against the consensus

of her peers. But such declarations are rare, as it takes highly truth-seeking agents with

good evidence to be willing to make them. We should ask then: under what conditions,

on average, do we expect to find the most informative declarations?

These turns out to be the obverse of where we find the most influential declara-

tion. The most informative declarations, on average, must come from individuals whose

neighbors are perfectly divided in terms of their declarations.

This is captured by the following observation:

Observation 1. The most influential and informative declaration, in expectation, is

that made by an agent when her neighbors are evenly divided in their declarations.12

Observation 2. The expected information of declarations is convex and increasing for

Ni(θ) ∈ (0, 1/2) and convex and decreasing for Ni(θ) ∈ (1/2, 1).

12 Our observations are computationally verified for the following distributions of types and evidence:
the distribution of truth-seeking orientations in the population was varied from Beta(1,5) (corresponding
to high conformism), to uniform, and Beta(5,1) (corresponding to high truth-seeking). And the distri-
butions of evidence induced by each state of the world were varied between the linear case described
before, and Gaussian distributions with means of 1 and -1, and variances of 1, 10, and 100.
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This corresponds to the case in Figure 3, where Ni(θ) = 1/2, and is visualized by

the plot of expected information of declarations in Figure 7. In Figure 7 we see the

expected change in belief of the population in response to an agent’s declaration, as a

function of the proportion of that agent’s neighbors who are declaring the true state.

Our propositions make use of these observations.

It is when an agent’s social influences equally represent each viable position that she

is most free to declare her honest belief, and in such a case others infer that she is most

likely doing so.

5.1. Informativeness of Networks. Which networks then are most conducive to the

social configurations that yield honest communication? Using the insights developed so

far, we extend the concept of expected informativeness to the level of social networks.

Assume that θ is the true state of the world, then expected influence of declarations

X = {θ,¬θ} for an N -agent network G is given by

EX [q(θ|G)− q(θ)] ∝
N∑
k=0

(Nk )∑
j=1

N∑
i=1

EX [q(θ|xi)− q(θ)]

where the first sum is over the number of the agents in the network declaring the true

state, the second sum is over the possible configurations of declarations in the network

given the number of agents declaring the true state, and the third sum is over the

individuals in the network.13 In this way, we infer the informativeness of a network in

aggregate as well as for fixed proportions of the community declaring the true state.

With a generalized measure of expected informativeness, we compute the expected in-

formativeness of 10-agent networks for different proportions of the population declaring

the true state (see Figure 8).

From this, several observations emerge. Denote the proportion of the community

declaring θ byNθ. For all networks, then, the least informative state is that of consensus,

Nθ = 0 or 1, and the most informative state is when there is an even split in declarations

Nθ = 1/2. Given Observation 1, it should be clear why this is so. Declarations are

expected to be informative in measure to the presence of balanced dissent.

Next, we observe that, when the population is nearly split, the complete network

produces the most informative declarations among the networks considered, while the

circle network produces the most informative declarations when the population is near

consensus. Finally, the star network provides the least informative social configuration

no matter the proportion of the population making either declaration.

We may understand these results in terms of our previous insights, and sharpen

them by considering large networks. On a star network, when the population is large,

13 Note that we suppress the normalizing term from the definition of the influence of a declaration. The
reason for this is that both terms are constants, and are therefore irrelevant for determining maxima or
minima.
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Figure 8. The expected informativeness of the next declaration for 10-
agent networks as a function of the proportion of the population which
is declaring of the true state. The dashed line denotes the expected
information in the absence of any conformity.

practically every individual has merely one neighbor. Hence, for any proportion of

declarations in the population, the star network will be in the minimally informative

state. That is, I(Gstar|Nθ) = NθI(1) + (1−Nθ)I(0) = I(0).14

Proposition 5. For large networks, the star network is minimally informative in any

state.

On a complete network, when the population is evenly divided, Nθ = 1/2, each indi-

vidual is in the optimal position to make informative declarations. When all individuals

are neighbors and the population is sufficiently large, the expected informativeness of

the network as a whole recapitulates the expected informativeness of individual decla-

rations given in Figure 7. That is, I(Gcomplete|Nθ) = I(Nθ). Given Observation 1, we

show that no network can be more informative in such a state.

Proposition 6. For large networks, when the population is evenly split in declarations,

the complete network is maximally informative.

On a circle network, when the population is near consensus, a single dissenting indi-

vidual can make it possible for both her their neighbors to declare their honest beliefs.

That is, given that each individual has two neighbors, their neighbors’ declarations are

binomially distributed with the success parameter given by the population proportion

14 Given the assumption of symmetry of expected informativeness across Nθ = 1/2, we have that
I(0) = I(1), and, more generally, that I(1/2− c) = I(1/2 + c) for c ∈ [0, 1/2].
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of declarations, I(Gcircle|Nθ) = N2
θ I(0) + 2Nθ(1−Nθ)I(1/2) + (1−Nθ)

2I(1). Contrast

this with the complete network where, near consensus, every individual faces strong

incentives to conform.

Proposition 7. For large connected networks, for a range of states near consensus in

declarations, the circle network is the maximally informative network.

More generally, we can express the expected informativeness of the declaration of

any individual with d connections and proportion Nθ of her neighbors declaring the

true state as

ENθ [Id] =

d∑
k=0

(
d

k

)
Nk
θ (1−Nθ)

d−kI

(
k

d

)
. (∗)

From this, we can derive the informativeness of a any network, when we conceive of net-

works as admixtures of proportions of individuals with different numbers of neighbors.

Given any large network, it can be represented as a distribution µ = 〈µd〉 over the

degree d of individuals within the network, Thus, the expected informativeness of the

network will be I(Gµ|Nθ) =
∑

d µd · ENθ [Id]. Using this, we provide bounds for the

informativeness of epistemic networks near consensus.

Proposition 8. For large networks, near consensus, any network (including any regular

or random network) of minimum degree at least two will be intermediate in informa-

tiveness between the circle and complete network.

6. Conclusion

When social learning proceeds under the influence of conformity bias, the structure of

social relationships underpinning the epistemic community becomes crucial to reliable

acquisition of truth. That disagreement and diversity in publicly held opinions can be

optimal for honest communication gives us our key insight into understanding the effects

of different social networks. The question as to which social networks lead to reliable

beliefs becomes a question as to which social networks produce and sustain optimal

patterns of disagreement throughout the process of learning.

In sum, we find that in the presence of even a modicum of conformity bias the

star network always provides the worst conditions for informative communication, the

complete network provides optimal conditions exactly when the population is evenly

divided, the circle network provides optimal conditions near consensus, and that, in

such a state, all sufficiently connected networks will be intermediate in informativeness

between the circle and complete networks.

This has implications for real-world social networks, which tend to exhibit low average

degree and high degree-centrality (Watts and Strogatz 1998). We may conjecture that,

when we suspect conformity bias at play in social discourse and decision-making, inter-

ventions which reduce the density of connections of a social network while still keeping
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it connected, and interventions which decrease its centralization by reducing the relative

influence of central individuals, may lead to more informative communication—and so

to more reliable beliefs—for the epistemic community as a whole.
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Appendix A. Mathematical Appendix

Learning from others’ declarations. When agent i declares x = θ, we know that

it was her best response. As previously mentioned, this implies that the following

condition holds:

αi(2Pi(θ)− 1) + (1− αi)(2Ni(θ)− 1) > 0. (†)

We plug agent i’s (publicly unknown) posterior probability P (θ|σ) into (†) to get the

elaborated condition

αi

 2

1 +
1− P̄
P̄

1− σ
σ

− 1

+ (1− αi)(2Ni(θ)− 1) > 0 (‡)

where P̄ denotes the (publicly known) prior P (θ|ht). We then compute the likelihood

of agent i’s declaration θ, given our public prior, as follows.

Let φ denote the left-hand term of our elaborated condition (‡), under which our

agent would have declared θ, so that I[φ > 0] is its indicator function. We then get the

likelihood of the declaration given each possible state of the world,

P (x = θ|θ, P̄ ) =

∫
A

∫
Σ
I[φ > 0]dFθ(σ)dG(α),

P (x = θ|¬θ, P̄ ) =

∫
A

∫
Σ
I[φ > 0]dF¬θ(σ)dG(α).

From these, we obtain the posterior—the belief of the other agents in the network in

light of agent i’s declaration of θ—using Bayes’ rule as follows

P (θ|x = θ, P̄ ) =

(
1 +

∫
A

∫
Σ I[φ > 0]dF¬θ(σ)dG(α)∫

A

∫
Σ I[φ > 0]dFθ(σ)dG(α)

1− P̄
P̄

)−1

which yields the new public belief.

Proof of Proposition 1. There are two states of the world θ and ¬θ. Without loss of

generality, suppose θ to be the true state of the world. Let q(ht) = P (θ|ht) be the public

belief and ht the history of declarations up to time t. As is well-known, the likelihood

ratio

`(ht) ≡ 1− q(ht)
q(ht)
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is a martingale conditional on θ. Let X be the finite set of declarations. For any given

declaration x ∈ X,

`(ht, x) = `(ht)
P (x|ht,¬θ)
P (x|ht, θ)

and thus the martingale property follows:

E
[
`(ht+1)|θ

]
=
∑
x∈X

`(ht, x)P (x|ht, θ) =
∑
x∈X

`(ht)P (x|ht,¬θ) = `(ht).

By Theorem 3(b) of Smith and Sørensen (2000), when evidence is unbounded, individ-

uals almost surely converge in belief to the true state. �

We show that convergence in beliefs implies a convergence in declarations. In partic-

ular, we show that convergence in beliefs implies that the community’s belief in the true

state will be bounded from bellow over time. We then observe, using simple probabilis-

tic arguments, that given sufficient time the community will almost surely arrive at a

consensus state where all individuals are declaring the true state. Finally, we show that,

having arrived at such a consensus with individual beliefs in the true state appropriately

bounded from bellow, the community must remain at this consensus forever.

Proof of Corollary 2. Let q and q′ denote the public belief before and after hearing a

declaration, respectively. Consider a focal agent i having received her evidence from

Nature on a given turn. Let Pi denote the focal agent’s posterior belief P (θ|σ,ht),
and suppose that this agent declared x = ¬θ. It is straightforward to show that if the

population could observe the focal agent’s posterior, the public belief would be precisely

equal to her posterior

q′(¬θ, q,Ni(θ), Pi) = Pi. (*)

Let Π(·|¬θ, q,Nθ) be the distribution over the focal agent’s posterior belief given her

declaration of ¬θ, q the public belief when she selected her action, and Ni(θ) the pro-

portion of her neighbors declaring θ. By (*) we can write

q′(¬θ, q,Ni(θ)) =

∫ 1

0
Pi dΠ(Pi|¬θ, q,Ni(θ)).

We can thus interpret the public belief as the public’s expectations of the focal agent’s

posterior. As the public belief almost surely converges to certainty on the truth, for

almost all trajectories of the public belief {qt}+∞t=0 , for all ε > 0 there exists a time Tε

such that, if t > Tε then qt > 1− ε. That is, there is a time after which the public belief

in θ will always be at least 1− ε. Then choose ε = 1/2.

With probability 1 at some point along the trajectory after Tε all agents will be

declaring θ. To see this, let λ be the probability all N agents choose declarations in

sequence, each has an α sufficiently high such that they declare the state they believe

to be more likely regardless of their neighbors’ declarations, and they receive evidence

such that their posterior assigns higher probability on θ. However small the probability
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λ might be, it exceeds 0. Hence, the probability that this event does not occur goes to

zero as t→ +∞.

Assume, for the sake of contradiction, that at some point after Tε an agent goes

against the consensus and declares ¬θ, then her posterior must satisfy

Pi ≤ −
1− αi

2αi
+

1

2
.

But then we get that E[Pi|¬θ, ·] ≤ 1/2. That is, her belief in θ was less than 1/2, which

contradicts the fact that her belief was bounded from bellow. Hence, no agent can

deviate from the consensus after time Tε, and convergence in belief implies convergence

in declaration. �

Lemma 9 (Monotonicity of Informativeness in Influence). The informativeness of a

declaration about a state is monotonically increasing in its influence on the public belief.

Proof. Without loss of generality, let the focal agent declare x = θ. We show that the

informativeness of her declaration, H(q|q(θ) = 1/2) − H(q|x = θ)), is monotonically

increasing in its influence, q(θ|x = θ)− q(θ).
First, we unpack the definition of informativeness, temporarily omitting the assump-

tion of the maximal entropy prior q(θ) = 1/2, to get

H(q)−H(q(θ|x = θ) = E[−ln(q(θ|x = θ))]− E[−ln(q(θ))]

= E[ln(q(θ))− ln(q(θ|x = θ))]

= E

[
ln

(
q(θ)

q(θ|x = θ)

)]
= q(θ) · ln

(
q(θ)

q(θ|x = θ)

)
+ q(¬θ) · ln

(
q(¬θ)

q(¬θ|x = θ)

)
Now, let A ≡ q(θ) and B ≡ q(θ|x = θ), so that C ≡ B −A denotes the influence of the

declaration x = θ. Then we can re-write the preceding expression as

A · ln
(

A

A+ C

)
+ (1−A) · ln

(
1−A

1− (A+ C)

)
Taking the partial derivative with respect to influence C, and solving for when it is

positive—i.e., for when informativeness is increasing—yields

A+ C − 1 > 0 or B > 1/2.

And when q(θ) = 1/2, we have that B = q(θ|x = θ) ≥ 1/2, and so informativeness is

monotonically increasing in influence, as desired. �

We will show that q′(θ,Ni(θ)
′) < q′(θ,Ni(θ)) whenever Ni(θ)

′ > Ni(θ). From this

it follows straightforwardly that, given Ni(θ) ∈ [0, 1], the most influential declaration

occurs just when Ni(θ) = 0.
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To do so, consider a given focal agent i having received evidence σ ∼ fθ(σ) from

Nature. Let r = r(σ) ≡ Pi(¬θ|σ) be one minus her private belief, G¬θ(r) and Gθ(r) the

conditional cdf’s for r, and g(r) ≡ dG¬θ
dGθ

(r) the Radon-Nikodym derivative of G¬θ with

respect to Gθ.

Lemma 10. g(r) = r
1−r almost surely.

Proof. If an agent updates her belief after observing r, it will remain unchanged. Thus

from Bayes’ theorem r = Pi(¬θ|r) = g(r)
g(r)+1 . �

Lemma 11. The ratio G¬θ
Gθ

(r) is strictly increasing for r in the common support of Gθ

and G¬θ.

Proof. Let r′ > r. From Lemma 10 we have that g(r) is strictly increasing, hence,

G¬θ(r) =

∫ r

0
g(x)dGθ(x) < g(r)Gθ(r)

And thus

G¬θ(r
′)−G¬θ(r) =

∫ r′

r
g(x)dGθ(x).

> [Gθ(r
′)−G¬θ(r)]g(r)

> [Gθ(r
′)−G¬θ(r)]

G¬θ(r)

Gθ(r)
.

It follows that G¬θ(r′)
Gθ(r′) > G¬θ(r)

Gθ(r) . �

Proof of Proposition 3. Now, we proceed to show that q′(θ,Ni(θ)
′) < q′(θ,Ni(θ)) when-

ever Ni(θ)
′ > Ni(θ). Define q′ to be the posterior public belief, q the prior public belief,

Ni(θ) the proportion of the focal agent’s neighbors declaring θ, and Π(·|xi, q,Ni(θ)) the

posterior belief over the declaring agent’s truth-seeking orientation αi ∈ [0, 1]. Then

q′(θ,Ni(θ)) =

∫ 1

0
q′(θ,Ni(θ), αi)dΠ(αi|θ,Ni(θ), q).

For a given αi in the support of Π(·|θ,Ni(θ), q), there exists a threshold r̄ = r̄(αi, q,Ni(θ))

such that the agent only selects xi = θ if r ≤ r̄. From Bayes’ theorem,

q′(θ,Ni(θ), αi) =

(
1 +

1− q
q

G¬θ(r̄)

Gθ(r̄)

)−1

.

If r̄(αi, Ni(θ)
′, q) ≥ r̄(αi, Ni(θ), q) holds, and further holds strictly for a subset of αi

with positive posterior probability, then, by Lemma 11, q′(θ,Ni(θ)
′) < q′(θ,Ni(θ)).

It can be shown that the threshold r̄(αi, Ni(θ), q) is strictly increasing in Ni(θ). This

gives us that q′(θ,Ni(θ)
′, αi) ≤ q′(θ,Ni(θ), αi). Furthermore, having assumed that αi

and r take full support in [0, 1], we can find a neighborhood of αi = 1 with positive

probability such that r̄(αi, Ni(θ), q) > 0 for all αi in this neighborhood. Hence, in this

neighborhood q′(θ,Ni(θ)
′, αi) < q′(θ,Ni(θ), αi). �
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Proof of Corollary 4. We have, from proposition 3, that q′(θ,Ni(θ)
′) > q′(θ,Ni(θ))

whenever Ni(θ)
′ < Ni(θ). It follows directly that

arg max
Ni(θ)∈[0,1]

q′(θ,Ni(θ)) = 0.

Thus, the most influential declaration is made just when Ni(θ) = 0. And we have, from

Lemma 9, that this is also the most informative declaration. �

Proof of Proposition 5. On a large star network, proportion 1 of individuals have a

single neighbor. Thus for any proportion of the population declaring θ, every individual

is in the minimally informative state where either Nθ = 0 or 1. Therefore, for all

Nθ ∈ [0, 1], and symmetric I, I(Gstar) = I(0) ≤ I(G) for any connected network G. �

Proof of Proposition 6. On a complete network, every individual individual is neighbors

with every other. Hence, the proportions of an individuals neighbors declaring θ is the

same as the proportion of the population declaring θ. The expected informativeness is

maximized when an individual’s neighbors are equally split Ni(θ) = 1/2. Thus, when

exactly half the population is declaring θ, the declaration of every individual in the

population is at maximal expected informativeness. Hence, no other network can be

more informative in this state. That is, when Nθ = 1/2, I(Gcomplete) = I(1/2) ≥ I(G)

for any connected network G. �

To show that the circle is maximally informative near consensus, first we show that

for regular networks of degree at least 2 informativeness is decreasing in degree near

consensus. This implies that any regular network of degree greater than two is less

informative than the circle network. We combine this with Proposition 5, which implies

that networks of degree 1 are also less informative than the circle network, to show that

the circle network is the maximally informative regular network. Next, using the fact

that any network can be formulated as an admixture of individuals of various degrees

we derive that the circle network is maximally informative near consensus.

Lemma 12. For regular networks of degree at least 2, informativeness is decreasing in

degree near consensus.

Proof. Take the derivative of the informativeness of any regular network Gd of degree

d ≥ 2 with respect to the proportion of the population declaring the true state.

d

dNθ
[I(Gd)] =

d

dNθ

[
d∑

k=0

(
d

k

)
Nk
θ (1−Nθ)

d−kI

(
k

d

)]
.

Let Nθ go to 0. This makes it so only the constant terms of the derivative remain, and

the expression simplifies to

lim
Nθ→0+

d

dNθ
[I(Gd)] = d[I(1/d)− I(0)].
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This term corresponds to the slope of the secant line connecting I(0) and I(1/d). Since

I is an increasing function, this term must be decreasing in d. Thus, for networks of

degree two and greater, informativeness is decreasing in degree near consensus. �

Lemma 13. The circle is the maximally informative regular network near consensus.

Proof. This follows from Lemma 12 and Proposition 5, which state that a regular net-

work of degree 2 (the circle) is more informative than any network of greater degree near

consensus, and that a regular network of degree 1 is less informative than any other at

any state. Taken together, they imply that, near consensus, regular networks of degree

two are maximally informative among regular networks. �

Proof of Proposition 7. Now, recall that any large connected network Gµ can be for-

mulated as an admixture µ = 〈µd〉 of proportions of individuals of degree d ≥ 1,

where
∑

d µd = 1 and µd ≥ 0. The expected informativeness of any network then is

a proportion-weighted sum of the expected informativeness of the individuals of each

degree contained in the network. That is, I(Gµ|Nθ) =
∑

d µd · ENθ [Id]. It follows from

Lemma 13 that, near consensus, any network not entirely composed of individuals of

degree two is strictly less informative than one which is in fact composed entirely of

individuals of degree two. Thus, when Nθ = 0 or 1, I(Gcircle) > I(Gµ) for any Gµ such

that µ0 = 0 and µ2 6= 1. �

Proof of Proposition 8. It follows directly from Lemma 12 that, near consensus, the

maximally and minimally informative regular networks of degree at least two are the

circle and complete network, respectively. We combine this with the fact that any large

network Gµ can be formulated as an admixture µ = 〈µd〉 of regular networks of degree d,

and with the linearity of expected informativeness, to adduce that the informativeness

of any network is bounded above by that of the circle network and bounded bellow by

the complete network. That is, when Nθ = 0 or 1, I(Gcircle) ≥ I(Gµ) ≥ I(Gcomplete) for

any Gµ such that min{d : µd > 0} ≥ 2. �

Appendix B. Simulation Code

The source code for our network learning model and simulations can be found at:

https://amohseni.shinyapps.io/Truth-and-Conformity-on-Networks

UC Irvine, Irvine, CA 92697, USA

E-mail address: amohseni@uci.edu

E-mail address: colerw@uci.edu


