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Abstract

We propose a framework for pragmatic reliability-in-the-limit criteria,

extending the epistemic reliability framework (Kelly 1996). We identify some

common scientific contexts which complicate the application or interpretation of

epistemic reliability criteria, drawing heavily from economics for illustrative

examples. We then propose an extension of the standard framework, where inquiry

is constrained by both epistemic and non-epistemic factors. This provides

analogous notions of pragmatic underdetermination and pragmatic reliability with

respect to a particular goal, as well as a principled method for extracting solvable

problems from unsolvable ones.
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1 Introduction

It is well established that full verification of hypotheses is rarely attainable from finite

data. Thus, as finite beings with finite lifespans, we must settle for something weaker.

Historically, a standard approach in philosophy of science is to interpret verification as an

entailment relation between hypothesis and data. Under this view, solving the problem

of induction requires a precise notion of “confirmation,” which quantifies the degree to

which a hypothesis is justified by a given body of evidence (e.g. Carnap 1945; Hempel

1945; Putnam 1963). This provides straightforward, diachronic norms for hypothesis

selection: choose the hypothesis “best confirmed” by the evidence. This confirmation

approach can be formalized in many different ways, most recently as Bayesian updating-

a rigorous framework for rationally updating beliefs in light of new evidence.

While the confirmation approach provides robust tools for belief revision,

philosophers of science have struggled to provide epistemic justification for

confirmation-based criteria. An alternative approach is to understand verification and

refutation as success criteria for hypothesis selection methods, rather than entailment

relations between hypothesis and data (Kelly 1996). Rather than seeking a numerical,

non-logical score for a hypothesis given a body of evidence, the reliability theorist seeks a

deductive guarantee of success for a hypothesis selection method on a data stream. This

epistemic reliability approach can be formalized in the language of formal learning

theory (and, more recently, topology) (Genin and Kelly 2017), and provides a precise,

mathematical characterization of underdetermination in scientific inquiry. This also

allows us to evaluate scientific practices (e.g. a preference for “simpler” theories) in

terms of their in-the-limit truth-seeking behavior. Even when a hypothesis cannot be
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deductively verified in the short run, we may still obtain deductive guarantees that a

method will succeed in the limit (for a spectrum of definitions of “success”). This view is

sometimes identified with the feasibility contextualism principle, which we can

summarize as: given an inductive inference problem, identify your epistemic constraints,

then succeed as well as possible (Kelly 2014).

In this paper, we propose an extension to the epistemic reliability framework in

which inquiry is constrained by both epistemic (i.e. the structure of the available data)

and non-epistemic (i.e. research goals, environmental constraints, etc.) factors. We refer

to this as “pragmatic reliability,” as it defines the reliability of a method with respect to

an environmentally constrained, goal-directed inference problem. To better illustrate and

motivate these distinctions, consider the following toy example: Suppose an urn contains

an unknown, but finite number of marbles of two colors, red and blue. Each hypothesis

about the initial contents of the urn corresponds to an ordered pair of integers,

U = (x, y). Suppose we observe a data sequence generated as follows: in each timestep,

we observe either a red marble (R), a blue marble (B), or no marble (N) drawn from the

urn. If the urn is empty, we observe N with probability 1. If the urn is non-empty, we

observe N with probability 1/2, or a single marble (selected uniformly at random from

those remaining) with probability 1/2. Because a non-empty urn always has a 1/2

chance of producing a null observation, it is never possible to conclude with deductive

certainty that the urn is empty, no matter how many N’s we observe in a row. Thus, the

problem of inferring the initial contents of the urn is underdetermined by the data: any

finite number of observations is insufficient to deductively infer the correct answer.

A confirmation theorist addresses the underdetermination in this problem by

assessing the degree to which a hypothesis U = (x, y) is confirmed or justified by a
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sequence of observations D = d1, d2, . . .. A Bayesian confirmation theorist, for example,

would solve this problem by positing some prior distribution P (U) over possible initial

contents of the urn, and computing the “posterior probability” of U given evidence D

using Bayes’ rule: P (U |D) = P (D|U)P (U)/P (D). Here, P (D|U) is the probability of

observing D, given that U is true, which is determined by the sampling probabilities

above. The quantity P (U |D) therefore reflects the degree to which U is confirmed by the

evidence D, given the theorist’s background assumptions and beliefs.

An epistemic reliability theorist draws justification for a hypothesis from

deductively-guaranteed convergence properties of the method used to select that

hypothesis. A method M is a map from evidential states D to hypotheses U , and a

method is said to succeed in-the-limit so long as it is guaranteed to output an incorrect

hypothesis only finitely many times (this notion is defined more explicitly in section 2).

For example, consider the method M of simply counting the number of red and blue

marbles observed thus far. At any step, we cannot be deductively certain that M

outputs the correct answer. However, because the true urn contains only a finite number

of marbles, eventually we will observe only N’s. Since this method only updates its

hypothesis when a non-N is observed, it is deductively guaranteed to eventually stabilize

to the correct urn after finitely many observations. Note that this guarantee is

completely independent of the sampling probabilities that generate the data: so long as

each marble is eventually drawn from the urn, M is deductively guaranteed to converge

in the limit to the correct hypothesis.

In the pragmatic context, we assume that, in addition to the learner’s epistemic

constraints, the learner faces some environmentally-constrained goal-satisfaction

problem. Suppose, for example, that the learner’s environment contains four levers,

4



corresponding to the four following possibilities: 1) U (initially) contains no red and no

blue marbles, 2) U contains some red and no blue marbles, 3) U contains no red and

some blue marbles, 4) U contains some red and some blue marbles. Pulling the correct

lever yields a reward, while pulling an incorrect lever yields nothing. Given this setup,

the following inference method is pragmatically reliable: M ′(D) = (IR(D), IB(D)), where

IR(D), IB(D) respectively return 1 if and only if D contains at least one red or blue

marble, and 0 otherwise. In this case, M ′ is very likely to converge in the limit to an

incorrect hypothesis: if, for example, the true urn is (3, 0), M ′ will converge to (1, 0).

However, with respect the learner’s environment, the hypotheses (3, 0) and (1, 0) both

imply the same optimal action. Thus, even though M ′ will often fail to identify the

correct urn, it is deductively guaranteed to converge in the limit to a hypothesis which

induces the best possible action, given the learner’s goal and constraints. This is the

notion of pragmatic reliability, which we define formally in section 4.

The remainder of this paper is organized as follows: in section 2, we review epistemic

reliability as formalized in formal learning theory. We consider how it represents a

scientific problem, how it characterizes underdetermination, and how it can usefully

inform or justify scientific practice. In section 3, we identify certain features common in

many areas of scientific research that make it difficult or impossible to utilize epistemic

reliability criteria. We shall not attempt to exhaustively characterize all problematic

cases, nor will we argue that these features are unique to any disciplines in particular.

The features we consider, however, are especially pronounced in the “human sciences”1,

and we draw heavily on economics for illustrative examples. We identify two main

1Roughly, science in which the data of interest are a product of human behavior or decision-

making
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factors which motivate the need for a pragmatic reliability framework. First, the level of

global underdetermination that often arises in these contexts is beyond the scope of

traditional epistemic reliability theory. Second, there are many contexts in which the

theoretical and metaphysical assumptions underlying epistemic reliability are too strong

to capture how many scientists and philosophers of science conceive the nature and

purpose of their research.

In section 4, we propose an extension to the epistemic reliability framework in which

the learner must act on their hypothesis so as to achieve some target goal. When a

learner faces the type of underdetermination described above, the situation decomposes

into two separate problems, one epistemic and one pragmatic. The epistemic problem is

determining what can and cannot be reliably learned, given our available data sources.

The pragmatic problem is determining what we ought to learn, and how we ought to

learn it, given our non-epistemic goals and constraints. Our extended framework can

account for both of these problems, which provides analogous notions of “pragmatic

underdetermination” and “pragmatic reliability,” as well as a principled method for

extracting “solvable” problems from badly underdetermined ones. This, we argue,

suggests the following modification to the feasibility contextualism principle: identify

your epistemic constraints, then succeed as well as necessary.

In the final section, we further explore the relation between the epistemic and

pragmatic notions of reliability, by considering the case in which our research goal is

prediction of future phenomena. In this case, the epistemic and pragmatic notions of

underdetermination coincide in an important way. This, we suggest, allows us to

understand empirical adequacy as a boundary point between epistemic (i.e.

truth-seeking) and pragmatic (i.e. goal-satisyfing) research problems, and helps resolve a
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tension between realist and instrumentalist views of scientific research.

2 Epistemic reliability

2.1 Scientific questions and underdetermination

Here we outline the formal framework for epistemic reliability (Kelly 1996). We define a

scientific problem in terms of a set W of possible worlds, and a countable set I of

information states. For a world w ∈ W , we use I(w) to denote the set of information

states in w. Informally, an information state represents a body of evidence, and I(w)

denotes all evidence that we will eventually observe in w. Formally, we identify E ∈ I

with the set of possible worlds compatible with that evidence. A hypothesis h is a subset

of possible worlds, and a question Q is a partition of W into countably many answers. A

hypothesis h entails an answer if it is contained entirely within that answer.

To illustrate this concretely, consider the following toy example: at the end of each

day, we record whether or not it rained in Pittsburgh, marking “1” for rain or “0” for no

rain. Each possible world w corresponds to an infinite binary sequence, and I(w) is the

set of finite initial subsequences of w. The hypothesis “it will rain twice in the first

week” corresponds to the set of all worlds with exactly two 1’s in the first seven entries.

Similarly, the question “will it ever stop raining” is the partition of W into two cells:

worlds with finitely many 1’s, and worlds with infinitely many.

This provides a formal characterization of underdetermination in scientific inquiry.

For our present purposes, we distinguish between local and global underdetermination.

Intuitively, a hypothesis h is locally underdetermined if any finite amount of evidence is
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insufficient to deductively verify or refute it. Formally, h is locally undetermined in w iff,

for any finite evidence E1, . . . , En ∈ I(w), there exists a world w′ /∈ h such that

w′ ∈
⋂n

i=1Ei (i.e. iff any finite amount of evidence in w is consistent with some world

not in h). If h is locally undetermined in every world, we drop the “in w.” A locally

underdetermined hypothesis is non-verifiable, though as we shall see in the next section,

it may be verifiable in-the-limit. A globally underdetermined hypothesis, however, could

not be deductively verified even if we observed the entire data stream at once. Formally,

h is globally underdetermined in w iff there exists w′ /∈ h such that w′ ∈
⋂

E∈I(w)E (i.e.

iff some world not in h is compatible with all evidence in w). This notion will be

especially important in the scientific contexts we consider for section 3.

2.2 Methods and convergence

In the formal learning theory framework, verification and refutation are defined as

success criteria on methods. A method is a map M : I → P(W ) from information states

to hypotheses. For a hypothesis h, we say that M deductively verifies h if and only if the

following conditions hold:

1. (Infallibility) For all E ∈ I(w), w ∈M(E).

2. (Convergence) w ∈ h iff there exists E ∈ I(w) such that M(F ) ⊆M(E) ⊆ h for all

F ∈ I(w) such that F ⊆ E.

Intuitively, Infallibility stipulates that the method’s outputs (conclusions) are

deductively entailed by its inputs (evidence), and Convergence stipulates that M will

converge to h (or some hypothesis entailing h) iff h is true. Similarly, M refutes h iff M
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verifies hc, M decides h iff it both verifies and refutes h, and a hypothesis is

verifiable/refutable/decidable iff there exists a method that verifies/refutes/decides it.

Returning to our example, the hypothesis h =“it will rain twice in the first week” is

clearly decidable by the following method: output h ∪ hc (the trivial hypothesis) for the

first seven observations, then count the number of 1’s and output h or hc accordingly.

Of course, Infallibility is too strict a requirement for nearly all scientific inquiry

(hence the problem of induction). By dropping this condition, however, we obtain a

weaker success criteria for M . Specifically, a method verifies h in the limit iff it satisfies

condition (2), and a hypothesis is limit verifiable iff such a method exists for it. Thus, we

can still deductively prove that a method will converge to the truth in the limit, even if

we cannot deductively verify a hypothesis in the short run. To illustrate this, consider

h= “it will rain only finitely many times.” This hypothesis is locally underdetermined,

and cannot be verified or refuted by any method: any finite evidence is consistent with a

world with finitely many days of rain, and a world with infinitely many. However, h is

limit-verifiable by the following method: if it didn’t rain today, output h, otherwise

output hc. In any world where h is true, there must exist a last day of rain, which means

that on this last day, M will correctly stabilize to h. Conversely, in a world where h is

false, M will either stabilize to hc (if it never stops raining) or never stabilize at all.

Therefore h is unverifiable, but verifiable in-the-limit.

While we shall not use them here, it is worth noting that all of these concepts have

precise topological analogues, and there exists a natural hierarchy of topological

properties that corresponds to the hierarchy of solvability criteria. This allows us to

better analyze the solvability of a problem in terms of its topological properties.

Furthermore, Genin and Kelly (2017) extend this reasoning to the statistical setting,
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deriving precise notions of statistical verifiability and statistical verifiability in-the-limit

in the same topological framework.

3 Challenges for epistemic reliability

In this section, we identify some features common to certain scientific contexts which

complicate the application or interpretation of epistemic reliability criteria. These

features are not unique to any field in particular, and our goal is not to exhaustively

characterize all such cases, or provide a general taxonomy of which disciplines are

amenable to epistemic reliability. However, the features we consider are especially

prevalent in contexts where the data under study are an output of human behavior or

decision making, such as economics, cognitive science, and decision sciences, and we

draw heavily on such fields- especially economics- for illustrative examples.

We identify two broadly defined kinds of challenges for epistemic reliability: technical

and conceptual. On the technical side, we identify features characteristic of (though not

unique to) human-based sciences which induce a level of underdetermination beyond the

scope of traditional epistemic reliability analysis. On the conceptual side, we explore

how hypotheses are conceived and defined in certain research contexts, which is difficult

to reconcile with the formalized notion of “hypothesis” in epistemic reliability. We

conclude that, depending on our perspective, applying epistemic reliability criteria in

contexts with one or more of these features is some combination of a) extremely difficult

or technically impossible, and/or b) conceptually nonsensical or pointless.
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3.1 Technical challenges: severe global underdetermination

Recall the motivating principle of “feasibility contextualism”: identify our epistemic

constraints (underdetermination), and succeed as well as possible given those

constraints. If we take “success in-the-limit” as our baseline success criterion, we can

apply this to problems that are, at worst, locally underdetermined. However, certain

features characteristic of human-focused research often induce a very strong form of

global underdetermination.

In order to make sense of these claims, however, we must first provide some minimal

characterization of the research contexts we want to address. For this purpose,

economics is an informative case to consider, as economists deal both with

human-generated data and mathematical models of the data-generating process. For an

economic realist, a model is an attempt to (approximately) represent some real-world

data-generating process, and we can at least make conceptual sense of epistemic

reliability. We can very generally represent an economic research problem as follows:

{Z}t∈T denotes a data stream where T indexes the time-steps of observation, and each

Zt corresponds to some panel of measurements. These measurements may be at the

micro-level, denoting the behavior of individual agents (e.g. firm or consumer), or the

macro-level, denoting aggregate measures or indices (e.g. GDP or unemployment). The

chosen set of measurements determines our information basis I. The hypothesis space H

is typically a model structure or class of models, posited by the economist. This, in

conjunction with any theoretical assumptions, determines a parameter space, and we can

equate each allowable parameterization with a possible world. The economist’s challenge

is to construct a method M : I → H which converges in-the-limit to the true
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model/model parameters, for some notion of convergence.

There are several sources of underdetermination common to economic research. The

most common is simply the low quality of available data: economic data, particularly at

the micro-level, is often biased and woefully incomplete (Friedman 1953; Windrum et al

2007). Furthermore, for reasons both practical and ethical, it is often extremely difficult

to generate useful experimental data in economics. Economists therefore have to rely on

incomplete, often biased, observational data alone, with only marginal control over the

data-collection process. This challenge is certainly not unique to economics:

psychologists and cognitive scientists face similar difficulties, particularly when the

variables of interest are unobservable cognitive states on which we cannot directly

intervene. The resulting difficulty of performing controlled experiments severely limits

the experimenters’ ability to infer causal connections between real-world variables; any

two causal models which induce the same joint probability distribution over observed

variables are empirically equivalent, and cannot be distinguished without controlled

experimentation. For some applications this may be sufficient, but many applications

(e.g. designing effective policy or medical interventions) require causal knowledge beyond

the scope of observational data.

A second source of underdetermination is the abundance of available models and

modeling paradigms. Statisticians and econometricians are endlessly innovative in

designing flexible model classes for time-series data, and the economist must often

choose between two or more empirically equivalent modeling paradigms (Haavelmo

1944). In some cases, a single model class will contain multiple (sometimes infinitely

many) empirically equivalent models; this occurs in econometrics, for example, when

using overcomplete dictionaries to estimate complex functions (e.g. Belloni and
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Chernozhukov 2011; Clyde and Wolpert 2007). Such issues also arise in models that

represent the unobservable inner workings of human decision processes, as is sometimes

the case in behavioral micro-models, and often the case in cognitive science and

psychology. As it is impossible for statistical inference to decide between observationally

equivalent hypotheses, global underdetermination is built into the hypothesis space itself.

A third source of underdetermination is the nature and prevalence of Ceteris parabis

clauses in economic hypotheses, which weaken a hypothesis of the form “all A are B” to

“all else being equal, all A are B.” There is some debate as to whether, and to what

degree, CP clauses occur in natural sciences (e.g. Cartwright 1995; Earman et al 1999),

but it is widely acknowledged that most economic hypotheses contain a CP clause, either

implicitly or explicitly (Cartwright 2002; Hausman 1988). In this context, we can

understand a CP clause as an auxiliary hypothesis of unknown dimension; the clause

specifies that our model is only true so long as certain conditions hold, but the exact

conditions are left unspecified. This results in a particularly bad instance of the

Duhem-Quine thesis: not only is the main hypothesis inextricably tied to a set of

auxiliary hypotheses, we can’t even specify what those auxiliary hypotheses are! A

thorough study of underdetermination in economics (Sawyer et al 1997) demonstrates

some technical implications of CP-clauses for hypothesis testing. In time-series

econometrics, for example, the modeler attempts to distinguish between “signals” that

capture the causal connections of interest, and “noise” that accounts for random, less

systematic causes that disturb the variables of interest. In such cases, it is possible for

noises to be stronger than signals, compounded by the possibility that the causal

mechanisms of interest may undergo structural changes themselves (Valente 2005).

Thus, the underspecified nature of auxiliary hypotheses in economics can make precise
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refutations impossible, and econometricians will sometimes respond to diagnostic test

failure with ad hoc adjustments like changing the estimation procedure, rather than

respecifying the theory (Hendry 1980).

3.2 Conceptual challenges: the nature and purpose of scientific

hypotheses

The previous analysis assumes a certain “realist” perspective to begin with: the view

that a model is an attempt to accurately represent some (often causal) aspect of the real

world. Yet many economists, cognitive scientists, psychologists, and associated

philosophers take a decidedly non-realist stance on the nature of hypotheses. Even

within economics, there are a wide range of “non-realist” perspectives on the status and

purpose of hypotheses, and we identify two recurring concerns among these views that

complicate the interpretation of epistemic reliability criteria on a conceptual level.

The first concern relates to the notion of hypothesis specifically. In epistemic

reliability, we assume a pre-specified set of relevant possibilities, and identify hypotheses

with subsets of possibilities. This notion, however, is difficult to reconcile with how

hypotheses and models are often discussed in economics 2. Robert Sugden (2000), for

2Hausman (1992, 70-82) distinguishes between a model - a system of definitions specifying a

set of predicates, concepts, and relations- and a theoretical hypothesis- a set of statements

asserting that the model’s assumptions are true of some part of the world. For our

purposes, we intentionally lump the two terms together: what Hausman understands

as models and theoretical hypotheses, we interpret as separable components of a more

general hypothesis space, consisting of a) the set of possible models and b) the set of all
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example, argues that an economic model is not a set of “real” possibilities, but a

counterfactual world constructed by the economist. Such an object says nothing about

the world; a model supports conceptual exploration, enabling deductive inferences about

what the world would look like if the assumptions in the model were true. Bridging the

gap between model-world and real-world requires a separate inductive reasoning process,

establishing the “robustness” of the model against violations or modifications of its

assumptions. A less formalized, more historicist viewpoint asserts that economic

hypotheses are, essentially, carefully crafted stories, which we use to explain historical

events and draw lessons for the future (e.g. McCloskey 1998, 23-28). Neither conception,

however, is particularly well suited to representation as subsets of a fixed set of relevant

possibilities. Even if we equate individual models with relevant possibilities, the

prevalence of CP-clauses, noise terms of unknown dimension, and other underspecified

simplifying assumptions makes it difficult to explicitly identify a model with a set of

possible worlds.

The second concern relates to how we evaluate hypotheses, independent of what

kinds of objects we understand them to be. Underlying epistemic reliability is the

assumption that, when faced with multiple hypotheses compatible with the same

evidence, our method for selecting one should be evaluated in terms of its

truth-conduciveness. In the formal setup, the truth conditions for a hypothesis are built

right into the framework- a hypothesis h is a set of possible worlds, and h is true iff it

contains the true world. But many scientists (especially economists) take a decidedly

instrumentalist stance towards their research, asserting that we cannot (or at least, have

ways to connect each model with some part of the real world. We may also think of this

as a set of paradigms and the set of possible hypotheses within each paradigm
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no reason to) establish firm truth conditions for a hypothesis. Rather, a hypothesis is a

tool used to achieve some end- typically prediction of future data- and the only metric

for evaluating a hypothesis is how well its predictions match with our observations (e.g.

Friedman 1953). There are (at least) two versions of instrumentalism; one version

maintains a sort of quasi-realism, granting that the assumptions of a hypothesis at least

refer to some part of the real world, but asserting that it does not matter whether those

assumptions are true. The alternative version denies that theoretical assumptions even

have any connection to things in the real world; in this view, the assumptions underlying

a model are simply a compact way of representing the model’s predictions. This latter

form of instrumentalism is also common in certain areas of cognitive modeling. For

example, many cognitive scientists take an “ideal Bayesian observer” approach to

modeling perception, in which the goal is not to accurately model the actual causal

processes underlying human cognition, but to provide an “as if” explanation at the

computational level (Jones & Love 2011). In either case, however, the instrumentalist is

unconcerned with assessing the “truth” of their hypotheses, and it therefore makes little

sense to evaluate the instrumentalist’s methods in terms of truth-conduciveness.

4 A framework for pragmatic reliability

Section 3 illustrates some obstacles to applying standard epistemic reliability criteria

that commonly occur in certain scientific contexts, particularly those that involve

modeling human-generated data. In this section, we propose a modified version of the

epistemic reliability framework which allows us to address these obstacles. Our

motivating view is that, even if we cannot make sense of truth conditions, and even if we
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are only interested in achieving pragmatic research goals, we can and should still be

concerned with the reliability of our methods. By generalizing the notions of

“hypothesis” and “truth-conditions,” realized in the same formal learning theory

framework, we obtain analogous definitions of pragmatic reliability and pragmatic

underdetermination. Whether our goals are pragmatic or purely epistemic, we can use

the same learning-theoretic framework to understand the achievability of those goals,

given our constraints, and identify inference methods with deductively guaranteed

convergence properties.

4.1 Goal-directed learning and reliability

As in the epistemic setting, we define a problem in terms of a set W of possible worlds,

and a set I of information states, with I(w) denoting all evidence that will eventually be

observed in w. Unlike the epistemic setting, the hypothesis space may be any abstract

representation space, and need not correspond to explicitly defined subsets of W (though

we continue to use the w-subscript to index the “true” world from which evidence is

generated). This allows the framework to accommodate non-realists who are

uncomfortable with the metaphysical implications of a known, predefined space of

possibilities. As before, we assume that evidence is observed in trials, using En to denote

the total evidence at the nth trial, and define a method M : I → H to be a map from

information states to hypotheses.

By allowing H to be any representation space, we lose the well-defined truth

conditions built into the epistemic framework. In order to evaluate a hypothesis, we

must understand a) the aims of our inquiry and b) how we may act on our inferences so
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as to reach those aims. That is, in order to model goal-directed learning, we must model

not only what knowledge can be acquired, but how that knowledge will be put to use.

To this end, we draw on the Adaptively Rational Learning (ARL) framework presented

in Wellen and Danks (2016). In this framework, a learner consists of an inference

method M and a decision mechanism D, which deterministically assigns each hypothesis

to an action. Actions can include decisions such as setting a price or choosing a medical

treatment, interventions such as imposing an incentive or penalty, or inferences such as

predictions about the future.

We assume that learning is motivated by some research goal G, represented as a

value function VG(a, w), which assesses how well our goal is satisfied by a given action in

a given world. We are intentionally vague about the nature of the goal, beyond its

operationalization as a value function. Research may be motivated by data-driven goals

(e.g. prediction), policy goals (e.g. optimizing interest rates, identifying effective tax

interventions), or more value-laden social goals, in the vein of John Dewey’s pragmatist

view of science (Dewey & McDermott 1973). Goals may also be quantitatively evaluated

(e.g. an explicit measure of forecasting accuracy) or qualitatively evaluated (e.g.

replicating some qualitative, “stylized” facts about the data). We can also represent

purely epistemic goals, so long as we have some way to make sense of “truth conditions”

for our hypotheses3. Importantly, goals may be strict, requiring an exact solution to

some optimization problem, or approximate, only requiring a solution within some wide

margin of error. While we shall not consider specific examples here, sufficiently weak

3If each h ∈ H does correspond to a known subset of W , we can define D(h) to output

the subset of W to which h corresponds, and define VG(D(h), w) = 1 iff w ∈ D(h). We

can therefore recover the epistemic setting from the pragmatic setting.
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goals may permit short-run performance guarantees (just as sufficiently tractable

epistemic problems may permit short-run convergence guarantees). Thus, our notion of

goal here is very general, and the only necessary criterion is that the goal can be

evaluated through some value function.

Given this notation, we define an environmental learning problem as

P = {W, I,H,A, D, VG}, where A is the set of possible actions, D is the decision

mechanism, and VG is a goal, operationalized as a value function. For the purpose of this

discussion, we assume that the decision mechanism is fixed throughout learning, and

deterministically outputs a best action in pursuit of the goal. For simplicity of

presentation, we also assume that VG is binary-valued. With this established, we can

define the following pragmatic reliability criteria:

Definition 4.1. For a hypothesis h ∈ H, a method M pragmatically verifies h in the

limit under D4 if and only if for every world w ∈ W , M converges to h in w iff h

induces a goal-satisfying action in w under D. Formally, this is written as

∀w ∈ W ((∃E ∈ I(w)) ((∀F ⊆ E)(M(F ) = M(E) = h)))↔ VG(D(h), w) = 1 (4.2)

Similarly, M pragmatically solves P in the limit (under D) if and only if for every world

w ∈ W , there exists an information state E ∈ I(w) such that

1. M(E) = h for some h which satisfies VG(D(h), w) = 1, and

2. For all information states F ⊆ E, D(M(F )) = D(h).

Intuitively, M pragmatically verifies h so long as it only converges to h in worlds

4For notation purposes, we drop the “under D” when there is no chance for confusion
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where h induces the best possible action, and M pragmatically solves P so long as it

converges to a hypothesis which induces the best possible action in every possible world.

Thus, we can extend the notion of reliability in-the-limit to a case where hypotheses may

not be representable as subsets of possible worlds, and/or we cannot or have no need to

make sense of “truth-conduciveness.” Even in such cases, we can still sensibly talk about

convergence in-the-limit to a goal-satisfying hypothesis, given our goals and constraints.

4.2 Pragmatic underdetermination and the coarsening

operation

While the above definitions extend the notion of reliability beyond a strictly epistemic

setting, they do not address the problem of underdetermination. We reviewed the

epistemic notion of underdetermination in sections 2 and 3, but when we add pragmatic

constraints to the framework, we must also consider a pragmatic notion of

underdetermination. In particular, pragmatic underdetermination occurs when the

decision mechanism assigns two different hypotheses to the same action. That is, if two

different hypotheses result in the same plan of action for achieving a particular goal,

then there is no pragmatic reason to prefer one hypothesis over the other. Just as no

method can limit-verify a hypothesis that is globally underdetermined, no method can

pragmatically limit-verify a hypothesis that is pragmatically underdetermined, per

definition 4.1. However, there is a principled way to extract a coarser, but tractable

problem from a pragmatically underdetermined one.

To this end, let P = {W, I,H,A, D, VG} be an environmental learning problem with

deterministic D, and let ∼D be a relation over H defined as h1 ∼D h2 ↔ D(h1) = D(h2)

20



(following Wellen & Danks 2016). This relation induces a partition of the original

hypothesis space into pragmatic indistinguishability classes, as any two hypotheses

within the same cell result in the same action under D. We can then transform P into a

new problem P̂ = {W, I, Ĥ,A, D, VG} where Ĥ is the set of equivalence classes induced

under ∼D. Since these equivalence classes group together hypotheses that map to the

same action, any two hypotheses from two distinct classes will map to distinct actions.

Thus, the coarsened problem P̂ eliminates the pragmatic underdetermination faced by

the original problem P .

The coarsening operation is neither new nor unique to the pragmatic learning

paradigm. This general principle of extracting coarser, but more tractable problems from

finer ones is used, whether implicitly or explicitly, to justify scientific practices across a

range of domains. A recent example in causation is Causal Feature Learning (Chalupka

et al 2017), which addresses the problem of discovering high-level macro-causes from

non-experimental micro-variable data. The authors endorse the view that

“macrovariables should be thought of as task-specific,” and propose a method for

partitioning a space of microvariables into a hypothesis space of macro-causes, with

respect to some set of target outputs. The operation underlying this framework groups

together micro-variables which have indistinguishable effects on the output. This is an

explicit application of the coarsening operation to construct an optimal hypothesis space

for identifying macro-causes of a set of effects.

A less explicit, more historical example of coarsening is seen in the first sections of

Science and Human Behavior, wherein Skinner outlines and justifies a framework for

behaviorism (1953, 23-39). The purpose of behaviorism, Skinner writes, is to provide a

“functional analysis” of behavior; that is, an understanding of the “external variables of
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which behavior is a function,” and how we can manipulate those external variables to

control that behavior. The relevant hypothesis space is therefore a set of possible

functions relating external circumstances to behavioral outputs. While Skinner does not

formally specify all such functions, he characterizes a common “causal chain consisting of

three links: 1) an operation performed upon the organism from without- for example,

water deprivation, 2) an inner condition- for example physiological or psychic thirst, and

3) a kind of behavior- for example, drinking.” Under this view, it might seem that a

natural characteristic of any plausible hypothesis would be separability into two

functions f = g ◦ h: one mapping external conditions to hidden internal states, one

mapping internal states to actions. But, as Skinner points out, “the second link is useless

in the control of behavior unless we can manipulate it.” That is, if g, h and g′, h′ are two

distinct pairs of functions which, when composed, induce the same map from external

inputs to behavioral outputs, then the hypotheses g ◦ h and g′ ◦ h′ are indistinguishable

with respect to the goal of behavioral analysis. The solution, therefore, is to coarsen our

hypothesis space: we group together all pairs of functions which result in the same

input-output map, and simply “examine the third link as a function of the first.” Thus,

we can interpret Skinner’s justification for the “behaviorist” hypothesis space as the

pragmatic indistinguishability classes of some more general space of cognitive behavior

functions, taken with respect to the goal of predicting and controlling behavior.

4.3 Epistemic versus pragmatic underdetermination

In our framework, a problem may face both pragmatic and epistemic

underdetermination, and it is important to understand how these notions are distinct
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and how they relate to each other. Intuitively, epistemic underdetermination occurs

when our epistemic constraints (i.e. the available data and possible answers under

consideration) do not allow us to distinguish between two or more hypotheses.

Pragmatic underdetermination occurs when our pragmatic constraints (goals, available

actions, decision mechanism, etc.) do not require us to distinguish between two or more

hypotheses. Whereas the traditional reliability framework deals with what we can learn

from a given data source, the pragmatic extension deals with what we ought to learn.

The latter, normative question is, of course, influenced by both our epistemic and

pragmatic constraints: we ought not try to learn anything we cannot learn, and we ought

not try to learn anything we need not learn. Thus, determining what we ought to learn

requires a framework that can accommodate both kinds of constraints, which we achieve

by relaxing the notions of hypothesis and truth condition, and applying a coarsening

operation to the hypothesis space.

To better illustrate these principles, and how they help accommodate the issues

raised in section 3, we shall consider some variations of the toy problem used as an

example in the introduction. Recall the original problem: an urn contains some unknown

number of red and/or blue marbles, and we observe a sequence of draws. In each step of

the sequence, we observe either a null draw N (with probability 1 if the urn is empty, or

probability 1/2 if the urn is non-empty), or a single marble drawn uniformly at random

from those remaining in the urn. The original problem is to infer the initial contents of

the urn from this sequence, and we can represent the hypothesis space H as the set of all

ordered pairs of non-negative integers. As we previously explained, this problem is

locally, but not globally underdetermined. In particular, this problem is solved in the

limit by the method M(E) = (#r,#b), where #r and #b are the number of red and blue
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marbles in the data sequence E, respectively.

Now consider a pragmatic extension of this problem: we are in a room with four

levers, corresponding to the following four possibilities: a) the urn is (initially) empty, b)

the urn contains some red and no blue marbles, c) the urn contains some blue and no red

marbles, and d) the urn contains some red and some blue marbles. The hypothesis space

remains unchanged, but now we must map our hypothesis to an action, and choose one

of the four levers. If we choose the correct lever we get a reward, otherwise we get no

reward. This problem faces pragmatic underdetermination: there are multiple distinct

hypotheses which map to the same action (e.g. (3, 0) and (4, 0) both map to lever b),

and we therefore have no reason to distinguish between these hypotheses. We can

therefore eliminate this pragmatic underdetermination by partitioning the original

hypothesis space into four cells, one corresponding to each action. This allows us to

define a method M̂ which pragmatically solves the coarsened problem Ĥ in the limit.

Now consider the original problem, and suppose that the data stream has been

corrupted, as is often the case in sciences with human-generated data. In particular,

suppose that the first draw of the sequence is obscured, so that we do not know whether

the first draw was R,B, or N . In this case, the problem faces epistemic

underdetermination: because we cannot observe the first draw, we cannot deduce the

original contents of the urn, even if we could observe the complete data stream at once

(minus the corrupted draw). This is a case in which succeeding as well as necessary

surpasses what is possible. However, we can still apply the same principles to identify

the strongest weakening of the original problem which is solvable in the limit. In

particular, suppose that the full (corrupted) data stream contains #r red marbles and

#b blue marbles. As we cannot observe the first draw, this evidence is compatible with

24



three possibilities: (#r,#b), (#r + 1,#b), and (#r,#b+ 1). Thus, if we define a new

hypothesis space by grouping hypotheses into the appropriate triples, we obtain a weaker

version of the original problem which is still solvable in the limit by the method

M(E) = {(#r,#b), (#r + 1,#b), (#r,#b+ 1)} (i.e. the method that outputs a

disjunction of the three hypotheses). While this method is not guaranteed to converge to

the correct singular hypothesis, it is guaranteed to converge to a set of three possibilities

which contains the correct hypothesis, which is the best possible outcome, given our

epistemic constraints.

This helps illustrate the core principles of our framework, and how they apply to the

issues discussed in section three. The epistemic part of the framework determines what

can and cannot be reliably learned, and motivates the feasibility contextualism principle:

given an inductive learning problem, identify your epistemic constraints, then succeed as

well as possible (Kelly 2014). The pragmatic setting, however, provides additional

criteria for justifying inferences. In particular, the decision function and goal determine

which distinctions are necessary to learn in order to satisfy the goal. Depending on the

goal, then, succeeding “as well as possible” may be unnecessary, and given limited

resources and finite time, learning more than necessary is often a luxury we cannot

afford. We can therefore motivate our pragmatic reliability framework with a modified

feasibility contextualism principle: identify your epistemic constraints, then succeed as

well as necessary5.

5And, if what is necessary surpasses what is possible, we apply these principles to identify

the strongest weakened version of the problem that is solvable
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5 Prediction and empirical adequacy

A common goal in scientific research, especially in human-focused sciences like

economics, is the prediction of future phenomena. Of course, prediction plays an

important role in any science, but many economists and philosophers of economics in

particular take the primary purpose of their field to be empirical prediction (e.g.

Friedman 1953). Our pragmatic reliability framework is compatible with any research

goal representable as a value function, but in the case where our goal is prediction, the

pragmatic and epistemic notions of underdetermination coincide in an important way.

5.1 Prediction as a research goal

When our goal is prediction, the decision mechanism D outputs a predicted information

state D(h) ∈ I6. Even if a hypothesis h does not explicitly correspond to a subset of W ,

we can identify the output of D with the set of possibilities compatible with that

prediction (even if we don’t explicitly know what those possibilities are).

We refer to D as completely predictive if, for every h, D(h) outputs a complete

information state for some world w ∈ W . Formally, we define the total information in w

to be Tot(w) =
⋂

E∈I(w)E, and the complete information in w to be

Com(w) = {w′ ∈ W |Tot(w′) = Tot(w)}. Intuitively, if we have the total data in w, this

means that we have all of the available evidence in w. If we have the complete data in w,

this means that we have all of the available evidence in w, and we know that we have all

6We assume that D outputs an element of I because I denotes all evidence that is even-

tually observed, and in order to validate our predictions, we must eventually observe the

true value of whatever we predicted
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of the available evidence in w. This distinction is subtle, but important, so it is worth

briefly considering an example in which the distinction is relevant.

To this end, suppose that W is the set of all partial recursive functions from N to N,

and the data in each world f consist of input/output pairs (n, f(n)). Let f be any such

function defined on every input except 1, and let f ′ be a function defined on every input

in N which is identical to f on all inputs not equal to 1 (i.e. f ′(n) = f(n) for all n 6= 1).

The total data in world f is the set of all input/output pairs Tot(f) = {(n, f(n))|n 6= 1},

and the total data in world f ′ is equal to Tot(f) ∪ {(1, f ′(1)}. Thus, the total data in

world f is compatible with world f ′: even if we observed every input/output pair in

world f , this would not be sufficient to rule out the possibility that we are in world f ′.

If, however, we observe all the evidence in f , and we know that this is all the available

evidence, then we could rule out f ′, as we would know that the evidence is missing the

extra input/output pair which distinguishes f ′ from f . Thus, this illustrates a problem

in which the total data is insufficient to distinguish f from f ′, but the complete data is

sufficient to make this distinction.

A practical example of a completely predictive mechanism is a linear regression

model. In function-estimation, the data consist of input/output pairs (X, Y ), possible

worlds are functions relating X to Y , and the complete data in any world F is the full

list of input-output pairs (X,F (X)). For a hypothesis with parameters β, we can predict

the value of Y from any value of X by computing Y = βX. Therefore we can generate

all of the input-output pairs, which constitute the complete data in some world.

With these formalizations, we can define empirical adequacy as follows: if D is

completely predictive, we define the oracle goal Goracle by the value function VG(D(h), w)

which outputs 1 if and only if D(h) = Com(w). Intuitively, this specifies that under D, h
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is an oracle for w; that is, D(h) predicts everything we will eventually observe in w, and

nothing we won’t. This corresponds to van Fraassen’s notion of empirical adequacy (van

Fraassen 1980), which we can now operationalize as a research goal.

5.2 Pragmatic and epistemic underdetermination

When D is completely predictive, the resulting indistinguishability classes coincide in an

important way with the epistemic notion of global underdetermination. In particular, for

two hypotheses h1, h2 ⊂ W (in the epistemic sense) we define h1 and h2 to be

epistemically indistinguishable if and only if the problem of distinguishing between them

is globally underdetermined by available data. Formally, h1 and h2 are epistemically

indistinguishable if and only if for any w ∈ W ,

h1 ∩ Tot(w) 6= ∅ ↔ h2 ∩ Tot(w) 6= ∅ (5.1)

Recalling that h1 and h2 are pragmatically indistinguishable if and only if

D(h1) = D(h2), we obtain the following result:

Theorem 5.2. 7 Suppose D : H → I is completely predictive. Then h1 and h2 are

pragmatically indistinguishable under D if and only if D(h1) and D(h2) are epistemically

indistinguishable.

Note that in the pragmatic framework, h1 and h2 are simply points in some

representation space, and may have no explicit relation to subsets of W . If D is a

prediction-generator, however, then D(h) is an information state, which we can equate

7See appendix A for proof
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with the set of possibilities in which that information would be observed (even if we do

not explicitly know what those possibilities are). Under D, the representation space H

induces a corresponding hypothesis space of predictions D(H). The above theorem

shows that if D is completely predictive, the epistemic indistinguishability classes of

D(H) are exactly the pragmatic indistinguishability classes of H, mapped under D.

A corollary of this theorem better illustrates the relation between empirical adequacy

(as a pragmatic goal) and “truth-seeking” (as an epistemic goal):

Corollary 5.3. 8 Let P = (W, I,H, D,A, Goracle) be an environmental learning problem,

where D is completely predictive and Goracle is empirical adequacy. Let Ĥ be the

hypothesis space of indistinguishability classes induced by D. Then

1. If Q = {A1, A2, . . .} is a question that is limit-solvable in every possible world (in

the epistemic sense), then Q must be a coarsening of D(Ĥ).

2. P̂ = (W, I, Ĥ, D,A, Goracle) is the hardest problem to limit-solve (in the pragmatic

sense). That is, converging to a solution for Goracle requires at least as much data

as converging to a solution for any other pragmatically solvable problem on (W, I).

Intuitively, this corollary gives us a dual characterization of empirical adequacy.

Under the epistemic view, empirical adequacy is the strongest problem that is

limit-solvable in every possible world. Under the pragmatic view, empirical adequacy is

the hardest problem to pragmatically solve in the limit. To put this another way, recall

the principle of feasibility contextualism (identify your epistemic constraints, then

succeed as well as possible), and our pragmatic modification (identify your epistemic

8See appendix A for proof
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constraints, then succeed as well as necessary). In this language, the above corollary

shows that, when our goal is empirical adequacy, succeeding as well as necessary is the

same as succeeding as well as possible. We can therefore think of empirical adequacy as

a sort of boundary point between epistemically (i.e. truth-seeking) and pragmatically

(i.e. goal-satisyfing) solvable problems.

6 Discussion and future work

As argued here and elsewhere (e.g. Kelly 1996, 2000), epistemic reliability offers a

non-confirmation based alternative to the problem of induction. Rather than

characterizing a weakened entailment relation between hypothesis and evidence,

epistemic reliability theorists seek deductive guarantees of in-the-limit success for

hypothesis selection methods (for a spectrum of definitions of success). As we show,

however, epistemic reliability is difficult to apply or make sense of in certain scientific

contexts. For non-realists and instrumentalists in such fields, hypotheses are not

identified with subsets possible worlds, and lack the well-defined truth conditions that

ground the epistemic notion of success. Even from a realist’s perspective, there are many

cases in which the level of global underdetermination goes beyond the scope of standard

epistemic reliability. In many human-focused sciences, global underdetermination often

results from the shoddy quality of the data, which is usually noisy, incomplete, and

non-experimental, or from overcomplete hypothesis spaces, and hypotheses involving

latent, unobservable entities.

When a learner faces this level of underdetermination, the situation decomposes into

two problems, one pragmatic and one purely epistemic. The epistemic problem is
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determining what can be reliably learned from the available data stream. The pragmatic

problem is determining what we ought to learn, and how we ought to learn it, given our

pragmatic goals and constraints. By extending the epistemic framework with

non-epistemic goals and actions, we obtain a framework in which both problems can be

addressed simultaneously. This provides analogous notions of pragmatic reliability and

pragmatic underdetermination, and a principled method for extracting solvable problems

from badly underdetermined ones.

Finally, our framework helps clarify the relation between purely epistemic goals (i.e.

identifying the true hypothesis) and data-driven pragmatic research goals (i.e. prediction

of future phenomena). By operationalizing empirical adequacy as a research goal, we can

characterize it as both the strongest problem that can be solved in the limit (in the

epistemic sense), as well as the hardest problem to solve in the limit (in the pragmatic

sense). This dual characterization of empirical adequacy suggests two things: first, we

can think of empirical adequacy as a sort of boundary point between pragmatic and

purely epistemic research goals. Second, it points to empirical adequacy as a default

learning goal (in the absence of any more specific pragmatic goal) whenever an inductive

inference problem faces severe global underdetermination. Because an empirically

adequate hypothesis correctly predicts all possible future observations, converging to an

empirically adequate hypothesis allows us to “fast-forward” the data stream, and use

that predicted future data to identify pragmatically correct hypotheses for any “easier”

pragmatic goal. We can more intuitively summarize this with the following normative

principle: if the total data do not entail the correct answer, the next best solution is to

identify an answer which correctly entails the total data. This helps justify the

instrumentalist viewpoint, particularly common in fields like economics, that the goal of
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scientific research just is empirical prediction. While this principle does not justify the

instrumentalist viewpoint in all contexts, it does justify prediction as a default research

goal in any context that faces the level of global underdetermination we describe above.

In future work, it will be important to consider the role of resource constraints in

scientific inquiry. All real-world research is bounded by resource constraints- funding,

time, computational power, etc.- and realistically modeling reliable, environment-specific

inquiry requires accounting for such constraints. There are several ways in which

resource constraints figure into our framework. First, applying the coarsening operator

requires computational resources, and in some cases, computing the exact pragmatic

equivalence classes may be intractable. Thus, when faced with a globally

underdetermined inference problem, there is an inherent tradeoff between the level of

redundancy or overcompleteness of a hypothesis space, and the computational cost of

applying the coarsening operator. In such cases, we must better understand the

computational cost of coarsening our hypothesis space (i.e. eliminating empirically

redundant hypotheses) and the benefits or drawbacks of an overcomplete hypothesis

space. In some applications (e.g. function-learning with neural networks), a somewhat

overcomplete hypothesis space is desirable, as it enables faster and more robust

convergence (Lewicki, M. S. & Sejnowski 2000). Thus, applying pragmatic reliability

criteria requires context-specific analysis of this tradeoff.

Another critical point to address is the relevance of in-the-limit guarantees for

pragmatic decision makers. While it may be reassuring to know that a method is

guaranteed to eventually output the correct answer, such a method may not tell us how

to act in the short run. Thus, we will often need something stronger that a convergence

guarantee for a method to be useful for pragmatic inference problems. In practice,
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scientists often appeal to some sort of simplicity principle (e.g. Bayesian simplicity,

minimum description length, etc.) when forced to choose between multiple hypotheses

compatible with the same evidence. In the traditional epistemic reliability framework,

simplicity criteria are interpreted as stronger convergence properties on methods, defined

in terms of the number of worst-case-scenario revisions that a method may require before

converging to the truth. Genin & Kelly (2015) provide precise formulations of several

such criteria, demonstrating that we can often derive bounds on the number of errors a

method can make, and define the “simplest” method to be the one that is susceptible to

the fewest forcible errors. This provides more direct guidelines and justification for

scientists with short-term concerns.

In the pragmatic setting, however, it may be insufficient to define simplicity in terms

of the total number of revisions a method can make in a worst-case-scenario. This is

especially true when we consider inference under resource constraints, as different

revisions may impose different costs. That is, the resource cost of transitioning from

hypothesis h1 to h2 may be different from the cost of transitioning from h1 to h3, so it is

not sufficient to assume that all revisions impose the same cost, as in the epistemic

framework. In function learning with neural networks, for example, the cost of

transitioning from a network h1 to h2 (with the same topology and slightly different

weights) may be very different than the cost of transitioning from h1 to h3 (say, a

network with a different topology and different weights). Thus, the pragmatic reliability

theorist’s notion of simplicity may be understood in terms of minimizing the total,

long-term cost of all revisions required to achieve the goal, rather than the raw number

of revisions required to arrive at the truth.
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7 Appendix A

Lemma 7.1. For any w,w′ ∈ W , w′ ∈ Tot(w)⇒ Tot(w′) ⊆ Tot(w).

Proof. By definition, Tot(w) =
⋂

E∈I(w)E, so w′ ∈ Tot(w) implies w′ ∈ E for all

E ∈ I(w). Furthermore, I(w′) = {E ∈ I|w′ ∈ E}, which implies I(w) ⊆ I(w′). Since

Tot(w′) =
⋂

E∈I(w′)E, we obtain Tot(w′) ⊆ Tot(w).

Theorem 7.2. If D is completely predictive, then for any h1, h2 ∈ H, h1 and h2 are

pragmatically indistinguishable iff D(h1) and D(h2) are epistemically indistinguishable.

Proof. ⇒ is trivial: if h1 and h2 are pragmatically indistinguishable, then

D(h1) = D(h2), so they contain the same possible worlds, and are therefore epistemically

indistinguishable. Conversely, suppose D(h1) and D(h2) are epistemically

indistinguishable. By definition, there must exist w1, w2 ∈ W such that

D(h1) = Com(w1) and D(h2) = Com(w2). Pick any w ∈ D(h1). By definition, we must

have Tot(w) = Tot(w1). Furthermore, since w ∈ Tot(w), we have Tot(w) ∩D(h1) 6= ∅,

and by epistemic indistinguishability we must have Tot(w) ∩D(h2) 6= ∅. So there must

exist w′ ∈ Tot(w) such that w′ ∈ D(h2), and by the definition of D(h2), we must also

have Tot(w′) = Tot(w2). Lastly, since w′ ∈ Tot(w), we must have Tot(w′) ⊆ Tot(w) by

lemma 7.1. Putting this together yields

Tot(w2) = Tot(w′) ⊆ Tot(w) = Tot(w1)⇒ Tot(w2) ⊆ Tot(w1)

Similarly, if we repeat the above steps for an arbitrary w ∈ D(h2), we obtain

Tot(w1) ⊆ Tot(w2). Thus we get
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Tot(w1) = Tot(w2)⇒ D(h1) = Com(w1) = Com(w2) = D(h2), so h1 and h2 are

pragmatically indistinguishable.

Corollary 7.3. Let P = (W, I,H, D,A, Goracle) be an environmental learning problem,

where D is completely predictive and Goracle is empirical adequacy. Let Ĥ be the

indistinguishability classes induced by D. Then

1. If Q = {A1, A2, . . .} is is limit-solvable in every possible world (in the epistemic

sense), then Q must be a coarsening of D(Ĥ).

2. P̂ = (W, I, Ĥ, D,A, Goracle) is the hardest problem to limit-solve (in the pragmatic

sense). That is, converging to a solution for Goracle requires at least as much data

as converging to a solution for any other pragmatically solvable problem on (W, I).

Proof. 1. Define w ∼ w′ if and only if for all w′′ ∈ W ,

Tot(w) ∩ Tot(w′′) 6= ∅ ↔ Tot(w′) ∩ Tot(w′′) 6= ∅. Then we can recover D(Ĥ) as the

set of equivalence classes of W under this equivalence relation. Suppose

Q = {A1, A2, . . .} is solvable in the limit in every possible world. Then each Ai

must be a limit-verifiable hypothesis, so there must exist M such that, for all

w ∈ W , M converges to Ai in w if and only if w ∈ Ai. Suppose that for some

w ∈ Ai, there exists w′ 6= w such that w′ ∼ w, and w′ /∈ Ai. Since Ai is limit

verifiable and w ∈ Ai, there must exist E ∈ I(w) such that M(E) |= Ai and for all

∅ 6= F ⊆ E, M(F ) = M(E). Let E ∈ I(w) be any information state satisfying

these criteria. Then Tot(w) ⊆ E. However, if w and w′ are epistemically

indistinguishable, there must exist a nonempty E ′ ⊆ Tot(w) ∩ Tot(w′), which will

eventually be observed in w′. Then E ′ ⊆ Tot(w) ⊆ E, so by the second condition,
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we must have M(E ′) = M(E) |= Ai. Therefore M will incorrectly verify Ai in w′.

Thus, if Ai is limit verifiable, then for any w ∈ Ai and any w′ ∼ w, we must have

w′ ∈ Ai as well. Thus for every w ∈ Ai, Ai must contain the epistemic

indistinguishability class of w. Since these classes are exactly the cells of D(Ĥ),

each Ai must be a union of cells in D(Ĥ), so Q must be a coarsening of D(Ĥ).

2. Let M be a method which pragmatically solves P in the limit. Let D′,A′, G′ be

any other pragmatically limit-solvable problem on the same (W, I,H), which is

solved by some M ′. For any w ∈ W , suppose VG(w,D(h)) = 1. Then

D(h) = Com(w). Since M ′ solves G′ in the limit, there must exist some E ∈ I(w)

such that VG′(D′(M ′(E)), w) = 1, and for all F ⊆ E, M ′(F ) = M ′(E). Since

D(h) = Com(w), D(h) ⊆ E, so M ′(D(h)) = M ′(E). Thus, if h is a solution for

Goracle, and M ′ solves G′ in the limit under D′, then D′(M ′(D(h))) is a solution for

G′. Thus, Goracle requires at least as much data to converge to a solution as any

other pragmatically solvable problem on (W, I,H).
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