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This paper develops a number of quantum mechanical characterisations of Stern-Gerlach. It 

discusses areas of vagueness in their formulation. Philosophers criticise quantum mechanics for 

unacceptable vagueness in connection with the measurement problem. The quantum formulation 

problems identified by this paper go beyond the locus of philosophical criticism. It concludes with an 

open question, are some areas of vagueness in quantum mechanics more acceptable philosophically 

than others and, if so, why?  

 

I. INTRODUCTION 

“Stern-Gerlach has played an important role in the philosophy of quantum mechanics where it 

serves as the prototype…it is conceptually very clean”, according to Griffiths1 in his Introduction to 

Quantum Mechanics. 

Maudlin, in Philosophy of Physics: Quantum Theory, says,2 “Quantum theory is a recipe or 

prescription using somewhat vague terms.” and elaborates,3 “the quantum recipe has three distinct 

parts” which can be summarised in fundamental terms as: 

1. State rules: how a state is assigned to a system 

2. Transition rules: how the state changes as a result of interactions (Schrodinger’s equation) 

3. Measurement rules: how predictions are extracted about observable phenomena 

Part 3 is unacceptably vague for philosophers,4 “what we want instead is a theory – a precise 

articulation” and this is the central problem of significance to them,5“often referred to as the 

measurement problem”.   

Using the example of the orthodox treatment of the Stern-Gerlach experiment, he criticises the 

simplification and lack of rigor, saying it,6 “short circuits all the gritty physics” and what’s required is, 

“a physical characterisation of the situation.”  

This paper attempts such a gritty physical characterisation of Stern-Gerlach. In doing so it focuses on 

rules 1 and 2, given that rule 3 has been extensively studies by philosophers. It discusses whether 

Rules 1 and 2 are also vague. It concludes with the open question, where vagueness is encountered 

for rules 1 and 2 why do the quantum philosophers neglect to discuss the issue?  

II. A SIMPLIFIED QUANTUM MECHANICAL CALCULATION 

This section sets out a simplified calculation, a toy model that misses out many of the details, which 

helps develop the structure and logic. Even a simplified calculation is challenging. Platt7 comments 

that “While the Stern-Gerlach experiment is an old and familiar problem, no analysis is presented in 

the pedagogical literature using modern quantum mechanical techniques.” He and several other 

authors8 9 10 11 12 report various ways in which the atom-magnet interaction can be calculated using 

quantum mechanics. These calculations all differ from one another in materially significant ways.  

The common ingredients of a simplified quantum mechanical calculation are: a state-space for the 

“silver atom”; a formula for the silver atom’s Hamiltonian; an initial state for the silver atom; time 

between the atom entering and exiting the magnet; time between the atom exiting the magnet and 

arriving at the detector. An example of a calculation using these ingredients is set out below. 
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A likely structure for the state-space can be guessed. Position is one observable and its eigenstates 

are labelled by x, y and z co-ordinates; alternatively, a momentum representation can be used 

interchangeably with position, to facilitate with the calculations. 

The other observable operator is the magnetic moment µ̂ of silver. Its eigenstates will be assumed to 

take on two values, represented by a Pauli spinor, and µ̂ = µ ϭ̂z. The structure of a state vector on the 

momentum basis is:  

|Ψ(t)> = U(px,py,pz,t) 
 D(px,py,pz,t) 

The field inside the Stern-Gerlach magnet has the form (Platt13): 

Bx = 0 ; By = βy ; Bz = B0 - βẑ 

The Hamiltonian can be constructed using classical mechanics and it has the form: 

Ĥ = p̂2/2MAg + µAg [ϭ̂x Bx(x,y,z) + ϭ̂y By(x,y,z) + ϭ̂z Bz(x,y,z)]   

where the constant MAg is the mass of the silver atom and µAg is its magnetic moment. A further 

approximation is useful to facilitate an analytical solution - only the Bz component is retained. The 

equations of motion then become separable and U and D have their own Hamiltonians: 

ĤU  = p̂2/2MAg + µAg (B0 – βẑ)   

ĤD  = p̂2/2MAg - µAg (B0 – βẑ)  

We now make use of the commutation relations:  

 [ẑ,p̂z] = i ℏ 

and hence: 

[Ĥ,p̂x] = [Ĥ,p̂y] = 0 

[ĤU,p̂z] = - µAg β i ℏ 

[ĤD,p̂z] = + µAg β i ℏ 

from which it is concluded that p̂x and p̂y are constants of motion, and p̂z evolves while inside the 

magnet.  

The following assumptions about initial conditions are made:  

• initial position of the wavepacket is <x> = <y> = <z> = 0 (at the entry point of the magnet) 

• initial momentum of the wavepacket is <p̂x> = <p̂z> = 0;  <p̂y>= MAgVy   

• spread of the wavepacket in space and momentum is macroscopically small 

For the U component, motion inside the magnet is calculated as follows:  

d<p̂z>/dt = - µAg β  

d<ẑ>/dt = <p̂z>/MAg 

d<ŷ>/dt = <p̂y>/MAg = Vy 
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<ŷ> = Vy t  

<ẑ> = - µAg β t2/2MAg = - <ŷ>2 µAg β / 2Vy
2 MAg 

µAg = - <ẑ> 2Vy
2 MAg / <ŷ>2 β 

The interaction Hamiltonian responsible for the motion is consists of three mathematical terms: the 

displacement of the silver, the magnetic moment of the silver and the field gradient of the magnet. 

Ĥint  =  -ẑAg µ̂Ag β 

Wigner14 interprets the situation as follows: “The experiment illustrates the statistical correlation 

between the state of the apparatus (the position coordinate) and the state of the object (the spin).” 

Wigner’s logic is shown schematically in Figure 2. 

Figure 2: Wigner’s view of the Stern-Gerlach interaction 

 

This raises a question as to what exactly is an interaction? Is Wigner arguing that the presence in the 

Hamiltonian of operators for position and magnetic moment of the silver mean that the silver is 

“interacting” with itself? 

An alternative view would be to include the magnet in the interaction, as illustrated in Figure 3. This 

formulation of the interaction would enable an alternative method of measurement. If the magnet 

were to be measured after the interaction, for example by an instrument sensitive to forces at the 

atomic scale, then the deflection of the magnet |zout> could be used to extract information about 

the state of the silver atom before the interaction. 

 

Figure 3: Interaction between silver and magnet 
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III. MAKING THE CALCULATIONS MORE COMPLETE 

The previous calculations are an incomplete representation of the Stern-Gerlach experiment. This 

section considers a range of factors that may need to be considered to make the simplified 

calculation in section III more complete and, in so doing, increase its accuracy.  

An atom is not a particle, but a composite object. The first refinement is to model it as 47 electrons 

orbiting a nucleus. The electrons arrange themselves into a shell structure: 2 8 18 18 1. The orbital 

angular momentum is 0. The nucleus and each of the electrons has spin ½; the total angular 

momentum of the atom in its ground state is therefore 0 (with the valence electron spin opposite to 

the nuclear spin) or 1 (with spins aligned). The magnetic moment of the valence electron 5s1 couples 

with the Stern-Gerlach magnet; all other electrons have contributions that cancel. So the experiment 

can be used to measure the spin of the valence electron but it does not enable the angular 

momentum of the atom itself to be measured. 

The second refinement is to model the structure of the nucleus. Take the nucleus of the isotope 
107

47Ag which is a composite of 47 protons and 60 neutrons. They are bound together by the residual 

strong force, and its description is largely empirical, with constants determined by experimental 

data. Because the nucleus has an odd number of particles, the magnetic moments of the nucleons 

do not cancel and there is a net magnetic moment for the nucleus. This nuclear magnetic moment 

couples with the Stern-Gerlach magnet and results in a small correction to the previous calculation. 

The third refinement to the model is that the nucleons consist of quarks. The masses of the neutron 

and proton (1.67 10-27 kg) are dominated by the kinetic energies of the quarks which significantly 

exceed the quark masses (4.1 and 8.5 10-30 kg for up and down quarks). These are the main 

contributors to the mass of the silver atom, which appears in the Hamiltonian in section 2.2. 

The next correction concerns the fact that the actual experiment did not use just one atom but 

trillions or more. Collisions between the atoms could contribute to the deflection, if the vapour was 

sufficiently dense for the mean free path to be comparable to the dimensions of the apparatus, and 

the deflections so caused could potentially obscure the deflections caused by the magnet. 

The final correction concerns the material used in the experiment, “silver”, which is not one thing 

but a mixture. The element has two stable isotopes. Their masses differ and this would result in fine 

structure with four beams emerging from the Stern-Gerlach magnet rather than two. 

IV. HOW VAGUE IS THE QUANTUM RECIPE? 

Maudlin suggests that quantum mechanics is a recipe and that Part 3, the measurement rule, is 

unacceptably vague. This section discusses whether Parts 1 and 2 are also vague. 

A. Part 1: The State Rule 

The state rule concerns how a state is assigned to a system. Nielsen and Huang comment15 : 

“Quantum mechanics does not tell us, for a given system, what is the state space of that system 

is…Figuring that out for a specific system is a difficult problem for which physicists have developed 

many intricate and beautiful rules.” So the question about vagueness applies to many rules, which 

are apparently intricate and beautiful.  

A conceptually clean mathematical representation of a state, in Dirac notation, would be |state>, a 

vector in Hilbert space. The notation inside the bracket contains all the information and the only 

information that specifies the state vector.  
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Yet the descriptions of the states in Stern-Gerlach are not conceptually clean in this sense. For 

example, Wigner’s state is |s> contains only spin information and no information about the 

magnetic moment of silver, which will be needed to formulate the Hamiltonian. It makes no mention 

of silver at all.  

The representation in Figure 3 has a system state |z,s>. Alternatively, the magnetic moment could 

be substituted for spin |z,µ> and additionally the mass could be treated as an observable |z,µ,M>. 

Another alternative would be to write |s,Ag> and assume that Ag is an observable. Most chemists 

can offer a test for silver, so in that sense it is an observable. Then again it could be argued that the 

concept of Ag itself is vague; it has several isotopes.  

Section III raises further questions, by going down into the fine structure of silver and going up into 

macroscopic representations of silver vapour. Going down to the most elementary components in 

the Standard Model the state would be |particle1, particle2…particle368> for the silver isotope 107. 

From this model, in theory, the masses and magnetic moments would emerge.  

Going up to a macroscopic level, the temperature T of the vapour is 1000oC, and from this the mean 

velocity <Vy> to be calculated. Should the temperature also be included |z,µ,M,T>? The only place 

where temperature occurs in the Standard Model is for the quark-gluon plasma, and not the 

temperature of the silver vapour. 

A notation found in the literature is to append a subscript outside the bra and ket delimiters, for 

example |s>Ag to denote that the state is “silver”. However, the symbol Ag is not part of the 

quantum recipe, it has no home in the Hilbert space.  

In real applications the general notation might be something like |state>vague stuff. The vague stuff is 

not represented in Hilbert space and might include “silver”. This allows “physical constants” 

associated with the vague stuff to be included in the Hamiltonian, in addition to “fundamental 

constants”. All of which is highly subjective. Different scholars would have different criteria for what 

is or isn’t vague stuff.  

In the quantum philosophy literature, vague stuff is embraced within the formulation of quantum 

states. Take the example of Schrodinger’s cat, which according to the orthodox treatment has only 

two states: |alive>cat or |dead>cat. Biologists cannot agree the meaning of dead or alive, but in this 

thought experiment it is considered acceptable to represent the cat in this way. 

Factorise-and-forget is an approach to defining the state. The classic example is the hydrogen atom. 

For a two-body system the Hamiltonian splits in two sub-Hamiltonians, one for the centre of mass ẑ 

and the other for the relative position r.̂ Factorising the hydrogen state involves: 

|hydrogen> = |r> x |z>   

The radial position is interesting as it enables the energy levels of the hydrogen atom to be 

calculated. The centre-of-mass equation is trivial and so forgotten. In the case of the silver atom the 

factorise-and-forget strategy would be as follows. 

|z,s,Ag> ➔ |z,s> x |Ag other stuff> ➔ |z,s> 

For a two-body system factorise-and-forget is reasonable, when the system is isolated, but for a 

many-body system in a potential field it is not. Consider the silver atom in a potential field that at 

atomic scale has enormous gradients. Consider the representation |z,s,Ag>. Each particle “inside” 

the silver is subjected to huge potential gradients. These might ionise the electrons or even split the 

nucleus and “silver” would cease to exist.  
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The judgement as to what constitutes “enormous potential gradients” is subjective. If such 

subjectivity constitutes unacceptable vagueness, the only acceptable approach would be to model 

the system at its most elementary level as 368 elementary particles or perhaps at a lower level still 

as Standard Model field excitations. Entanglement is another feature of quantum mechanics that 

would also suggest factorizability should not be casually assumed when formulating quantum 

calculations.  

What addendum to Rule 1 would enable a philosopher to decide which of these alternative 

formulations is better or best or right? A widely published addendum to Rule 1 seems to be omit 

nothing. Here are some expert opinions. “In classical physics knowing the state of a system implies 

knowing everything that is necessary to predict the future of that system…knowing a quantum state 

means knowing as much as possible about how the system was prepared” writes Susskind16.  “The 

state of a physical system is usually a well-defined collection of information about the 

system…should be as complete as possible…to determine the future behaviour of the state” 

according to Thaller17; “The system is completely described by the state vector” comment Nielsen 

and Huang18.  

Despite being told by experts that the quantum state omits nothing, in reality factorise-and forget is 

the orthodox method of formulating quantum calculations. Stern-Gerlach and indeed all quantum 

calculations rely upon factorise-and forget assumptions. Factorise-and-forget is normal too in the 

philosophical literature about quantum mechanics, where toy models forget real details with casual 

abandon. Subjectivity is the real issue here. The choice of how to factorise and what to forget is a 

subjective judgement by the person, physicist or philosopher, who formulates the calculation. And 

the act of forgetting directly contradicts the omit nothing addendum to Rule 1. 

B. Part 2: The Transition Rule 

The transition rule concerns how the state changes as a result of interactions. To apply it requires an 

understanding of the nature of the interactions, the relevant physical constants, and the 

mathematical methods needed to model them.  

The standard formulation is the Schrodinger equation, which uses the quantum analogue of 

Hamiltonian mechanics, and is a second order differential equation. Alternatively, there is the Dirac 

equation which is a first order differential equation. Wigner’s phase space formulation is a different 

approach that is widely used in solving practical problems. Particle physicists use an S-matrix. 

For many-particle systems the states are represented by occupation number states and the 

equations of motion involve Lagrangians, which are different from Schrodinger’s approach. 

Differential equations are less important and path integrals dominate in quantum field theory.  

The variational formulation provides a full picture describing any state and the way it changes; this 

approach is now the preferred recipe for studying supersymmetric strings or membranes. Quantum 

optics has extended again the methods available. In particular for studying coherent states it has its 

own range of techniques.    

Hybrid approaches are also commonplace. Hawking radiation is described by a hybrid of quantum 

virtual photons moving under the rules of general relativity. Condensed matter physics brings 

together methods from field theory, statistical mechanics and discovers “emergent phenomena” 

that come to light from the equations in surprising ways, as Anderson discusses in his book More 

and Different19. 



Stern-Gerlach: conceptually clean or acceptably vague? 

Stern Gerlach PhilSci 7 | P a g e  

Section III suggested that the Hamiltonian in Stern-Gerlach might in theory be expanded to cover the 

component parts of a silver atom: 

Ĥ = Σ T̂e + Σ T̂u + ΣT̂d + Σ V̂electromagnetic + V̂strong + V̂magnet   

This equation covers kinetic and potential energies. T̂ are the kinetic energies of the electrons and 

quarks (up and down). V̂ are the potential energies of electromagnetic and strong interactions, plus 

the external magnetic potential. With such a comprehensive representation, the mass and the 

magnetic moment would then be observables of the state. 

The Transition Recipe does not specify what mathematical methods and what physical theories 

should be incorporated in a prediction. Richard Feynman in the Character of Physical Law20 said, 

“Every theoretical physicist who is any good knows six or seven different theoretical representations 

for exactly the same physics. He knows that they are all equivalent, and that nobody is ever going to 

be able to decide which one is right at that level, but he keeps them in his head, hoping that they will 

give him different ideas for guessing.” 

V. FINAL COMMENTS 

The discussion above casts doubts the idea that there is a quantum recipe for making predictions. As 

Wallace has recently commented21, the quantum recipe itself makes no predictions. It explains no 

phenomena. By itself it cannot be tested or falsified. 

On a cooking metaphor, for Rule 1 the state is the cooking pot, Rule 2 the interaction is the oven and 

Rule 3 the measurement is the tasting. The pot plus the oven plus the tasting do not constitute a 

recipe. There are no ingredients nor any instructions. There is a proverb, “if you like sausages you 

should never watch them being made.” This proverb could well have been about the Stern-Gerlach 

experiment. In attempting day-to-day calculations, different ingredients are chosen by different 

physicists, and their utilisation varies from calculation to calculation. Hardly a good omen for 

philosophers of science seeking rigorous foundations.   

Real physics blends ingredients and mixes and matches them and makes progress by breaking rules 

and guesswork and trial and error. Nor is it a hierarchy with a fundamental basis from which all else 

follows. As Cartwright suggests22 it is much more a patchwork, with bits stitched together from 

different places. The fundamentalist notion that physics follows rigidly from a clearly defined set of 

immutable laws would preclude any possibility of progress.  

Several different representations of Stern-Gerlach are discussed in this paper. It may be tempting to 

claim they are equivalent - merely translations into different mathematical languages of the same 

logical argument. This would be wrong. Different formulations may be similar but they produce 

fractionally different predictions. For that reason, it would be wrong to claim they are equivalent. 

The vagueness of Rules 1 and 2 has been revealed in the context of Stern-Gerlach.  

The fact that the philosophy of science debate focuses on Rule 3 and ignores the other two is 

suggestive. Maybe to philosophical fundamentalists, as Cartwright calls them, Rules 1 and 2 are 

vague but acceptably vague.  

If there really were a recipe and if physics really was rote learning of recipes, then there would be no 

need for students to attend physics classes, they could just follow the recipe books, and there would 

be no need to learn technique or to make trial and error experiments. The same comment could be 

applied to philosophy. The reality is different. Nobel Prizes are not awarded to those who 

meticulously follow a recipe.  
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