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Explanatory	Chance	

	

Abstract:	Debates	in	philosophy	of	probability	over	the	nature	and	ontology	of	

objective	chance	by	and	large	remain	inconclusive.	No	reductive	account	of	chance	

has	ultimately	prospered.	This	article	proposes	a	change	of	focus	towards	the	

functions	and	roles	that	chance	plays	in	our	cognitive	practices.	Its	starting	

philosophical	point	is	pluralism	about	objective	probability.	The	complex	nexus	of	

chance	is	the	interlinked	set	of	roles	in	modelling	practice	of	i)	parametrized	

probabilistic	dispositions	(“propensities”);	ii)	distribution	functions	

(“probabilities”);	and	iii)	statistical	finite	data	(“frequencies”).	It	is	argued	that	the	

modelling	literature	contains	sophisticated	applications	of	the	chance	nexus	to	

both	deterministic	and	indeterministic	phenomena.	These	applications	may	be	

described	as	lying	on	a	spectrum	between	what	I	call	‘pure	probabilistic’,	and	‘pure	

stochastic’	models.	The	former	may	be	found	in	the	tradition	of	the	method	of	

arbitrary	functions;	the	latter	in	present-day	techniques	for	stochastic	modelling	in	

the	complex	sciences,	as	well	as	some	orthodox	approaches	to	quantum	

mechanics.	These	modelling	practices	provide	positive	arguments	for	the	

irreducible	complexity	of	the	chance	nexus.	

	

	

1. Interpreting	and	Applying	Chance	

	

	 Philosophers	of	probability	have	discussed	the	issue	of	the	reality	of	chance	

or	objective	probability	extensively.	The	discussion	has	often	been	framed	as	part	

of	a	debate	or	dispute	about	the	ontology	and	epistemology	of	chance.	Realists	

have	tended	to	focus	on	issues	of	metaphysical	constitution,	and	semantic	

reference;	anti-realists	have	been	concerned	with	evidence	and	epistemic	

accessibility.	Hence	empiricist-minded	philosophers	of	science	have	attempted	to	

reduce	objective	chances	to	frequencies,	or	ratios	of	observable	outcomes	in	

experimental	sequences	of	events.	By	contrast,	metaphysically	minded	

philosophers	have	attempted	to	interpret	chance	in	light	of	propensities	or	

dispositional	properties.	In	either	case	the	assumption	is	that	chance	is	an	obscure	

-	or	at	any	rate	contested	-	concept	that	must	be	defined	in	terms	of	other	simpler,	
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more	fundamental,	accessible,	or	acceptable	concepts.	While	chances	are	not	

supposed	to	be	accessible,	frequencies	are	meant	to	be	directly	accessible	through	

observation.		And	while	chances	are	not	supposed	to	be	real	and	fundamental,	

dispositional	properties	are	understood	to	be	genuine	and	fundamental	properties	

of	chance	set-ups.	It	makes	sense	from	the	perspective	of	this	debate	about	the	

ontology	and	epistemology	of	chance	to	attempt	to	reduce	chance	–	objective	

probability	–	to	either	frequency	or	propensity.	

	

	 	Nevertheless,	as	is	by	now	well	known,	both	the	frequency	and	the	

propensity	interpretations	of	objective	probability	are	ultimately	unviable.	The	

former	encounters	insurmountable	difficulties	associated	to	the	so-called	

reference	class	problem;	while	the	latter	confronts	a	family	of	problems	related	to	

the	notorious	Humphreys’	paradox.	In	the	next	section	of	this	paper	I	briefly	

review	these	conclusive	arguments.	In	addition,	I	present	a	further	explanatory	

argument	that	cuts	against	both	frequency	and	long	run	propensity	

interpretations.	Chances	are	employed	in	practice	for	explanatory	purposes,	in	

science	and	in	ordinary	life	alike;	but	I	shall	argue	that	this	explanatory	function	

remains	elusive	on	any	interpretation	of	objective	probability	that	identifies	it	with	

ratios	in	sequences	of	experimental	outcomes.	The	conclusion	of	this	section	is	that	

it	is	time	to	consider	alternative	philosophical	projects	in	our	understanding	of	

chance,	going	beyond	sterile	ontological	disputes	about	its	‘interpretation’.	

	

	 In	the	remaining	sections	of	the	paper	I	consequently	explore	a	different	

philosophical	approach,	which	focuses	instead	on	the	role	that	chance	plays	in	

scientific	modelling	practice.	In	a	brief	slogan	I	aim	to	shift	philosophical	attention	

from	the	‘metaphysics	and	epistemology	of	chance’	towards	the	‘methodology	of	

chance	modelling’.		In	particular	I	shall	argue	that	chance	plays	an	essential	

explanatory	role	in	that	practice,	which	already	militates	against	any	reductive	

analysis.	Section	3	outlines	chance	pluralism	in	the	form	of	what	I	call	the	nexus	of	

chance:	The	tripartite	conceptual	distinction	between	propensities,	probabilities,	

and	frequencies.		Let	it	be	noted	outright	that	this	methodological	turn	does	not	

resolve	or	finish	off	ontological	or	epistemological	disputes	in	the	metaphysics	of	

chance	literature.	On	the	contrary,	it	is	not	intended	to	foreclose	any	option	in	the	
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ontology	of	chance,	and	it	certainly	does	not	resolve	or	alleviate	epistemic	worries	

or	concerns,	which	are	likely	to	endure.	For	while	realists	may	want	to	take	the	

explanatory	power	of	chance	as	further	evidence	in	favour	of	the	reality	of	chances,	

anti-realists	will	deny	the	inference	from	the	explanatory	power	of	the	chance	

nexus	to	its	reality.	I	do	not	here	pretend	to	resolve	such	quarrels.	Rather,	my	aim	

is	more	modestly	to	show	that	the	epistemological	debate	goes	under	different	

terms	in	this	new	methodological	arena,	one	that	bypasses	the	ontological	and	

epistemological	disputes.	What	I	propose	is	a	new	take	on	the	question	over	the	

nature	of	chance,	one	that	starts	from	the	standpoint	of	methodological	practice,	

and	which	raises	problems	and	issues	of	its	own	–	including	possibly	new	versions	

of	the	perennial	debates	in	the	ontology	and	epistemology	of	chance.		

	

	 Indeed,	in	the	main	sections	4	and	5	I	argue	that	once	this	methodological	

outlook	is	adopted,	new	and	interesting	philosophical	questions	arise	for	a	

philosophical	study	of	chance.	I	will	focus	in	particular	on	the	role	that	dynamical	

equations	play	in	stochastic	modelling,	and	I	shall	argue	that	all	stochastic	or	

statistical	modelling	in	the	natural	sciences	can	be	placed	on	a	spectrum	that	goes	

from	purely	deterministic	to	purely	indeterministic	dynamics.	Most	models	will	

use	a	mixture	of	both,	and	the	regular	assumption	that	all	stochastic	modelling	

must	invoke	a	thoroughly	stochastic	dynamics	is	disproven	by	the	fact	that	many	

statistical	models	for	macroscopic	phenomena	assume	underlying	deterministic	

dynamics.	In	the	distinguished	tradition	of	the	method	of	arbitrary	functions,	

which	originates	in	the	writings	of	Von	Kries	and	Poincaré	at	the	turn	of	the	19th	

century,	the	stochasticity	is	brought	about	by	the	ingenious	way	in	which	a	

deterministic	dynamics	(in	the	traditional,	Newtonian	sense)	can	lead	from	a	

probability	density	or	distribution	defined	over	initial	micro-variables	to	a	

probability	distribution	over	the	relevant	macro-variables	at	the	end	of	the	

process.	I	call	this	kind	of	modelling	purely	probabilistic,	since	the	probabilities	

that	it	prescribes	do	not	originate	in	the	dynamics	in	or	by	itself.	In	contrast,	what	I	

call	purely	stochastic	modelling	requires	no	initial	probability	distributions	over	

any	dynamical	variables	–	the	final	probability	distributions	arise	naturally	out	of	

the	dynamics.	Most	statistical	modelling,	I	argue,	is	impure,	i.e.	it	is	neither	pure	
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probabilistic	nor	pure	stochastic,	but	rather	a	mixture	of	both,	and	thus	lies	

somewhere	along	the	spectrum.	

	

	 The	concluding	section	6	of	the	paper	wraps	things	up	by	pointing	out	that	

the	tripartite	account	of	the	nexus	of	chance	is	in	some	ways	a	trivial	consequence	

of	the	application	of	general	philosophical	lessons	regarding	the	modelling	attitude	

or	methodology	in	general	to	the	particular	case	of	statistical	modelling.	There	is	

little	mystery	to	chance	–	to	the	ways	in	which	the	chance	nexus	is	employed	in	

practice	–	beyond	whatever	mysteries	remain	in	scientific	modelling	in	general.	

	

	

2. Two	Projects	in	Ontology	Revisited	

	

	 The	philosophy	of	probability	throughout	the	20th	century	has	been	

centrally	concerned	with	providing	an	appropriate	semantics	for	objective	

statements	of	probability,	or	chance.	This	in	turn	has	been	seen	as	requiring	a	

description	of	what	the	world	may	be	like	for	such	statements	to	be	true.	And	such	

a	description	at	the	very	least	requires	the	provision	of	some	ontology	for	chance,	

or	more	technically,	a	stipulation	of	the	truth-makers	for	our	probability	

statements	–	those	things	in	the	world	(objects,	properties,	facts,	events)	in	virtue	

of	which	our	probability	statements	can	be	true	or	false.	There	have	two	broad	

approaches	to	this	question	throughout	the	20th	century,	answering	to	a	markedly	

empiricist	school	earlier	on,	and	to	more	broadly	realist	leanings	later	on.		

	

	

2.1. The	frequency	interpretation	

	

	 The	empiricist	tradition,	in	particular	the	logical	empiricists,	understood	an	

appropriate	semantics	for	probability	statements	to	entail	reductions	to	

observable	facts	or	events	-	ascertainable	directly	by	inspection	or	observation.	

The	most	likely	candidate	for	such	reduction	would	–	in	Laplacean	fashion	–	take	

the	form	of	ratios	of	outcome-types,	or	attributes,	in	regular	series	or	successions	

of	observable	events	in	repeatable	experiments.	Thus,	Von	Mises	(1928)	and	
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Reichenbach	(1934/49)	formulated	empiricist	interpretations	of	probability	by	

insisting	that	the	range	of	possible	cases	be	observable	outcomes	in	repeatable	

sequences	of	experimental	trials.	This	is	sometimes	known	as	the	“frequency	

interpretation	of	probability”,	and	it	takes	the	form	of	some	sort	of	conceptual	

identity	along	the	lines	of:	“P	(A)	is	the	probability	of	outcome	A	if	and	only	if	there	

is	an	appropriate	sequence	S	of	outcomes	such	that	P	(A)	is	the	frequency	or	ratio	

of	outcomes	of	type	A	in	S.”		

	

	 I	shall	refer	to	this	generic	statement	as	the	frequency	identity	of	probability.	

Hence,	for	example,	P	(heads)	=	½	is	the	probability	of	heads	in	a	coin	tossing	

experiment	if	and	only	if	the	ratio	of	heads	to	tails	in	the	appropriate	sequence	S	is	

exactly	½.	It	is	easy	to	see	how	the	frequency	identity	would	generalise	to	more	

complex	discrete	or	continuous	probability	distributions	over	a	larger	set	of	

possible	outcomes	(a	larger	“outcome	space”).	Thus,	a	probability	of	some	

attribute	in	some	population	can	easily	be	identified	with	a	frequency	ratio	of	the	

attribute	in	a	representative	sample	of	the	population.	

	

	 The	strategy	seems	at	first	sight	the	most	natural	way	to	deliver	us	from	any	

unverifiable	metaphysical	commitments	often	understood	to	be	the	holy	grail	of	

any	empiricist	philosophy.	Thus,	one	traditional	goal	of	empiricism	ever	since	

Hume,	if	not	before,	has	been	to	analytically	reduce	unverifiable	statements	about	

unobservable	or	inaccessible	entities	or	matters	of	fact,	so	as	to	“transform”	them,	

into	verifiable	statements	about	observable,	or	at	any	rate	accessible,	matters	of	

fact.	The	empiricist	tradition	has	attempted	such	reductions	on	problematic	

concepts	such	as	lawhood	(often,	as	in	Mill	or	Mackie	identified	with	nomological	

regularity	or	non-accidental	generalization);	causation	(which	at	least	since	Hume	

has	been	thought	to	be	reducible	to	regular	continuous	succession,	or	a	projection	

thereof);	psychological	time	and	personhood,	etc.		In	the	context	of	chance	and	

probability	this	has	often	translated	into	a	requirement	to	express	probability	

statements	as	claims	regarding	series	or	sequences	of	events	that	can	be	verified	if	

not	in	practice	at	least	in	principle;	and	the	frequency	interpretation	seems	to	

readily	deliver	on	just	such	a	requirement.	
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	 However,	the	“frequency	interpretation”	is	not	really	one	single	

interpretation	but	a	family	of	interpretations,	generated	by	diverse	renditions	of	

the	frequency	identity.	More	precisely,	all	frequency	interpretations	obey	the	

frequency	identity	as	expressed	above,	but	they	differ	as	to	what	they	take	to	be	the	

‘appropriate’	sequences	in	its	defining	statement.	Very	generally,	we	may	classify	

frequency	interpretations	into	two	families:	the	finite	frequency	(FF),	and	the	

hypothetical	frequency	(HF)	interpretations.	Roughly,	finite	frequencies	are	ratios	

of	outcomes	endowed	with	the	given	attribute	(A)	in	the	actual	(and	hence	

necessarily	finite)	frequencies	of	experimental	outcomes	of	real	experiments	

performed	on	chance	systems	or	set	ups.	The	FF	interpretations	have	thus	the	

virtue	of	reducing	probability	to	an	empirically	accessible	quantity.	Since	most	if	

not	all	frequency	interpretations	are	motivated	by	empiricism,	this	is	clearly	

perceived	to	be	an	advantage.		There	is	no	doubt,	on	any	FF	interpretation,	that	

probability	is	epistemically	accessible,	since	it	is	constituted	by	events	that	can	be	

directly	ascertained	by	the	senses.	And	it	can	be	empirically	or	experimentally	

measured,	as	long	as	the	populations	that	it	pertains	to	are	themselves	accessible,	

and	the	different	attributes	can	be	empirically	distinguished	by	inspection.		

	

	 Nevertheless,	FF	interpretations	have	severe	problems	or	deficiencies;	I	will	

emphasise	here	only	the	two	problems	that	are	most	relevant	to	my	purposes	(the	

reader	can	find	a	full	list	of	arguments	against	FF	interpretations	in	Hajek,	1997).	

First	of	all,	it	is	clear	that	for	any	actual	finite	sequence,	no	matter	how	large,	the	

ratio	of	the	appropriate	attribute	can	in	fact	diverge	from	the	probability.	One	need	

not	consider	weird	situations	as	those	described	in	Tom	Stoppard’s	play	

“Rosencrantz	and	Guildenstern	are	Dead”	(in	which	the	characters	repeatedly	toss	

a	coin	that	increasingly	unnervingly	always	falls	on	heads).	For	a	coin	toss,	any	

given	odd	numbered	finite	frequency	will	necessarily	diverge,	however	minimally,	

from	½.	And	we	all	intuitively	understand	that	it	is	perfectly	possible	for	any	

frequency,	no	matter	how	large,	to	diverge	(and	even	to	diverge	maximally,	as	in	

the	weird	Rosencrantz	and	Guildenstern	scenario).	This	sense	of	‘possible	

divergence’	is	built	into	the	very	judgement	of	the	probability	of	any	event	in	a	

series,	as	long	as	any	outcome	event	is	genuinely	independent	of	any	other	(i.e.	in	
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the	coin	case:	as	long	as	the	outcome	at	each	toss	does	not	alter	the	probability	of	

any	outcome	at	any	later	toss).		

	

	 The	capacity	of	any	finite	frequency	to	diverge	from	the	probability	it	is	

intended	to	analytically	reduce	comes	under	a	variety	of	names	in	the	literature.	I	

shall	refer	to	it	here	as	“frequency	divergence”:	for	every	finite	frequency	exhibited	

in	a	regular	experimental	trial,	there	are	myriad	ways	in	which	it	may	diverge	from	

the	underlying	probability	it	can	at	best	approximate.	There	are	purposes	in	the	

study	of	frequencies	for	which	frequency	divergence	comes	in	handy,	such	as	in	

assessing	or	ranking	the	‘faithfulness’	or	‘representativeness’	of	possible	

frequencies	in	sequences.		However,	as	regards	the	finite	frequency	(FF)	version	of	

the	frequency	identity,	it	is	ultimately	lethal.	For	if	any	finite	frequencies	can	as	a	

matter	of	principle	diverge	arbitrarily	from	the	probabilities	they	are	supposed	to	

conceptually	reduce,	then	the	frequency	identity	is	surely	false:	there	can	be	no	

sequence	S	that	exhibits	the	appropriate	frequency,	with	any	certainty,	and	this	

would	entail	that	there	is	not	really	a	probability	P	(A)	of	the	attribute	in	question,	

contrary	to	the	assumption	(of	divergence).		Hence	finite	frequencies	do	not	

analytically	reduce	probabilities.	Or,	to	put	it	conversely,	probabilities	are	in	

themselves	never	finite	frequencies,	contrary	to	what	strict	empiricism	would	

require.	

	

	 		

	

	

2.2. The	propensity	interpretation	

	

	 An	obvious	way	to	circumvent	these	objections	is	thus	precisely	to	give	up	

on	the	strict	empiricist	commitments,	and	to	adopt	a	realist	interpretation	of	

objective	probability	instead	–	in	terms	of	propensities.	Propensity	interpretations	

themselves	come	in	a	considerable	variety.	For	example,	it	is	customary	at	least	

since	Gillies	(2000)	to	distinguish	long-run	from	single-case	propensities.	In	a	

single	case	version	of	the	propensity	interpretation,	the	underlying	propensity	is	

manifested	in	every	single	run	of	the	experiment	as	a	probability	P	(A).	In	the	long	
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run	version	of	the	propensity	interpretation,	by	contrast,	the	function	P	(A)	is	

rather	identified	with	the	long	run	frequency	–	thus	Gillies	(2000,	ch.	8),	asserts	

the	single	case	probabilities	can	only	if	anything	be	subjective.	One	may	then	

substitute	a	propensity	identity	in	place	of	the	frequency	identity,	roughly	as	

follows:	“P	(A)	is	the	probability	of	some	event	type	A	if	and	only	if	A	is	a	possible	

outcome	of	a	chance	set	up	S	endowed	with	a	certain	propensity	P	(A)	to	generate	

outcome	A	in	the	long	run.”	

	

	 However,	any	propensity	interpretation	-	of	either	variety	-	that	adopts	a	

strict	identity	between	probabilities	and	propensities	fails	too	for	reasons	that	

have	been	explored	extensively	in	the	literature	(Eagle	(2004),	Humphreys	(1985),	

Salmon	(1979),	Suárez	(2013)).	First	of	all,	it	is	well-known	that	many	well-defined	

objective	probabilities	cannot	be	identified	with	any	propensities.	In	fact,	many	

conditional	probabilities	that	have	a	straightforward	propensity	interpretation	

also	often	have	well-defined	inverse	conditional	probabilities	that	fail	to	have	any	

propensity	interpretation.	Salmon’s	(1979)	original	example	involved	shooting’s	

propensity	to	kill,	which	precludes	any	interpretation	of	killing	as	a	propensity	to	

shoot.	But	one	can	think	of	a	myriad	other	examples:	smoking	has	a	certain	

propensity	to	produce	lung	cancer,	while	lung	cancer	does	not	have	a	propensity	to	

generate	smoking	–	yet,	for	any	control	population,	if	the	conditional	probability	of	

lung	cancer	given	smoking	is	well	defined,	so	is	the	inverse	conditional	probability	

of	smoking	given	lung	cancer.	And	so	on.		

	

	 The	underlying	problem	is	that	propensities	exhibit	an	asymmetry	akin	to	

cause	and	effect,	and	this	is	an	asymmetry	lacking	in	probabilities.	Any	‘propensity	

identity’	that	identifies	the	two	will	ensue	in	contradiction:	this	shows	that	they	

cannot	be	the	same	thing.	Humphrey’s	paradox	(Humphreys,	1985)	provides	the	

definitive	objection,	since	it	shows	that	many	bona	fide	propensities	are	not	

interpretable	or	identifiable	with	conditional	probabilities,	on	pain	of	

contradiction	with	the	Kolmogorov	classical	calculus.	There	are	a	number	of	

possible	resolutions	to	this	“paradox”,	but	they	all	involve	giving	up	the	propensity	

identity	in	some	respect	or	other.	As	has	been	shown	elsewhere	the	only	rendition	

of	the	propensity	view	that	ultimately	works	is	not	an	identity	or	analytical	
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reduction	of	any	sort.	Thus	a	defensible	statement	relates	propensities	to	

probabilities	for	outcomes	in	experimental	trials	or	set	ups,	but	it	does	not	identify	

them:	“P	(A)	is	the	objective	probability	or	chance	of	outcome	A	if	and	only	if	A	is	

produced	by	a	chance	set	up	S	endowed	with	a	certain	propensity	to	generate	each	

A	with	some	probability	P	(A).”	In	this	statement,	a	propensity	is	ascribed	to	a	set	

up	when	an	objective	probability	obtains	for	some	outcome	of	that	set	up	–	yet	the	

propensity	and	the	probability	are	not	identified,	but	rather	kept	entirely	distinct.	

	

	 We	may	conclude	that	the	propensity	identity	is	a	flawed	but	necessary	

presupposition	in	a	long	run	version	of	the	propensity	interpretation.	It	is	also	

commonly	adopted	for	single	case	versions,	but	it	does	not	turn	out	to	be	in	fact	

necessary	for	a	single	case	propensity	view.	On	the	contrary,	as	shall	be	pointed	

out	in	section	3,	there	are	notions	of	single	case	propensity	that	do	not	entail	or	

require	any	identification	of	probability	with	propensity.	

	

	

2.3. The	explanatory	argument	

	

	 There	is	a	further	argument	against	any	analytical	reduction	of	probability	

by	means	of	any	‘identity	thesis’.	It	is	related	to	the	explanatory	power	of	chances	

or	objective	probabilities	–	so	we	may	refer	to	it	as	the	‘explanatory	argument’.	The	

point	is	best	made	in	the	context	of	attempts	to	reduce	probability	to	frequency	by	

means	of	the	‘frequency	identity’	(although	it	applies	to	a	‘propensity	identity’	too).	

Objective	probabilities	in	practice	often	explain	regular	occurrences	of	types	of	

outcomes	in	different	kinds	of	sequences.	For	instance,	we	explain	the	relative	

frequencies	of	a	game	of	roulette,	or	dice,	in	virtue	of	the	chances	that	are	

presumably	operative	in	the	game	in	question.	If	you	ask	me	why	I	got	5	heads	and	

5	tails	in	tossing	a	coin,	I	can	legitimately	offer	the	explanation	that	it	is	a	fair	coin,	

i.e.	that	it	is	built	so	as	to	display	such	a	probability.	More	generally,	science	will	

often	invoke	theoretically	grounded	probabilities	in	the	explanation	of	observed	

frequencies.	The	difference	between	the	observed	decay	rates	of	two	pieces	of	

radioactive	material	may	be	explained	by	reference	to	the	half-life	of	each	of	them,	

that	is	by	noting	their	different	atomic	structure.	The	difference	between	the	
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recovery	rates	of	two	sorts	of	patient	afflicted	by	the	same	condition	may	be	

explained	by	reference	to	the	efficiency	of	the	different	kinds	of	treatment	they	

have	been	subjected	to.	Etc.		

	

	 This	is	a	basic	explanatory	fact,	which	I	will	at	this	point	in	the	argument	

take	as	primitive:	probabilities	are	often	invoked	and	used	–	in	ordinary	cognition	

and	scientific	practice	alike	–	in	order	to	explain	frequencies.	Yet,	if	the	FF	

interpretation	is	correct,	probabilities	are	frequencies,	and	it	is	impossible	for	a	

frequency	to	explain	itself.	It	may	be	objected	that	the	frequency	explained	is	not	

the	frequency	involved	in	the	explanation,	so	that	the	situation	is	not	as	blatantly	

circular	as	it	may	at	first	seem.	Or	perhaps	not	all	frequencies	are	explanatorily	on	

a	par,	but	as	long	as	we	restrict	ourselves	to	finite	frequencies	(as	the	FF	

interpretations	do),	it	is	very	hard	to	see	what	the	explanatory	power	of	some	

frequencies	over	others	could	be.	They	are	after	all	just	the	same	kind	of	thing,	and	

explanatory	power	requires	some	distinct	property	to	be	doing	the	explaining.	It	

cannot	serve	to	explain	the	actual	finite	frequency	ratio	in	a	chancy	experiment	to	

merely	point	out	to	another	actual	finite	frequency	ratio	in	that	experiment:	to	do	

so	would	seem	to	merely	expand	the	demand	for	explanation.		

	

	 It	may	be	thought	at	this	point	that	the	finiteness	of	the	frequencies	is	

generating	the	explanatory	circularity.	Finite	frequencies	(FF)	may	be	expanded	

into	what	is	known	as	hypothetical	frequencies	(HP).	An	HP	interpretation	will	

identify	probabilities	with	hypothetical	frequencies	over	ideal	infinite	sequences	of	

experimental	outcomes	that	contain	the	appropriate	finite	sub-sequences	whose	

properties	are	to	be	explained.	For	instance,	in	the	case	of	a	tossing	coin,	the	

appropriate	frequency	that	identifies	the	objective	probability	or	chance	is	

supposed	to	be	only	definable	in	the	abstract	as	the	limiting	frequency	lying	at	the	

limit	of	the	hypothetical	infinite	sequence	of	tosses.	Presumably	if	the	coin	is	fair	

the	limiting	frequency	in	the	hypothetical	infinite	sequence	is	precisely	½.		This	

may	answer	the	first	objection	in	section	2.1.	from	frequency	divergence,	since	any	

finite	frequency	is	allowed	to	diverge	from	the	much	larger	(hypothetical	and	

infinite)	frequency.	The	large	number	theorem	shows	that	the	degree	of	

divergence	is	inversely	proportional	to	the	length	of	the	sequence,	or	in	other	
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words	the	finite	frequencies	will	approach	the	limiting	frequency	as	the	finite	

sequence	grows	–	and	the	finite	frequency	will	become	the	actual	probability	in	the	

infinite	limit.	However,	that	is	just	another	way	to	concede	that	for	any	finite	

frequency,	no	matter	how	large,	there	will	always	be	a	degree	of	divergence.		

	

	 The	move	to	HF	interpretations	is	not	really	successful	in	resolving	the	

problems	generated	by	the	reference	class	problem,	and	in	fact	raises	additional	

and	important	difficulties.	There	are	at	least	two	reasons	why	HF	interpretations	

fail.	First	of	all,	for	any	given	finite	frequency	there	is	a	large	number	of	consistent	

hypothetical	frequencies,	since	for	any	finite	subsequence,	there	are	a	large	

number	of	sequences	that	would	include	the	subsequence	as	their	initial	segment.	

The	large	number	theorem	is	no	retort,	since	it	presupposes	that	there	is	an	actual	

probability,	and	then	goes	on	to	show	that	the	limiting	frequency	will	arbitrarily	

approach	it.	However,	the	point	of	a	frequency	interpretation	of	probability	is	not	

to	presuppose	the	existence	of	an	actual	probability	that	frequencies	can	be	shown	

to	approach	in	the	infinite	limit.	The	point	of	any	frequency	interpretation	is	to	

identify	the	probability	itself	as	the	frequency	in	accordance	with	the	frequency	

identity	discussed	above.	In	other	words,	the	large	number	theorem	cannot	really	

help	to	define	probabilities	as	limiting	frequencies	in	hypothetical	sequences	–	

rather	the	theorem	only	works	on	the	assumption	that	there	are	probabilities	

independent	of	any	frequencies,	or	their	limiting	character.	

	

	 At	any	rate,	the	second,	additional,	explanatory	argument	remains;	for	the	

explanatory	power	of	a	frequency	in	a	hypothetical	sequence	remains	elusive.	If	the	

explanatory	power	relies	on	merely	subsuming	the	finite	sequences	whose	

frequencies	are	to	be	explained	within	the	hypothetical	sequences	that	are	to	

explain	them,	we	have	the	recurrent	problem	above	with	FF	interpretations:	we	

seem	to	have	merely	expanded	the	demand	for	explanation.	If	on	the	other	hand	

the	appeal	is	to	antecedent	explanatory	probabilities,	as	in	the	large	number	

theorem,	we	restore	the	explanatory	power	but	at	the	expense	of	postulating	

probabilities	over	and	above	any	frequencies,	contrary	to	the	frequency	identity.		
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3. Pluralism	about	Chance	

	

	 The	failure	of	reductionist	projects	suggests	pluralism	regarding	chance.	

Rudolf	Carnap	(1945),	Frank	Ramsey	(1928),	and	Ian	Hacking	(1975),	amongst	

others,	already	argued	that	we	must	carefully	distinguish	objective	probability	

(chance)	from	subjective	probability	(credence,	or	partial	logical	entailment).	

Carnap	moreover	argued	that	the	conflation	of	these	forms	of	probability	leads	to	

contradictions,	confusions,	and	/	or	paradoxes,	which	only	the	correct	formal	

explication	of	the	concept	would	be	able	to	resolve.	Ramsey	and	Hacking	did	not	

explicitly	embrace	such	hopes	of	co-existence,	but	all	their	views	are	united	in	the	

rejection	of	the	view	that	there	is	one	single	thing	that	probability	is	–	or	measures.	

Thus,	all	these	authors	emphasise	distinct	uses	and	historical	origins	in	subjective	

and	objective	probabilities1.	This	is	not	yet	pluralism	about	chance	or	objective	

probability,	but	it	suggests	that	such	a	pluralism	is	one	natural	step	on	the	pluralist	

road.		

	

	 In	scientific	modelling	practice,	chance	appears	as	a	dynamical	nexus	of	

properties	that	typically	includes	probabilistic	dispositions	or	propensities;	

distribution	functions	or	formal	probabilities;	and	frequencies	in	actual	or	

imagined	data.	In	adopting	the	terminology	of	‘propensities’	as	the	dispositional	

properties	of	chance	setups	that	ground	probabilities	(Suárez,	2017;	see	also	

Mellor,	2005),	the	view	moves	decisively	away	from	long	run	propensity	theories	

that	ultimately	identify	propensities	with	either	finite,	infinite,	or	hypothetical	

frequencies.	Instead	it	proposes	a	sui	generis	explanatory	relation	between	

propensities	and	probabilities,	which	is	in	some	cases	a	relation	of	cause	and	effect	

-	although	not	necessarily	always	so.	In	distinguishing	formal	probability	functions	

from	either	propensities	or	frequencies,	any	interpretational	identification	of	the	

former	in	terms	of	the	latter	is	precluded.	(Thus,	the	nexus	of	chance	is	compatible	

with	views	that	reject	any	need	to	interpret	the	concept	of	probability,	such	as	

Sober,	2010).	Finally,	in	emphasising	the	role	of	finite	experimental	frequency	

																																																								
1	This	glosses	over	the	undeniable	differences	between	Ramsey’s,	Carnap’s	and	
Hacking’s	accounts	of	probability.	
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data,	the	nexus	of	chance	restores	an	empiricist	outlook,	which	grounds	

probability	statements	in	the	actual	data	collected	in	genuine	experimental	and	

observational	contexts.	On	this	view	there	is	no	need	for	any	recourse	to	

hypothetical	frequencies	or	their	presumed	limiting	character:	the	only	

frequencies	are	proportions	or	ratios	of	outcome-types	within	the	actual	

sequences	of	experimental	outcome	events.		

	

	 While	the	nexus	of	chance	has	been	defended	already	at	a	theoretical	level	

(Suárez,	2017;	see	also	Mellor,	2005,	and	Humphreys,	1989,	for	related	views),	it	

remains	to	be	studied	at	the	level	of	modelling	practice.	This	paper	is	a	first	

attempt	to	establish	the	elements	of	a	methodological	research	programme	into	

the	workings	and	operations	of	the	tripartite	nexus	of	chance.	The	distinctions	that	

I	present	here,	while	preliminary,	are	grounded	in	modelling	practice,	and	have	

application	to	a	range	of	cases	in	the	natural	sciences.	Together,	they	amount	to	a	

research	programme	into	the	methodological	foundations	of	chance-based	

explanations	in	scientific	practice.	

	

	

4. The	Nexus	of	Chance	in	Action	

	

	 The	modelling	practice	that	I	would	like	to	focus	on	in	this	paper	is	known	

as	statistical	modelling.	This	type	of	modelling	involves	not	merely	formal	

descriptions	of	correlation	phenomena,	but	it	is	typically	employed	with	

explanatory	purposes.	In	other	words,	the	typical	explananda	are	already	prepared	

descriptions	of	statistical	correlation	phenomena	between	a	set	of	inter-related	

‘observable’	variables	–	which	may	indeed	be	observational	variables	in	a	data	

model,	but	may	also	represent	properties	of	an	underlying	phenomenon	in	a	

controlled	experiment,	or	the	results	of	various	interventions	carried	out	in	

laboratory	conditions.	The	basic	explanatory	tool	in	chance	explanations	of	such	

statistical	phenomena	is	then	a	model	featuring	probabilities	evolving	in	

accordance	to	some	dynamical	law.		

	

4.1. Parameter	and	Sample	Spaces	
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	 The	probabilistic	models	that	ensue	deserve	some	attention.	A	common	

assumption	in	the	philosophical	literature	is	to	suppose	that	a	probability	model	is	

simply	a	probability	distribution	function	defined	over	the	observable	variables.		

To	take	the	common	-	and	apparently	most	simple	-	illustration	of	the	coin	toss:	if	a	

coin	is	tossed	repeatedly,	under	identical	conditions,	the	series	of	outcomes	would	

constitute	the	observable	data.	Suppose	the	finite	data	exhibits	a	47%	incidence	of	

heads	and	53%	incidence	of	tails.	A	probability	model	is	then,	in	accordance	to	this	

common	view,	an	ascription	of	a	probability	distribution	that	can	account	for,	or	

make	sense	of,	this	distribution.	It	is	obvious	that	a	47-53%	probability	

distribution	is	the	one	that	best	accounts	for,	and	makes	sense	of,	this	distribution,	

but	others	may	do	too	within	acceptable	margins	of	experimental	and	systematic	

error.	(What	‘acceptable’	margins	of	error	are	is	an	eminently	relevant	question,	

and	the	object	of	considerable	debate.)		

	

	 I	don’t	have	any	fundamental	quarrel	with	this	simple	definition	of	a	

probability	model	–	as	long	as	it	is	clearly	understood	that	it	is	not	the	same	notion	

as	the	more	sophisticated	statistical	model	that	statisticians	and	scientists	use	in	

their	everyday	modelling	practice.	To	illustrate	the	difference,	with	regards	to	coin	

tossing	again,	it	is	worth	considering	what	the	model	of	a	fair	coin	would	be.	On	the	

philosophical	notion	of	a	probability	model,	this	could	only	be	the	ascription	of	a	

flat	probability	distribution	r	(i.e.	equal	50-50	probabilities)	over	the	head	(h)	and	

tail	(t)	outcome	events:	𝜌: {ℎ, 𝑡} ⟶ )*+, ∈ ℝ.	But	as	we	shall	see,	the	statistical	

model	of	the	phenomenon	of	coin	tossing,	even	for	a	fair	coin,	turns	out	to	be	a	

much	more	complex	and	interesting	entity.		

	

	 There	are	two	critical	differences	between	probability	and	statistical	

models,	as	I	shall	present	them,	and	they	have	significant	philosophical	

implications.		The	first	distinguishing	feature	of	a	statistical	model	is	that	it	is	not	a	

single	probability	distribution	function	but	a	parametrized	family	of	functions,	in	a	

sense	to	be	specified.	The	second	distinguishing	feature	is	that	a	statistical	model	is	

dynamical	in	a	way	that	a	probability	model	need	not	be.	In	other	words,	as	we	

shall	see,	the	probability	functions	in	a	statistical	model	either	evolve	in	time,	
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apply	to	different	stages	of	a	dynamical	process,	or	both	evolve	and	apply	at	

different	stages	in	a	dynamical	process.	It	is	the	conjunction	of	these	two	

distinguishing	features	(multiple	parametrization,	dynamics)	that	endows	a	

statistical	model	with	explanatory	power.	I	shall	argue	that	the	tripartite	nexus	of	

chance	provides	an	understanding	–	if	not	the	only	understanding	available	–	of	

the	explanatory	role	of	statistical	models.		

	

	 As	regards	the	first	distinguishing	feature,	an	influential	article	by	

McCullough	(2002,	p.	1225)	expresses	it	aptly	as	follows:		“A	statistical	model	is	a	

set	of	probability	distributions	on	the	sample	space	𝓈”	(my	italics).	What	is	more	

relevant	is	that	a	statistical	model	requires	an	antecedent	parametrization	of	the	

phenomenon,	that	is:	a	typically	dynamical	description	of	the	phenomenon	under	

some	set	of	parameters.	It	is	only	once	the	phenomena	to	be	modelled	is	so	

described	that	a	properly	parametrized	statistical	model	can	be	provided	for	it,	by	

ascribing	to	each	parameter	a	distinct	probability	function	over	the	sample	space:	

“A	parametrized	statistical	model	is	a	parameter	set	Q	together	with	a	function	

𝑃: Θ ⟶ 𝜌(𝓈),	which	assigns	to	each	parameter	point	𝜃 ∈ Θ	a	probability	

distribution	𝑃5	𝑜𝑛	𝓈”	(ibid,	p.	1225).	Hence	a	statistical	model	is	most	abstractly	

defined	as	a	function	that	ascribes	to	a	specific	element	in	some	antecedent	

parametrization	of	the	phenomenon	a	probability	function	from	a	family	defined	

over	the	sample	space.	In	other	words,	not	only	does	a	statistical	model	involve	a	

family	or	set	of	probability	functions,	it	is	in	fact	a	hybrid	entity	of	parameters	and	

probabilities.	As	I	shall	point	out,	in	many	statistical	models	at	least,	this	hybrid	

complexity	already	entails	some	of	the	critical	distinctions	characteristic	of	what	I	

called	the	nexus	of	chance	in	the	previous	section	3.	

	

	 In	applying	or	building	a	probability	model,	the	only	sensitive	judgement	

concerns	the	selection	of	the	sample	space.	And	indeed,	it	is	a	well-known	

philosophical	lesson	that	choosing	the	appropriate	sample	space	–	i.e.	selecting	the	

outcome	events	or	types	that	are	to	go	into	the	space	–	is	critical,	and	that	the	

choice	may	importantly	alter	the	properties	of	the	model	description.	Statisticians	

by	contrast,	see	this	selection	as	the	final	and	simpler	stage	in	a	more	complex	

modelling	process,	one	that	requires	first	of	all	to	judiciously	choose	an	
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appropriate	parametrization	of	the	phenomenon,	secondly	to	choose	the	

probability	distributions	that	best	correspond	to	each	parameter,	and	only	thirdly,	

and	consequently,	to	choose	the	sample	spaces.	The	‘art	of	statistical	modelling’	

concerns	all	of	these	stages,	and	it	is	mainly	the	most	sensitive	first	two	stages	that	

David	Cox	has	in	mind	when	he	writes	(Cox,	2006,	p.197):	“Formalization	[…]	is	

clearly	of	critical	importance.	It	translates	a	subject-matter	question	into	a	formal	

statistical	question	and	that	translation	must	be	reasonably	faithful	and,	as	far	as	is	

feasible,	the	consistency	of	the	model	with	the	data	must	be	checked.	How	this	

translation	from	subject-matter	problem	to	statistical	model	is	done	is	often	the	

most	critical	part	of	the	analysis.”		

	

	 There	is	more	to	say	about	the	critical	first	parametrization	space;	in	

particular,	in	many	cases	of	statistical	modelling	in	the	natural	sciences,	it	is	the	

stage	at	which	considerations	regarding	dispositional	properties	in	the	chance	

setups	–	or	propensities	–	enter.	Thus,	the	relationship	between	the	parameter	and	

the	sample	spaces	(Θ, 𝓈)	is	at	the	heart	of	the	distinct	roles	of	propensities	and	

probabilities	in	the	nexus	of	chance	in	practice.	It	makes	sense	to	discuss	those	

roles	in	the	light	of	the	second	distinguishing	feature	of	statistical	models,	namely	

their	dynamical	character.	

	

	 In	a	typical	statistical	model	in	the	natural	sciences,	the	relevant	parameters	

include	time,	and	the	parametrized	description	will	be	time-dependent.	As	a	result,	

the	probability	functions	will	be	dynamical	and	evolve	in	time,	in	accordance	with	

some	law,	often	described	in	a	differential	or	master	equation.	Statistical	models	

differ	on	account	of	the	kind	of	laws	that	they	employ,	and	I	shall	in	particular	

distinguish	two	kinds,	reserving	the	term	‘pure	probabilistic	model’	for	those	that	

are	endowed	with	a	deterministic	dynamics	only;	while	employing	“pure	stochastic	

model’	for	those	that	obey	exclusively	an	indeterministic	dynamics.	Many	models	

are	hybrid	from	this	point	of	view,	and	include	a	variety	of	different	laws,	both	

deterministic	and	indeterministic.	Hence	statistical	models	lie	on	a	spectrum	from	

pure	probabilism	to	pure	stochasticity.	By	investigating	both	pure	types	we	also	

investigate	the	end	extremes	of	this	spectrum.	
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4.2. Pure	probabilism:	The	method	of	arbitrary	functions	

	

	 The	main	aim	of	many	statistical	models	is	to	generate	probability	

distributions	over	the	outcome	space	that	to	a	good	approximation	match	those	

frequencies	observed	in	experiments	run	on	the	modelled	systems.	This	amounts	

to	a	type	of	explanation	of	the	resulting	frequencies	(this	type	will	be	addressed	in	

section	5	of	this	article).	If	the	dynamics	in	the	model	is	deterministic,	the	laws	on	

their	own	cannot	provide	those	probabilities	–	a	deterministic	law	may	only	

generate	probabilities	out	of	probabilities.	Hence	a	probabilistic	model	(a	statistical	

model	with	a	deterministic	dynamics)	can	only	dynamically	explain	statistical	

phenomena	if	it	acts	on	a	set	of	probability	distributions	over	the	initial	conditions	

of	the	system.	Many	systems	generating	statistical	phenomena	at	the	macro-level	

(including	most	well-known	games	of	chance,	such	as	dice,	roulette,	etc.)	are	on	the	

face	of	it,	indeterministic,	since	they	obey	classical	mechanical	or	Newtonian	laws.	

How	can	probabilistic	models	account	for	such	phenomena?	

	

	 A	long	and	distinguished	tradition	in	mathematical	physics	has	

endeavoured	to	provide	a	template	for	such	models.	The	most	articulate	and	

developed	version	(the	method	of	arbitrary	functions,	or	MAF)	begins	with	Von	

Kries	and	Poincaré	at	the	turn	of	the	19th	century,	and	it	remains	relevant	today	in	

important	work	in	mathematical	statistics.	2	The	central	idea	in	the	MAF	is	the	

thought	that	some	systems	are	dynamically	stable	or	invariant	under	permutations	

(within	some	range	given	by	some	formal	constraints)	of	the	initial	probability	

distributions	over	the	initial	conditions	of	the	system.	In	other	words,	the	

probability	distributions	over	the	outcome	events	are	independent	of	the	initial	

distribution	over	the	initial	conditions;	they	rather	mainly	depend	only	on	the	

precise	form	of	the	deterministic	dynamics.	The	phenomena	modelled	by	MAF	are	

thus	in	some	sense	the	converse	of	chaotic	phenomena:	while	the	latter	exhibit	

extreme	sensitivity	to	(small	variations	in)	initial	conditions,	the	former	display	

extreme	resilience	from	(changes	in	the	probability	distributions	over	the)	initial	

conditions.		

																																																								
2	See	Von	Plato	(1985)	for	a	historical	review,	and	Engel	(1992)	for	state-of-the-art	
methodology.	
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The	MAF	is	a	method	that	falls	well	within	the	kind	of	more	complex	

parametrized	dynamical	modelling	practice	that	I	have	here	referred	to	as	

‘statistical’	modelling.	Another,	more	specific	reason	to	discuss	it,	is	that	it	

furnishes	a	genuine	dynamic	probabilistic	model	for	the	paradigmatic	example	

that	I	have	been	employing	of	a	chance	system,	the	coin	toss.	Keller	(1986)	

provides	the	most	sophisticated	treatment,	which	employs	a	highly	idealised	

parametrized	description	of	the	phenomenon	–	what	this	essay	argues	is	the	

essential	first	stage	in	any	statistical	model.	There	are	a	number	of	idealising	

assumptions	involved	because	the	model	purports	to	reduce	the	set	of	free	

parameters	to	just	two:	the	initial	upwards	velocity	at	which	the	coin	is	spun	at	its	

ejection	(n),	and	the	angular	momentum	through	its	trajectory	(w).	To	achieve	

such	a	reduction	of	the	relevant	dynamical	variables	a	streamlined	parametrized	

description	is	needed	of	what	is	in	reality	a	more	complex	phenomenon.	These	

idealisations	allow	the	modeller	to	neglect	every	other	dynamical	variable	for	the	

purposes	at	hand	(see	figure	1	from	Keller,	1986,	p	X),	and	include:	

	

- The	coin’s	radius	is	a	and	it	remains	constant	throughout	its	motion.	

- The	coin	is	assumed	to	be	of	negligible	thickness,	or	infinitely	flat.	

- Hence	the	coin’s	geometrical	centre	is	its	centre	of	gravity.	

- At	every	instant	t	through	its	motion	the	coin’s	centre	of	gravity	finds	itself	

at	𝑦(𝑡) = 𝑥.	

- At	the	initial	stage	t=0	the	coin	finds	itself	at	precisely	height	a:	𝑦(0) = 𝑎.	

- At	the	end	of	the	motion,	the	coin’s	landing	position	is	final	(no	rebound).	

- Air	friction	is	negligible;	and	the	coin	is	not	slowed	down	as	a	result.	

- The	coin’s	angular	velocity	is	constant	throughout	its	motion:	>
+5(?)
>?+

= 0,	

where	q	is	the	angle	subtended	to	the	upwards	motion.	
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It	is	then	possible	to	show,	by	applying	classical	mechanical	equations	of	

motion,	that	any	arbitrary	distribution	over	the	initial	upwards	velocity	n	and	

angular	velocity	w,	as	long	as	it	fulfils	minimal	requirements,	yields	a	final	

probability	distribution	over	the	Heads	and	Tails	outcomes,	which	in	the	case	of	a	

fair	coin	(i.e.	one	not	bent),	is	the	equiprobable:	Prob	(H)=	Prob	(T)	=	½.	The	

requirements	receive	different	names	in	the	literature,	and	they	have	been	the	

object	of	a	considerable	and	intricate	discussion.	3	What	matters	for	our	purposes	

is	that	a	parametrisation	is	implicit	already	in	the	selection	of	the	relevant	

quantities	that	the	initial	probability	functions	shall	range	over.			

	

In	other	words,	the	ascription	of	probabilities	to	the	possible	Heads	(H)	and	

Tails	(T)	outcomes	of	a	given	coin	tossing	experiment	is	not	the	result	of	a	simple	

application	of	the	principle	of	indifference,	or	any	other	variety	of	a	principle	of	

sufficient	reason.	Philosophers	sometimes	assume	that	the	principle	of	

indifference	on	its	own	will	yield	probability	½	for	each	possible	outcome	of	the	

toss	of	a	fair	coin.	A	‘probability’	model	is	just	such	an	ascription	of	probabilities	

(i.e.	prob(H)	=	prob	(T)	=	0,5)	on	the	basis	of	indifference.	There	is	not	any	need	for	

any	dynamical	model	of	coin	tossing	in	order	to	arrive	at	the	conclusion:	a	simple	

inspection	of	the	geometrical	properties	of	the	coin	would	do.	By	contrast,	a	

																																																								
3	Poincaré	(1912)	and	Hopf	(1932)	explicitly	require	that	the	initial	distribution	
functions	be	“continuous”;	Strevens	(2003)	and	Marshall	(2012)	invoke	“micro-
constancy”:	a	slightly	different	requirement	applying	to	the	dynamics	as	much	as	
the	initial	distribution	functions,	but	has	identical	consequences	for	our	purposes.		
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‘statistical’	model	of	the	phenomenon	of	coin	tossing	will	necessarily	be	much	

more	involved.	A	coin	may	well	be	perfectly	symmetrical,	and	fair	in	the	sense	that	

its	outcomes	are	equiprobable;	but	the	reason	for	the	fairness	of	the	coin	is	not	in	a	

statistical	model	to	be	found	in	the	symmetries	of	the	object.	It	is	rather	to	be	

found,	as	in	Keller’s	model,	in	the	complex	dynamics	of	the	entire	coin	tossing	

phenomenon	under	a	suitable	idealised	parametrisation.	The	system	as	modelled	

is	not	a	thing,	or	entity,	at	a	given	time,	but	a	rather	complex	dynamical	process	

evolving	in	time,	as	described	under	a	set	of	relevant	parameters.	

	

	To	sum	up,	the	MAF	employs	what	I	have	called	pure	probabilistic	models.	

These	are	models	of	systems	that	yield	a	stable	or	resilient	probability	distribution	

over	macroscopic	variables	of	their	chance	setup	solely	out	of	some	deterministic	

dynamics	acting	on	a	range	of	distribution	functions	over	initial	microscopic	

variables	of	the	system:		

	

𝑝A B
𝑠D
𝑠E
𝑠F
→ 𝐿𝑎𝑤>J?JKLAMAN?AO → 𝑝P Q

𝑜D
𝑜E	

	

The	critical	feature	of	MAF	models	is	their	ability	to	generate	resiliently	the	

same	probability	function,	given	the	same	parametrisation	of	the	phenomenon,	as	

ideally	described.	A	different	probability	function	p’i	would	result	only	out	of	a	

different	parametrisation,	with	a	distinct	set	of	initial	conditions	{s’1,	s’2,	….,	s’n},	in	

turn	resulting	from	a	different	set	of	idealisations	in	the	model:		

	

𝑝′A S
𝑠′D
𝑠′E
𝑠′F

→ 𝐿𝑎𝑤>J?JKLAMAN?AO → 𝑝′P Q
𝑜D
𝑜E	

	

For	instance,	in	the	case	of	coin	tossing,	this	entails	relaxing	the	idealisation	

that	the	coin	is	fair,	e.g.	because	the	coin	is	no	longer	modelled	as	infinitely	flat,	or	

as	having	its	centre	of	gravity	at	the	geometrical	centre,	or	because	it	is	assumed	to	

be	experiencing	precession,	and	hence	its	angular	velocity	is	far	from	constant.	4	

																																																								
4	See	Diaconis	et	al.	(2007)	for	some	of	the	relevant	de-idealisations.	
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Most	games	of	chance	may	be	modelled	in	this	fashion	–	and	the	methodology	

extends	further	to	complex	systems	with	underlying	deterministic	dynamics.	I	

return,	in	section	5,	to	the	implications	of	both	the	invariance	under	changes	in	

initial	conditions,	given	a	parametrisation;	and	the	breakdown	in	invariance	

elicited	by	a	new	parametrisation	introduced	in	response	to	changes	in	the	

system’s	physical	properties.	

	

4.3. Pure	stochasticity:	Indeterministic	dynamical	modelling	

	

By	contrast,	a	pure	stochastic	statistical	model	is	one	where	the	

probabilities	emerge	out	of	the	dynamics	by	itself,	without	recourse	to	any	initial	

probability	distributions	over	initial	micro	or	macroscopic	conditions:	

	

B
𝑠D
𝑠E
𝑠F
→ 𝐿𝑎𝑤N?TOUVN?AO → 𝑝P Q

𝑜D
𝑜E	

	

	 The	laws	in	pure	stochastic	models	are	indeterministic	or	stochastic	and	

generate	objective	probability	distributions	over	the	outcome	events	out	of	very	

precise	specifications	of	the	actual	initial	state	of	the	system.	The	probability	

functions	Pf	predicted	by	such	models	are	hardly	ever	invariant	under	changes	in	

initial	conditions	–	they	are	therefore	not	just	sensitive	to	the	parametrisation	

entailed	by	the	idealised	description	of	a	system,	but	also	to	the	initial	probability	

functions	themselves,	including	their	sample	spaces.	Since	the	underlying	

dynamics	is	not	deterministic,	these	cases	tend	to	lie	outside	the	domain	of	

ordinary	macroscopic	phenomena.	Two	examples	include	collapse	interpretations	

in	quantum	mechanics;	and	stochastic	models	for	genetic	variance	in	evolutionary	

theory.		

	

	 Collapse	theories	in	quantum	mechanics	assume	an	indeterministic	change	

of	the	state	of	a	quantum	system	(its	wavefunction)	either	as	a	result	of	interaction	

with	the	open	environment	(as	in	quantum	state	diffusion	or	QSD	theory)	or	

spontaneously	with	a	certain	frequency	(as	in	the	so-called	Ghirardi-Rimini-Weber	

or	GRW	theory).	There	is	no	deterministic	equation	of	motion;	the	changes	are	
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rather	sudden	and	stochastic:	one	can	only	determine	their	probability,	in	the	form	

of	either	transition	probabilities	or	relaxation	times.	Thus,	for	example,	a	model	for	

a	quantum	state	diffusion	process	is	a	statistical	model	that	yields	continuous	

probability	distributions	for	the	evolution	of	the	state	in	an	abstract	space,	such	as	

a	Bloch	space.	As	such	the	motion	of	the	state	vector	in	the	space	appears	random	

when	as	a	matter	of	fact	it	is	highly	constrained	by	the	probabilistic	equations	of	

motion.	Gisin	and	Percival	(1992,	p.	5679)	make	it	clear	that	these	equations	

derive	from	a	master	equation	including	a	drift	term	and	stochastic	fluctuations,	

and	they	are	therefore	irreducibly	indeterministic:	“[…]	there	can	be	no	general	

deterministic	equation	for	the	pure	states	|𝜓⟩.	But	there	are	stochastic	equations,	

as	might	be	expected	from	the	probabilistic	nature	of	the	interaction	with	the	

environment.	In	time	dt	the	variation	|𝑑𝜓⟩	in	|𝜓⟩	is	then	given	by	the	Itô	form:	

|𝑑𝜓⟩ = [𝑣⟩𝑑𝑡 + ∑ [𝑢 a𝑑𝜉`` ,	where	|𝑣⟩𝑑𝑡	is	the	drift	term	and	the	differential	

stochastic	fluctuations	are	represented	by	a	sum	over	independent	Wiener	

processes.”	The	process	may	be	understood	as	a	sort	of	random	walk	on	the	Bloch	

sphere	where	states	are	represented.		

	

The	Ghirardi-Rimini-Weber	(GRW)	theory	is	similar	except	that	it	does	not	

require	open	systems	in	constant	interaction	with	the	environment	but	rather	

postulates	stochastic	and	spontaneous	‘shocks’	on	the	wavefunction	which	bring	it	

regularly	into	the	eigenstates	of	macroscopically	well-defined	observables.	The	

relaxation	times	are	construed	in	such	a	way	that	any	finite-time	observation	on	

any	macroscopic	composite	typically	yields	a	definite	outcome.	There	is	no	

macroscopic	superposition	due	to	the	aggregate	of	the	non-linear	stochastic	terms	

added	to	the	Schrödinger	dynamics.	The	GRW	modification	of	the	dynamics	in	

effect	“leaves	things	unchanged	for	microscopic	objects,	while,	for	macroscopic	

objects,	transforms	quantum	mechanics	into	a	stochastic	mechanics	in	phase	space	

exhibiting	the	classical	features”	(Ghirardi	et	al.,	1986,	p.	34).	This	somehow	

inverts	the	traditional	picture,	since	the	Schrödinger	equation	is	a	deterministic	

equation	on	the	wavefunction;	while	the	GRW	theory	presupposes	that	the	

fundamental	stochastic	collapses	it	postulates	for	the	wavefunction	manifest	

themselves	at	the	macrolevel.	It	is	thus	plausible	to	think	of	GRW	as	providing	a	
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mixed	statistical	model,	which	is	not	purely	probabilistic	nor	purely	stochastic,	but	

a	mixture	of	both.	

	

Another	field	that	illustrates	statistical	modelling	in	its	stochastic	variety	is	

evolutionary	biology	–	particularly	population	genetics,	but	more	generally	in	the	

study	of	variability	across	populations,	or	in	ecosystems.	As	for	the	former,	

consider	the	notorious	Wright-Fisher	model	for	genetic	drift.	5	The	model	

describes	the	time-evolution	of	a	population	of	N	genes,	under	considerably	strong	

idealising	conditions.	For	instance,	it	assumes	that	populations	are	of	finite	and	do	

not	vary	in	size	from	one	to	the	next	generation,	and	that	the	generations	do	not	

overlap	–	i.e.	they	are	replaced	wholesale	every	time.	According	to	this	model	the	

number	of	alleles	in	generation	g+1	is	obtained	by	drawing	with	replacement	from	

the	gene	population	in	the	previous	generation	g.	Thus	if	there	are	i	alleles	of	type	

A	in	generation	g,	then	then	number	of	type	A	alleles	in	generation	g+1	has	a	

binomial	distribution	yielding	a	Markov	process	or	chain	with	a	transition	matrix	

given	as:	𝑃A` = cd`e f
A
dg

`
f1 − A

dg
dj`

,	for	0 ≤ 𝑖, 𝑗 ≤ 𝑁.	Each	expression	for	i,j		

provides	a	transition	probability	for	the	number	of	alleles	in	a	later	generation.	

	

The	model	can	be	refined	and	extended	by	suitably	weakening	the	idealisations	

and	varying	the	range	of	parameters.	Kimura	introduced	the	hypothesis	of	

neutrality:	some	gene	mutations	have	no	effect	whatever	on	fitness,	and	hence	

such	alleles	cannot	vary	out	of	natural	selection;	so	genetic	drift	must	account	for	a	

larger	share	of	gene	pool	variability	than	previously	thought.	This	invites	the	

thought	that	the	idealisations	in	the	original	Wright-Fisher	model	may	be	too	

strong,	particularly	non-overlapping	generations.	A	new	stochastic	model	then	

developed	allowing	for	overlaps	amongst	generational	populations.	Once	again,	a	

parametrisation	of	the	phenomenon,	under	some	idealised	description,	is	critical	

in	order	to	establish	the	appropriate	probability	functions	and	their	domains.	

Many	models	in	evolutionary	biology	are	neither	purely	probabilistic,	nor	purely	

stochastic,	but	lie	somewhere	in	the	spectrum.	6	

																																																								
5	For	an	exposition	see	e.g.	Blythe	and	McKane	(2007),	or	the	seminal	Fisher	
(1930).	
6	Rice	(2008).	
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5. Towards	a	Methodology	of	Chance	Explanation	

	

Statistical	modelling	is	a	complex	activity	that	centres	around	providing	

explanatory	models	for	observed	or	presumed	correlation	phenomena.	The	

models	invoke	dynamical	laws	and	employ	particular	parametrisations,	often	

describing	the	phenomena	in	a	highly	idealised	form.	Whether	the	laws	employed	

are	deterministic	or	stochastic,	the	models	appear	to	have	an	explanatory	role.	

This	often	reflects	the	fact	that	the	idealised	parametrisations	represent	to	some	

degree	the	underlying	mechanisms,	causal	powers,	or	capacities	operating	in	the	

system.	But	it	is	more	generally	and	minimally	related	to	the	models’	essential	

posits	in	the	nexus	of	chance.		

	

The	explanans	employs	an	idealised	description	of	the	propensities	–	or	

probabilistic	dispositions	–	inherent	in	the	system.	As	the	idealisations	change,	so	

do	the	required	parametrisations,	and	the	ensuing	description	of	the	propensities	

in	the	system.		A	biased	or	precessing	coin	has	distinct	propensities	to	land	heads	

or	tails	if	tossed,	and	it	must	be	modelled	so;	an	open	quantum	system	interacting	

with	the	environment	displays	a	propensity	to	localise	as	a	result;	gene	

populations	possess	certain	propensities	to	pass	on	types	of	alleles	to	the	next	

generation;	and	so	on.	In	all	these	cases,	there	is	a	complex	relation	between	i)	the	

propensities	in	the	systems	or	chance	set	ups,	as	revealed	in	the	parametrisation	

employed;	ii)	the	probabilities	that	ensue	over	the	outcome	events,	often	at	a	

macroscopic	level;	and	iii)	the	frequencies	that	are	presumed	or	observed	in	

experimental	runs,	which	provide	the	empirical	basis	for	our	probability	claims,	

and	which	are	ultimately	the	object	of	our	models’	explanation.		

	

This	is	the	nexus	of	chance	in	action;	its	distinct	parts	(propensities,	

probabilities,	frequencies)	are	all	required	in	order	to	make	sense	of	the	

methodology	employed	in	statistical	modelling.	The	order	of	explanation	seems	to	

entail	a	distinct	hierarchy,	with	the	propensities	at	the	highest	level	of	explanation,	

the	probabilities	as	the	formal	representation	of	the	dynamical	consequences	of	

the	propensities,	and	the	finite	frequencies	as	the	putative	consequences	or	
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explananda.	Most	minimally,	the	explanation	is	a	variety	of	the	model	explanations	

that	have	been	recently	discussed	in	the	literature	(Bokulich,	2008).	The	essential	

explanatory	posits	in	these	models	are	precisely	the	components	in	the	nexus	of	

chance:	propensities,	understood	as	probabilistic	dispositions,	give	rise	within	the	

highly	idealised	model	descriptions	to	probability	distributions	over	the	outcomes;	

together	propensities	and	probability	distributions	entail	certain	finite	frequencies	

in	particular	experimental	set-ups.	This	is	to	say	that	all	of	them	together	provide	

explanations	for	the	finite	frequencies	that	are	observed,	or	postulated	in	the	

phenomena.	To	the	extent	that	a	phenomenon	P	is	minimally	explained	by	the	

essential	posits	of	a	successful	model	representation	for	it,	it	follows	that	the	nexus	

of	chance	is	involved	essentially	in	all	of	these	explanations.	

	

Where	does	this	discussion	leave	the	philosophical	debate	regarding	the	nature	

of	chance	or	objective	probability?	Is	objective	probability	reducible	to	propensity	

or	frequency?	As	was	mentioned	earlier	on,	this	discussion	does	not	address	the	

debate	in	any	way	decisively;	it	only	confronts	it	indirectly,	by	showing	that	all	

three	play	a	distinct	and	irreducible	role	in	the	complex	practice	of	statistical	

modelling.	The	underlying	assumption	is	that	chance	is	a	complex	and	plural	

notion,	requiring	us	to	consider	the	interaction	in	modelling	practice	of	its	distinct	

and	complex	parts	–	while	refusing	to	reduce	any	of	the	parts	to	the	rest,	or	indeed	

the	whole	complex	nexus	to	just	one	of	its	parts.	This	plural	attitude	to	chance	goes	

a	much	longer	way	in	understanding	the	practice.	Does	it	also	provide	the	

foundations	for	a	very	different	enquiry	into	the	nature	of	chance?	Some	have	

certainly	thought	so	–	including	Hans	Reichenbach	in	his	doctoral	dissertation	

(Reichenbach,	1915/2008).	That	would	turn	what	I	have	presented	here	as	a	

project	in	methodology	into	another	inquiry	into	the	ontology	of	chance.	

	

Whilst	there	is	no	doubt	that	some	new	avenues	open	up	for	such	an	inquiry,	

the	safe	and	more	limited	conclusion	of	this	paper	is	this:	regardless	of	what	the	

ontology	of	chance	is,	the	methodology	of	chance	explanations	via	statistical	

models	is	undeniably	plural	and	irreducible.	No	serious	philosophical	inquiry	into	

the	nature	of	chance	can	start	from	different	assumptions.		
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6. Conclusion:	To	(Statistically)	Save	the	(Statistical)	Phenomena	

	

I	have	defended	the	view	that	chance	is	a	plural	tripartite	notion	involving	

propensities,	formal	probability	distributions,	and	frequencies.	There	are	

arguments	in	favour	of	this	conclusion	coming	from	the	irreducibility	of	chance	to	

either	propensity	or	frequency.	But	most	significantly,	the	main	explanatory	

argument	for	chance	pluralism	derive	from	scientific	modelling	practice.	The	nexus	

of	chance,	as	I	have	called	it,	is	the	interlinked	set	of	practices	that	employ	

dispositional	probabilities	–	or	propensities	–	as	the	grounds	for	the	formal	

probability	distributions	over	outcome	spaces	typical	of	chancy	phenomena.	Both	

jointly	have	explanatory	roles	in	practice.	Thus	statistical	models	differ	from	

simpler	descriptive	‘probability’	models	in	that	they	are	deeply	stepped	into	

explanatory	considerations	relative	to	the	idealisations	that	they	employ.	They	also	

significantly	differ	on	account	of	their	dynamics,	and	so	they	lie	on	a	spectrum	

from	‘pure	probabilistic’	models	–	those	endowed	only	with	deterministic	

dynamics	–	to	what	I	have	called	‘pure	stochastic’	models	–	those	which	are	

governed	only	by	stochastic	dynamics.		

	

Together	propensities	and	probabilities	can	be	employed	to	account	for,	or	to	

explain	(in	a	minimal	sense	of	model	explanation),	the	kind	of	finite	frequency	data	

so	common	in	experimental	runs	on	chance	setups.		In	this	respect,	statistical	

modelling	is	no	different	from	any	other	form	of	scientific	modelling	practice.	A	

large	part	of	what	is	required	in	understanding	chance	is	related	to	understanding	

the	practice	of	statistical	modelling.		
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