
Classical vs. Bayesian statistics

Eric Johannesson

Department of Philosophy

Stockholm University

johannesson.eric@gmail.com

Forthcoming in Philosophy of Science

Abstract

In statistics, there are two main paradigms: classical and Bayesian statistics.

The purpose of this paper is to investigate the extent to which classicists and

Bayesians can (in some suitable sense of the word) agree. My conclusion is that, in

certain situations, they can’t. The upshot is that, if we assume that the classicist

isn’t allowed to have a higher degree of belief (credence) in a null hypothesis after

he has rejected it than before, then (in certain situations), either he has to have

trivial or incoherent credences to begin with, or fail to update his credences by

conditionalization.
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1 Introduction

In statistics, there are two main paradigms: classical and Bayesian statistics. A

notorious problem with the Bayesian approach is the choice of prior credences. Due to

Bertrand-style paradoxes, there doesn’t seem to be any privileged way of choosing them.

Classical statistics is, in a sense, an attempt to factor them out. A problematic

consequence of this approach is its limited applicability. Another problem is how to

interpret classical notions (such as significance levels) in terms of degrees of evidential

support.1 Setting these issues aside, the purpose of this paper is rather to investigate the

extent to which classicists and Bayesians can (in some suitable sense of the word) agree

in situations where classical statistics is applicable. More precisely: is there always a

non-trivial prior credence distribution such that, for any possible observation, a Bayesian

with that credence will agree with the classicist whether the observation speaks in favor

of rejecting the hypothesis or not? The answer, as we will see, is no. In section 2 and 3, I

present the classical and Bayesian frameworks, respectively. In section 4, I define what I

take to be a reasonable notion of agreement, and construct a case in which agreement is

impossible. In section 5, I present a more general diagnosis of the conflict between

classical statistics and the Bayesian theory of rational degrees of belief.

2 Classical statistics

In classical statistics, hypotheses about the distribution of various properties in a

population are tested by observing random samples of it. On the assumption that the

1Cf. Lindley (1957), Berger and Sellke (1987) and Casella and Berger (1987).
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sample is random, the conditional probability P (E|H) for every possible observation E

and hypothesis H is usually derived as a matter of combinatorics. Given a particular

hypothesis H0 (a so called null hypothesis, which is the hypothesis to be tested), a

rejection region for H0 has to be selected, which is the set of outcomes leading to the

rejection of H0. Formally, if Ω is a non-empty set of possible outcomes (a sample space),

Σ is a σ-algebra on Ω (an event space), and Θ is a non-empty set of hypotheses, there’s a

function P : Σ×Θ→ [0, 1] such that, for each hypothesis H ∈ Θ, the function

P (·|H) : Σ→ [0, 1] is a probability function. A rejection region for a hypothesis H0 ∈ Θ

is an event R ∈ Σ such that H0 is rejected just in case an event E ∈ Σ is observed such

that E ⊆ R. The question is, what should this region look like?

Saying, for instance, that one should reject a hypothesis whenever an observation is

made whose probability given that hypothesis is below a certain threshold will not do,

since it means rejecting the hypothesis that a coin is fair given any sufficiently long

sequence of observed tosses. Likewise, it means rejecting the hypothesis that the length

of the male population is somewhat normally distributed around an average of 1.85

meters, after having observed a sample with exactly that average (in general, it’s highly

unlikely for the average of the sample to exactly coincide with the average of the

population). There are essentially two classical approaches to this problem, one by

Fisher and the other by Neyman and Pearson. I will look at each of them in turn.

2.1 Fisher

Instead of rejecting a hypothesis H just in case an event E is observed such that

P (E|H) is sufficiently low (which would be absurd), the general idea proposed by Fisher
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(1925) is to reject H just in case P (E or something more extreme|H) is sufficiently low.

Formally, for a given hypothesis H, let ≺H be a strict partial order on Ω such that, for

any E ∈ Σ, {x ∈ Ω : y ≺H x for some y ∈ E} ∈ Σ. The intended interpretation of

x ≺H y is that y is more extreme than x with respect to H. For any event E ∈ Σ, the so

called p-value of E with respect to H and ≺H can then be defined as follows:

p(E|H,≺H) =df P (E ∪ {x ∈ Ω : y ≺H x for some y ∈ E}|H) (1)

Thus, the p-value of E with respect to H and ≺H is to be understood as the probability

of observing E or something more extreme under the assumption that H is true. The

lower the p-value, the more reason one has to reject H, according to Fisher. For

instance, consider again the null hypothesis that the length of the male population is

normally distributed around an average of 1.85 meter. Assuming that the measured

average of a sample is to be considered more extreme the more it differs from 1.85, the

p-value of measuring an average of exactly 1.85 meters is 1. Such a high p-value will not

warrant the rejection of the null hypothesis.

But what makes an outcome more extreme than some other outcome with respect to

given hypothesis H? In general, it would be unwise to simply stipulate that x ≺H y just

in case P ({y}|H) < P ({x}|H). For one thing, it might be the case that {x}, {y} 6∈ Σ, in

which case the probabilities in question are undefined. Or it might be the case that

P ({x}|H) = 0 for all x ∈ Ω. That typically happens when Ω is the set R of real

numbers, Σ is the set of Lebesgue measurable subsets of R and P (·|H) : Σ→ [0, 1] is

defined as the integral of a continuous probability density function f : R→ R. But it’s

equally unwise to stipulate in such cases that x ≺H y just in case f(y) < f(x), as the
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Figure 1: Expected distribution on the measured mean according to the null hypothesis,
given by a probability density function f : R→ R.

following example illustrates:

Example 2.1 (The shooting range). Suppose you want to test whether the aim on a

rifle is straight or not (with respect to the horizontal direction). You go to a shooting

range and fix the rifle aimed at a particular target. Your plan is to fire several bullets at

the target, measure the horizontal distance in decimeters between the target and the

point of impact for each bullet, and calculate the mean. Your null hypothesis H is that

the aim is straight. Suppose that, on the assumption that the null hypothesis is true,

due to random influences (in particular the shape of the bullet leaving the pipe), the

sampled mean can be expected to be normally distributed around 0 with variance 1, as

depicted in Figure 1. Any statistics textbook will tell you that an outcome y is to be

considered more extreme than an outcome x relative to the null hypothesis just in case

the absolute distance between y and the mean 0 is greater than the absolute difference

between x and 0. In other words, for any x, y ∈ R, x ≺H y just in case |x| < |y|. One
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Figure 2: The measured mean represented by the angle v ∈ (−90, 90).

might be tempted to infer this from the shape of the probability density function f in

Figure 1 alone, since f(y) < f(x) just in case |x| < |y|. To see why that would be

unwise, let’s look at a different but equivalent representation of the same situation,

depicted in Figure 2. Let A be the point 1 decimeter from the target in the direction of

the rifle, let B be the target, and let C be a point to the left or right of the target

indicating the measured mean deviation, and consider the angle v between AB and AC,

ranging in the open interval between −90 to 90 degrees. With the same random

influences as before, the expected distribution on this angle is given by the probability

density function g depicted in Figure 3. But here it’s no longer the case that, for any

angles u, v ∈ (−90, 90), g(v) < g(u) just in case |u| < |v|.

In conclusion, the relation of being a more extreme outcome with respect to a

particular hypothesis cannot be inferred from the probability distribution associated
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Figure 3: Expected distribution on the angle corresponding to the measured mean accord-
ing to the null hypothesis, given by a probability density function g : (−90, 90)→ R.

with the hypothesis in any obvious way. Although it’s intuitively clear enough in

practice what relation to use, it does make Fisher’s theory less appealing from a

philosophical point of view.

2.2 Neyman and Pearson

A philosophically more sophisticated theory is offered by Neyman and Pearson

(1933a,b). The basic intuition is that, whether a hypothesis should be rejected depends

on whether there are better alternatives, i.e. whether there are plausible enough

alternative hypotheses according to which the probability of the observation is higher.

More specifically, determining an adequate rejection region for the null hypothesis

involves two notions: type 1 and type 2 errors. To commit a type 1 error is to reject a

true null hypothesis. To commit a type 2 error is to not reject a false null hypothesis.

Naturally, one does not want to reject a true null hypothesis. Hence, for each proposed
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Figure 4: Three possible rejection regions of size 0.1 for the null hypothesis, R1, R2 and
R3.

rejection region R ∈ Σ, one may ask: what is the probability of rejecting the null

hypothesis, on the assumption that it’s true? The answer, of course, is P (R|H0). For

some suitably small number α ∈ [0, 1] (e.g. α = 0.05), it’s therefore reasonable to require

that P (R|H0) ≤ α. However, if all we care about is minimizing the risk of making a type

1 error, then we should let R = ∅ and never reject any null hypothesis. In general,

however, even if we require that P (R|H0) = α, this condition does not single out a

unique rejection region. As illustrated by Barnett (1999, pp. 167-168), if α = 0.1 and the

null hypothesis yields a normal distribution with mean 0 and variance 1 over the sample

space R, the three regions depicted in Figure 4 all meet said requirement.

The solution, according to Neyman and Pearson, is to consider the probability of

making a type 2 error. Relative to some alternative hypothesis H ∈ Θ, the probability of

rejecting the null hypothesis on the assumption that H is true (and hence H0 is false) is

given by P (R|H). In order to minimize the risk of making a type 2 error, we want this

probability to be as high as possible. Consider Figure 5. Suppose the alternative

hypothesis H1 yields a normal distribution with mean 1 and variance 1. Then

P (R3|H1) < P (R1|H1) < P (R2|H1). Hence, with H1 considered as the alternative

hypothesis, region R2 is clearly the better choice. One can even show that, for every

alternative region R such that P (R|H0) ≤ α and P (R−R2|H1) 6= 0, we have
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Figure 5: R2 is a most powerful test of size 0.1 for H0 against H1.
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Figure 6: R2 is not a most powerful test for H0 against H−1 (R1 is more powerful).

P (R|H1) < P (R2|H1). In this sense, R2 dominates every other rejection region. It is a so

called most powerful test of size α for H0 against the alternative H1. As a matter of fact,

R2 is a most powerful test of size α against every alternative hypothesis yielding a

normal distribution with mean above zero and variance 1. Against this particular set of

alternative hypotheses, R2 is a so called uniformly most powerful test of size α for H0.

Intuitively, R2 thereby makes for a natural non-arbitrary choice of rejection region.

Indeed, it’s the one Neyman and Pearson recommend. From a Bayesian point of view,

they even show that such a rejection region is optimal independently of prior probabilities

in the sense that, whatever the prior probabilities on hypotheses are, the probability of

making a type 2 error can only increase by switching to another rejection region of the

same size (Neyman and Pearson, 1933b).

Sometimes, however, no uniformly most powerful test exists. For instance, in the

presence of an alternative hypothesis H−1 yielding a normal distribution with mean −1

and variance 1, R2 is dominated by R1, as can be seen in Figure 6. Hence, against any
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set of alternative hypotheses including both H1 and H−1, no uniformly most powerful

test exists for H0. This fact, of which Neyman and Pearson were aware, limits the

applicability of their method. The lack of a uniformly most powerful tests in certain

situations is a problem for classical statistics, but not one I will address in this paper.

3 Bayesian statistics

Compared with its classical counterparts, Bayesian statistics is straightforward.

Basically, it falls out from the more general Bayesian theory of rational degrees of belief

(rational credences), comprised of the following two postulates:

1. Rational credences are coherent (in the sense of satisfying the laws of probability).

2. Rational credences are updated by conditionalizing on evidence.

However, the theory only tells us how to rationally adjust our prior credences in relation

to new evidence. It does not tell us what our prior credences should be. Hence, it does

not tell us in absolute terms what our posterior credences should be in relation to new

evidence. Unlike classical statistics, it doesn’t tell us whether a particular hypothesis

should be rejected or not.

Initially, this may lead one to suspect that classical statistics harbors some implicit

assumptions about what kind of prior credences one may have. On this picture, a

classicist would just be a Bayesian with a particular kind of prior credences. As we shall

see, however, matters are much worse. We we will show that, in a certain rather natural

sense, there are situations where classical and Bayesian statistics are incompatible.
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I will now present what I take to be the essence of Bayesian statistics. For technical

reasons, one usually distinguishes between the case where the set of hypotheses is

countable (the discrete case) and when it’s continuum-sized (the continuous case). For

our purposes, it’s enough to consider the discrete case. Thus, let Θ be a countable

non-empty set of hypotheses, each of which is associated with a probability function

P (·|H) : Σ→ [0, 1] on an event space Σ (just as in classical statistics), and let

Cr : P(Θ)→ [0, 1] be a probability function representing the prior credence in each

hypothesis. The idea is to extend this function to the mixed domain Σ× P(Θ) by

something like the principal principle (Lewis, 1980). Hence, we assume that, for each

event E ∈ Σ and hypothesis H ∈ Θ,

Cr(E&H) =df P (E|H)Cr(H) (2)

and, for each ∆ ⊆ Θ,

Cr(E&∆) =df

∑
H∈∆

Cr(E&H) (3)

For the sake of legibility, we write Cr(E&H) instead of Cr(〈E, {H}〉), and Cr(H) instead

of Cr({H}). For the same reason, we write Cr(E&∆) instead of Cr(〈E,∆〉).

Now, for any observation E ∈ Σ such that Cr(E&Θ) 6= 0, the posterior credence CrE

is then given for each H ∈ Θ by conditionalizing on E:

CrE(H) =df
Cr(E&H)

Cr(E&Θ)
=df

P (E|H)Cr(H)∑
H∈Θ P (E|H)Cr(H)

(4)

The following fact is easy to establish, and will be used in the next section:

Fact 3.1. Provided that 0 < Cr(H0) < 1, we have Cr(H0) < CrE(H0) if, for all
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H ∈ Θ− {H0}, P (E|H) < P (E|H0). Likewise, we have CrE(H0) ≤ Cr(H0) if, for all

H ∈ Θ− {H0}, P (E|H0) ≤ P (E|H).

4 Agreement

In order to compare classical and Bayesian statistics, let’s assume that we have a

situation where there is a uniformly most powerful test for the null hypothesis against

the alternatives. We shall focus on the Neyman-Pearson version of classical statistics,

but also say something about Fisher’s version as we go along. Now, a classical

statistician is not in the business of assigning rational credences to hypotheses. One may

still wonder: are there any credences he might have that would (in some suitable sense of

the word) agree with his statistical methods? In the discrete case, the following

definition of agreement seems natural:

Definition 4.1 (Agreement). Let Θ be a countable non-empty set of hypotheses, each

of which is associated with a probability function P (·|H) : Σ→ [0, 1] on an event space

Σ, and let Cr : P(Θ)→ [0, 1] be a probability function representing the initial credences

of the Bayesian. Assume that the null hypothesis H0 ∈ Θ has uniformly most powerful

test R ∈ Σ of size α ∈ [0, 1]. We then say that the Bayesian and the classicist agree (with

respect to α) just in case there’s no event E ∈ Σ such that E ⊆ R but

Cr(H0) < CrE(H0).

In plain English: the Bayesian and the classicist agree just in case there’s no

observation prompting the classicist to reject the null hypothesis while prompting the

Bayesian to increase his credence in it.
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Observe that, by (4), if Cr(H0) = 1 or Cr(H0) = 0, then the Bayesian and the

classicist will agree trivially, since Cr(H0) = CrE(H0) for all E ∈ Σ for which CrE is

defined. They will also agree trivially when α = 0, since that means P (E|H0) = 0 for

any E ⊆ R. What we’re interested is of course whether they can agree non-trivially. By

Fact 3.1, it follows that non-trivial agreement is guaranteed in the situation depicted in

Figure 5, with rejection region R2 for H0 against H1. However, for any given α > 0,

there are situations where the Bayesian and the classicist cannot agree non-trivially.

Here’s such an example:

Example 4.1. Suppose you want to test the null hypothesis (H0) that 1/3 of all

members of a population have property F against the alternative hypothesis (H1) that

2/3 have it. You decide to perform a random sample of 50 individuals and count the

number of F :s in that sample. The expected number of F :s according to each hypothesis

is given by a binomial distribution, depicted in Figure 7. A most powerful test for the

null hypothesis of size 0.05 against the alternative is an event where the sample contains

anything between 23 and 50 F :s. Let E be the event that the sample contains 23 F :s.

Thus, using a test of size 0.05, the event E should lead to a rejection of the null

hypothesis. However, since P (E|H1) < P (E|H0), it follows by Fact 3.1 that non-trivial

agreement is impossible. Whatever his prior credences are (assuming that

0 < Cr(H0) < 1), the Bayesian will deem the null hypothesis more likely after observing

E than before.

Clearly, for any α > 0, a similar situation may arise if we make the sample size n

large enough. Likewise, in the case of Fisher’s theory of p-values, assuming that x ≺H0 y

just in case P ({y}|H0) < P ({x}|H0) for any x, y ∈ {0, 1, ..., n}, we can for any α > 0 find
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Figure 7: The expected number of F :s in a random sample of 50 individuals according to
the null hypothesis (left) and the alternative hypothesis (right). A most powerful test of
size 0.05 for the null hypothesis against the alternative is indicated by the blue area. In
this case, Bayesians and classicists cannot agree.

a large enough sample size n for which an event E exists whose p-value is below α,

although the event in question will prompt the Bayesian to increase his credence in H0.

This is essentially just a version of Lindley’s paradox (Lindley, 1957). In the original

paradox, however, a null hypothesis H0 is tested against a set of alternatives

{Hµ : µ > 0} (or, as statisticians like to put it, a precise null hypothesis is tested against

an imprecise or composite alternative). In order to generate the original paradox (i.e. in

order to derive the conclusion that the Bayesian will increase his credence in the rejected

null hypothesis), one has to assume that the Bayesian assigns a non-zero prior credence

to it. But since the set of hypotheses is uncountable, this assumption is not very

plausible, and it’s possible to obtain agreement by simply denying it. In that case, the

result is perhaps less problematic for the classicist. According to Spanos (2013), it

merely reveals that powerful tests are more sensitive, which is why we can use them to

detect small changes in a population. Moreover, as argued by Sprenger (2013), the
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Figure 8: A most powerful test of size 0.02 for the null hypothesis (left) against the
alternative (right) is indicated by the blue area. In this case, Bayesians and classicist
must agree.

original paradox may also be a problem for the Bayesian. But in the example at hand,

where a precise null hypothesis is tested against an equally precise alternative, the result

is more clearly problematic only for the classicist. Intuitively, there’s no sense in which

the observation of 23 F :s favors the alternative H1 over H0.

The example indicates that, from a classical point of view, it may be unwise to settle

for any particular test size in advance (e.g. α = 0.05), regardless of how small it is.

Indeed, for any particular sample size n, there is a most powerful test of some size (e.g.

α = 0.02 when n = 50) for H0 against H1 with respect to which Bayesians and classicists

can and, in fact, must agree. Such a situation is depicted in Figure 8. According to

Mayo and Spanos (2006, p. 345, footnote 21), some statisticians have even suggested

that the significance level should be adjusted as a function of the sample size.2 As a

2That’s not the solution the authors themselves recommend, however. Although they

don’t provide any examples, a suggestion of this sort can indeed be found in Pérez and
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Figure 9: The distribution of length in a population according to the null hypothesis (left)
and the alternative (right).

general solution, however, that suggestion is problematic. As witnessed by the following

example, it’s possible to construct a situation where there’s no α > 0 with respect to

which Bayesians and classicists can agree:

Example 4.2. Let the null hypothesis H0 be that the length of individuals in a certain

population ranges between 0 and 10, and that it’s (approximately) normally distributed

with mean 5 and some variance v. Let the alternative hypothesis H1 be that it ranges

between 0 and 40, and that it’s (approximately) normally distributed with mean 20 and

the same variance v. the situation is depicted in Figure 9. According to the null

hypothesis, the average length of a random sample will range between 0 and 10 and be

(approximately) normally distributed with mean 5 and some variance v′ ≤ v. According

to the alternative, it will range between 0 and 40 and be (approximately) normally

distributed with mean 20 and the same variance v′. The situation is depicted in Figure

10. Clearly, for any α > 0, a most powerful test of size α of the null hypothesis against

Pericchi (2014).
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Figure 10: The distribution of average length of a random sample according to the null
hypothesis (left) and the alternative (right).

the alternative is given by the rejection region [a, 40], for some a < 10. However, for each

such region R, there’s an event E ⊆ R such that P (E|H0) > P (E|H1), namely

E = [a, 10]. Hence, by Fact 3.1, for each α > 0, non-trivial agreement is impossible.

The general features making non-trivial agreement impossible in this example are the

following:

The null hypothesis is associated with a probability density function f on a sample

space [p, q] ∪ [q, r] ⊆ R, where p < q < r, such that

(a) f(x) = 0 for all x ∈ (q, r], and

(b) each alternative hypothesis is associated with a probability density function g on

the sample space such that

i. f(x) > g(x) for all x ∈ [p, q], and

ii. f(x)/g(x) is strictly decreasing on [p, q].
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Features (a) and (b)-ii guarantee that, for each α > 0, a uniformly most powerful test of

that size is given by the interval [a, r], for some a < q. Feature (b)-i guarantees that the

event [a, q] ⊆ [a, r] is more probable according to the null hypothesis than according to

any alternative. By Fact 3.1, this event will therefore prompt the Bayesian to increase

his his credence in the null.

In summary, the example describes a situation where, for each α > 0, there’s a most

powerful test of size α of the null hypothesis against the alternative, and for which

there’s an event E such that

1. The null hypothesis is rejected by E according to the Neyman-Pearson theory,

2. The p-value of E is smaller than α according to Fisher’s theory3, and

3. Conditionalizing on E will increase one’s credence in the null hypothesis given any

non-trivial assignment of prior credences to the null hypothesis and its alternative.

The upshot is that, if we assume that a classical statistician isn’t allowed to increase his

credence in the null hypothesis after he has rejected it, he either has to have trivial or

incoherent credences to begin with, or fail to update his credences by conditionalization.

Some classicists might respond that although an event with a sufficiently low p-value

always indicates some discrepancy from the null, it doesn’t indicate the large

discrepancy represented by the alternative in this case. The problem with this response

is that, under the assumptions in the case at hand, any discrepancy from the null entails

the alternative. So anything indicating the former indicates the latter. Alternatively,

they might argue that the testing of a precise null hypothesis against an equally precise

3Assuming that x ≺H0 y just in case |x− 5| < |y − 5|, for all x, y ∈ [0, 40].
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alternative is “artifical” or “illegitimate”.4 If so, I fail to see in what sense. Surely it’s

possible to know that either of two such hypotheses obtain, and to gather evidence for or

against them by means of random sampling. A general theory of statistical inference

should be able to explain how and why.

5 A diagnosis

Example 4.1 and 4.2 illustrate (as does Lindley’s paradox) a basic conflict between

classical and Bayesian statistics. The conflict is that the former (in the case of

Neyman-Pearson, where R ⊆ Ω is a uniformly most powerful rejection region) equates

the evidential value of a piece of information E ⊆ Ω to the evidential value of E ∪R, or

(in the case of Fisher) equates it to the evidential value of E or something more extreme.

Their evidential values are equated in the sense that they license exactly the same

classical statistical inferences, respectively: E is sufficient for rejecting the null

hypothesis just in case E ∪R is, and the p-value of E is the same as the p-value of E or

something more extreme. But E is generally not the same information as E ∪R or E or

something more extreme. For the Bayesian, they generally don’t have the same evidential

value. The point is a familiar one. Jeffreys (1980) put it this way:5

I have always considered the arguments for the use of [p-values] absurd. They

amount to saying that a hypothesis that may or may not be true is rejected

because a greater departure from the trial value was improbable [under that

hypothesis]; that is, that it has not predicted something that has not

4Cf. Mayo and Spanos (2006, 2011).
5I’m grateful to Uwe Saint-Mont for pointing this out to me.
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happened.

Indeed, as the examples show, the null hypothesis may assign an arbitrarily low

probability to E or something more extreme, and yet assign a higher probability to E

than any alternative hypothesis. By Fact 3.1, the Bayesian will then increase his

credence in the null hypothesis (given any non-trivial prior credences) although it’s been

rejected by the classicist.

6 Conclusion

Suppose that a classical statistician isn’t allowed to have a higher degree of belief

(credence) in a null hypothesis after he has rejected it than before. We have shown that,

in certain situations, either he has to have trivial or incoherent credences to begin with,

or fail to update his credences by conditionalization. Remember that, in the trivial case,

he is either absolutely certain that the null hypothesis is true, or absolutely certain that

it’s false. For obvious reasons, that case is irrelevant in this context. In the non-trivial

case, there are plenty of good arguments to the effect that the classical statistician is

irrational. I’m thinking primarily of synchronic and diachronic Dutch book arguments,

which I shall not rehearse here. At any rate, there’s a conflict between classical statistics

and the Bayesian theory of rational degrees of belief.
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