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Abstract

In the last five years, the controversy about whether or not gauge transformations

can be empirically significant has intensified. On the one hand, Greaves and Wallace

(2014) developed a framework according to which, under some circumstances, gauge

transformations can be empirically significant, and Teh (2015) further supported this

result by using the Constrained Hamiltonian formalism. On the other hand, Friederich

(2015, 2016) claims to have proved that gauge transformation can never be empirically

significant. In this paper, I accomplish two tasks: first, I show that Friederich’s proof

is not valid, and that once it is corrected, it entails a result that is compatible with the

treatments by Greaves, Wallace, and Teh. Second, I show that, despite criticism by

Brading and Brown (2004) and Friederich (2015), t’Hooft’s Beam-Splitter experiment

is indeed a concrete realization of a case where a local gauge symmetry has empiri-

cal significance. By shedding light on these two points, this paper shows that recent

arguments that claim gauge transformations cannot be empirically significant are not

satisfactory.
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1 Introduction

According to conventional wisdom, local transformations, of either the whole universe or of

subsystems within it, never relate universe states that are physically distinguishable from

one another. Recently, however, in a series of papers, many of which have been published

in this journal, this point has given rise to new debates. On the one hand, Greaves and

Wallace (2014) developed a general framework from which it is transparent that there are

cases where local symmetries produce empirically distinct physical states, and by using

the Constrained Hamiltonian formalism, Teh (2015) further clarifies the conditions under

which this result holds. On the other hand, by generalizing the framework of Greaves and

Wallace (GW henceforth) and by appealing to some very general and plausible principles

regarding the individuation and composition of physical systems, Friederich (2015, 2016) has

attempted to prove the result that gauge transformations are never empirically significant

(that is, they never give rise to situations that are empirically distinct, but see section 2

for a detailed explanation of ‘empirical significance’).1 This leads to a puzzle: how can it

be that if one adopts GW’s framework and the Constrained Hamiltonian formalism, then

some local gauge transformations can be shown to be empirically significant and, on the

other hand, if one further develops GW’s framework and adopts some general principles

about the individuation of subsystems, then suddenly gauge transformations can be proven

to lack empirical significance? One of the two main goals of this paper is to offer a solution

to this question.

Friederich, who is very much aware of the puzzle just introduced, proposes some sort

1It is worth mentioning that Brading and Brown (2004) and Healey (2009) also offer arguments with
the purpose of defending the conventional wisdom, but for the sake of space, I will restrict this particular
discussion to the debates between Greaves, Wallace and Teh, on the one hand, and Friederich, on the other
(for a recent argument against the conventional wisdom from the perspective of the Standard Model, see
Dougherty (2019)).
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of pluralism according to which different answers regarding the empirical status of gauge

symmetries are all acceptable because they come from different (possibly incompatible)

frameworks that disagree, among other things, about how to individuate physical subsys-

tems (Friederich, 2016, 9). In this paper, I will offer a different (non-pluralistic) solution

to this dilemma. In particular, I will show that the tension between the results of GW

and Teh on the one hand, and the results of Friederich on the other, is not a matter of

incompatible assumptions or frameworks, but a consequence of the fact that Friederich’s

result is not valid. As I will explain in detail in section 3, the problem with his argument is

that it attempts to derive a result about any kind of gauge transformation by just focusing

on a very particular kind (namely, transformations that go to the identity at some point of

the environment). Once we identify this problem, it becomes clear that the alleged proof

only establishes the weaker result that a certain kind of gauge transformation (i.e., one that

‘asymptotes’ to the identity in a smooth way) is not empirically significant. Importantly,

both GW and Teh’s treatments also agree that this very same kind of gauge transforma-

tion is not empirically significant (but their treatments also show that other kind of gauge

transformations not affected by Friederich’s proof can indeed be empirically significant).

Contrary to appearances, then, the different frameworks converge to the very same result,

and the puzzle is solved.

The second goal of this paper is to show that, despite criticism by Brading and Brown

(2004) and Friederich (2015), t’Hooft’s Beam-Splitter experiment is indeed a concrete real-

ization of a case where a local gauge symmetry has empirical significance. As I will explain

in section 4, the main problem with these criticisms is that they mischaracterize the fea-

ture that provides empirical significance to the symmetry at hand. Thus, by clarifying how

t’Hooft’s Beam-Splitter is indeed an experiment where a gauge transformation is empirically

significant, and by showing that Friederich’s proof does not work, I will reinforce GW and
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Teh’s claim that local gauge transformations can be empirically significant.

The structure of the paper goes as follows. In section 2, I explain why Greaves and

Wallace and Teh think that, simply as a matter of very general considerations, local sym-

metries can be empirically significant. In section 3, I discuss Friederich’s alleged proof that

local symmetries can never be empirically significant, and I show why it is not logically

valid. Furthermore, I argue that the correct conclusion of the proof actually agrees with

the results of Greaves and Wallace (2014) and Teh (2015). In section 4, I show that the

main arguments against the view that t’Hooft’s Beam-Splitter experiment constitutes an

empirical realization of a local symmetry with empirical significance do not succeed.

2 Greaves and Wallace’s formalism

There are three main distinctions we should be aware of for the upcoming discussions.

One is the distinction between external and internal symmetries. An external symmetry

is a transformation of the space-time parameters of a theory (i.e., x, y, z, t) and an inter-

nal symmetry is a transformation of any other parameter that is not a space-time one.

For example, boosts and rotations are external symmetries, whereas transformations of the

spin of a particle are internal. The second distinction is that between global symmetries

and local symmetries. Roughly, a local symmetry is a transformation from space-time to a

gauge group (such as the transformations of the four-vector potential in electromagnetism),

whereas a global transformation does not depend on space-time (the term “gauge transfor-

mation” is sometimes taken to mean a local transformation that relates different descriptions

of the same physical state, but clearly this is not what it is meant in this paper for other-

wise there would not be any substantive question about the empirical significance of these
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transformations).2

The third important distinction is that between symmetries of a subsystem and symme-

tries of the whole universe. As the name indicates, a symmetry of a subsystem (a system

that is not the universe itself) relates states of the subsystem, whereas a symmetry of the

whole universe relates states of the universe. I will follow Greaves and Wallace (2014) in

taking symmetry-related states of the universe to always represent empirically indistinguish-

able states of affairs. Furthermore, if two states of a subsystems (or the universe) that are

related by a symmetry are empirically indistinguishable, then I will say that the symmetry

lacks empirical significance (or, equivalent, I will say that it is not empirically significant).

Obviously, then, from GW’s set-up it follows that symmetries of the universe lack empirical

significance. On the other hand, if two states that are related by a symmetry are empirically

distinguishable, then I will say that the symmetry is empirically significant.3 For example,

a world where a certain ship is at rest with respect to the shore and a world where the same

ship is moving with respect to that same shore are empirically distinct worlds, and so the

symmetry relating the states of the ship (i.e., a given boost) is an empirically significant

symmetry. But a boost is an external symmetry, and in this paper we will exclusively focus

on internal local transformations of subsystems. According to conventional wisdom, these

always lack empirical significance.

In order to tackle the question of what precise conditions have to be satisfied for a

symmetry to be empirically significant, GW develop a general framework that allows us to

answer that question for different kinds of theories and systems. Here I will briefly introduce

2Teh (2015, 97) calls ‘Redundant’ local transformations defined in this way (that is, defined as transfor-
mations that relate redundant descriptions), and ‘Formal’ those local transformation from space-time to a
gauge group.

3For this reason, symmetries of the universe are sometimes called “theoretical symmetries” and some
symmetries of subsystems are called “empirical symmetries” (Healey, 2009). However, I will not be using
that terminology here. Others use the term ‘Direct Empirical Significance’ to refer to what I am here calling
‘empirical significance’ (for example, see Brading and Brown (2004), Friederich (2015) or Teh (2015)).
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the essential concepts of that framework.

At the heart of GW proposal is the remark that we should be able to split states of the

whole universe into states of subsystems of the universe. In particular, one of GW’s main

assumptions is that we should be able to describe the state of the universe, u, in terms of

a Cartesian product of the state of a subsystem s and the state of the environment, e: u =

〈s, e〉 (here u is an element of the set U that contains all physically possible universe states,

s is an element of the set S that contains all physically possible states of the subsystem, and

e is an element of E, the set containing all physically possible states of the environment).

Importantly, GW introduce an operation denoted by ‘∗’ that should be interpreted as

follows: “s1 ∗ s2” means “the composition of state s1 and state s2.” So, in particular,

u = 〈s, e〉 can be written as u = s ∗ e. Importantly, not any combination between states

of the environment and states of the subsystem will yield to a well-defined state of the

universe, and so s ∗ e will not always yield a state u in U (so U is a subset of the Cartesian

product S× E, see (Greaves and Wallace, 2014, 68)).

Next, let’s consider how GW represent symmetries in this formalism. A given symmetry

σ of the universe acting on a state of the universe u gives us a new state u′ in U: u′ = σ(u)

(unless the symmetry in question is the identity, in which case u′ = σ(u) = u). And just

as universe states can be decomposed into states of the subsystem and the environment,

symmetries of the universe can be uniquely decomposed into symmetries of the subsystem

and the environment. In particular, for all s ∈ S, e ∈ E, σ(u) = σ(s ∗ e) = σS(s) ∗ σE(e)

for some maps σS and σE (here σS is the restriction of σ to the subsystem and σE is the

restriction of σ to the environment).

We have now the main ingredients needed to answer the question of when, according to

GW, subsystem symmetries are empirically significant (recall that a universe symmetry al-

ways relates empirically equivalent states of the universe, and so only subsystem symmetries
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can be empirically significant). According to GW, the distinction between symmetries that

are empirically significant and those that are not does not hinge, as conventional wisdom

has presupposed, on a distinction between global symmetries and local symmetries. Rather,

it hinges on a distinction between what GW call “interior” and “non-interior” symmetries

(we should not confuse interior symmetries with internal symmetries).

Interior symmetries: A subsystem symmetry σs is interior iff for all s ∈ S

and all e ∈ E for which s∗ e is defined, σs ∗ e is well-defined and it is empirically

equivalent to s ∗ e.

In other words, if σs is interior, then if we start with an arbitrary universe state s∗e and

apply σs to s, we recover an empirically equivalent state of the universe. Thus, obviously,

only non-interior symmetries could be empirically significant.

According to GW, there are two main ways in which a subsystem symmetry can be

empirically significant: first, a symmetry can be empirically significant if, for some states

s and e, (a) s ∗ e and σs(s) ∗ e are both well-defined and (b) they represent empirically

distinct states of the universe. Indeed, this is precisely the case of a ‘Galileo-ship scenario’;

if we represent the ship at rest with respect to the shore by s ∗ e, then we will represent the

ship moving with respect to the shore by σs(s) ∗ e (where σs is a boost, and the state of the

environment stays the same), and clearly, s ∗ e and σs(s) ∗ e are empirically distinct states

of the world. I will call this kind of case, where the symmetry is empirically significant in

the way a Galileo-ship case is, “Type I”.

Importantly, notice that measurements confined to the subsystem alone (to the ship

cabin in the last example) or measurements confined to the environment alone (to the shore)

would not be able to distinguish between s ∗ e (the ship at rest) and σs(s) ∗ e (the ship

moving). Thus, the empirical content of such a symmetry is associated with measurements
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of relational properties between the environment and the subsystem. For example, the

boost of the ship obviously induces changes in the relative speed between the ship and the

shore.

Second, for cases where the subsystem is not appropriately isolated from the environ-

ment, it can happen that the symmetry in question disrupts the relevant boundary condi-

tions so that it maps a well-defined state s∗e of the universe to an ill-defined state σs(s)∗e.

In that case, the action of the symmetry requires us to alter the environment state, e 7→ e′,

in such a way that σs(s) ∗ e′ is then well-defined (here e′ and e are physically distinct states

of the environment). Notice that this is a case analogous to a Faraday cage scenario in

electrostatics, where the subsystem is the interior region of the cage and the environment

is the surface of the conductor; shifts in the scalar potential in the interior (an internal and

global symmetry) are associated to changes in the surface charge (and of course, these are

detectable changes of the state of the environment). However, the main debate around the

empirical status of gauge transformations has centered around Type I cases, and in this

paper I will follow the literature in that respect.

The crucial take-away message of GW’s framework, for the purposes of the present

paper, is this: GW’s description of Type I cases is general enough in that it does not

specify anything about the kind of subsystem symmetry or the kind of physical theory we

are dealing with. That is, on the face of it, GW’s framework is so general that it not

only accomodates Type I cases involving global symmetries (such as a classic Galileo ship

scenario) but, more interestingly, it seems to allow for Type I cases of local symmetries.

In particular, a Type I case for a local symmetry σs would be one for which (a) for some

states of the subsystem, s ∗ e and σs(s) ∗ e are both well-defined, and (b) s ∗ e and σs(s) ∗ e

represent empirically distinct states of the universe. Not only their framework allows for

the possibility of local transformations that are empirically significant (a possibility that
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Brading and Brown (2004, 657), Healey (2009) and Friederich (2015) want to deny)4, but

GW also say that t’Hooft’s Beam Splitter experiment is precisely a concrete realization of

a local Type I case (we will study this case in section 4).

So far the discussion has been very general, and so at this point it would be helpful

to say a bit more about the conditions under which local gauge transformations can lead

to Galileo-type scenarios. By using the Constrained Hamiltonian formalism, Teh (2015)

sheds light into those conditions. In particular, he explains that we should formally dis-

tinguish between the group of the so-called ‘small’ gauge transformations (transformations

that, asymptotically, can be smoothly transformed to the identity), and the group of ‘large’

gauge transformations (transformations that cannot be smoothly deformed to the iden-

tity)(Teh, 2015, Sec. 4). Indeed, we should distinguish between three subgroups of the

group of gauge transformations G. One is G∞0 , the group of gauge transformations that is

smoothly connected to the identity. Another one is G∞, which corresponds to the group of

transformations that go asymptotically (not necessarily in a smooth way) to the identity.

Finally, there is GI , the group of transformations that leave invariant the boundary condi-

tions of the fields (so that the subsystem remains invariant). Then, we get the following

hierarchy (2015, 115):

G∞0 ⊂ G∞ ⊂ GI ⊂ G. (1)

G∞0 contains all the small gauge transformations and these cannot exhibit empirical

significance (they are ‘interior’ in GW’s sense). Therefore, the only candidates of gauge

4For example, Brading and Brown (2004, 657) say that “in conclusion, there can be no analogue of the
Galilean ship experiment for local gauge transformations.” And Friederich (2015), as we will see in section
3, intends to prove this.
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transformations that can be empirically significant are those in GI (for they need to preserve

the boundary conditions in order to count as a Type one case) that are not in G∞0 (i.e. those

in GI/G
∞
0 ). These are then the ‘large’ transformations, and the way they are empirically

significant is by inducing relational changes with respect to an environment (where the

environment here is taken to correspond to a fixed frame at the asymptotic boundary).5

Finally, let us point out that Teh also agrees with GW in that t’Hooft’s Beam Splitter

experiment offers an example of a local transformation that has empirical significance (Teh,

2015, 109).

3 Friederich’s proof

At this point, someone defending the orthodoxy–in this particular context, the view that

Type I cases of local symmetries are impossible–can proceed in at least two ways. She could

either try to resist GW’s general framework altogether, or she can endorse the framework

(or part of it) and show that, despite the fact that it seems to allow for their possibility,

there are reasons to believe that Type I cases for local symmetries are impossible (of course,

that person would also have to explain why Teh’s analysis of the constrained Hamiltonian

formalism is problematic, but let me focus here on GW’s general framework). Although

in this paper I will be concerned with the second route, let me briefly offer three reasons

for why the first route–the total rejection of GW’s framework–does not seem to be a very

promising way of defending the orthodoxy.

First, GW’s framework gets right all of the uncontroversial cases of empirical significance.

It entails that external transformations (such as boosts and rotations) of isolated subsystems

5Teh points out that for a long time, physicists have taken seriously the possibility of local symmetries
exhibiting Type I empirical significance. And indeed, ‘large’ transformations are crucial to the construction
of charges.
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are empirical significant; that shifts in the scalar potential in the interior of a conductor are

empirical significant in the case of electrostatics; that universe states related by universe

symmetries are physically indistinguishable; and, finally, that gauge transformations that

assymptote to the identity (and hence are trivial there) are to be understood as mere

redundancies of our descriptions of the subsystem at hand. Thus, at least with respect to

these uncontroversial cases, the framework seems to be on the right track.

Second, the framework has the virtue that it is so general that it can be easily applied

to many different physical theories. Indeed, it is hard to imagine that the framework could

not be applied to a given physical theory, for as long as the theory in question deals with

the state space of a system, transformation rules between these states, and composition

rules for states of different subsystems (all of which are very general features of physical

theories), then GW’s framework could be applied to that theory. Thus, if our project is

that of answering when symmetries are empirically significant, it seems that rejecting a

framework that is capable of modelling very different physical theories is not the best way

to go (unless a replacement is put forward). And third, as far as I know, nobody has offered

reasons to reject the framework itself (of course, rejecting the framework merely as a result

of it entailing that there could be local symmetries with empirical significance would be

question-begging in the context of the present dispute).

Let’s consider now the only argument in the literature that, while explicitly accepting

GW’s framework, attempts to prove that Type I local symmetries are impossible. In partic-

ular, the argument intends to show that “on a natural development of the Greaves-Wallace

framework, a version of the standard view can be vindicated, which says that only global

symmetries can have direct empirical significance” (Friederich, 2015, 540). Or as he puts in

his 2016 paper (my emphasis):
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as I will show, one obtains a result according to which all (subsystem-restricted)

gauge transformations in local gauge theories are without any direct empirical

significance, whether or not they reduce to the identity transformation on the

subsystem boundary and whether or not they connect topologically inequivalent

configurations (Friederich, 2016, 5).

At this point, the puzzle mentioned in the introduction appears. How can it be that

on the one hand, according to both GW’s framework and the Constrained Hamiltonian

formalism, local gauge transformations that are not trivial at the boundary with the envi-

ronment can be empirically significant, and yet, on the other hand, gauge transformations

can be proven to always lack empirical significance? Friederich, who is aware of this puzzle,

suggests some sort of pluralism according to which different answers regarding the empirical

status of gauge symmetries are all acceptable because they come from different (possibly

incompatible) frameworks (Friederich, 2016, 9). As I will explain now, however, there is no

need to adopt this kind of pluralism around the empirical significance of gauge symmetries,

for there is an important problem with the alleged proof by Friederich.

The following fact about gauge symmetries plays a crucial role in the upcoming argument

(I find the other assumptions or facts used by Friederich to be very natural extensions of

GW’s formalism, and so, for reasons of space, I will not discuss them):

FACT*: Any local symmetry σs defined on a subsystem S can be extended

to an interior symmetry defined on a larger subsystem V of which S is a part

(Friederich, 2015, 548).6

In other words, FACT* says that we can always extend a subsystem gauge transforma-

6Although in his (2015) paper this fact was taken to be an assumption (there called “Ext” for ‘extend-
ability’), it is stated as a derivable fact of gauge theories in his (2016, 9) paper.
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Figure 1: An illustration of FACT*. In the left, we have a gauge transformation σs acting
on the subsystem S. In the right, we extend this symmetry by means of σse, a transfor-
mation that asymptotically goes to the identity (in a smooth manner) at some point in the
environment. The resulting symmetry σv = σs ∗ σse is interior on the bigger subsystem V
(V is the subsystem consisting of S and the region labelled ‘M ’ in the figure).

tion σs in such a way that its extension, σse, goes smoothly to the identity at some point

in the environment (here the subscript “se” stands for ‘extension of the subsystem symme-

try’).7 The total transformation thus obtained (the one given by the initial symmetry and

its extension) is interior on a bigger subsystem (see figure 1 for an illustration).

For the sake of simplicity, let me call ‘Trivial Extension’ any extension of a subsystem

symmetry σs such that it assymptotes (in a smooth way) to the identity at some point in

the environment. With this terminology, we can rewrite FACT* as follows:

FACT: for any gauge symmetry σs, there is always a Trivial Extension σse.

Here is then a simplified version of Friederich’s proof according to which gauge symme-

tries cannot be empirically significant:

(1) Consider an arbitrary gauge transformation σs of a subsystem S.

7Friederich is not very clear about whether he means that any transformation can be extended to the
identity in a smooth way or in a general (non-necessarily smooth) way. From the context of the discussion,
it seems he means “smooth”, and so I will assume that in what follows. But my criticism still holds if he
does not require smoothness.
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(2) From FACT, it follows that there is a Trivial Extension σse of σs.

(3) The transformation consisting of σs and σse, σv = σs ∗ σse, is interior.

(4) Since it is interior, applying σv to the universe is equivalent to applying the universe

symmetry σ = σv ∗ Ir, where Ir refers to the identity transformation on the region of

the environment not including V (that is, the transformation on the environment of

V that is denoted by E′ in figure 1).

(5) Thus, to apply σs together with σse is equivalent to applying the universe symmetry

σ = σv ∗ Ir = σs ∗ σse ∗ Ir.

(6) When a universe symmetry is applied to the universe, all of its restrictions to subsys-

tems lack empirical significance.8

(7) By construction, σs is a restriction of the universe symmetry σ to subsystem S (see

(5) above).

C) Thus, σs does not have empirical significance.

(Given that σs is arbitrary, the above result holds for any gauge subsystem symmetry

whatsoever.)

The problem with the previous argument is that the claim that σs does not have empir-

ical significance does not follow from the premises. The reason is simply that in the proof it

is assumed that σs is applied to S together with a Trivial Extension. Therefore, Friederich’s

argument only establishes the following weaker claim:

C*: When σs and a Trivial Extension σse are jointly applied, σs lacks empirical

significance.

8Friederich derives (a particular instance of) this result from his assumptions SUL and DES (see the first
equation in page 9 of his (2016)).
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Importantly, this weaker claim is not a threat to the coherence of local Type I cases

because C* does not entail that σs lacks empirical significance in those cases where a

Trivial Extension is not applied, and these are precisely the Type I cases. In particular,

recall that Type I cases are characterized by transformations of the form σs ∗ Ie that leave

the environment of s completely unchanged, whereas in the previous proof we are asked to

consider a transformation of the form σs ∗σse, and obviously σse alters the state of a region

of the environment of s (in figure 1, the region affected by σse is M).

To reinforce my point, it is helpful to attend to what Friederich actually says at the very

beginning of his argument (my emphasis):

Let σs be a local symmetry defined on a subsystem state space S. By Ext

[FACT], we can extend it to an interior symmetry σv on V, the state space

associated with a larger subsystem S ∈ V (Friederich, 2015, 549).

Notice that in the second sentence of the previous passage, Friederich correctly says that

we can extend the subsystem symmetry (this is a consequence of FACT). But of course,

from the fact that we can do so it does not follow that we must do so (for example, we can

also extend the subsystem symmetry in a rigid manner that does not go to the identity!).

From this point of the argument onward, Friederich focuses completely on that case where

σs and σse are jointly applied, and he says nothing about cases where σs is applied in the

absence of a Trivial Extension.9 In short, then, Friederich’s proof does not establish that

σs always lacks empirical significance but only that it lacks it when applied together with

a Trivial Extension.

Interestingly, the fact that σs lacks empirical significance in the presence of a Trivial

Extension is precisely the result we expected from both GW’s framework and from the

9In his terminology, σse corresponds to σs′ , and σv is expressed as σv = σs ∗ σs′ .
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Constrained Hamiltonian approach as presented by Teh (2015). After all, when σs is applied

together with σse, we are effectively applying a symmetry transformation σv that smoothly

assymptotes to the identity and so that it is interior. And as we explained in section 2,

‘small’ transformations (those that go to the identity in a smooth way) always correspond

to redundant descriptions of the physical content of the theory (2015, Sect 4). Thus, if σv is

applied, σs and σse both must lack empirical significance precisely because σv is small. In

other words, because of the essential role that FACT plays in the proof, Friederich’s result

only concerns the transformations in G∞0 , but not the ‘large’ ones (not the ones in GI/G
∞
0 ).

Although it does not succeed in proving that subsystem gauge transformations can never

be empirically significant, Friederich’s proof brings to the forefront the fact that there is an

ambiguity in the question ‘does applying σs to a subsystem bring about a physically distinct

state of the universe?’ Naturally, to answer the question we consider a universe state that

results from the application of σs to the subsystem and then see if that state is physically

distinct from the initial one. Consider, for instance, this state: σs(s) ∗ σse(e) ∗ Ir(r). From

the fact that σs ∗σse is interior, it follows that this state is empirically equivalent to s ∗ e ∗ r

(this is explained in the proof above). Then, the answer to our question is ‘no’, and so

we infer that the subsystem symmetry is not empirically significant. But consider now the

following application of σs to the subsystem: σs(s)∗Ie(e)∗Ir(r). Since σs∗Ie is not interior,

σs(s) ∗ Ie(e) ∗ Ir(r) and s ∗ e ∗ r do not need to represent the same states of affairs. Thus,

in this case the answer to the question is ‘yes’ (or ‘maybe’, depending on the details of the

theory and of the subsystem), and so we infer that the very same subsystem symmetry is (or

can be) empirically significant.10 As explained before, Friederich’s argument only concerns

10This fact might seem trivial from the perspective of external global transformations, after all, boosting
a ship is empirically significant if the shore is not boosted but it is not if the shore and the ship are boosted
together. But here we are talking of local transformations, and there was not a prima facie reason to believe
that this feature of external transformations was to be found in local transformations. Friederich’s argument
shows that it is found.
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the σs(s) ∗ σse(e) ∗ Ir(r) case, and says nothing about the σs(s) ∗ Ie(e) ∗ Ir(r) case.

So, to sum up, Friederich’s argument does not establish that local subsystem sym-

metries always lack empirical significance but it establishes the weaker (but not for that

uninteresting) claim that they do when a Trivial Extension accompanies the subsystem

transformation. And incidentally, Friederich’s argument is helpful at illustrating the fact

that the empirical significance of a subsystem local transformation is not just a matter of

what the transformation does to the state of the subsystem, but also a matter of what ad-

ditional transformations we consider on the environment. In this way, the apparent tension

between the results of Greaves and Wallace (2014) and Teh (2015) on the one hand, and

Friederich (2015; 2016), simply disappear.

4 The divisive beam splitter

Having explored the more general arguments regarding the issue of whether or not gauge

transformations can be empirically significant, let me focus now on a more concrete question.

Is t’Hooft’s Beam Splitter, presented by Hooft (1980), a concrete realization of a gauge

transformation having empirical significance? Kosso (2000, 95), Greaves and Wallace (2014)

and Teh (2015) think that it is, while Hooft (1980, 98), Brading and Brown (2004), and

Friederich (2015) think it is not. But before considering the main arguments on the matter,

let me briefly present the experiment.

4.1 The set-up

Consider a set-up similar to the double slit experiment, where a matter wave is sent towards

a screen with two slits. Imagine that we manage to separate the outgoing two beams, and

we place a phase-shifter that affects only the upper beam. At the end, we let the beams hit
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a screen, where we can see an interference pattern (see figure 2).

This situation can be modeled by what GW call “Klein-Gordon-Maxwell’ electrodynam-

ics, where a matter wave ψ couples to a background electromagnetic field. The Lagrangian

of the theory is

L = (∂µψ − iqAµψ)∗(∂µψ − iqAµ)−m2ψ∗ψ + LEM , (2)

where LEM is the Lagrangian of Maxwell Electrodynamics without matter. The Lagrangian

of the theory is invariant under the following conjoint gauge transformation of the potential

and the matter wave:

ψ(x)→ e−iqχ(x)ψ(x)

Aµ(x)→ Aµ(x) + ∂µχ(x),

(3)
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where χ(x) is a real-valued smooth-function on space-time that parametrizes the gauge

transformation.

After the initial (matter) beam goes through the double slit, it splits into two beams, ψs

and ψe, which can be separated enough so that they are effectively isolated from another

(at least for some time before reaching the screen). Imagine, for example, that ψs is only

non-zero within region Rs, whereas ψe is only non-zero within region Re, where Rs and Re

do not overlap. Given this set-up, GW identify the subsystem with Rs, and its states are

given by s = (ψs, Aµs) (that is, by the matter and electromagnetic fields ‘living’ in region

Rs).

In the case where there is not a phase-shifter (Situation A), we take (ψs, Aµs) to represent

the state of the upper subsystem and (ψe, Aµe) to represent the state of the lower subsystem

after the initial beam goes through the slits. In the case where we place a phase-shifter for

the upper beam (Situation B), (e−iqψs, Aµs) represents the state of the upper subsystem

and (ψe, Aµe) represents the state of the lower subsystem just after the beam goes through

the slits (notice that the phase shifter shifts the phase of the upper subsystem and does

nothing to its potential). Furthermore, we know that the interference pattern at the screen

will be different in Situation A and Situation B due to the fact that the relative phase

between the subsystems is different. We can infer, then, that

INFERENCE: The interference pattern is sensitive to whether the state of the

upper subsystem is (ψs, Aµs) or (e−iqψs, Aµs). In particular, given the interfer-

ence pattern, we can determine if the state of the upper beam was (ψs, Aµs) or

(e−iqψs, Aµs).

So far we have not said anything about symmetries, but notice that ψs 7→ e−iqψs together
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with Aµs 7→ Aµs + 0 is precisely the action of the gauge transformation 3, restricted to the

subsystem, for the specific case where χ is constant at the boundary between the subsystems

(if σ = e−iqχ(x) is the gauge transformation on the universe matter field, σs = e−iqχs(x) is

the restriction of that transformation to the subsystem matter field). Suppose that χs(x)

approaches a non-zero constant value at the boundary between the subsystems (take that

value to be 1 for simplicity). As it is constant there, ∂µχs(x) will be zero and so the

vector-potential of the subsystem will not be altered at the boundary. Similarly, as ψs(x)

is assumed to be zero at the boundary, e−iqχs(x)ψs(x) = ψs(x) = 0. Thus, σs = e−iqχs(x)

will preserve the boundary conditions for the matter and electromagnetic fields in question,

and so σs(s) ∗ e will be well-defined.

Given this set-up, in GW’s formalism Situation A will be represented as s ∗ e and

Situation B as σs(s) ∗ e (the local symmetry in question, recall, does not affect the state

of the lower subsystem, and so we can use e for both situations). Furthermore, given that

s ∗ e and σs(s) ∗ e are empirically distinguishable (as INFERENCE states), it follows that

RESULT: the experiment in question corresponds to a Type I situation where a

local symmetry, σs = e−iqχs(x), has empirical significance (at the boundary, this

symmetry simply is σs = e−iq).11

4.2 Friederich’s criticism

Friederich offers two main criticisms of GW’s analysis of the experiment just described. The

first one is this:

(C1): Situation A and Situation B are not adequately represented by s ∗ e and

11To be more precise, the gauge symmetry consists of both e−iqχs(x) and ∂µχs(x), but since for constant
χs(s) the transformation on the gauge fields is the identity transformation, I will be omitting it in the
following discussion.
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σs(s) ∗ e respectively, but by s ∗ e and σs(s) ∗ e′ (where e 6= e′). Thus, contrary

to what RESULT states, this is not a Type I scenario.

The justification for (C1) is that if ψs is the subsystem, then not only ψe but everything

else, including the screen where the interference is manifested, is part of the environment.

And clearly, the state of the screen is different in Situation A and Situation B (the inter-

ference pattern is different), and so the state of the environment is different as well. In his

words:

If the upper half-beam plays the role of the subsystem S and the rest of the

set-up plays the role of the environment E, then, if two situations with differ-

ent interference pattern are compared, they must evidently be represented by

physically distinct environment states e 6= e (Friederich, 2015, 553).

Let me notice that what Friederich is expressing here is tightly connected to what

Brading and Brown (2004) say when arguing against the suggestion that the transformation

on ψs is a local transformation that has empirical significance. In particular, they say

that “an interference pattern occurs only where ΨI and ΨII overlap” (2004, 653), strongly

suggesting that in the absence of an overlap region (such as the screen), we should not

attribute empirical significance to a local transformation on the isolated beams. Thus, by

emphasizing the importance of taking into consideration the states of the screen (i.e., of an

overlap region), Friederich seems to be echoing this remarks by Brading and Brown.

Now, I think that (C1) involves a misscharacterization of Type I scenarios. For in these

scenarios, the term ‘environment’ is not supposed to refer to things like observers or mea-

surement devices or other objects capable of detecting the (putative) effects of subsystem

symmetries. That is, when representing the state of the environment with ‘e’, GW (or Teh

(2015)) are deliberately not intending to also represent the state of measurement devices or
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observers. So, in the case at hand, the environment is not supposed to include the screen,

which simply serves as a measurement device of the putative physical effects of the action

of the subsystem symmetry in question.12

That this is the intended use of ‘environment’–one not including observers or measure-

ment devices–is clear from the analysis of a classic Galileo case scenario involving a ship

passing by a shore. It is clear, not only from GW’s and Teh’s presentations of the case but

also from Galileo’s own description (Galilei et al., 2001, 216), for whom the state of the

shore is not supposed to include measurement devices (and the same is true of the cabin).

Of course, a speedometer (or an observer) will be in a different state in the case where the

ship is at rest and in the case where it is boosted, so in order to guarantee that the state

of the shore remains invariant, we have to exclude speedometers and observers. And just

as speedometers and observers are not taken to be part of the environment in a standard

Galileo-ship case, screens or observers should not be taken to be part of the environment

in the beam splitter experiment here discussed.

The previous objection to (C1)–namely, that (C1) mischaracterizes Type I scenarios–

can be further strengthen by noticing that GW’s analysis is meant to be objective in the

sense that if a symmetry is empirically significant (or not) according to their analysis,

then this is so independently of whether something actually measures the effects of such

a symmetry. That is, for a symmetry to be empirically significant there need not be any

actual experiments showing its effects, but rather, the following counterfactual condition

suffices; if there were observers or measurement devices, then they would detect the effects

of the symmetry. Hence, even if an actual situation does involve devices and observers,

abstracting away these should not affect judgments regarding the empirical significance of

12Friederich seems to anticipate this response in the second paragraph of (2015, 553). I will discuss his
own objection to this response below, when I talk of (C2).
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subsystem symmetries, and so GW are justified in taking the state of the environment

to remain invariant in the case at hand. For example, abstracting away the presence of

speedometers or observers in the shore should not undermine or decrease our confidence in

the claim that boosts of ships are empirically significant. Similarly, abstracting away the

presence of the screen in the beam splitter example should not affect the judgment that

changes in the relative phase between ψs and ψe are empirically significant.

Let me consider now a different but related criticism by Friederich. He seems to think

that, perhaps against our intuitions, the fact that the state of the screen is different in Situa-

tion A and in Situation B actually undermines the case for attributing empirical significance

to the subsystem symmetry in question. More precisely, Friederich argues that:

(C2) It is not true that given the interference pattern, we can determine if

the state of the upper beam is (ψs, Aµs) or (e−iqψs, Aµs) (this goes against

INFERENCE). Hence, we should not attribute empirical significance to the

action of the subsystem symmetry represented by e−iq (recall that χ = 1 at the

boundary).

To understand why Friederich thinks this, it is helpful to go back to GW’s description of

the case. Recall that in Situation A, (ψs, Aµs) represents the state of the upper subsystem

and (ψe, Aµe) represents the state of the lower subsystem. In Situation B, (e−iqψs, Aµs)

represents the state of the upper subsystem after going through the phase-shifter, and

(ψe, Aµe) represents the state of the lower subsystem. Given the fact that the interference

patterns are different in these situations, and the fact that (ψe, Aµe) is the state of the lower

beam in both situations, it seems that the interference pattern is sensitive to whether the

state of the upper subsystem is (ψs, Aµs) or (e−iqψs, Aµs) (this is what INFERENCE says).

And because of this, it seems natural to infer that the subsystem symmetry has empirical

23



significance (this corresponds to RESULT).

Now, in order to understand how Friederich intends to resist the previous reasoning, we

have to start by distinguishing ψs and ψe when isolated, from ψs and ψe when overlapping

at the screen. Friederich shows that we can recover the interference pattern of Situation

B and Situation A by swapping the states that GW use. That is, he shows that we can

recover the interference pattern of Situation B by using (ψs, Aµs) (instead of (e−iqψs, Aµs))

to represent the state of the upper beam when isolated, and we can recover the interference

pattern of Situation A by taking (eiqψs, Aµs) (instead of (ψs, Aµs)) to represent the state of

that beam when isolated (of course, this is only possible by modifying the way we represent

the states of the beams in the overlapping region (Friederich, 2015, 554)).13 Hence, it seems

that from the interference pattern alone we would not be able to tell if the subsystem state

of the upper beam is (ψs, Aµs) or (e−iqψs, Aµs) (by a suitable choice of the states in the

overlapping region, both of these states can lead to the same interference pattern). And so,

the argument goes, we should not attribute empirical significance to the local transformation

(given by e−iq) of the upper subsystem.

Let me explain now why Friederich’s criticism fails. The problem lies in Friederich

overlooking an underlying assumption of GW’s set-up, namely, that when GW say that the

interference pattern is sensitive to whether the state of the upper subsystem is (ψs, Aµs)

or (e−iqψs, Aµs), they are implicitly assuming that (ψs, Aµs) represents the state of the

upper beam in the absence of a phase-shifter (that is, since GW express the operation of

the gauge transformation acting on the wave-function as ψs 7→ e−iqχ(x)ψs, then it follows

that they take ψs to be the state prior to any transformation). Given that assumption, the

interference pattern does allow us to determine if the state of the upper beam is (ψs, Aµs)

or (e−iqψs, Aµs) (it is (ψs, Aµs) in the absence of a phase-shifter, and (e−iqψs, Aµs) in the

13Notice that the swapping is not perfect, we need to use a plus sign and not a negative sign.
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presence of one).

Of course, Friederich is right in that we could use (ψs, Aµs) to represent the state of that

same beam in Situation B, but in that case we would have to assume that in the absence

of a phase-shifter, the state of the beam is (e+iqψs, Aµs) so that the transformation by e−iq

yields (ψs, Aµs). But even then we could still use the interference pattern to discriminate

between the relevant states of the beam (as represented in this alternative form). That is,

under this new convention for representing states, the interference pattern will still allow

us to determine if we are in Situation A or Situation B (Situation A will be characterized

by (e+iqψs, Aµs) and Situation B by (ψs, Aµs)).

So, to sum up, the main point of GW’s argument is not, contrary to what Friederich

seems to be suggesting in (C2), that the interference pattern will by itself allows us to

determine the state of the upper and lower beams (this is impossible because of the phase-

freedom of quantum states). Rather, the point is that given a convention of what state

s we take to represent the state of the upper beam in the absence of a phase-shifter, the

interference pattern in the screen will allow us to determine if the state of the upper beam

remains as it is (i.e., s) or if it changes (i.e., e−iq(s)). In other words, all GW require in order

to attribute empirical significance to the action of the local symmetry in question is that,

no matter what representation of the relevant state we use, the symmetry in question will

induce changes in the relative phase between the two subsystems, and these changes will

be measured. Thus, the interference pattern would be able to track whether the subsystem

symmetry in question “acted” or not on that beam, from which we infer that the symmetry

is empirically significant.

At this point, going back to the original Galileo ship scenario can be helpful. Imagine

that Situation A consists of the ship staying at rest relative to the shore, and Situation B

consists of a boost of the ship. Then, it is natural for us to say that if the state of the ship
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in Situation A is represented by s = 0 m/s, then its state in Situation B is represented by

σs(s) = v (where σs represents a boost of non-zero velocity v). But of course, we could also

say that s = 0 m/s represents the state of the ship in Situation B in case where we use a

frame in which σ′s(s) = −v represents the state in Situation A (in the latter case, we take

the ship and the shore to be moving with the same negative velocity of magnitude v). In

short, because of its symmetries, classical mechanics entails that there is a lot of freedom

in the way we represent the states of the ship and the shore. But it would be a mistake

to think that the fact that we can easily move from one representation to the other (say,

from the state of the ship at rest being represented by 0 m/s to it being represented by

−v) undermines in any way the claim that boosts of the ship are empirically significant.

Analogously, from the fact that we can represent the state of the upper beam in different

ways (i.e. as (e−iqψs, Aµs) or (ψs, Aµs)) we should not infer that the local transformation

acting on the upper subsystem is not empirically significant.

4.3 An ambiguity in GW’s description

Let me end with a criticism expressed by Brading and Brown (BB henceforth) in section

3.1.2 of their (2004) paper. Although GW respond to the main part of their criticism

(Greaves and Wallace, 2014, 83), there is an important bit that remains unanswered. In

particular, BB say that (my emphasis)

either the transformation of the electromagnetic potential results in the po-

tential being discontinuous at the boundary between the ‘two subsystems,’ in

which case the relative phase relations of the two components are undefined (it

is meaningless to ask what the relative phase relations are), or the electromag-

netic potential remains continuos, in which case we have a special case of a local
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gauge transformation on the entire system (Brading and Brown, 2004, 656).

I agree with BB that if the transformation is continous between the two subsystems,

then this will not constitute a case of a gauge transformation with empirical significance.

However, it is not clear that if the gauge transformation in question is discontinuous at the

boundary, then the relative phase relations of the two components (i.e., the two beams) are

undefined. Indeed, given what was said in section 4.1, it seems that these phase-relations

are well-defined: if the relative phase between the beams is well-defined after the placement

of a phase shifter for the upper beam, then the relative phase between the beams has to be

well-defined after a gauge transformation that shifts the phase of the upper beam without

affecting the phase of the lower beam. The reason is that in the set-up of the experiment, the

gauge transformation in question perfectly replicates the change of relative phase coming

from the placement of a phase-shifter on the upper beam. Thus, as long as it replicates the

(well-defined) change in relative phase that is coming from the phase shifter, it should not

matter that the transformation in question is discontinuous (again, if it was continuos, it

would not actually induce the change in relative phase that we need).

Now, there is a sense in which the criticism by BB actually goes deeper than what I

just said above. For by protesting about the discontinuity of the transformation at the

boundary between the subsystems, they bring attention to the following confusing feature

of the description of the experiment: the two beams are treated as if they were both two

subsystems that interact at a given finite boundary (at a screen, say). Leaving aside the

subtle issue about how to individuate subsystems in quantum mechanics, this description

is problematic for two reasons. First, because, as it was explained in section 2, local trans-

formations of a subsystem can be empirically significant (in a Galileo-type way) only if (1)

we take the subsystem to be asymptotically isolated from the environment and (2) take the
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environment to play the role of an asymptotic fixed reference frame (with respect to which

the gauge transformation in question induces some relational changes) and whose dynamics

is deliberately ignored. Thus, strictly speaking, the lower beam should be taken as some-

thing like a fixed frame at infinity whose dynamics is omitted in the analysis. And second

and more importantly, if we were to take seriously that these two beams are two subsys-

tems that interact at a finite boundary, then we would have to deal with very subtle issues

(that GW do not address) regarding the composition of gauge subsystems in the presence

of boundaries. For example, it is an open question whether or not gauge transformations

leave the subsystem invariant in the presence of boundaries (see Gomes (2019) for a good

discussion of this problem, and for a novel solution).

5 Conclusion

In this paper, I showed that the tension between the results of Greaves and Wallace (2014)

and Teh (2015) and those of Friederich (2015, 2016) is only superficial. Once we realize

that Friederich’s argument is only about transformations that asymptote in a smooth way

to the identity at some point of the environment, it becomes clear that the proof entails

that ‘interior’ transformations (in GW’s sense) or ‘small’ transformations (in Teh’s sense),

are not empirically significant. Since the proof is not about transformations that are not

trivial at the boundary, it is silent about precisely those cases that both GW and Teh take

to exhibit some empirical significance. There is, then, no actual tension.

I also showed that the main arguments against the interpretation of t’Hooft’s Beam

Splitter as a Galileo-ship scenario for gauge symmetries do not succeed. In particular, I

explained that (i) the state of the screen should not be considered as part of the environment,

that (ii) the freedom in the representation of the states of the upper and lower beams (when
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isolated) does not preclude in any way the fact that the symmetry leads to empirically

distinct scenarios, and that (iii) the way of understanding the empirical significance of this

set-up requires us to treat the lower subsystem as a mere reference frame at the asymptotic

boundary.
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