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The theory that we now know as “Newtonian mechanics” is Newton’s science of matter in 

motion. And its philosophical significance, in a sentence, is this: Newton gave us more than just 

an empirically successful theory of mechanics – he gave us an account of what knowledge of the 

physical world should look like, one that remains with us. But what is this account of physical 

knowledge? What is it that remains with us? Various answers to these questions have been given 

and they concern the methodological character of the laws of motion. What is methodologically 

rational about them? What is their distinctive feature? These are the questions on the table. 

The structure of this article is as follows. I will begin by introducing the laws of motion, 

the relations among them, and the spatio-temporal framework that is implicit in them. Then I will 

turn to the question of their methodological character. This has been the focus of philosophical 

discussion from Newton’s time to the present, and I will survey the views of some of the major 

contributors. A theme that runs through this section is that there is something in the spirit of 

Kant’s analysis of Newtonian physics that is worth preserving, though distilling what that is is an 

open problem. I will conclude by showing that while Newtonian mechanics motivates a number 

of philosophical ideas about force, mass, motion, and causality – and through this, ideas about 

space and time – the laws are themselves the outcome of a philosophical or critical conceptual 

analysis. Therefore, taking some care to understand how the theory grew out of Newton’s 

analysis of the conceptual frameworks of his predecessors and contemporaries is valuable for its 

insights into the nature of that activity. 

A word about the scope of this article is in order. It is worth recalling that Principia 

contains two theories, the theory of mechanics and the theory of universal gravitation. The theory 

of mechanics is found in a few pages right at the start of Principia in “Axioms, or The Laws of 
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Motion,” immediately following Newton’s articulation of a few basic notions in “Definitions.” 

The theory of universal gravitation is a derived theory within the mechanical theory, that is, once 

that theory has been extended, through a number of assumptions, to encompass planetary 

systems. My focus will be on the theory of mechanics. 

What is this theory? It is a theory of causal interaction: it is about motion and the forces 

producing motion. Newton dealt with matter in resisting and non-resisting media. My focus will 

be the mechanics of point particles in non-resisting media – the most basic subject matter with 

which the theory deals. But it is worth mentioning, if only in passing, the formulations of 

Newtonian mechanics of Euler and Cauchy. (See Truesdell (1977) for details.) And there are still 

other formulations of Newtonian mechanics, notably those of Lagrange and Hamilton. These 

formulations are based on the principle of least action and they incorporate insights into the 

conservation of momentum and energy. They reveal a deep layer of structure exhibited by 

physical systems of many kinds and make them amenable to a similar treatment; in this way, 

these formulations extend Newtonian mechanics and greatly increase its computational power. 

They also provide a point of contact between classical and quantum theory. I will not discuss any 

of these formulations – my focus will be on “old-fashioned” Newtonian mechanics. (See Curiel 

(2014) and North (this volume) for a detailed account of the relation of the Lagrangian and 

Hamiltonian formulations to classical systems and to each other.) 

It should also be noted that there is a reconstruction of Newtonian gravitation, patterned 

on Einstein’s theory of gravitation, in which the basic account of motion is inseparable from the 

gravitational field: this is Cartan’s reconstruction. On that reconstruction, gravitation is not a 

force causing acceleration but a manifestation of the curvature of space-time; as in Einstein’s 

theory, the trajectories of free particles are geodesics (or “straight lines”) of the (curved) space-

time. Cartan’s proposal is in several respects a natural and instructive way of thinking about 

Newtonian theory. (See Malament (2012) for details.) But I will deal only with Newtonian 

mechanics, independent of the gravitation theory. 

 

Background: The Theory and the Spatio-temporal Framework Implicit in it 

Newton’s theory of causal interaction has three axioms, the laws of motion: 
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Every body perseveres in its state of being at rest or of moving uniformly straight 
forward, except insofar as it is compelled to change its state by forces impressed. 
 
A change in motion is proportional to the motive force impressed and takes place along 
the straight line in which that force is impressed. 
 
To any action there is always an opposite and equal reaction; in other words, the actions 
of two bodies upon each other are always equal and opposite in direction. (Newton, 1726 
[1999], pp. 416-7) 
 

The laws, taken together, define and interpret the concept of inertial motion. This concept is the 

backbone of the theory, and, by examining how it is articulated, we will come naturally to all 

core aspects of the theory. The first law defines an ideal force-free trajectory, one from which a 

particle can be deflected by the action of some force, an objective cause. The first law alone, 

however, does not provide an account of inertial motion since we do not yet have a definition of 

force – it is a precondition for such a definition. It is the second law that defines and interprets the 

concepts of force and mass, tying them to acceleration. The acceleration of mass is the measure 

of the action of some force. The second law expresses a criterion for distinguishing free particles 

from particles acted upon by a force. Now, one might be tempted to suggest that the second law 

alone is enough for giving an account of inertia – one might suggest that the first law is a limiting 

case of the second, that is, when there is no force impressed. But the first law associates or 

coordinates a free particle with a particular kind of trajectory, a straight line. Hence, the first and 

second laws are interdependent. 

The first and second laws provide a complete account of inertial motion, provided that 

one is interested only in ideal point particles. For actual bodies – bodies that are themselves 

composed of particles – the third law is a necessary condition for inertial motion. The forces 

among the constituent particles must be equal and opposite, failing which the body by its internal 

forces will accelerate of its own accord. (See the Scholium to the Laws of Motion, where Newton 

gives a proof of this; see also Samaroo (2018).) This is what the third law establishes and it is the 

basis for formulating a principle of conservation of momentum: in an isolated system the total 

momentum is conserved. Hence, the third law is also a criterion for distinguishing free particles 

from those acted upon by a force. What should be clear from this brief account is that inertia 

depends on all three laws for its articulation. It should also be clear that the laws of motion are 
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mutually complementary. Only taken together do they determine Newton’s theory of causal 

interaction. 

Now, we can associate with any particle in inertial motion a reference frame. A reference 

frame is a “small” space, one in which we can describe the motions of bodies in the space among 

themselves, for example, using a coordinate system. But we can also perform mechanical 

experiments and calculate their outcomes using the laws of motion. In any such space, the 

outcomes will be the same. These “inertial frames” that are picked out by the laws of motion are 

the basis for empirical investigation in Newtonian mechanics. 

With this brief account of Newtonian mechanics in hand, let us consider the spatio-

temporal framework that is implicit in it. As we have seen, the laws of motion define inertial 

motion as that state in which a body unacted upon by forces, or on which the net force is zero, 

moves in uniform rectilinear motion. In other words, a body in inertial motion moves equal 

distances in equal times. In this way, the laws of motion define an ideal clock, which marks the 

“equable flow” of time. Furthermore, it is implicit in the theory that all inertial observers, and all 

ideal clocks, will measure proportional time intervals and agree on which events are 

simultaneous. 

The concept of space that is implicit in Newtonian mechanics is tied to the inertial frame 

concept. As we have seen, an inertial frame is one in uniform rectilinear motion, one furthermore 

in which the outcomes of mechanical experiments, calculated using the laws of motion, are the 

same. And Newton noted that the same outcome would be obtained in any frame in uniform 

rectilinear motion relative to it – this is the Galilean principle of relativity. By way of this 

invariance property, we obtain an equivalence-class of inertial frames – the class of frames in 

which the outcomes of mechanical experiments are the same. The equivalence-class structure so 

determined is the structure of the space-time of Newtonian mechanics. 

It is important to note that this structure admits of no distinction between rest and uniform 

motion – both are states of inertial motion. By contrast, Newton held that while inertial frames 

are empirically indistinguishable, they are not theoretically equivalent. They move with various 

velocities relative to what he called “absolute space,” even if those velocities cannot be known. It 

was only in the nineteenth century, through the work of Neumann (1870), Thomson (1884), 

Lange (1885), and others, that absolute space was shown to be superfluous. 
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It is sometimes said that the concept of space-time has its origin in Einstein’s special 

theory of relativity in 1905. But something that should be evident from the foregoing is that 

already in Newtonian mechanics there is a concept of space-time. The very concept of an inertial 

trajectory, which is the basis for Newton’s theory of causal interaction, appeals not just to places 

and times but to places connected at times. And not only does an inertial trajectory connect 

places at times but it connects them in such a way that certain states of motion are well defined. 

(See Stein (1967), DiSalle (2006), and Malament (2012) for careful accounts of this; see also 

Earman (1989) and Weatherall (2016) for other accounts of the spatio-temporal framework that 

Newtonian mechanics is sometimes held to motivate.) To summarize, what we find in the laws of 

motion is not only an account of force, motion, and causality but also a spatio-temporal 

framework. 

 

The Methodological Character of the Laws of Motion 

The theory, now introduced in overview, is a paragon of empirical success. What is the rational 

justification for this success? This is the question with which methodological analysis is 

concerned. A methodological analysis asks two basic questions: what kind of principles are the 

laws of motion? What is their role in the conceptual framework of physics? For example, are the 

laws entirely determined by empirical evidence? Or do they reflect elements of choice, for 

example, considerations of simplicity? Or is their methodological character more complex? And, 

if so, what is their character? 

One answer is that given by Hume (1777 [1975]), who took Newtonian science to be a 

revolutionary advance – he took it as the model for his “science of human nature.” Hume 

regarded the laws of motion as empirical generalizations that are inductively derived from 

constant and regular experience, that is, from a set of empirical facts. Consider the following 

remark about the second law: “Geometry helps us apply this law …, but the law itself is 

something we know purely from experience, and no amount of abstract reasoning could lead us 

one step towards the knowledge of it” (Enquiry, IV). It is useful to recall Hume’s claim that all 

objects of human reason are either “relations of ideas,” of which his examples are the 

propositions of arithmetic and geometry, or “matter of fact,” namely contingent empirical 
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propositions such as “the Sun will rise tomorrow.” Evidently, Hume regards the laws of motion 

as matters of fact. 

Hume’s view of the laws of motion singles out an obvious feature, namely that experience 

has a role to play in their formulation. But there are a number of criticisms one might raise 

against his view. One might say that we do not know the laws “purely from experience.” For 

example, there are no truly force-free bodies: inertial motion is an ideal state and we have no 

“impressions.” Hence, one could hardly say that the first law derives from mere induction. One 

might also take issue with Hume’s remark that geometry merely “helps us” apply the laws. The 

formulation of the laws presupposes a number of mathematical concepts, notably concepts 

belonging to Euclidean geometry and the calculus. In this way, one might argue that Hume’s 

division of the objects of reason into relations of ideas and matters of fact is inapt for the analysis 

of the laws of motion. 

Hume’s failure to give a satisfactory characterization of the laws is naturally contrasted 

with Kant’s. Kant’s account is not without its own difficulties, but it captures a feature of the 

laws that has remained part of subsequent discussions. Much like Hume, Kant saw in Newton’s 

theory not only a revolutionary scientific discovery but a revolutionary philosophical advance. He 

saw a basis for criticizing the reigning Leibnizian tradition in which concepts of force and 

motion, space and time, substance and causality are applied to the “intelligible” world of monads. 

In the First Critique (1787/[1998]), Kant asked, how has science achieved universal 

assent, while philosophy is the subject of endless dispute? What distinguishes scientific reasoning 

from philosophical reasoning, so that the former leads to principles that are necessary and 

universal, whereas the latter remains arbitrary and particular? How can philosophy start on “the 

secure path of a science”? Kant argued that nothing less than a Copernican Revolution in 

philosophy is needed. No longer should philosophy be done after the fashion of Leibniz and 

Wolff, or following an earlier empiricism: philosophy’s task is to reveal the structure of our 

faculty of understanding – the structure that the very possibility of knowledge implicitly 

presupposes. Kant’s theory of the constitution of experience provides an account of the concepts 

of this faculty and, of particular interest to us, the principles both “constitutive” and “regulative” 

by which they are applied to possible experience. The principles are rules that the understanding 

imposes on the appearances, in order to submit them rules. Without such rules, experience would 
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be impossible. We would have nothing but a chaos of sensory appearances. The principles are 

about the world, and therefore “synthetic,” but known through transcendental deduction, and 

therefore “a priori.” Kant regarded the account of the constitution of experience as the true 

subject matter of metaphysics. 

In the Metaphysical Foundations (1786 [2011]), Kant held the laws of motion to be just 

such principles. They have a constitutive function: they determine the concepts of the objects of 

enquiry; they make it possible for objects of knowledge to be objects of knowledge. The laws of 

motion are constitutive not only of a particular conception of force, mass, inertia, and causal 

interaction but of a spatio-temporal framework relative to which true motion can be understood. 

Breaking with the Leibnizian tradition, Kant argued that our metaphysical concepts of 

force and motion, causal interaction, and space and time have no content at all except through 

their “sensible” counterparts, that is, through their articulation in the laws of motion. Kant’s 

account is a landmark in the theory of knowledge, but it is problematic in at least one respect: 

Kant took Newton’s laws to be the only ones that constitute the concepts of force, mass, and 

motion, and furthermore space, time, and causality. But though physics did not end with Newton, 

the idea that the laws of motion and certain other physical principles have a constitutive function 

was developed in the work of Kant’s successors, notably in the work of Poincaré. 

The idea that the laws of motion are definitions has a special place in the analysis of their 

methodological character. What is meant by “definition” is important here. For example, we 

might take a Russellian notion of definition as a starting point. For Russell (1897), the 

constituents of a sentence expressing a proposition must have independently grasped meanings. 

On such an account, the terms appearing in the laws – “force,” “mass,” “inertial motion” – would 

already have their meanings, independently of the theory determined by the laws. 

But there is another way of thinking about the laws of motion: we might regard them as 

implicit definitions. We find this idea in the work of Poincaré and Duhem. Poincaré (1902 

[1952]) argues against Russell’s view that we can know the meanings of primitive terms directly, 

for example, by intuition or acquaintance. For Poincaré, the primitive terms are implicitly defined 

by the axioms in which they figure. The laws of motion, on his account, are definitions disguised 

as claims. 
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But there is further aspect to his view: Poincaré pointed out that a geometrical framework 

must be presupposed for the construction of a mechanical theory and he claimed that we can 

choose any one of the geometries of constant curvature, namely Euclidean, Bolyai-

Lobatchevskian or Riemannian. For him, there is no fact of the matter about which of them is the 

actual space of experience, but, since the laws of mechanics will be simplest on a Euclidean 

background, he held that Euclidean geometry would always be preferred. He stressed that 

geometry, on its own, tells us nothing about the behaviour of physical objects, only geometry 

together with physical laws. He held that a geometrical framework and parts of the laws can be 

chosen arbitrarily – all that is required is that the remaining part of the laws be chosen such that 

the resulting theory is empirically adequate. For these reasons, he claimed that the laws of motion 

are conventions. 

The presupposition of a Euclidean background is evident in the first law of motion, where 

“straight” is understood in the Euclidean sense. The first law defines the trajectory of a force-free 

body as a straight line – it establishes a correspondence between a physical object and a 

geometric notion, as part of a particular way of constructing a mechanical theory. But, for 

Poincaré, it is important that assuming a Euclidean background does not preclude the possibility 

that the completed theory or another theory that is in some sense more fundamental may lead us 

to revise our presuppositions about geometry. 

What about the second law of motion? Taken on its own, we cannot speak of the truth or 

falsity of the relation expressed in the law because there is no experiment that settles the question. 

To speak of the truth or falsity of the law would be to assume that there is something prior to 

Newtonian mechanics that provides an independent definition of force – at least a definition that 

forms part of an empirically adequate theory of mechanics. For example, we cannot say that the 

relation between force and acceleration expressed in the law is imprecise, since any imprecision 

that we might notice while measuring some particular force only suggests to us that we need to 

look for the forces contributed by some yet-unnoticed bodies. But to say that there is no 

experiment that settles the question of the truth or falsity of the relation is not to suggest that the 

force law is not empirically constrained. The law can only be evaluated as part of the entire 

system of mechanics that it helps define. 
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What about the third law of motion? Poincaré notes that there are no perfectly isolated 

systems, only nearly isolated systems. When we observe such systems, we see that the 

constituent parts interact with one another such that they satisfy the third law and the centre of 

gravity of the system moves (nearly) uniformly in a straight line. Poincaré asks, could a more 

accurate experiment invalidate this? “What, in fact, would a more accurate experiment teach us? 

It would teach us that the law is only approximately true, and we know that already.” (Poincaré, 

1902 [1952], p. 105) The third law defines action and reaction to be equal and opposite – it 

expresses a criterion by which we can determine whether momentum is conserved in an isolated 

system. 

Now, one might think that Poincaré’s view that the laws of motion are conventions 

commits him to the view that they are arbitrary. But he is clear that the laws are not arbitrary: 

Are the laws of acceleration and of the composition of forces only arbitrary conventions? 
Conventions, yes; arbitrary, no – they would be so if we lost sight of the experiments 
which led the founders of the science to adopt them, and which, imperfect as they were, 
were sufficient to justify their adoption. (Poincaré, 1902 [1952], p. 110) 
 

What we find in this passage is Poincaré’s recognition that while the laws of motion reflect 

elements of choice, they are empirically constrained. The laws may of course be revealed to be 

bad definitions or to have only limited applicability, but they function nonetheless as implicit 

definitions of the basic concepts of mechanics. 

Before pressing on, it is worth noting a (perhaps obvious) feature of laws of motion: they 

fail a condition of observational non-creativity, according to which, roughly speaking, a 

definition should have no observational consequences. This is a condition that definitions are 

required to satisfy if they are to be regarded as analytic. The laws of motion are definitions, but 

they are not analytic – they are empirically constrained. 

The proposal that the laws of motion are correctly understood as definitions, and 

furthermore implicit definitions, takes us much of the way to later proposals. But the notion of 

implicit definition has its origin in nineteenth-century work in the foundations of geometry, 

where it is discussed without reference to physical theory. It is evident that the laws of motion 

have a feature that the axioms of geometry do not: not only do they implicitly define the concepts 

of mechanics but they interpret them. They coordinate theoretical concepts with empirically 

measurable correlates. 
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That certain principles have a defining and coordinating function was recognized by 

Reichenbach (1928 [1958]), even if he did not discuss the laws of motion explicitly. Reichenbach 

regarded relativity theory as well-established, but not well-understood. He sought to improve our 

understanding of it by revealing the physical presuppositions that underlie the application of 

relativistic geometry and chronometry. Specifically, he argued that their application depends on 

principles that he called “coordinative definitions.” These definitions establish how the claims of 

a mathematical theory are transformed from mathematical truths into claims that can be revised 

on the basis of experience. To take a simple example, Euclidean geometry becomes a theory of 

applied or physical geometry by means of the principle of free mobility: practically rigid bodies 

undergo free motions without change of shape or dimension. This principle is a presupposition of 

our ability to perform the compass-and-straightedge constructions of Euclidean geometry, and in 

this way it controls the application of the theory. 

Now, for Reichenbach, the main interest in identifying coordinative definitions resides in 

their capacity to isolate which among the assumptions that control the application of geometry 

and chronometry are conventions and which are factual claims. And it is central to his view that 

certain principles that control the application of geometry and chronometry are based on 

stipulations. For this reason, he held coordinative definitions to be arbitrary. We see this, for 

example, in his account of special relativity, in which he claims that the Einstein synchronization 

criterion rests on a stipulation about the to and fro velocities of light; hence the synchronization 

of distant clocks is a matter of convention. 

The interpretive function of coordinative definitions led Reichenbach to regard them as 

constitutive principles. Coordinative definitions serve to apply an uninterpreted conceptual 

framework – the pure concepts of the understanding – to the world of experience. But while Kant 

held Newton’s laws to be the unique set of principles that constitute the conceptual framework of 

physics, Reichenbach regarded them not as absolute but relative. He recognized that experience 

might lead us to mutually inconsistent coordinations that are relativized to particular contexts of 

enquiry, but have nonetheless a constitutive function. 

Reichenbach’s notion of coordination is incorporated into the recent work of Michael 

Friedman (e.g., 2001, 2010). Friedman’s account of the laws of motion is found in his analysis of 

Newton’s and Einstein’s gravitation theories. According to Friedman, a satisfactory 
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methodological analysis of these theories requires us to distinguish between three levels of 

enquiry. The first level is comprised of principles that are epistemologically distinguished by the 

fact that they define a space of intellectual and empirical possibilities, and so determine a 

framework of investigation. They articulate theoretical concepts and their physical 

interpretations. The second level is comprised of empirical hypotheses that are formulable within 

the framework. The third level is comprised of distinctly philosophical principles that motivate 

discussion of the framework-defining principles and the transition from one theory to another. 

Friedman calls the first-level principles “constitutive principles.” He includes in this 

category both mathematical principles or presuppositions and coordinating principles. The 

mathematical principles define a space of mathematical possibilities; they allow certain kinds of 

physical theories to be constructed. Among other examples, we find the calculus, linear algebra, 

and Riemann’s theory of manifolds. The coordinating principles, which Friedman understands in 

Reichenbachian terms, interpret theoretical concepts. They express mathematically formulated 

criteria for the application of concepts such as force, mass, motion, electric field, magnetic field, 

and others. 

On Friedman’s analysis, Newtonian gravitation has as its constitutive component 

Euclidean geometry, the calculus, and the laws of motion. This component defines the space of 

intellectual and empirical possibilities that allows us to conceive of gravitation as a force, and 

that makes it possible to formulate the law of universal gravitation, an empirical hypothesis. 

Because constitutive principles articulate and interpret basic theoretical concepts, and so a 

framework of empirical investigation, Friedman regards them as relativized but nonetheless 

constitutive principles. They are not a priori, as Kant held them to be, but they are prior to the 

development of hypotheses about particular systems. 

Friedman’s approach to the analysis of physical theories is intended as a corrective to 

Quine’s (1951) account of scientific knowledge. Quine took aim at the logical empiricists’ 

account of theories with its distinction between the analytic and synthetic components of a 

theoretical framework. Quine represented scientific knowledge as a web of belief in which no 

satisfactory analytic-synthetic distinction can be drawn and in which all strands of the web meet 

the “tribunal of experience” on an equal footing. He claimed that in the case of a derivation 

where the conclusion conflicts with experience, there is nothing to prevent us from holding on to 
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the conclusion by revising the logical and mathematical principles that were assumed in the 

derivation. It is Friedman’s principal goal to show that there are distinctions between the 

components of our frameworks of physical knowledge, and that these components are stratified. 

Friedman argues, furthermore, that the components of our frameworks are not confirmed or 

infirmed as wholes, as Quine maintained. It makes little sense to speak of revising the 

constitutive component of a theory in the case of a conclusion that conflicts with experience since 

constitutive principles determine the framework of empirical investigation – the framework 

without which an empirical hypothesis could be neither formulated nor tested. 

Friedman’s proposal is significant for its restoration of the logical empiricists’ idea that 

frameworks of physical knowledge are stratified. But I have argued (Samaroo, 2015) that 

Friedman’s account of a constitutive principle is too broad: only coordinating principles should 

be regarded as constitutive. Friedman’s inclusion of both mathematical and coordinating 

principles in the category of constitutive principles is intended to address Quine’s contention that 

the mathematics involved in formulating a theory is just another element in the web of belief. 

Friedman argues that this view of the role of mathematics in physics fails to account for the way 

in which mathematics makes certain kinds of empirical theories intellectual possibilities; it fails 

to account for the way in which mathematics supplies some of the concepts required for 

formulating a theory and for deriving predictions. While I agree with Friedman about this, there 

are good reasons for taking constitutive principles to be only those principles that constitute or 

interpret theoretical concepts by expressing criteria for their application. 

First, one might argue that including mathematical principles in a theory’s constitutive 

component opens the notion of a constitutive principle to trivialization. One might argue that 

what is constitutive is relative to some particular formulation of a theory, and since what is 

constitutive in one is not constitutive in another, the very idea of a constitutive principle is 

undermined. For example, Newtonian mechanics admits of various formulations, some of which 

rest on radically different mathematical frameworks from others. Take, for example, the 

mathematical frameworks peculiar to analytic mechanics, which are very different from the one 

in which Newton worked. But, however the theory is formulated, Newtonian mechanics is the 

theory whose basic structure at least is constituted by the laws of motion. 



 13 

Second, one might argue that including mathematical principles in a theory’s constitutive 

component lends support to a main feature of Quine’s account of theories. A Quinean might 

argue that if, e.g., the calculus and Euclidean geometry are constitutive components of Newtonian 

mechanics, then they are confirmed or infirmed along with the rest of the theory. Friedman 

argues against Quine that constitutive principles do not face the “tribunal of experience” on an 

equal footing with the empirical hypotheses whose formulation they permit – they are principles 

without which empirical hypotheses would make neither mathematical nor empirical sense, and 

without which no test would be possible. But the principles that establish Friedman’s argument 

against Quine are not the mathematical principles, which, on their own, are subject to neither 

empirical confirmation nor disconfirmation, but the coordinating principles that interpret 

theoretical concepts and control and application of the mathematics. Hence, distinguishing the 

mathematical principles from the coordinating principles strengthens the case against Quine. 

Most importantly, however, the inclusion of both mathematical principles and 

coordinating principles in a theory’s constitutive component blurs the distinction between the 

theory’s factual and non-factual components. By taking only coordinating principles to be 

constitutive, we can distinguish clearly between those components of our theories that are 

empirically constrained and those that are not; we can distinguish between those principles that 

define and articulate our epistemic relation with the world and those that are part of the formal 

background or language. The proposed limitation to the account of a constitutive principle is in 

no way intended to diminish the role of mathematical principles in the articulation and 

application of physical theories, but to clarify the fact that mathematical principles and 

coordinating principles have different criteria of truth. This proposal benefits the account of the 

stratification of our theoretical knowledge and allows a still stronger criticism of Quine’s account 

to be given; it aims in this way to vindicate something close to the analytic-synthetic distinction 

that Quine rejected. The foregoing is only a brief overview; see Samaroo (2015) for a sustained 

critical analysis. 

In light of these criticisms of Friedman’s programme, what remains of the notion of a 

constitutive principle? And what of the methodological character of the laws of motion? I have 

argued that the notion of a constitutive principle – a principle that constitutes or interprets a 

theoretical concept by expressing a criterion of its application – has something to offer the 
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account of the laws of motion. On this account, the laws of motion express criteria for the 

application of the concepts of force, mass, and inertial motion – and those that depend on these. 

It is worth noting that this account of the laws of motion – that is, of the laws as empirical 

criteria – is essentially Einstein’s. In a short but suggestive article, Einstein (1919 [2002]) 

sketched a distinction between theories that provide a general framework for physics (“principle 

theories” or “framework theories”) and specific theories constructed within such a framework 

(“constructive theories”). Although Einstein’s focus was relativity theory, Newtonian mechanics 

and Einstein’s special and general theories are all framework theories. That is, they provide 

frameworks of constraints in which physical quantities can be constructed and whose evolution 

can be determined. As Einstein put it, these theories are based on “empirically discovered … 

general characteristics of natural processes” and they express “mathematically formulated 

criteria” that physical processes satisfy (Einstein, 1919 [2002], p. 213). These criteria enable us to 

articulate theoretical concepts such as force, mass, inertia, acceleration, rotation, and 

simultaneity; furthermore, they motivate spatio-temoporal frameworks. These theories must be 

presupposed for the construction of theories of special systems, for example, the theory of a point 

particle or that of a perfect fluid; in the Newtonian context, the theory of the gravitational field. 

So, while the frameworks articulated by Newtonian mechanics, special relativity, and general 

relativity are not a priori in any Kantian sense, they are prior in this particular sense. Nonetheless, 

the presupposition of these frameworks does not preclude the possibility that some new theory 

will motivate their replacement. 

The laws of motion, in sum, are founded on experience and are in that sense synthetic, but 

they are not mere empirical generalizations, derived by induction. Nor are they synthetic a priori 

propositions, though they function as “constitutive a priori principles” in a particular sense of that 

term. They are certainly definitions, but they are not analytic in the sense of being true by mere 

stipulation or convention, because they are responsible to a body of observation and experiment, 

and to the pre-analytic concepts of which Newton gave an analysis. They are “analytic of” the 

concepts they determine. They implicitly define the basic concepts of mechanics that appear in 

them, but they do more than that: they interpret those concepts. They function as “coordinative 

definitions,” but they are not arbitrary in the Reichenbachian sense of that term. Still, they have 

the constitutive function that Reichenbach sought to capture: they constitute or interpret 

theoretical concepts by expressing criteria for their application; furthermore, they control the 
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application of a number of mathematical theories. More simply, perhaps, they are empirical 

criteria for the application of the basic concepts of mechanics. Newtonian mechanics, then, is a 

“framework theory” in Einstein’s sense. It is a framework of investigation that is “prior” to the 

theories of special systems that we might pursue and evaluate, but it is evidently not a priori in 

the usual sense of the term. 

 

The Laws of Motion as the Outcome of a Conceptual Analysis 

I will close with a reflection on the nature of Newton’s “activity” in constructing his theory of 

mechanics. The point I wish to make is this: while the laws of motion motivated philosophical 

ideas about motion, force, and causality, they come from Newton’s analysis of what is 

presupposed in the dynamical reasoning of his predecessors and contemporaries. More 

specifically, the laws are formulations of the principles that Newton thinks are explicitly, as in the 

case of the first law, or implicitly, in the case of the second and third laws, presupposed in the 

reasoning of these figures – when they are reasoning properly, that is, solving problems 

successfully. In this way, the laws of motion are the outcome of a philosophical or critical 

conceptual analysis of the conceptual framework of the mechanical philosophers. I will give a 

brief account of a few of the main parts of that framework. This terrain has been covered by 

others and more carefully. I will introduce only as much as is needed to make my point. 

The Early Modern current known as “the mechanical philosophy” represents the Universe 

as a mechanism, one subject to mechanical laws governing all matter and implying determinism. 

The central tenet of the mechanical philosophy is a principle of action or causality: all physical 

action is mechanical action, that is, action through pressure or impact. This is the basis for the 

reductionist view that all natural phenomena can be explained by mechanical processes. Some, 

though not all, of the mechanical philosophers held that all matter is composed of minute 

corpuscles and aggregates of them. Their configurations determine bodies’ primary and 

secondary qualities. This, in overview, is the mechanical philosophy. 

The mechanical philosophy was intended as a corrective to the hierarchical and 

teleological aspects of Aristotelian and scholastic-Aristotelian science that persisted. Its 

proponents took it to be a development of Galileo’s programme of mechanical explanation. For 

this reason, one might begin with Galileo – after all, it was his arguments for the heliocentric 
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hypothesis, and his proposals along the way, that undermined much of Aristotelian physics. From 

Galileo, we might move from figures such as Mersenne and Gassendi, through Hobbes and 

Boyle, to Descartes, Huyghens, and Leibniz. But I will focus on Descartes, whose Principles of 

Philosophy (1644 [1983]) was the standard work in seventeenth-century natural philosophy and 

whose physical principles Newton sought to refute. 

Let us consider a few aspects of the mechanical philosophers’ views on inertial motion, 

force, and the conservation of momentum. I will organize my discussion around their embryonic 

versions of these concepts – the concepts that Newton would subject to a critical analysis. 

The first set of ideas is bound up with inertial motion. Two ideas are commonly held: that 

all motion is relative; a certain conception of inertial motion. Consider first the relativity of 

motion, an idea with which Descartes, Huyghens, and Leibniz are generally associated, though 

they understood “relativity of motion” differently. Descartes’ criterion of “true motion” is in 

many respects singular and worth distinguishing from the others: a unique standard of motion 

that is also relative – relative, that is, to immediately contiguous bodies, which, however, provide 

a univocal reference. This is unlike the Leibnizian view, or “standard” relativism, according to 

which any two descriptions that agree on the relative distances, and so on changes of 

instantaneous “situation,” are equivalent. This might aptly be called a “general principle of 

relativity.” Now, on the surface, Huyghens shared with Leibniz the view that all motion is 

relative. But where Leibniz defended a “general relativity,” Huyghens recognized that 

determining accelerations and rotations implicitly depends on a privileged state of uniform 

rectilinear motion relative to which they can be referred. This was also recognized by Newton – 

see, e.g., his criticism of Cartesian motion in De grav (c1660 [2004]). Both Newton and 

Huyghens saw clearly that such a state of motion is necessary for a satisfactory expression of the 

principles of mechanics. It is the recognition of this privileged state of motion – a state of “true 

motion” over and above the merely relative motions – that led Huyghens to formulate the first 

law of motion, which Newton embraced. For Newton, then, the first law expresses what was 

explicit in Huyghens’ work and implicitly presupposed in other seventeenth-century accounts. 

(See Stein (1977) for references to the original sources and for translations of previously 

unpublished fragments of Huyghens.) 
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Consider also the idea of inertial motion. This is commonly held to have come from 

Descartes, though it was again Huygens who first stated it properly. For all that, it is worth 

considering the view of Descartes, who helped lay the foundations of mechanics by taking 

motion and rest to be primitive states of bodies that do not require further explanation. We find 

this in his first two laws of nature: 

The first law of nature: that each thing, as far as is in its power, always remains in the 
same state; and that consequently, when it is once moved, it always continues to move ... 
(Principles, II, §37) 
 
The second law of nature: that all movement is, of itself, along straight lines; and 
consequently, bodies which are moving in a circle always tend to move away from the 
centre of the circle which they are describing. (Principles, II, §39) 
 

Many of the salient features of Newtonian inertia are there: a body at rest remains at rest; a body 

in motion perseveres in its state of motion; bodies move in straight lines. But the concept of 

motion that Descartes articulates in the first and second laws differs from Newtonian inertia in 

that motion and rest are different states. Descartes also fails to make clear the connection between 

motion and force: there is, for example, no recognition that in the cases of both rest and motion 

the net force on a body is zero. Nor is there any requirement that a body’s state of motion be 

uniform with respect to time, that is, unaccelerated. The requirement of uniformity is essential: 

without it, there is no notion that a body moving inertially moves equal distances in equal times, 

and hence no notion of an ideal clock that marks time. On Descartes’ account, there is no concept 

of inertial motion in any Newtonian sense, and hence no basis for articulating viable concepts of 

force and mass. Newton’s formulation of the first law of motion reflects his understanding of the 

very features that the Cartesian account lacks; his formulation of the law is an explication of what 

a satisfactory account of force demands. 

The second set of ideas I will consider is concerned with the concept of force or action. 

Here, too, Cartesian physics was a starting point for Newton’s analysis. Descartes sought to free 

mechanics from the hierarchical and teleological aspects of scholastic science; he set out to rid 

physics of qualitative properties and to reduce everything to “certain dispositions of size, figure, 

and motion.” For all that, Descartes discusses force in a way that is reminiscent of the scholastic-

Aristotelian framework of impetus and resistance: he appeals to the power or tendency needed to 

maintain bodies in their state of rest or to keep them in rectilinear motion. There is a question 
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whether a body’s tendency to move or to remain at rest is an essential, God-given characteristic 

or whether it derives from extension and from the interactions of bodies among themselves. 

Newton’s critical analysis of Cartesian force follows naturally in several respects from his 

articulation of the concept of inertial motion. Newtonian inertia is a necessary presupposition for 

saying what an objective cause or force is: it is that which deflects a body from its uniform 

rectilinear trajectory. And through this account, we also gain the concept of inertial mass, 

understood as a body’s resistance to changes to its state of motion. All three concepts – inertial 

motion, force, and inertial mass – are articulated at once. Only with Newton’s laws, therefore, do 

we find an explication of force that is a full realization of the mechanical philosophers’ ideal: a 

physical quantity known only through its effects. As is well known, however, Newton’s account 

of force encompasses the action of fields of force on distant matter, something the mechanical 

philosophy cannot comprehend. 

The third set of ideas is bound up with the conservation of a certain “quantity of motion” 

in collisions and interactions. Here, again, Cartesian physics is in the background. This is the 

subject of Descartes’ third law: 

The third law: that a body, upon coming in contact with a stronger one, loses none of its 
motion; but that, upon coming in contact with a weaker one, it loses as much as it 
transfers to that weaker body (Principles, II, §40) 
 

Descartes’ account of the quantity of motion that is transferred from one body to another in a 

collision is clarified in §43. He takes that quantity to be the product of the size and speed of the 

body, where “size” appears to be understood as volume or bulk; there is no mention of the vector 

quantity velocity, only the scalar quantity “speed.” 

Descartes’ account falls short of Newton’s in several respects – see, e.g., the seven rules 

of impact (§46-52) where this is manifest – but the principle at issue is an embryonic version of 

the principle of conservation of momentum. Descartes’ account is significant for being one of the 

first attempts at formulating the principle. But, for Descartes, the conservation of momentum has 

as much a theological as an empirical foundation: when God created the Universe, He gave to all 

bodies a certain quantity of motion, a quantity that He preserves at every successive moment, 

even when it is transferred (§62). 
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For a strictly empirical account of the conservation of momentum, we need to look 

elsewhere. The germ is already there in the work of Galileo and his contemporaries. But the first 

systematic accounts are found in the work of Wallis (1668), Wren (1668), and Huyghens (1669) 

on the laws of impact: Wallis dealt with inelastic collisions; Wren and Huyghens elastic ones. 

Their work is mentioned by Newton in the Scholium to the Laws and the third law of motion is 

based on it. Given two bodies A and B, the third law of motion defines their interaction as FA on B 

= - FB on A and, in an isolated system, the corresponding expression for the conservation of 

momentum is !"#
!$

= − !"'
!$

. In this way, Newton not only incorporates the contributions of his 

contemporaries but explicates them in his theory of mechanics. 

What should be clear from the foregoing is that the laws of motion, far from being radical, 

are implicitly and explicitly presupposed in the work of the mechanical philosophers. This was 

Newton’s reason for taking them to be axioms. Newton’s activity, then, is an eminently 

philosophical one: it is a critical conceptual analysis of confused concepts; it is also an analysis of 

successful practice that aims to discover the principles on which that practice depends. This 

culminates in the explication of the basic concepts of mechanics and the articulation of criteria 

for their application. These criteria are the basis for an empirically adequate theory of mechanics. 

We find in Newton’s construction of his theory an exemplar of an approach to conceptual 

analysis that has been at the heart the foundations of physics, at least since Galileo, and at the 

heart of the analytic tradition, at least since Frege. Conceptual analysis, so understood, is the 

practice of identifying central features of a concept by revealing the assumptions on which use of 

the concept depends. (This way of expressing the basic idea of conceptual analysis is due to 

Demopoulos (2000, p. 220).) This practice proceeds by examining the use, misuse, and 

limitations of pre-existing concepts – in the case of interest to us, inertia, force, and mass – and 

revealing the assumptions on which their pre-analytic use depends. So, while Newton’s theory of 

mechanics motivates philosophical ideas about matter and motion, space-time and causality, and 

philosophical debates about them, its philosophical significance goes deeper: the theory is a 

reminder of what conceptual analysis in the foundations of physics might aspire to. The laws of 

motion are the result of that analysis. 
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