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Abstract

In this paper we show that the coherence measures of Olsson (2002), Shogenji (1999),

and Fitelson (2003) satisfy the two most important adequacy requirements for the pur-

pose of assessing theories. Following Hempel (1960), Levi (1967), and recently Huber

(2008) we require, as minimal or necessary conditions, that adequate assessment func-

tions favor true theories over false theories and true and informative theories over true

but uninformative theories. We then demonstrate that the coherence measures of Ols-

son, Shogenji, and Fitelson satisfy these minimal conditions if we confront the hypotheses

with a separating sequence of observational statements. In the concluding remarks we

set out the philosophical relevance, and limitations, of the formal results. Inter alia, we

discuss the problematic implications of our precondition that competing hypotheses must

be confronted with a separating sequence of observational statements, which also leads us

to discuss theory assessment in the context of scientific antirealism.

1 Introduction

Two of the most important questions in epistemology and the philosophy of science are: what

is a good theory? and, when is a theory better than another theory, given some observational

data? The coherentist’s answer is the following: (i) a theory is a good theory given some

observational data if and only if that theory coheres with the observational data, and (ii) a

theory is better than another theory given some observational data if and only if the first

theory coheres more with the observational data than the second. In this paper we ask whether

this answer is adequate. More precisely, we investigate whether the coherence measures of

Olsson (2002), Shogenji (1999), and Fitelson (2003) are adequate measures for the purpose

of comparing and evaluating (i.e., assessing) theories.1

This application of coherence measures differs considerably from the intended application

of coherence measures in the groundbreaking works of Bovens and Hartmann (2003) and

Olsson (2005). The background is this: Many coherentists believe that the problem of the

assessment of theories (or confirmation) and the problem of the justification of beliefs can

be solved with the help of the concept of coherence. Traditionally both problems are closely

related. They differ however in one important presupposition. Within the context of theory

assessment or confirmation theory it is usually assumed that our information gathering pro-

cesses are fully reliable and that we can rely fully on the data provided by these processes.

This assumption is dropped when it comes to justification. In the context of justification

1The present paper’s main purpose is to discuss coherence measures. Its main purpose is not to discuss

confirmation measures, nor is it to discuss in detail which confirmation measures are adequate for the purpose

of comparing and evaluating (i.e., assessing) theories. Although it would be interesting to compare the various

coherence measures and the measures of confirmation proposed in the literature with respect to the question

of how they fare as measures for theory assessment, we leave this for another occasion.
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these information gathering processes might be only partially reliable. Bovens and Hartmann

(2003) and Olsson (2005) study the coherence of different pieces of information provided by

various independent and partially reliable witnesses, i.e., information gathering processes.

Thus, what they ambitiously concentrate on is the problem of the justification of (all) our

beliefs. However, the application considered here is the assessment of theories once the ev-

idence (observational data that we can fully rely on) is given. Accordingly, it is assumed

that our information gathering processes are fully reliable and that we can rely fully on the

data provided by these processes. Glass (2007) considers a similar application of coherence

measures. He “considers an application of work on probabilistic measures of coherence to

inference to the best explanation” (Glass 2007, p. 275). In his paper “coherence is considered

as a relation between an hypothesis and the evidence for it. Consequently, coherence relates

the hypothesis to something which is already known to be true” (Glass 2007, p. 276). A

further reason for the investigation of this kind of application is that there might be valuable

lessons to learn for the construction of theories of justification when one considers the “sim-

pler” but closely related problem of theory assessment first. A further question that must be

left for another occasion is the following. Theories usually consist of different hypotheses that

stand in various inter-theoretic relations to each other. Given that a theory is a conjunction

of hypotheses h1, . . . , hn, the question arises which effect the coherence of these hypotheses

has upon the coherence of their conjunction (i.e. the theory) with the observational data.

However, as already said answering this question is left for another occasion2.

We begin, in section 2, by discussing what the necessary and sufficient conditions are that

every assessment function must satisfy in order to be an adequate measure of the epistemic

value of theories. Following Hempel 1960, Levi 1967, and Huber 2008 we require that adequate

assessment functions favor true over false theories and that they favor true and informative

theories over true but uninformative theories as minimal or necessary conditions. Further-

more, we discuss how adequate assessment functions should assess false theories. That good

theories should be interpreted as true and informative theories is the content of a recent pro-

posal in Huber’s (2008) paper “Assessing Theories, Bayes Style.”; parallels and discrepancies

with Huber’s theory will therefore be set out and discussed in this paper.

In section 3 we focus on the relation between coherence and theory assessment. As in-

dicated above, we assume that we evaluate theories with the help of coherence measures by

determining the degree of coherence of the theory with the available observational data. We

show that the degree of coherence of a theory with the observational data depends on two

indicators of the epistemic goodness of theories: the probability of the theory given the ob-

servational data, and its informativeness. These dependencies, worked out in section 3, help

to prove in section 4 that the coherence measures of Olsson (2002), Shogenji (1999), and

2For the Shogenji measure of coherence this question is already answered in Brössel forthcoming.
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Fitelson (2003) satisfy the minimal conditions for adequate measures of theory assessment,

provided that we restrict ourselves to theories that do not contain theoretical vocabulary.

Section 5 discusses theory assessment and the coherence measures in the context of scientific

anti-realism. Section 6 summarizes and evaluates the achieved results.

2 What Is an Adequate Measure for Assessing Theories?

In this paper we investigate whether the coherence measures proposed by Olsson (2002),

Shogenji (1999), and Fitelson (2003) are adequate measures for the purpose of assessing

theories.3 But what is an adequate measure for this purpose? The answer is as easy as can

be, or so it seems. An adequate measure for assessing theories is a measure that leads us to

theories that we would like to believe or accept. But which theories do we want to belief or

accept? What is the goal of our scientific inquiry?

2.1 The Goal of Scientific Inquiry

According to Huber (2008) we want to believe or accept theories that are both: true and

informative. A theory that we believe or accept should be true because we simply do not

want to believe false theories. A theory that we believe or accept should be informative

because from a theory we expect more than just its truth: a theory should also provides us

with valuable information about how the world is—in other words, it possesses more than

mere truth. The idea that we want to believe or accept true and informative theories was

pursued by philosophers before Huber. The idea can be traced back to Popper (1935).4 One of

the clearest statements of this position can be found in an appendix to The Logic of Scientific

Discovery, where Popper writes:

Science does not aim, primarily, at high probabilities. It aims at a high informative

content, well backed by experience. But a hypothesis may be very probable simply

because it tells us nothing, or very little. A high degree of probability is therefore

not an indication of “goodness” – it may be merely a symptom of low informative

content. (Popper 1968, p. 399; emphasis in original)

A nice example that illustrates how frequently scientists prefer to accept or believe the

more informative theory is provided by Salmon (2001).

3There are so many coherence measures in the literature that one cannot discuss all of them in one single

paper, at least not in the formal detail I am aiming at. For example Douven and Meijs (2007) discuss several

coherence measures that could not be considered here. The Bovens and Hartmann (2003) quasi-ordering of

coherence is not taken under consideration because it is not a measure and it is defined in the rigid framework

of testimonial systems.
4Popper 1954, Hempel 1960, Levi 1961 and 1967, and Hintikka and Pietarinen 1966 are the most important

early papers that try to embody this idea in formal measures of confirmation.
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In general, the bolder a hypothesis is, the smaller its probability will be on any

given body of evidence. If I predict (1) that it will rain in Pittsburg tomorrow,

that is a more modest claim than (2) that at least 5 centimeters will fall, and that,

in turn, is less bold than the statement (3) that between 5 and 10 centimeters will

fall. Any set of conditions that satisfy (3) will necessarily satisfy (1) and (2), and

any set of conditions that satisfy (2) will necessarily satisfy (1). Hence (1) is more

probable than (2) and (2) is more probable than (3). However, (3), if true, is more

informative than (2), and (2), if true, is more informative than (1). Scientists often

choose bolder hypotheses because of their informational value, even if this means

opting for less probable hypotheses. (Salmon 2001, p. 121)

These considerations show that theories which are true and informative are preferable to

theories which are not true or not informative. However, this does not answer all our ques-

tions. Is every true theory preferable to every false theory (e.g., is a true but uninformative

theory preferable to a false but informative theory)? How should we compare theories that

have the same truth value (since it obviously cannot be the truth value which renders one

theory preferable)? In some intuitive sense, true theories are better the more informative

they are: is this also the case for false theories? The answers to these questions depend on

what we mean by “information.” So we have to answer the question: When is a theory more

informative than another theory?

We must distinguish between a narrow and a wide usage of the term “information.”

According to the narrow usage of the term, information is always true; according to the wide

usage, information is not always true. Only on the wide usage it is meaningful to speak of false

information. In this paper we distinguish between “information” (in its wide usage), “true

information,” and “false information.” Instead of using the term “information” we sometimes

use the term “content.” We never use the the term “information” in its narrow usage. The

information or content of a theory is then the set of all sentences that are implied by the theory.

The true information provided by a theory is the set of all true statements implied by that

theory. The false information provided by a theory is the set of all statements implied by the

theory that are not true. It should be noted that that if one true theory is logically stronger

than another theory then the logically stronger theory provides more true information and

is of greater content. However, it should also be noted that false logically stronger theories

provide not only more false information they also provide more true information than logically

weaker theories.5

5More formally: Let the true information provided by a theory T be the set True-Inf(T ) = {A :

A is a true statement that is implied by T}. Let the false information provided by a theory T is the set

False-Inf(T ) = {A : A is a false statement that is implied by T}. Suppose T1 implies T2. Hence, any conse-
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In the following we briefly discuss several proposals as to which theories are to be preferred.

Proposal 1. For possible world w, and theories T1 and T2, T1 is to be preferred in w to T2 if:

(i) T1 is true and T2 is false in w, or (ii) T1 and T2 are true in w but T1 is logically stronger

(i.e., T1 ` T2 but T2 0 T1), or (iii) T1 and T2 are false in w but T1 is logically stronger (i.e.,

T1 ` T2 but T2 0 T1). [see Huber 2008, p. 107]

This is the proposal made in Huber 2008. According to (i) all true theories are to be

preferred over all false theories. According to (ii) and (iii) if both theories have the same

truth value the logically stronger theory is to be preferred. According to one reading of this

proposal the logical strength or content of a theory is an epistemic value in its own right. The

content of a theory contributes to the value of that theory independently of its truth value.

However, logically stronger theories do not only possess more content but also provide more

true information. Hence, another reading might be that the true information provided by a

theory is of epistemic value and the false information provided by the theory plays no role,

if both theories have the same truth value. Levi (1967, p. 77) suggests as much in reply to

a proposal by Hempel (1960). A proposal that complies with Hempel’s (1960) account is the

following:

Proposal 2. For possible world w, and theories T1 and T2, T1 is to be preferred in w to

T2 if: (i) T1 is true and T2 is false in w, or (ii) T1 and T2 are true in w but T1 is logically

stronger than T2, or (iii′) T1 and T2 are false in w but T1 is logically weaker than T2.

This proposal differs from Proposal 1 with respect to comparing false theories only. If

both theories are false this proposal focuses on the minimization of false information and,

hence, the avoidance of error. It is important to note that these proposals do not dictate a

complete ordering of how theories are to be preferred. Proposals 1 and 2 do not say anything

about which theories are to be favored in the case that two theories have the same truth value

but neither is logically implied by the other.

Both proposals share the requirements that (i) true theories are better than false theo-

ries and that (ii) logically stronger true theories are better than logically weaker theories.

Requirement (ii) can be accepted without hesitation if one accepts (i). Presented with the

choice between true theories we would always choose the logically stronger theory. (Claiming

that we would choose the logically stronger theory of two true theories makes sense only if

we presuppose a notion of theory choice along the lines of Hempel (1960): choosing a theory

quence of T2 is also a consequence of T1. This implies that if A ∈ True-Inf(T2) (i.e., if A is a true consequence

of T2) then A ∈ True-Inf(T1) (A is a true consequence of T1) and if A ∈ False-Inf(T2) (i.e., if A is a false

consequence of T2) then A ∈ False-Inf(T1) (A is a false consequence of T1). What is called true respectively

false information here is called truth respectively falsity content by Popper (1968). Miller (1974) and Tichý

(1974) provide a detailed discussion of the true and false content or information provided by theories.
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T means adopting T as the logically strongest statement that one adds to the observational

data E such that T ∧ E is the logically strongest statement one believes or accepts. Thus,

if one chooses theory T1 ∧ T2 one does not choose T1, nor does one choose T2.) Requirement

(i) is often taken for granted in epistemology. If one wants to provide reasons, one may add

that what theories are to be preferred depends on one’s epistemic aims or purposes. If the

question is what kind of theories we want to believe there is no plausible alternative to re-

quirement (i). Believing a theory means that we accept that theory as true and if a theory

is not true we certainly do not want to accept it as true. If, for example, the observational

data implies that a theory is false, we would never believe that theory, no matter what other

virtues it might have. However, some intuitions with respect to truth-likeness or verisimili-

tude and also empirical adequacy are in conflict with this requirement. In compliance with

truth-likeness intuitions it may be the case that some false but very informative theories are

better than some uninformative true theories; for example, Newtonian mechanics might be

a better theory than a tautology, although we know that the first is false but the second is

true. In the following we ignore theories of truth-likeness or verisimilitude since there is no

commonly accepted proposal as to which theories are more truth-like than others. In com-

pliance with intuitions with respect to empirical adequacy, requirement (i) is not plausible

because it is not generally the case that false theories are worse than true theories. According

to van Fraassen (1980) “[s]cience aims to give us theories which are empirically adequate; and

acceptance of a theory involves as belief only that it is empirically adequate”—not that it is

true. If a false theory is empirically adequate it is not the case that all true theories are to be

preferred to it. In particular, it may be the case that some informative empirically adequate

but nevertheless false theories are better than some uninformative true theories. Discussion

of the relationship between theory assessment, requirement (i), and empirical adequacy is

taken up in more detail in section 5.

2.2 Adequate Measures for Assessing Theories

In the light of this discussion of the epistemic value of theories we can now investigate what

we expect from a good measure for assessing theories. As already said, an adequate measure

for assessing theories is a measure that leads us to good theories—respectively, is a means to

the goal of our scientific inquiry. In other words, they are supposed to lead us to believe or

accept those theories that we would prefer to believe or accept. More specifically, following

Huber (2008) we require that an assessment function lead us “in the medium run” to true

and informative theories, or, as he puts it, “to reveal the true assessment structure.” Both

proposals discussed above agree that true theories are preferable to false theories and that

true but more informative theories are preferable to true but less informative theories, where

a theory is taken to be more informative than another theory if it is logically stronger. Hence,
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we propose the following minimal conditions that every adequate assessment function must

satisfy:

If a function a : L × L → R is an adequate assessment function in world w, then for

all theories T1, T2 ∈ L and every data stream e1, . . . , en, . . . from L including all possible

observational data of w, it holds that:

1. if T1 is true in w and T2 is false in w, then there exists a point n such that for all m ≥ n:

a(T1, Em) > a(T2, Em)

2. if T1 is true in w and T2 is true in w and T1 ` T2 and T2 0 T2, then there exists a point

n such that for all m ≥ n:

a(T1, Em) > a(T2, Em)

where Em = e1 ∧ . . . ∧ em.

The first condition rests on the idea that we prefer to believe or accept true theories rather

than false theories. Therefore an adequate assessment function—one which is supposed to

quantify how good it is to believe or accept a theory in the light of the observational data—

must favor a true theory over a false theory, at least after finitely many steps of observations,

where one compares two theories, one of which is true and the other false. The second

condition demands from an adequate assessment function that a more informative theory

score higher than a less informative theory, given both theories are true. This second condition

rests on the intuition that if we had to decide between two true theories that only provide true

information, we would prefer to believe or accept the theory that provides more information.

In the following section we consider on the one hand whether the coherence measures satisfy

these minimal conditions, and on the other hand whether they agree or disagree with respect

to the assessment of false theories.

3 Probability, Informativeness, and Coherence

In the previous section we saw what properties an adequate assessment function must exem-

plify. Accordingly, if we want to demonstrate that the coherence measures of Olsson (2002),

Shogenji (1999), and Fitelson (2003) are such assessment functions we have to show that the

degree of coherence of a theory with the available observational data depends somehow on

the truth of the theory and the information it provides. In order to display such a depen-

dence, the coherence of the theory with the observational data must somehow depend on an

indicator of the theory’s truth and an indicator of the theory’s informativeness. The theory’s
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probability with respect to the observational data, i.e., the theory’s likeliness of truth, is the

Bayesian’s natural choice as an indicator of the theory’s truth. As an indicator of the theory’s

informativeness or logical strength we introduce two measures of information.

3.1 Two Measures of Information

If we want to discuss in detail how we should measure the content of and the amount of

true information provided by theories, fortunately, we can benefit from the work of other

philosophers in this field. The first to develop a quantitative concept of information and to

provide a theory thereof were Carnap and Bar-Hillel (see their technical report, Carnap and

Bar-Hillel 1952). Hintikka (1999) puts the idea underlying their approach as follows:

The basic idea of their [Carnap, Bar-Hillel] approach may be said to be one par-

ticular way of explicating the idea that information [in the wide usage of the word]

equals elimination of uncertainty. In order to measure this uncertainty, a distinc-

tion is made between the different logical possibilities that we can express in a

language. The more of them a statement s admits of, the more probable it is in

some “purely logical” sense of probability. The more of them a statement s ex-

cludes, the less uncertainty it leaves, and the more informative will it therefore be.

The probability p(s) and information inf(s) of a statement s are thus inversely

related. (Hintikka 1999, p. 206)

The measure of content Carnap and Bar-Hillel suggested is the following.

Definition 3.1.

contp(T ) = p(¬T )

This measure of the content or information of a statement is highly plausible, since it

satisfies a requirement which we might very well want to impose on the relation between

content and probability. This requirement is the following: if cont(T1) − cont(T2) = r, then

p(T2)− p(T1) = a× r + b for some a, b ∈ R. This requires that if the content of a theory T1

exceeds the content of a theory T2 by r, then this should be reflected in the difference of the

prior probabilities of the theories. A theory which has less content than another theory should

not only be a priori more plausible, the difference in their a priori plausibilities should also be

a function of their difference in content. More precisely, the difference in their probabilities

should be an order-inverse and interval-preserving function of their difference in content. In

the light of this requirement the above definition is the natural choice, if we additionally

require that cont : L → [0, 1] and cont(A ∨ ¬A) = 0.

In the literature we can also find relativized measures of information or content. Since the

observational data describes that part of the world that we are already familiar with via ob-

servations, we could assign degrees of informativeness to a theory relative to the observational
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data. Instead of asking how much a theory informs us about the world, we ask how much

the theory informs us about the observational data. The following measure was proposed by

Huber (2008) to measure exactly this.

Definition 3.2.

ip(T,E) = p(¬T |¬E)

if p(¬E) > 0

This information measure has an even longer history than the content measure. It was

introduced by Hempel and Oppenheim six years before Carnap and Bar-Hillel wrote their

technical report. In their paper Studies in the Logic of Explanation (1948) they presented it

not as a measure of information but as a “measure of the systematic power” of a theory. It was

meant to measure the explanatory and predictive power (in the sense of Hempel/Oppenheim)

of a theory, given some data. In 1970 Risto Hilpinen suggested this measure for measuring

how much the observational data informs us about a theory (accordingly, he used p(¬E|¬T )6).

He called this the “normalized common content measure.”7 It is important to note that if

we assume that the observational statement E is true, this measure is not only a measure of

(relativized or normalized common) content but also a measure of true information delivered

by T about E.

3.2 Probability, Informativeness, and Coherence

In the following we investigate the relation between the coherence measures of Olsson (2002),

Shogenji (1999), and Fitelson (2003), and the probability and content or informativeness of

a theory in the light of the observational data.

3.2.1 Probability, Informativeness, and Olsson’s Measure of Coherence

Olsson’s (2002, p. 250) measure of coherence is defined as follows

Definition 3.3.

CO,p(A1, . . . , An) =
p(
∧

1≤i≤nAi)

p(
∨

1≤i≤nAi)

6As already explained, ip(T,E), respectively p(¬T |¬E), quantifies how much the theory informs us about

the observational data. Since Hilpinen (1970) is interested in quantifying the degree of information provided

by the observational data about the theory, he uses ip(E, T ), respectively p(¬E|¬T ).
7Hilpinen calls it the normalized common content measure because of its relation to the content measures

contp. Formally the relation is the following: ip(T,E) =
contp(T∨E)

contp(E)
. Hilpinen interprets contp(T ∨ E) as a

measure of the common content of T and E. Hence, ip(T,E) relates the common content of T and E to the

overall content of E and quantifies what proportion of the content of E is also content of T . See Hilpinen

(1970) for a detailed axiomatic motivation of this information measure.
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if p(
∨

1≤i≤nAi) > 0 and 0 otherwise.

According to Olsson (2002) this measure of coherence measures the degree of agreement of

the statements A1, . . . , An. However, a far more obvious interpretation of Olsson’s coherence

measure is that it measures how much the propositions expressed by A1, . . . , An hang together.

Here we understand “hang together” in the following way: propositions hang together if they

are either true together or false together. In other words, propositions hang together if, if at

least one of the propositions is true then all of them are true. Olsson’s coherence measure

fits this intuition perfectly. The degree of coherence of statements A1, . . . , An equals the

conditional probability of all of them being true, given that at least one of them is true, i.e.,

their disjunction is true.8

Now let us take a closer look at the connection between the degree of coherence of a theory

and the observational data, probability, and the above-mentioned measures of content and

information. From the definition of Olsson’s coherence measure and the fact that p(T ∨E) =

1− p(¬T ∧ ¬E) it is easy to obtain the following result:

Theorem 3.1. If p(T1|E) = p(T2|E) > 0, then:9

CO,p(T1, E) > CO,p(T2, E) iff ip(T1, E) > ip(T2, E).

And we also can prove the following:

Theorem 3.2. If ip(T1, E) = ip(T2, E), then:

CO,p(T1, E) > CO,p(T2, E) iff p(T1|E) > p(T2|E).

Theorem 3.1 shows that if the conditional probabilities of two theories T1 and T2 equal

each other given the observational data E, then, according to Olsson’s definition the degree of

coherence, of T1 and E is higher than the degree of coherence of T2 and E iff T1 informs more

(in the sense of ip(·, ·)) about the observational data E than T2. This shows that the degree of

coherence between a theory and the observational data indeed depends on the informativeness

of the theory. Theorem 3.2 shows that if we fix the amount of information provided by the

8This is obvious since |= (A1 ∧ . . . ∧ An) ↔ (A1 ∧ . . . ∧ An) ∧ (A1 ∨ . . . ∨ An). This implies that
p(A1 ∧ . . . ∧An)

p(A1 ∨ . . . ∨An)
= p(A1 ∧ . . . ∧ An|A1 ∨ . . . ∨ An). It is remarkable and astonishing that our understanding

of “hanging together” is the same as that of Shogenji (1999). He writes: “The crudest way of unpacking the

idea that coherent beliefs ‘hang together’ is that they are either true together or false together. However,

coherence comes in degrees; in other words we want to say that the more coherent beliefs are, the more likely

they are true together” (Shogenji 1999, p. 338). But Shogenji does not agree with our formal interpretation

of this intuitive notion of “hanging together,” since he concludes that “[t]he more coherent two beliefs are, the

stronger is the positive impact of the truth of one on the truth of the other” (Shogenji 1999, p. 338).
9Please note, p(T |E) > 0 implies not only that p(T |E) is defined, but also that p(E) > 0.
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theories relative to the observational data, then that theory which coheres more with the

observational data is more probable in the light of the observational data.

Both results fit our intuitions perfectly. If we had to decide between equally probable

theories, given the data E, we would choose the more informative one. We would choose the

more informative one because we would get more information with the same risk of accepting

a false theory. And if we had to choose between equally informative theories we would choose

the more probable one, because this one is more likely to be true.

The following theorem shows a more general result concerning the relation between the

presented information measures ip(·, ·) and the conditional probability on the one hand, and

the degree of coherence of a theory and the observational data on the other.

Theorem 3.3. ∀p ∀ε > 0 ∃δε > 0 : if [p(T1|E) > 0 & ip(T1, E) ≥ ip(T2, E) + ε & p(T1|E) ≥
p(T2|E)− δε], then CO,p(T1, E) > CO,p(T2, E).

This theorem shows that Olsson’s coherence measure weighs the the two epistemic virtues

of a theory—i.e., its likeliness of truth and its informativeness. A theory T1 can cohere more

with the observational data than another theory T2 even if the conditional probability of the

latter is higher than the conditional probability of the former. This happens if the amount

of information about the observational data E provided by T1 is sufficiently higher than

the amount of information provided by T2. This shows that a more informative theory can

display a higher degree of coherence with the observational data than a less informative theory.

It suffices that the difference between the conditional probabilities of both theories is small

enough relative to the difference in their informational value. It should be recognized that this

theorem instantiates a further condition which Huber imposes on plausibility-informativeness

assessment functions, namely that “any surplus in informativeness succeeds, if the shortfall

in plausibility is small enough” (Huber 2008, p. 94). Huber dubs this requirement continuity.

We can conclude that the degree of coherence between a theory and the observational

data depends on both indicators of the epistemic virtues of theories, at least with respect to

Olsson’s measure of coherence: the theory’s probability and its informativeness. With this

result we have a first hint that Olsson’s measure of coherence indeed satisfies the necessary

requirements for adequate assessment functions.

3.2.2 Probability, Informativeness, and Shogenji’s Measure of Coherence

For Shogenji’s measure of coherence we can prove very similar theorems as for Olsson’s mea-

sure. Shogenji (1999) introduces his measure of coherence in the following way.

Definition 3.4.

CS,p(A1, . . . , An) =
p(
∧

1≤i≤nAi)∏
1≤i≤n(p(Ai))

if p(Ai) > 0 for all i : 1 ≤ i ≤ n, and 0 otherwise.
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Shogenji (1999), unlike Olsson (2002), also defines the term “the statements A1, . . . An are

coherent.” He defines this as follows:

Definition 3.5. The statements A1, . . . An are coherent iff

CS,p(A1, . . . , An) > 1

The underlying intuition of definitions 3.4 and 3.5 is that the coherence of statements

depends on how much the statements mutually support each other. They are coherent if there

is at least some positive probabilistic dependency between them. And they are more coherent

than other statements if the positive probabilistic dependencies between them surpass the

positive probabilistic dependencies of the others.

As already said, for Shogenji’s measure of coherence we can prove similar theorems as for

Olsson’s measure.

Theorem 3.4. If p(T1|E) = p(T2|E) > 0, then:

CS,p(T1, E) > CS,p(T2, E) iff contp(T1) > contp(T2).

And we also can prove the following result:

Theorem 3.5. If contp(T1) = contp(T2) > 0, then:

CS,p(T1, E) > CS,p(T2, E) iff p(T1|E) > p(T2|E).

The comments on these theorems are the same as for the theorems 3.1 and 3.2. Both

theorems show that, according to Shogenji’s coherence measure, the degree of coherence of

a theory and the observational data depends on the theory’s probability and its content as

specified by the content measure contp(·); thus, again, both results fit our intuitions perfectly.

If we had to decide between equally probable theories, given the data E, we would choose the

theory with more content. We would choose the theory with more content because we could

believe more with the same risk of accepting a false theory. And if we had to choose between

theories with same amount of content, we would choose the more probable one, because this

one is more likely to be true.

Again, we can prove a more general result which indicates that Shogenji’s coherence

measure weighs the probability and the content of a theory.

Theorem 3.6. ∀p ∀ε > 0 ∃δε > 0 : if contp(T1) ≥ contp(T2) + ε & 0 6= p(T1|E) ≥
p(T2|E)− δε], then CS,p(T1, E) > CS,p(T2, E).

We can conclude that according to Shogenji’s measure of coherence the degree of coherence

between a theory and the observational data depends on the theory’s probability and its
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content. This proves that there is a dependency between the degree of coherence of a theory

and the observational data and the theory’s probability given the observational data, and

the theory’s content. Additionally, the above result shows that Shogenji’s coherence measure

fulfills Huber’s continuity requirement with respect to the theory’s content (in the sense of

contp(·)).
A remarkable difference between the theorems 3.1, 3.2, and 3.3 on the one hand and

theorems 3.4., 3.5, and 3.6 on the other is the following: the degree of coherence according to

to theorems 3.1, 3.2, and 3.3 concerning Olsson’s measure depends on the informativeness of a

theory as specified in the information measure ip(·, ·) (which measures the informativeness of a

theory about some observational data), whereas the degree of coherence according to theorems

3.4 , 3.5, and 3.6 concerning Shogenji’s measure depends on the content of a theory as specified

by the measure contp(·). However, it is important to note that these theorems do not already

establish conclusively that that Olsson’s measure depends on the informativeness of a theory

as specified in the information measure ip(·, ·) (which measures the informativeness of a theory

about some observational data), whereas the degree of coherence according Shogenji’s measure

depends on the content of a theory as specified by the measure contp(·). In particular, one

can show that if p(T1|E) = p(T2|E) > 0, then contp(T1) > contp(T2) iff ip(T1, E) > ip(T2, E).

However, it would be too hasty to conclude from this that there is only seemingly a difference

between Olsson’s and Shogenji’s measure. In particular, note the following theorem:

Theorem 3.7. There is some probability function p such that p(T1|E1) = p(T2|E2) > 0 and

CO,p(T1, E1) > CO,p(T2, E2)(i.e. if ip(T1, E1) > ip(T2, E2))

but

CS,p(T1, E1) < CS,p(T2, E2)(i.e. if contp(T1) > contp(T2))

Similarly theorems can be shown if we want to hold fixed contp(T1) = contp(T2) or

ip(T1, E1) = ip(T2, E2) and vary p(T1|E) and p(T2|E). This demonstrates that there is indeed

a fundamental difference between the two measures. Olsson’s measure depends on the infor-

mativeness of a theory as specified in the information measure ip(·, ·), whereas the degree of

coherence according to Shogenji’s measure depends on the content of a theory as specified by

the measure contp(·).

3.2.3 Probability, Informativeness, and Fitelson’s Measure of Coherence

Fitelson (2003) proposes the following coherence measure.

Definition 3.6.

CF,p(A1, . . . , An) =
1

|R|
∑

〈Ai,Sj〉∈R

F(Ai,
∧

Am∈Sj

Am)

where R = {〈Ai, Sj〉 : Ai ∈ {A1, . . . An} and Sj ⊆ {A1, . . . An} and Ai /∈ Sj and Sj 6= ∅}.
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In his definition of a coherence measure Fitelson uses a variation of Kemeny-Oppenheim’s

measure of factual support F , which they introduced in their 1952 joint paper as a measure

of mutual support.10

Definition 3.7.

F(A1, A2) =
p(A2|A1)− p(A2|¬A1)

p(A2|A1) + p(A2|¬A1)

if 0 < p(A1) < 1 and p(A2) > 0, otherwise if p(A1) = 0 or p(A2) = 0, then F(A1, A2) = −1

and if p(A1) = 1 and p(A2) > 0, then F(A1, A2) = 1.

Again we can prove similar theorems for Fitelson’s measure as for Olsson’s and Shogenji’s.

First note that:

Theorem 3.8. If p(T1|E) = p(T2|E) > 0, then:

CF,p(T1, E) > CF,p(T2, E) iff contp(T1) > contp(T2).

We conclude that according to Fitelson’s coherence measure it is also true that the degree

of coherence of a theory and the observational data depends on the content of the theory. For

two theories which are equally probable in the light of the observational data, it holds that

the theory with more content coheres more with the observational data than the theory with

less content.

Theorem 3.9. If contp(T1) = contp(T2) < 1, then:

CF,p(T1, E) > CF,p(T2, E) iff p(T1|E) > p(T2|E).

This theorem shows that if we consider two theories with the same amount of content,

then the theory that coheres more with the observational data is more probable in the light

of the observational data.

Theorem 3.10. ∀p ∀ε > 0 ∃δε > 0 : if [p(T1 ∧ E) > 0 & contp(T1) ≥ contp(T2) + ε &

p(T1|E) ≥ p(T2|E)− δε], then CF,p(T1, E) > CF,p(T2, E).

Again we get that the degree of coherence of a theory and the observational data depends

on both the conditional probability of the theory and the content of the theory. This is shown

by the fact that Fitelson’s measure weighs both aspects to determine the degree of coherence

of theory and observational data. The last theorem also shows that the Fitelson coherence

measure fulfills Huber’s continuity requirement with respect to the content measure contp(·).
10For a detailed argument in support of the Kemeny-Oppenheim measure of factual support, see Fitelson

2001, esp. sect. 3.2.3.
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4 Theory Assessment and Coherence

4.1 Theory Assessment, Coherence, and True Theories

In this section we show that the coherence measures of Olsson (2002), Shogenji (1999), and

Fitelson (2003) satisfy the necessary requirements on adequate assessment functions. There-

fore we have to show that they fulfill the requirements on adequate assessment functions we

laid down in section 2.2. We required that they favor true theories over false theories and

that they favor logically stronger true theories over logically weaker true theories, since the

former are more informative than the latter. In the last section we already saw a hint that all

three coherence measures have this property. Theorems 3.3, 3.6, and 3.10 showed that a more

informative theory, or a theory with greater content, can cohere more with the observational

data if the difference in their conditional probabilities is small enough. Now the basic idea for

the proof that the coherence measures are good assessment functions is the following: First,

the content and the information provided by a logically stronger, true theory is always higher

than the content and the information provided by a logically weaker, true theory. Second, by

the Gaifman-Snir Theorem (1982) we know that the conditional probability of a true theory

tends towards its truth-value if confronted with a separating sequence of statements. (To be

more exact, the sequence must separate the set of possibilities ModL. A sequence of state-

ments e1, . . . , en, . . . separates the set of possibilities ModL if and only if for every pair of

worlds wi and wj ∈ModL (with wi 6= wj) there is one statement in the sequence such that it

is true in one of the possible worlds and false in the other.)

Suppose we confront two true theories with such a sequence of observational data. Then

the conditional probabilities of both theories tend to 1 since those theories are true. As

a consequence the difference between their conditional probabilities becomes smaller and

smaller, since their conditional probabilities tend to 1. This opens up the possibility that

the more informative theory, or the theory with greater content, will cohere more with the

separating observational data than the less informative theory, or the theory with less content.

The theorem which shows that the coherence measures of Olsson (2002), Shogenji (1999),

and Fitelson (2003) are indeed good assessment functions is the following:

Theorem 4.1. Let w ∈ ModL be a possible world and let e1,. . . , en, . . . be a sequence of

statements of L which separates ModL, and let ewi = ei if w � ei and ¬ei otherwise. Let p be

a strict (or regular) probability function on L. Let p∗ be the unique probability function on

the smallest σ-field A containing the field {Mod(A) : A ∈ L} satisfying p∗(Mod(A)) = p(A)

for all A ∈ L, where Mod(A) = {w ∈ ModL : w � A} and ModL is the set of all maximal-

consistent sets of statements of L including instances.

Then there is an X ⊆ ModL with p∗(X) = 1 such that the following holds for every w ∈ X
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and all theories T1 and T2 of L:

If C = CO,p or C = CS,p or C = CF,p, then

1. if w � T1 and w � ¬T2, then:

∃n∀m ≥ n : [C(T1, Ewm) > C(T2, Ewm)].

2. If w � T1 ∧ T2 and T1 ` T2 but T2 0 T1, then:

∃n∀m ≥ n : [C(T1, Ewm) > C(T2, Ewm)]

where Ewm =
∧

0≤i≤m e
w
i .

This theorem shows that if we compare two theories, one of them true and one of them

false, then the true theory coheres more with the observational data than the false theory

(after finitely many steps of observation in a sequence of separating observational statements

and for every observation thereafter).11 And it also shows that if we compare two theories,

both of them true but one of them logically stronger, then the logically stronger theory—i.e.,

the more informative theory—coheres more with the observational data (after finitely many

steps of observation and for every observation thereafter). Here the fact that we compare

logically stronger, true theories with logically weaker, true theories is the reason why we can

show that all three coherence measures satisfy the minimal conditions for being good theory

assessment functions. Olsson’s (2002) measure of coherence weighs between the plausibility

and the informativeness of the theory. Shogenji’s (1999) measure of coherence and Fitelson’s

(2003) measure of coherence weigh between the theory’s plausibility and its content. However,

in the case of one logical stronger, true theory and one logically weaker, true theory the more

informative theory is necessarily also the one with more content and vice versa. Hence, the

measures agree in the comparative evaluation of the logically stronger, true theory and the

11For the coherence measures of Shogenji (1999) and Fitelson the proofs in the appendix actually show

the following stronger result: all true theories cohere with the observational data after finitely many steps of

observations and for every observation thereafter; false theories don’t . No such theorem is provable for Olsson’s

(2002) measures of coherence since coherence is not defined for this measure. Nevertheless Olsson’s coherence

measure satisfies the minimal conditions on good theory assessment functions put forward in section2.2. The

reason for this is that the minimal conditions on good theory assessment functions only require that if one

consider two theories, on of which is true and the other false, then the true theory cohere more strongly with

the evidence than the false theory. This comparative requirement can be satisfied even if their is no definition

of the qualitative notion of coherence available.
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logically weaker, true theory. Olsson’s measure favors logically stronger, true theories because

they are more informative in the sense of measure ip(·|·). Shogenji’s coherence measure and

Fitelson’s coherence measure favor logically stronger, true theories because they have more

content in the sense of measure contp(·). This holds for all theories even if the theory can

never be entailed or refuted by the observational data after finitely many steps of observation

in a sequence of separating observational statements.

4.2 Theory Assessment, Coherence, and False Theories

Now let us turn to the question of how the different coherence measures assess false theories.

Proposal 1 states that if two theories have the same truth value the logically stronger theory is

to be preferred. According to Proposal 2 false logically stronger theories should be rated lower

than false logically weaker theories. None of the introduced coherence measures complies with

these proposals. Instead they rate all false theories equal in the limit. The degree of coherence

of false theories converges to the respective minimal degree of coherence of that measure. This

is shown in the following theorem:

Theorem 4.2. Let e1, . . . , en, . . . be a sequence of statements of L which separates ModL,

and let ewi = ei if w � ei and ¬ei otherwise. Let p be a strict (or regular) probability

function on L. Let p∗ be the unique probability function on the smallest σ-field A con-

taining the field {Mod(A) : A ∈ L} satisfying p∗(Mod(A)) = p(A) for all A ∈ L, where

Mod(A) = {w ∈ ModL : w � A} and ModL is the set of all maximal-consistent sets of

statements of L including instances.

Then there is an X ⊆ ModL with p∗(X) = 1 such that the following holds for every w ∈ X
and all theories T1 of L:

If w � ¬T1, then:

limn→∞[CO,p(T1, Ewm)] = 0

limn→∞[CS,p(T1, Ewm)] = 0

limn→∞[CF,p(T1, Ewm)] = −1

where Ewm =
∧

0≤i≤m e
w
i .

Thus, false theories are rated equal in the limit by all three coherence measures. In

particular, logically false theories are assigned immediately the minimal degree of coherence

with the observational data according to all three coherence measures. Falsifiable false theories

are falsified after finitely many steps of observation in a sequence of separating observational

statements and are assigned the minimal degree of coherence for every observation thereafter.

19



The degree of coherence with the observational data of false theories that cannot be falsified

converges to the minimal degree but never actually reaches it. The existence of false theories

that cannot be falsified after finitely many steps of observation is the reason why not all false

theories are rated equal after finitely many steps of observation.

4.3 Theory Assessment and Coherence: Constraints

The achieved results hold true if two conditions are satisfied. First, the observational data

must be of such a kind that they separate the set ModL. Second, they hold true only in

every world w of some subset X ⊆ ModL with p∗(X) = 1. That the latter condition must

be satisfied is a problem of Bayesian updating of probability functions in general. (See, for

example, chapter 6 of Earman (1992) for further discussion of this problem.)

The condition that the observational data must separate the set ModL is problematic,

too. This means that theorem 4.1 does not speak about theories which are formulated in

theoretical vocabulary, i.e., vocabulary which includes non-observational terms; but such

theories are common in everyday scientific practice.

However, there are some philosophers who do not think this is problematic, since they

claim that an anti-realist position with respect to scientific theories is preferable.

5 Theory Assessment, Coherence, and Scientific Anti-Realism

According to van Fraassen (1980, p. 9) Scientific Realism is “the position that scientific

theory construction aims to give us a literally true story of what the world is like, and that

acceptance of a scientific theory involves the belief that it is true.” Advocates of an anti-realist

point of view deny this. Van Fraassen mentions two alternative sorts of anti-realist positions.

The first sort of anti-realist position is that scientific theories are not literally true or

false, but are true or false if properly construed. According to this position, theoretical terms

within scientific theories do not refer in the way other terms do, and statements containing

them are not literally true or false. A sentence, properly construed, which can be true or false

must therefore be a sentence which does not include any theoretical terms.

The second sort of anti-realist position is that scientific theories are literally true or false,

but the acceptance of a theory does not involve the belief that it is true. Instead, this anti-

realist says, we accept theories because the theory possesses other virtues, such as empirical

adequacy. Anti-realists of both sorts should not have problems with the condition that the

observations must separate ModL.

Anti-realists of the first sort claim that theories which are literally true or false do not con-

tain theoretical vocabulary. Since they also claim that scientific theories, properly construed,

are true or false, they must hold that scientific theories, properly construed, do not contain
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theoretical terms. This means that theories, properly construed, can be formulated in a lan-

guage Lobs that does not include non-observational terms. Accordingly, there is a sequence of

observational statements that separates the set of possible worlds or models ModLobs of the

language Lobs. Therefore anti-realists of the first sort can use coherence measures to assess

theories. They can use the coherence measures to assess theories because theorem 4.1 shows

that if we compare two properly construed theories, one of them true and one of them false,

then the true theory coheres more with the observational data than the false theory (after

finitely many steps of observation in a sequence of separating observational statements and for

every observation thereafter). And it also shows that if we compare two properly construed

theories, both of them true but one of them logically stronger, then the logically stronger

theory—i.e., the more informative theory—coheres more with the observational data (after

finitely many steps of observation in a sequence of separating observational statements and

for every observation thereafter). So an anti-realist of the first sort need not have any problem

with the condition that the observational data must separate the set ModL.

An anti-realist of the second sort will not have any problem with this condition either.

Since according to her position accepting a theory does not involve believing that it is true,

only that it is empirically adequate.

Suppose all theories under consideration are formulated in the language L which contains

observational as well as theoretical terms. Now let Lobs be a proper subset of the language

L which contains all and only those statements which are formulated in observational terms.

Suppose theory T is formulated in language L and contains theoretical terms, and suppose

theory T obs is the logically strongest theory that is formulated in language Lobs and which

is implied by T . In addition assume that the quantifiers in T obs range exclusively over the

set of observable entities. The reason for this later assumption is that if the quantifies are

unrestricted “we shall be able to state in the observational language that there are unobserv-

able entities” (van Fraassen 1980, p. 54). According to van Fraassen a theory is “empirically

adequate exactly if what it says about the observable things and events in the world is true—

exactly if it ‘saves the phenomena’ ”(van Fraassen 1980, p. 12). Accordingly, the following

should hold true: T is empirically adequate iff T obs is true. In addition we want to introduce

the comparative concept “is more empirically adequate than,” the following minimal require-

ment seems reasonable: If T1 and T2 are both empirically adequate, and T obs1 is logically

stronger than T obs2 , then T1 is more empirically adequate than T2.
12

12With the help of the content measure cont and theory T obs one can introduce a measure of the empirical

content of a theory T instead of just the content of a theory. In particular, contp(T
obs) can be said to measure

the amount of empirical content of T .
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Along with introducing the comparative concept “is more empirically adequate than,” an

anti-realist of the second sort would also reformulate the above-mentioned minimal conditions

that every adequate assessment function must satisfy:

If a function a : L × L → R is an adequate assessment function in world w, then for all

theories T1, T2 ∈ L and every data stream e1, . . . , en, . . . from Lobs including all possible

observational data of w, it holds that:

1. if T1 is empirically adequate in w and T2 is empirically inadequate in w, then there

exists a point n such that for all m ≥ n:

a(T1, Em) > a(T2, Em)

2. if T1 is empirically adequate in w and T2 is empirically adequate in w and T obs1 ` T obs2

and T obs2 0 T obs2 , then there exists a point n such that for all m ≥ n:

a(T1, Em) > a(T2, Em)

where Em = e1 ∧ . . . ∧ em.

There are two ways anti-realists of the second sort can employ the coherence measures of

Olsson (2002), Shogenji (1999), and Fitelson (2003) for the assessment of theories.

First, anti-realists of the second sort can determine the degree of coherence Coh(T,E) of

the theory T and the observational data to assess theory T by defining a(T,E) := Coh(T,E).

In that case one cannot show that the coherence measures favor empirically adequate theories

over empirically inadequate theories and one also cannot show that the coherence measures

favor true theories over false theories. The reason is that if the language L in which T is

formulated contains theoretical terms, the observational statements cannot separate the set of

possibilities ModL and hence we cannot use theorem 4.1 to assess theories.13 That coherence

measures cannot be used to assess theories directly is a surprising result since intuitively, and

historically, coherence theories are closely tied to anti-realist positions in the philosophy of

science and epistemology.

13It is important to note that this utilization of coherence measures to assess theories is inadequate from the

perspective of an anti-realist of the second sort even if the coherence measures would favor true theories over

false theories. The reason is that anti-realists of the second sort do not prefer true theories over false theories

in general. In particular, if both theories are empirically adequate an anti-realist of the second sort would not

necessarily favor the true theory over the false theory. In addition, anti-realists of the second sort would reject

the consequence (Theorem 4.2) that all false theories should be treated on a par in the long run. After all,

anti-realists of the second sort subscribe to the point of view that false but empirically adequate theories are

to be preferred to false and empirically inadequate theories.
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Second, however, anti-realists of the second sort can use the coherence measures to assess

theories indirectly. In particular, they can determine the degree of coherence Coh(T obs, E) of

theory T obs and observational data E to assess theory T by defining a(T,E) := Coh(T obs, E),

where T obs is again the logically strongest theory that is formulated in language Lobs and

which is implied by T . In that case Theorem 4.1 shows that if T1 is empirically adequate and

T2 is not, i.e., if T obs1 is true and T obs2 is false, then after finitely many steps of observations

T obs1 coheres more with the observational data than T obs2 . By theorem 4.1 we then know that

if T1 and T2 are both empirically adequate—i.e., if both T obs1 and T obs2 are true—then after

finitely many steps of observations T obs1 coheres more with the observational data than T obs2 if

T obs1 is logically stronger than T obs2 . By evaluating theories which do not contain theoretical

terms (e.g., T obs1 and T obs2 ) we can therefore determine which theories containing theoretical

terms (e.g., T obs1 and T obs2 ) are empirically adequate, and which are more empirically adequate

than others.

This shows that an anti-realist of the second sort can use the coherence measures of Olsson

(2002), Shogenji (1999), and Fitelson (2003) to assess theories without worrying about the

precondition that the observational data must separate the set of possibilitiesModL. However,

anti-realists of the second sort have to assess a theory T indirectly by determining the degree

of coherence between T obs and the observational data E, where T obs is the logically strongest

theory implied by T not containing theoretical vocabulary.14 We conclude: at least from the

perspective of anti-realists of this second sort, the coherence measures satisfy the minimal

conditions for adequate assessment functions. If one compares two theories, one of which

is empirically adequate and the other not, they favor the empirically adequate theory over

the empirically inadequate theory and they favor the theory with more empirical content

among two empirically adequate theories after finitely many steps of observation and for

every observation thereafter.

6 Summary

We have shown in section 4.1 that the coherence measures of Olsson, Shogenji, and Fitelson

satisfy the two most important requirements for adequate theory assessment functions laid

down in section 2.2, provided that the possible observational data separates the set of all

14Van Fraassen (1980) propagates this second sort of anti-realist position most prominently. One might

object that van Fraassen advocates a view on theories which stands in sharp contrast to the one presumed

here. However, as noted by Hawthorne (2011, p. 333), van Fraassen’s semantic view of theories need not

be in opposition to the assumption that scientific theories are expressible in a sentence or statement of some

language. “Presumably, if scientists can express a theory well enough to agree about what it says about the

world (or at least about its testable empirical content), it must be expressible in some bit of language.” Such

a theory “should be subject to empirical evaluation [. . . and] a theory of confirmation [or theory assessment]

should apply to them.”
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possibilities ModL. (i) If we compare two theories (formulated within the vocabulary of

L), one of them true and one of them false, then the true theory coheres more with the

observational data than the false theory (after finitely many steps of observation in a sequence

of separating observational statements and for every observation thereafter) according to

all three coherence measures. (ii) If we compare two theories, both of them true but one

of them logically stronger, then the logically stronger theory—i.e., the more informative

theory—coheres more with the observational data (after finitely many steps of observation

in a sequence of separating observational statements and for every observation thereafter)

according to all three coherence measures. However, this result comes with a caveat. As

already noted in section 4.3, this result does not speak about theories which are formulated

using theoretical vocabulary. If we assume that the sequence of possible observational data

separates the set of possibilities ModL, and if the theories must be formulated exclusively

with the help of the vocabulary of L, then the theories cannot be formulated using theoretical

vocabulary. Accordingly, if you are a scientific realist and aim at believing true theories,

the coherence measures do not necessarily help you reach that goal, in particular not if you

concentrate on theories that are formulated in theoretical vocabulary.

If you are scientific anti-realist you do not have to worry that the achieved results do

not speak about theories that contain theoretical vocabulary. If you belong to the first type

of anti-realists, you believe that theories which are literally true or false do not contain

theoretical terms, and that theories properly construed are true or false; hence, you also hold

that scientific theories, properly construed, do not contain theoretical terms. Accordingly you

can apply the coherence measures to theories properly construed and they will take you to

true theories. If you belong to the second type of anti-realists you do not aim at believing true

theories, rather you aim at believing theories which are empirically adequate, i.e., theories

whose observational content is true. Accordingly you do not need to worry too much about

the fact that the coherence measures do not take you to true theories. Instead you can employ

the coherence measures to take you to empirically adequate theories. In addition, they favor

the theory with more empirical content among two empirically adequate theories after finitely

many steps of observation and for every observation thereafter.

However, the achieved results, pleasing as they might be, do not validate the coherentist’s

twofold claim that (i) a theory is a good theory given some observational data if and only if

that theory coheres with the observational data,15 and (ii) a theory is better than another

theory given some observational data if and only if the first theory coheres more with the

observational data than the second. First, there are other measures, most prominently mea-

sures of incremental confirmation, that satisfy the two requirements on adequate measures of

15For Olsson’s coherence measure this is obvious since Olsson (2002) does not even define the qualitative

notion of coherence.
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confirmation (Huber, 2005; 2008). Accordingly, it does not follow that we are epistemically

obliged to employ the coherence measures for the purpose of theory assessment, since there

are some confirmation measures that satisfy both conditions too. Confirmation measures

that satisfy both conditions are, for example, Carnap’s distance measure d and the Joyce-

Christensen measure S (Christensen 1999, Joyce 1999), as has been demonstrated by Huber

(2005, 2008).16 More specifically, one can show that all confirmation measures that assign a

maximum degree of confirmation if the observational data implies the theory cannot distin-

guish between informative and uninformative true theories. Thus according to the presented

approach they are unacceptable as measures for the purpose of theory assessment, since they

do not even satisfy the minimal conditions put forward in section 2.2. This includes the log-

likelihood confirmation measures of Fitelson (2001), Good (1960), and Kemeny-Oppenheim

(1952), the normalized distance measures by Crupi et al. (2007), and the normalized log-ratio

measure defended by Shogenji (2012) and Atkinson (2012).17 However, as already said some

confirmation measures satisfy the minimal conditions put forward in section. 2.2. Thus, at

most, the achieved results show that we are epistemically permitted to use the coherence

measures to assess theories since they lead us to believe or accept informative true theo-

ries. Alongside these considerations, the latter property of the considered coherence measures

constitutes a means-ends justification for the former epistemic permission.

Second, the two requirements put forward in section 2.2 are only minimal conditions on

adequate theory assessment functions. We have not specified sufficient conditions for being an

adequate measure of confirmation. Hence, we cannot infer that these measures are adequate

measures of theory assessment simply from the fact that the coherence measures satisfy the

two minimal requirements. This circumstance is aggravated by the fact that at a given point

in time the three measures of coherence can give different verdicts with respect to a pair of

theories T1 and T2. In many cases the available observational data at some point in time

might be more coherent with T1 than with T2 according to one measure, but the other way

around according to another measure.

16Not all confirmation measures satisfy this minimal condition though. Huber (2005, 2008) argues that for

example the log-likelihood confirmation measure championed by Fitelson (2001), Good (1960), and Kemeny

and Oppenheim (1952) is not an adequate measures for the purpose of theory assessment. The reason is that the

“log-likelihood ratio measure l neither distinguishes between informative and uninformative true nor between

informative and uninformative false theories” (Huber 2005: 1158). This renders it even more interesting that

Fitelson’s coherence measure distinguishes between informative and uninformative truth. After all, Fitelson’s

coherence measure, when it is applied to pairwise coherence of theory and observational data, is the average

of the two incremental confirmations (in the sense of Kemeny-Oppenheim 1952) between the theory and

observational data.
17Interestingly, however, the normalized log-ratio measure suggested by Shogenji (2012) and discussed in

detail by Atkinson (2012) is motivated by similar considerations as the theory of theory assessment by Huber

(2005, 2008). However, a detailed comparison of both approaches has yet to be undertaken.
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To sum up, the coherence measures satisfy the two most important criteria for adequate

theory assessment functions. First, if we compare two theories, one of which is true and the

other false, then the true theory coheres more with the observational data than the false theory

(after finitely many steps of observation in a sequence of separating observational statements

and for every observation thereafter). This shows that the coherence measures are truth

conducive. This is an important and novel result for Bayesian coherentism, especially in the

light of the previous impossibility results by Bovens and Hartmann (2003) and Olsson (2005).

Second, if we compare two theories, both of which are true but one of which is logically

stronger, then the logically stronger theory—i.e., the more informative theory—coheres more

with the observational data (after finitely many steps of observation in a sequence of separating

observational statements and for every observation thereafter). However, these strong results

do not yet show that we are epistemically obliged to use coherence measures to assess theories,

yet alone which coherence measure we have to use. There are other measures that satisfy

the same conditions and that also lead us to informative true theories. Future investigations

into the differences and similarities between the coherentist approach and the confirmation

theorist approach will have to determine which approach is more suitable for the purpose of

theory assessment.

A Proof of Theorems

Proof of Theorem 3.3: ∀p ∀ε > 0 ∃δε > 0 : [p(T2 ∧ E) > 0 & 0 < p(E) < 1 &

ip(T1, E) ≥ ip(T2, E) + ε & p(T1|E) ≥ p(T2|E)− δε]⇒ CO,p(T1, E) > CO,p(T2, E)

Proof: Let p be a probability function and let p(T2 ∧ E) > 0 and 0 < p(E) < 1. Let ε be

arbitrary with ε > 0.

The proof is straightforward if δε is chosen arbitrary with 0 < δε × p(E) < p(T2∧E)
1−p(¬T2∧¬E) ×

[ε× p(¬E)]. We know there is such an δε, because p(T2 ∧ E) > 0, 0 < p(E) < 1 and ε > 0.

We have to prove that: ip(T1, E) ≥ ip(T2, E) + ε⇒ [p(T1|E) ≥ p(T2|E)− δε ⇒ CO,p(T1, E) >

CO,p(T2, E)]

2.) Suppose ip(T1, E) ≥ ip(T2, E) + ε, this means p(¬T1 ∧ ¬E) ≥ p(¬T2 ∧ ¬E) + ε × p(¬E)

which implies 1− p(¬T1 ∧ ¬E) ≤ 1− [p(¬T2 ∧ ¬E) + ε× p(¬E)]

3.) Suppose p(T1|E) ≥ p(T2|E)− δε, i.e. p(T1 ∧ E) ≥ p(T2 ∧ E)− δε × p(E)
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4.) δε×p(E)
p(T2∧E) <

ε×p(¬E)
1−p(¬T2∧¬E) (from 1.)

5.) [1− δε×p(E)
p(T2∧E) ] > 1− ε×p(¬E)

1−p(¬T2∧¬E) (from 4.)

6.) p(T2∧E)
p(T2∧E) −

δε×p(E)
p(T2∧E) > 1− ε×p(¬E)

1−p(¬T2∧¬E) (from 5.)

7.) p(T2∧E)−δε×p(E)
p(T2∧E) > 1− ε×p(¬E)

1−p(¬T2∧¬E) (from 6.)

8.) p(T1∧E)
p(T2∧E) > 1− ε×p(¬E)

1−p(¬T2∧¬E) (from 3. and 7.)

9.) p(T1∧E)
p(T2∧E) >

1−p(¬T2∧¬E)
1−p(¬T2∧¬E) −

ε×p(¬E)
1−p(¬T2∧¬E) (from 8.)

10.) p(T1∧E)
p(T2∧E) >

[1−p(¬T2∧¬E)]−ε×p(¬E)
1−p(¬T2∧¬E) (from 9.)

11.) p(T1∧E)
p(T2∧E) >

1−[p(¬T2∧¬E)+ε×p(¬E)]
1−p(¬T2∧¬E) (from 10.)

12.) p(T1∧E)
p(T2∧E) >

1−p(¬T1∧¬E)
1−p(¬T2∧¬E) (from 2. and 11.)

13.) p(T1∧E)
1−p(¬T1∧¬E) >

p(T2∧E)
1−p(¬T2∧¬E) (from 12.)

14.) p(T1∧E)
p(T1∨E) >

p(T2∧E)
p(T2∨E) (from 13.)

15.) CO,p(T1, E) > CO,p(T2, E) (from 14. and the definition of CO,p)

Proof of Theorem 3.6: ∀p ∀ε > 0 ∃δε > 0 : [contp(T1) ≥ contp(T2) + ε & 0 6= p(T1|E) ≥
p(T2|E)− δε]⇒ CS,p(T1, E) > CS,p(T2, E)

Proof: Let p be a probability function with p(E ∧ T1) > 0 and let ε > 0.

The proof is straightforward if δε is chosen arbitrary satisfying 0 < δε <
p(T1∧E)

p(E)×p(T1) × ε.
We know there is such an δε ∈ R, because p(T1 ∧ E) > 0.

Proof of Theorem 3.10: ∀p ∀ε > 0 ∃δε > 0 : [p(T1 ∧ E) > 0 & contp(T1) ≥ contp(T2) + ε

& p(T1|E) ≥ p(T2|E)− δε]⇒ CF,p(T1, E) > CF,p(T2, E)

Proof: Let p be an arbitrary probability function with p(T1 ∧ E) > 0 and let ε > 0.
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The proof is straightforward if δε chosen arbitrary satifying 0 < δε ≤ p(T1∧E)
p(E)×p(T1) × ε.

We know that there is such an δε because p(T1 ∧ E) > 0 and ε > 0.

Proof of Theorem 4.1 for Olsson’s coherence measure: Let e1,. . . , en, . . . be a se-

quence of sentences of L which separates ModL, and let ewi = ei, if w � ei and ¬ei otherwise.

Let p be a strict (or regular) probability function on L. Let p∗ be the unique determined

probability function on the smallest σ-field A containing the field {Mod(A) : A ∈ L} satisfy-

ing p∗(Mod(A)) = p(A) for all A ∈ L, where Mod(A) = {w ∈ ModL : w � A} and ModL is

the set of all maximal-consistent sets of sentences of L including instances.

Then according to the Gaifman-Snir Theorem (Gaifman and Snir 1982) there is a X ⊆ModL

with p∗(X) = 1, such that the following holds for every w ∈ X and all theories T1 and T2 of

L.

limn→∞p(T1|Ewn ) = I(T1, w)

where I(T1, w) = 1, if w � T1 and 0 otherwise.

1.) Suppose additionally that w′ ∈ X and w′ � T1 and w′ � ¬T2.
By the Gaifman-Snir (1982) Theorem and the assumptions the following holds:

limn→∞[p(T1|Ew
′

n )] = 1 and limn→∞[p(T2|Ew
′

n )] = 0.

And since the following holds true:

limn→∞[p(T1 ∨ Ew
′

n )] ∈ [p(T1), 1] and limn→∞[p(T2 ∨ Ew
′

n )] ∈ [p(T2), 1]

we can conclude that

limn→∞[p(T1|Ew
′

n )] > limn→∞[p(T2|Ew
′

n )× p(T1∨Ew
′

n )

p(T2∨Ew′n )
].

This implies ∃n∀m ≥ n : p(T1|Ew
′

m ) > p(T2|Ew
′

m )× p(T1∨Ew
′

m )

p(T2∨Ew′m )
.

From which we can infer that: ∃n∀m ≥ n : p(T1∧E
w′
m )

p(T1∨Ew′m )
> p(T2∧Ew

′
m )

p(T2∨Ew′m )
.

which implies that: ∃n∀m ≥ n :

CO,p(T1, Ew
′

m ) > CO,p(T2, Ew
′

m )

2.) Additionally assume that w′ ∈ X and w′ � T1 ∧ T2 and T1 ` T2 but T2 0 T1. Since p is by

assumption a strict probability function is must hold that contp(T1) > contp(T2) and hence

that p(T2) > p(T1).
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By the Gaifman-Snir Theorem we can infer that:

limm→∞p(T1|Ew
′

m ) = limm→∞p(T2|Ew
′

m ) = 1

with this we get that for all ε there exists a nε such that for all m ≥ nε holds that:

|p(T2|Ew
′

m )− p(T1|Ew
′

m )| < ε

Then define ε = [p(T2)−p(T1)]
2

From this definition we get that for all m ≥ nε :

p(¬T1|¬Ew
′

m )− p(¬T2|¬Ew
′

m ) > ε since:

1. p(T2|Ew
′

m )− p(T1|Ew
′

m ) < ε for all m ≥ nε as assumed above.

2. [p(T2)− p(T1)]− [p(T2|Ew
′

m )− p(T1|Ew
′

m )] > [p(T2)− p(T1)]− ε

3.) [p(T2)− p(T1)]− [p(T2|Ew
′

m )− p(T1|Ew
′

m )] > ε

4.) [p(T2)− p(T1)]− [p(T2|Ew
′

m )− p(T1|Ew
′

m )]× p(Ew′m ) > ε

(from 3.)

5.) [p(T2)− p(T1)]− [p(T2 ∧ Ew
′

m )− p(T1 ∧ Ew
′

m )] > ε

6.) [p(T2)− p(T2 ∧ Ew
′

m )]− [p(T1)− p(T1 ∧ Ew
′

m )] > ε

7.) [p(T2) + p(Ew
′

m )− p(T2 ∧ Ew
′

m )]− [p(T1) + p(Ew
′

m )− p(T1 ∧ Ew
′

m )] > ε

8.) [p(T2 ∨ Ew
′

m )]− [p(T1 ∨ Ew
′

m )] > ε

9.) [1− p(T1 ∨ Ew
′

m )]− [1− p(T2 ∨ Ew
′

m )] > ε

10.) p(¬T1 ∧ ¬Ew
′

m )− p(¬T2 ∧ ¬Ew
′

m ) > ε
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11.) p(¬T1 ∧ ¬Ew
′

m )− p(¬T2 ∧ ¬Ew
′

m ) > ε

12.) p(¬T1|¬Ew
′

m )− p(¬T2|¬Ew
′

m ) > ε
p(¬Ew′m )

> ε

From which we can infer that:

(I) ∀m ≥ nεp(¬T1|¬Ew
′

m ) > p(¬T2|¬Ew
′

m ) + ε

By Theorem 3.3 we can infer that there is a δε such that:

p(T1|Ew
′

m ) ≥ p(T2|Ew
′

m )− δε ⇒ CO,p(T1, Ew
′

m ) > CO,p(T2, Ew
′

m )

Again by the Gaifman-Snir Theorem we get that there is a nδε such that for all m ≥ nδε

p(T2|Ew
′

m )− p(T1|Ew
′

m ) < δε

or equivalently: (II) p(T1|Ew
′

m ) > p(T2|Ew
′

m )− δn1

Again by Theorem 3.3 and (I) and (II) we can conclude: For allm ≥ n∗, where n∗ =max.{nδε , nε}
it holds that:

CO,p(T1, Ew
′

m ) > CO,p(T2, Ew
′

m )

Which implies that there a n such that for all For all m ≥ n:

CO,p(T1, Ew
′

m ) > CO,p(T2, Ew
′

m )

Proof of Theorem 4.1 for Shogenji’s coherence measure: Let e1,. . . , en, . . . be a

sequence of sentences of L which separates ModL, and let ewi = ei, if w � ei and ¬ei otherwise.

Let p be a strict (or regular) probability function on L. Let p∗ be the unique determined

probability function on the smallest σ-fieldA containing the field {Mod(A) : A ∈ L} satisfying

p∗(Mod(A)) = p(A) for all A ∈ L, where Mod(A) = {w ∈ ModL : w � A} and ModL is the

set of all maximal-consistent sets of sentences of L including instances.

Then according to the Gaifman-Snir Theorm (Gaifman and Snir 1982) there is a X ⊆ModL

with p∗(X) = 1, such that the following holds for every w ∈ X and all theories T1 and T2 of

L:

limn→∞p(T1|Ewn ) = I(T1, w)
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where I(T1, w) = 1, if w � T1 and 0 otherwise.

1.) Suppose additionally that w′ ∈ X, w′ � T1 and w′ � ¬T2.

We know that limn→∞[p(T1|Ew
′

n )] = 1 and limn→∞[p(T2|Ew
′

n )] = 0 by the Gaifman-Snir

Theorem.

So we can infer that:

limn→∞[p(T1|Ew
′

n )× 1
p(T1)

] = 1
p(T1)

> 1 > limn→∞[p(T2|Ew
′

n )× 1
p(T2)

] = 0

Let ε =
1

p(T1)

2 . Then it holds that: ∃n∀m ≥ n : | 1
p(T1)

−CS,p(T1, Ew
′

m )| < ε and CS,p(T1, Ew
′

m ) > 1

and ∃n′∀m ≥ n′ : |0− CS,p(T2, Ew
′

m )| < ε and CS,p(T2, Ew
′

m ) < 1.

Now let n1 =max.{n, n′}. Then it holds for all m ≥ n1 :

CS,p(T1, Ew
′

m ) > 1 > CS,p(T2, Ew
′

m )

2.) Additionally assume that w′ ∈ X and w′ � T1 ∧ T2 and T1 ` T2 but T2 0 T1. Since p is by

assumption a strict probability function is must hold that contp(T1) > contp(T2) and hence

that p(T2) > p(T1).

Thereby we know that: limn→∞[p(T1|Ew
′

n )] = 1 and limn→∞[p(T2|Ew
′

n )] = 1 by the Gaifman-

Snir Theorem and the assumption that w′ � T1 ∧ T2.

This implies that limn→∞[p(T1|Ew
′

n )× 1
p(T1)

] = 1
p(T1)

> limn→∞[p(T2|Ewn )× 1
p(T2)

] = 1
p(T2)

Since contp(T1) > contp(T2) we can infer that p(T1) < p(T2) and 1
p(T1)

> 1
p(T2)

Now let ε =
1

p(T1)
− 1
p(T2)

2 . Then it holds that: ∃n∀m ≥ n : | 1
p(T1)

− CS,p(T1, Ewm)| < ε and

∃n′∀m ≥ n′| 1
p(T2)

− CS,p(T2, Ewm)| < ε.

Now let n1 =max.{n, n′}. Then it holds for all m ≥ n1 :

CS,p(T1, Ewm) > CS,p(T2, Ewm)

Proof of Theorem 4.1 for Fitelson’s coherence measure: Let e1, . . . , en, . . . be a

sequence of sentences of L which separates ModL, and let ewi = ei, if w � ei and ¬ei otherwise.

Let p be a strict (or regular) probability function on L. Let p∗ be the unique determined

probability function on the smallest σ-fieldA containing the field {Mod(A) : A ∈ L} satisfying
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p∗(Mod(A)) = p(A) for all A ∈ L, where Mod(A) = {w ∈ ModL : w � A} and ModL is the

set of all maximal-consistent sets of sentences of L including instances.

Then according to the Gaifman-Snir Theorm (Gaifman and Snir 1982) there is a X ⊆ModL

with p∗(X) = 1, such that the following holds for every w ∈ X and all theories T1 and T2 of

L.

limn→∞p(T1|Ewn ) = I(T1, w)

where I(T1, w) = 1, if w � T1 and 0 otherwise.

1.) Assume additionally that w′ ∈ X and and w′ � T1 and w′ � ¬T2.
First note that:

limn→∞[CF,p(Ti, Ew
′

n )] =

1

2
[limn→∞[

p(Ti|Ew
′

n )− p(Ti|¬Ew
′

n )

p(Ti|Ew′n ) + p(Ti|¬Ew′n )
×

1
p(Ti)

1
p(Ti)

]+

limn→∞[
p(Ew

′
n |Ti)− p(Ew

′
n |¬Ti)

p(Ew′n |Ti) + p(Ew′n |¬Ti)
×

1
p(Ew′n )

1
p(Ew′n )

]] =

1

2
[limn→∞[

CS,p(Ti, Ew
′

n )− CS,p(Ti,¬Ew
′

n )

CS,p(Ti, Ew′n ) + CS,p(Ti,¬Ew′n )
]+

limn→∞[
CS,p(Ti, Ew

′
n )− CS,p(¬Ti, Ew

′
n )

CS,p(Ti, Ew′n ) + CS,p(¬Ti, Ew′n )
]]

and since we know that under the above assumptions by Theorem 4.1 the following holds:

1. limn→∞[CS,p(T1, Ew
′

n )] = 1
p(T1)

2. limn→∞[CS,p(T1,¬Ew
′

n )] ≤ 1
p(T1)

3. limn→∞[CS,p(¬T1, Ew
′

n )] = 0

4. limn→∞[CS,p(T2, Ew
′

n )] = 0

5. limn→∞[CS,p(T2,¬Ew
′

n )] ≥ 0

6. limn→∞[CS,p(¬T2, Ew
′

n )] = 1
p(¬T2)

we can conclude that:

limn→∞[CF,p(T1, Ew
′

n )] > 0 > limn→∞[CF,p(T2, Ew
′

n )

Which implies that:

∃n∀m ≥ n : CF,p(T1, Ew
′

m ) > 0 > CF,p(T2, Ew
′

m )
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2.) Additionally assume that w′ ∈ X and w′ � T1 ∧ T2 and T1 ` T2 but T2 0 T1. Since p is by

assumption a strict probability function is must hold that contp(T1) > contp(T2) and hence

that p(T2) > p(T1).

We already know that:

limn→∞[CF,p(Ti, Ew
′

n )] =

1

2
[limn→∞[

CS,p(Ti, Ew
′

n )− CS,p(Ti,¬Ew
′

n )

CS,p(Ti, Ew′n ) + CS,p(Ti,¬Ew′n )
]+

limn→∞[
CS,p(Ti, Ew

′
n )− CS,p(¬Ti, Ew

′
n )

CS,p(Ti, Ew′n ) + CS,p(¬Ti, Ew′n )
]]

and since we know that under the above assumptions by Theorem 4.1 the following holds:

1. limn→∞[CS,p(T1, Ew
′

n )] = 1
p(T1)

2. limn→∞[CS,p(¬T1, Ew
′

n )] = 0

3. limn→∞[CS,p(T2, Ew
′

n )] = 1
p(T2)

4. limn→∞[CS,p(¬T2, Ew
′

n )] = 0

Accordingly, in order to prove Theorem 4.3 it is sufficient to prove that:

limn→∞[CS,p(T2,¬Ew
′

n )] ≥ limn→∞[CS,p(T1,¬Ew
′

n )]

We already know that:

limn→∞[CS,p(T1, Ew
′

n )] =
1

p(T1)
> limn→∞[CS,p(T2, Ew

′
n )] =

1

p(T2)
(since p(T1) < p(T2))

This implies

limn→∞[p(Ew
′

n |T1)] > limn→∞[p(Ew
′

n |T2)]⇔

limn→∞[1− p(Ew′n |T2)] > limn→∞[1− p(Ew′n |T1)]⇔

limn→∞[p(¬Ew′n |T2)] > limn→∞[p(¬Ew′n |T1)]⇔

limn→∞[p(¬Ew′n |T2)×
1

p(¬Ew′n )
] > limn→∞[p(¬Ew′n |T1)×

1

p(¬Ew′n )
]⇔

limn→∞[CS,p(T2,¬Ew
′

n )] ≥ limn→∞[CS,p(T1,¬Ew
′

n )]

We can conclude

limn→∞[
CS,p(T1, Ew

′
n )− CS,p(T1,¬Ew

′
n )

CS,p(T1, Ew′n ) + CS,p(T1,¬Ew′n )
] > limn→∞[

CS,p(T2, Ew
′

n )− CS,p(T2,¬Ew
′

n )

CS,p(T2, Ew′n ) + CS,p(T2,¬Ew′n )
]

and

limn→∞[
CS,p(T2, Ew

′
n )− CS,p(¬T2, Ew

′
n )

CS,p(T2, Ew′n ) + CS,p(¬T2, Ew′n )
] = limn→∞[

CS,p(T2, Ew
′

n )− CS,p(¬T2, Ew
′

n )

CS,p(T2, Ew′n ) + CS,p(¬T2, Ew′n )
]

Which proves that:

∃n∀m ≥ n : CF,p(T1, Ew
′

m ) > CF,p(T2, Ew
′

m )
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Proof of Theorem 4.2: Let e1,. . . , en, . . . be a sequence of statements of L which separates

ModL, and let ewi = ei if w � ei and ¬ei otherwise. Let p be a strict (or regular) probability

function on L. Let p∗ be the unique probability function on the smallest σ-field A containing

the field {Mod(A) : A ∈ L} satisfying p∗(Mod(A)) = p(A) for all A ∈ L, where Mod(A) =

{w ∈ ModL : w � A} and ModL is the set of all maximal-consistent sets of statements of L
including instances.

Then there is an X ⊆ ModL with p∗(X) = 1 such that the following holds for every w ∈ X
and all theories T1 and T2 of L.

limn→∞p(T1|Ewn ) = I(T1, w)

where I(T1, w) = 1, if w � T1 and 0 otherwise.

Hence, if w � ¬Ti, then:

limn→∞p(Ti|Ewn ) = 0

This implies that

limn→∞[CO,p(Ti, Ewm)] = 0 since 0 ≤ CO,p(Ti, Ewn ) ≤ p(Ti|Ewn ), for all n.

Furthermore, limn→∞[CS,p(Ti, Ewm)] = 0, since CS,p(Ti, Ewn ) =
p(Ti|Ewn )

p(T1)
, for all n.

In addition, we know from proof of theorem 4.1 for Fitelson’s measure CF,p that

limn→∞[CF,p(Ti, Ew
′

n )] =

1

2
limn→∞

[
CS,p(Ti, Ew

′
n )− CS,p(Ti,¬Ew

′
n )

CS,p(Ti, Ew′n ) + CS,p(Ti,¬Ew′n )

]
+

1

2
limn→∞

[
CS,p(Ti, Ew

′
n )− CS,p(¬Ti, Ew

′
n )

CS,p(Ti, Ew′n ) + CS,p(¬Ti, Ew′n )

]
We already said that limn→∞[CS,p(Ti, Ewm)] = 0 and limn→∞[CS,p(¬Ti, Ewm)] = 1.

Furthermore, limn→∞[CS,p(Ti, Ewm)] = 0 iff limn→∞[p(Ti∧Ewm)] = 0 and hence, limn→∞[p(Ti∧

¬Ewm)] = p(Ti). Thus limn→∞[CS,p(Ti,¬Ewm)] =
1

limn→∞[p(¬Ewm)]
, where limn→∞[p(¬Ewm)] >

0. Hence,

1

2

[
0− limn→∞[p(¬Ew′n )]

0 + limn→∞[p(¬Ew′n )]

]
+

[
0− 1

0 + 1

]
= −1
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