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Abstract 

 

The propensity account of fitness intends to solve the classical tautologicity issue by identifying 

fitness with a disposition, the ability to survive and reproduce. As proponents recognized early 

on, this account requires operational independence from actual reproductive success to avoid 

circularity and vacuousness charges. They suggested that operational independence is achieved 

by measuring fitness values through optimality models. Our goal in this article is to develop this 

suggestion. We show that one plausible procedure by which these independent 

operationalizations could be thought to take place, and which is in accordance with what is said 

in the optimality literature, is unsound. We provide two independent lines of reasoning to show 

this. We then provide a sketch of a more adequate account of the role of optimality models in 

evolutionary contexts and draw some consequences. 
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1. Introduction 

 

One of the most frequent criticisms of the theory of natural selection is that its explanations are 

circular. Its core principle (sometimes referred to as the “principle of natural selection” or 

“PNS”) is usually taken to have a form close to the following:1 

 

(PNS) If x is fitter than y, then x will tend to have greater reproductive success than y 

 

If one defines “x is fitter than y” as “x has a greater reproductive success than y,” then natural 

selection would explain differences in reproductive success based on those very same 

differences. Given the magnitude of these objections, the issue of providing an adequate 

definition (or characterization) of fitness, which reflects the uses of this concept in evolutionary 

theory and practice, has been a central concern for the philosophy of evolutionary biology. 

 
1 This is only a schematic presentation of the PNS. The “tend to” here only means that fitter 

organisms do not always actually have a greater reproductive success than less fit organisms. 

This can be made more precise in different ways. For example, the “tend to” may be interpreted 

probabilistically, as a ceteris paribus clause, etc. There are more specific versions of the PNS in 

the literature (see Rosenberg and Bouchard 2015). Since the way in which one spells this out 

precisely is not directly relevant to our point, we stick to this more general presentation. 
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One of the most widely accepted definitions is the one provided by the Propensity 

Interpretation of Fitness (hereafter PIF), introduced with two articles by Brandon (1978) and 

Mills and Beatty (1979). According to the PIF, the fitness of an organism is its ability to survive 

and reproduce in a given environment.2 That is, fitness is a dispositional property. Dispositional 

properties can typically be accessed in two different ways. Since, in the long run, they tend to 

manifest themselves as relative frequencies, they can be operationalized through them. For 

example, if a coin lands on heads 2/3 of the time in a long series of throws, then one can infer 

(with a certain degree of confidence) that the coin has a propensity to land on heads of about 

2/3 in strength. Alternatively, one can look directly at the physical properties of the coin (such 

as its weight distribution) and, alongside with some physical theories or principles that connect 

weight distributions with landing probabilities, conclude the same thing. 

Similarly, according to the PIF, fitness can be accessed via (statistically significant) 

extrapolation from past reproductive success, and via “direct examination” of the physical and 

behavioral traits of the organisms that possess them, and the way they function in the 

environment in which these organisms live. 

As proponents of the PIF correctly argue (see, for example, Brandon and Beatty 1984), 

the existence of this second way of establishing fitness is important because it would allow 

 
2 For more precisions on this, see section 2, where we give a more complete characterization of 

the PIF. 
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biologists to explain reproductive success based on something different than (past or present) 

reproductive success, thus avoiding the circularity issue mentioned above. However, no one has 

yet presented a detailed account of how this second way of establishing fitness is supposed to 

work. Proponents of the PIF have suggested that this takes place through optimality models, of 

the kind used in behavioral ecology (Beatty 1980; Brandon and Beatty 1984; Mills and Beatty 

1979; Millstein 2016). In other words, the link between optimality studies and the notion of 

fitness is a fundamental part of defending the genuine explanatory capacity of the PNS. Despite 

the importance of this point in the propensity approach, how exactly it is that optimality studies 

allow us to determine fitness values has not been developed yet.3 

Our goal in this article is to expand on the topic of the connection between optimality 

and fitness. We show that what is perhaps the most intuitive and widespread account of the 

connection between these two areas is not adequate. We then suggest a more promising line of 

research that could be followed in order to complete this important gap in the PIF. We will also 

 
3 We do not claim, however, that nothing has been written on the topic, but only that existing 

proposals (e.g. Maynard Smith 1978; Parker and Maynard Smith 1990; see below for more 

references) are not sufficiently precise or well-developed to constitute a complete account, 

specifically for cases where the currency of the model is a proxy for fitness. See below for more 

on this. 
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show that these developments have important consequences for some accounts of the nature of 

evolutionary biology. 

We will proceed as follows. In section 2, we introduce the PIF in more detail. Section 3 

examines a specific example of an optimality model and describes a possible way of establishing 

a connection between these models and fitness, which is both intuitive and widespread in the 

optimality literature. As we will explain later on, this method consists of inferring relative fitness 

values from the models’ relative “currency” differences. Section 4 criticizes this view. We show 

that inferring fitnesses from currency values, in the way proposed in section 3, requires that both 

currency and fitness functions correlate linearly. However, we argue that (i) linear correlation 

is not a requirement for an optimality model to be considered successful within behavioral 

ecology; and thus, (ii) linear correlation is almost never the case (or, at least, we have no reason 

to expect it to be). Section 5 suggests a more promising way of establishing this connection, 

through some empirical principles. We look at some proposals that aim to establish a qualitative 

(or comparative) relation between optimality and fitness. In section 6, we consider some 

implications of this debate for the status of the PNS and of Probability theory in evolutionary 

biology. Finally, we draw some conclusions. 

 

 

2. The Propensity Interpretation of Fitness 
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There are a number of conceptual and philosophical discussions surrounding natural selection 

explanations and the meaning of the concept of fitness within them. Two related objections are 

that meaning of “fitness” renders the PNS tautological and, thus, that selective explanations are 

devoid of explanatory value. If one defines “x is fitter than y” as “x has a greater reproductive 

success than y” (as biology manuals often do, see for example Futuyma 2005, p. 272; Ridley 

2004, p. 74), then the PNS claims nothing more than that organisms that have a greater 

reproductive success have a greater reproductive success. This claim is obviously tautological 

and, as such, lacks any explanatory value (for objections of this kind to natural selection theory, 

see Fodor and Piattelli-Palmarini 2010, p. 137; Mivart 1898, p. 272; Peters 1976; Popper 1974; 

Vallejo 1998). 

As mentioned in the introduction, the PIF proposes that fitness should be understood as 

a dispositional property: the organism’s ability to survive and reproduce.4 More precisely, a 

probability distribution to leave n offspring is assigned to each organism. Proponents of the PIF 

 
4 Standard (both classical and contemporary) presentations of the PIF assume that fitness is a 

property of individuals. This idea has been criticized, e.g. in Sober 2013, who takes fitness to 

be a property of traits (he actually reaches similar conclusions to ours regarding quantitative 

predictions from optimality models, although parting from different starting points, and not 

developing them to the extent that we do, see Sober 2013, p. 338).  Since our goal is to make an 

internal critique to this standard version of the PIF, we follow their own presentation. 
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usually propose some way of representing fitnesses as scalars, derived from those distributions 

(see Brandon 1978; Pence and Ramsey 2013, for a more recent proposal), since this is the way 

in which they are usually represented in population genetic models (see below). 

This, in principle, avoids the issue of the tautologicity of the PNS. The ability to survive 

and reproduce is not conceptually the same as actual reproductive success. However, without 

additional precisions, there is still a risk that the PIF makes natural selection explanations 

unsatisfactory in a different sense. A good way to understand this is to consider some of the 

early objections that the account received, for instance: 

 

Mills and Beatty’s proposal is operationally sterile as a definition of fitness. (…) 

Interpolating a disposition between fitness and actual survival and reproduction severs 

the direct logical connection between these three notions. But it does so only by 

introducing a fourth term, the disposition, which itself is unaccounted for in the theory, 

and so opens up again the prospects for charges of circularity it was meant to forestall. 

Within the theory there are no more resources for providing a non-circular explication 

of the propensity to reproduce than Moliere’s physicians could provide for the dormitive 

virtue of opium. The propensity is the cause of the differences in actual rates, is 

transmitted from ancestors with the same propensity, and is intra-and interspecifically 

variable. How can we know all this about the propensity? Through its causes and effects 

reflected in actual retrospective and prospective rates of reproduction. But this is the 
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circularity problem with which Mills and Beatty begin. (Rosenberg 1982, pp. 270-72, 

emphasis added) 

 

The idea is that to say that x's tend to have a greater reproductive success than y's because they 

have a greater propensity to do so sounds a lot like saying that opium makes you sleep because 

it has a dormitive virtue. If the only way to know that something has a dormitive virtue is to 

check whether it makes you sleep (or rather, made you sleep in the past) then, again, the 

invocation of dormitive virtues to explain that something makes you sleep is not very 

satisfactory. In other words, the account would make natural selection explanations vacuous. Of 

course, inferences from the past to the present (or future) are ubiquitous in science,5 but that 

cannot be the whole story. The point is that for an explanation of the changes in phenotype or 

genotype/gene frequencies to be satisfactory (i.e. non-vacuous), the explanans has to appeal to 

something more than past changes in those magnitudes. Conceptual independence is not enough 

to solve the problems at hand; operational independence is also required. The key question is 

whether there is some way of measuring fitness values that is independent of current or past 

reproductive success, in the same way that one could directly analyze the weight distribution of 

 
5 The same point applies to inferences from similar cases, which need not necessarily be past 

states of the same population. 
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a coin to figure the strength of its propensity to land on heads, independently of past or current 

series of throws. 

One could think that a possible reply to this objection would be to bite the bullet and 

acknowledge that the PNS is an a priori claim. Sober (2011) holds this position, and explicitly 

compares the PNS with the claim that substances with a dormitive virtue make you sleep (pp. 

572-573; see Diez and Lorenzano 2013 for a possible reply to Sober).6 However, he also holds 

that applying the PNS particular cases is an empirical task (p. 579)—because both its antecedent 

and consequent are empirical claims. The problem here is, as was just said, operational 

circularity. This problem does not arise for natural selection explanations in Sober’s account 

because he thinks that natural selection theory contains source laws (e.g. “if lions were to hunt 

and kill slow zebras more successfully than they hunt and kill fast ones, then running fast would 

promote survival”, p. 578). Now these laws are also, according to him, a priori. However, the 

operationalization of the antecedent of this law (a clearly empirical task) can be carried out 

independently of past measurements of reproductive success and past survival, unlike in the 

dormitive virtue case. There would be an operational circularity problem with the latter case if 

the only way to operationalize the antecedent in “substances that have a dormitive virtue make 

you sleep” was seeing if the substance in question makes one sleep. This operational problem 

would be independent of the aprioricity status of the general law, considered abstractly. The 

PIF, however, does not propose that there are source laws such as the one just cited. Thus, they 

 
6 We thank an anonymous reviewer for bringing this possible response to our attention. 
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must give a different account of why “fitter organisms tend to have a greater reproductive 

success” does not incur in the kind of operational circularity just described (i.e. how fitness can 

be operationalized independently of reproductive success). 

In their reply to Rosenberg, Brandon and Beatty acknowledge all of this, and consider 

that there is such a way:  

 

We believe that an adequate definition [of fitness] should provide a general specification 

that is conceptually independent of actual reproductive success. Otherwise, natural 

selectionist explanations of differential reproduction would be impossible. An adequate 

definition should also be operationally independent, i.e., there should be some means of 

determining fitness differences independent of differences in actual reproductive 

success. (…) We certainly need means of determining fitness differences that are 

independent of actual reproductive success, if differences in actual reproductive success 

are to be attributed, in turn, to fitness differences. An adequate explanatory account 

requires evidence in its favor besides the phenomena that it serves to explain. For 

instance, in the case at hand, the claim that there are fitness differences between the 

members of a population requires evidence in its favor besides the differences in actual 

reproductive success that it supposedly serves to explain. Fortunately, there is such 

additional evidence, in the form of so-called ecological “optimality” analyses (Brandon 

and Beatty 1984, pp. 344-45, emphasis added) 
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Although discussions on fitness have somewhat moved away from these issues (as the 

propensity account has become more widely accepted), this idea is still present in the literature. 

For instance, in a recent article, Millstein claims that: 

 

With the propensity interpretation, if we seek to explain why type A is leaving a higher 

number of offspring than type B, the explanation ‘because A is fitter than B’ means that 

A has a greater propensity than B to survive and reproduce in the given environment, 

which means that the physical properties of A in its environment are what cause it to 

tend to have greater reproductive success than B (with its physical properties). The 

relative physical abilities can be determined by engineering optimality models or other 

examinations of the physical properties of the organism in its environment, and then be 

confirmed by measurements of actual descendant contributions. (Millstein 2016, p. 606, 

emphasis added) 

 

However, despite the idea remaining present, no one has yet presented a detailed account of how 

these independent measurements of fitness (through optimality models) are supposed to work. 

To be complete, the PIF still requires an account of how it is that fitness can be assigned 

independently of actual reproductive success. Our goal in this article is to examine one of the 

few (if not the only) suggestion that proponents of the PIF did provide: that fitness can be 
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measured independently of actual reproductive success via optimality models. In the next 

section, we introduce an example of an optimality model, and use it to outline a possible way in 

which these measurements could be thought to take place, which also coincides with the way 

that optimality models are naively portrayed in the optimality literature. 

 

 

3. Optimality Models and the Measurement of Fitness Values 

 

As we saw above, proponents of the PIF have suggested in various places that fitness values can 

be measured through optimality models. But how exactly are these ways of measuring supposed 

to work? The authors do not usually go into much detail. The only developed account we found 

(within the PIF literature) is that of Beatty (1980). Therefore, in what follows, we consider the 

example Beatty introduced in that paper, which is taken from Holling (1964). 

What Holling sought to determine was the size of the prey to which praying mantids 

would be most responsive. He reasoned as follows. In general, whenever the amount of energy 

needed to hunt a smaller and a larger prey is the same, a predator should prefer the larger prey 

to the smaller one since it would return more energy per unit of energy invested in the mantid’s 

hunt. However, a prey too large may be less likely, or even impossible, to catch (not to mention 

that tackling a prey too large may put the predator itself in danger). In consequence, there will 

usually be some trade-off by which the predator will tend to hunt the largest prey it can securely 
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get hold of. In the case of mantids, Holling took as the currency or optimality criterion (the unit 

that the predator should maximize) the amount of energy that a prey of a given size contains 

(operationalized via the size of the prey). The constraint that he considered (the factor that 

limited the size of prey that the mantids should attempt to hunt) was derived by looking at their 

grasping mechanism. 

The grasping mechanism of the mantid is basically a pincer consisting of two straight 

arms (the tibia and the femur). Since the pincer tends to force objects outside of the mechanism 

(see figure 1), the mechanism also includes a hook to secure them in place, as well as a number 

of spikes that generate friction and counter the various forces present (see Holling 1964, for a 

more detailed description of this). 

 

Figure 1. Composition of forces pushing the object out of the mechanism (left); hook holding 

it in place (top right). Taken from Holling (1964) and modified. 

 

Given this representation of the grasping mechanism’s design, Holling reasoned that the largest 

prey the mantids could safely capture would be the ones whose center passed through the line 
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that connects the tip of the hook with the femur, when held (see figure 2; as an idealization, the 

prey are considered to be approximately circular). Any prey larger than that would escape.  

 

Figure 2. Prey of three different sizes in the grasping mechanism. The one on the left (its center 

is to the left of the line that connects the hook with the femur) will not escape; the one in the 

right (its center is to the right of that line) will escape; the middle one (center exactly on the 

line) is the limiting case.  

 

With this in mind, a simple trigonometric construction can yield the optimal diameter of the 

prey (the length of the grey line in the middle case of figure 2, relative to the length of some 

measurable values, such as the length of the tibia). The construction is illustrated in figure 3 

below: 
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Figure 3. A way to calculate the optimal diameter of the prey. Taken from Holling (1964). 

 

A simple derivation shows that the length of this diameter (line CE in figure 3) is equal to AC 

× sin(β−α). Holling then tested real mantids by showing them prey of different sizes, and they 

did attempt to hunt prey quite close to the size the model considered optimal. 

More generally, an optimality model contains three components or “parts” (Maynard 

Smith 1978; Parker and Maynard Smith 1990). These are (a) a trait-type that can assume a 

certain range of values (for example, size of prey); (b) a “currency” or variable being optimized 

(such as energetic return from catching such a prey); and (c) a set of constraints, possibly of 

different kinds (physical/mechanical, environmental, developmental, etc.; in the case above, 

they are physical/mechanical). 
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The connection between these models and fitness is usually thought (even independently 

of the PIF account, see below for some examples) to exist through the models’ currency. One 

way to understand this is to consider an objection the optimality approach repeatedly received 

in its inception: that with sufficient imagination to come up with a suitable optimality criterion, 

any trait whatsoever can be considered optimal (see, for example, Gray 1987). The usual 

response claims that there are restrictions on the choice of an acceptable currency. The most 

frequent choice of restriction put forth is that an acceptable currency must either be the fitness 

of an organism, or correlate with/be a proxy for/be a substitute of/etc. fitness (the precise term 

used varies from author to author). For example, when characterizing optimality models, 

Potochnik claims that: 

 

Optimality models proceed according to the following schema. One determines the range 

of possible trait values for the phenotype of interest and the fitness function that relates 

these phenotypic trait values to their success in the present environment. Based on this 

information, an optimality model predicts which trait value(s) would predominate in the 

population as a result of selection, given enough time in the current environment for an 

equilibrium to be reached. (Potochnik 2009, pp. 184-185, emphasis added) 

 

The same idea can be found in the biology literature:  
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[T]he [optimality] approach entails starting with a specification of those behavioural 

strategies that can be adopted, together with an appropriate measure of fitness. The 

dependence of fitness on the behavioural strategy adopted is then quantified. Finally, a 

suitable mathematical optimisation technique such as dynamic programming is used to 

find the strategy that maximises fitness. (McNamara et al. 2001, p. 414, emphasis added) 

 

Of course, a parameter such as energetic return (the currency in Holling’s model above) is not 

usually thought of as a component of fitness (at least not directly). Hence, what is usually 

claimed is that the chosen currency must be a proxy or substitute of fitness. For example: 

 

Biological optimality models aim to represent the available phenotypic strategies along 

with the constraints and tradeoffs involved in the selection of a trait. Once these 

components of the model are specified, the optimality modeler can deduce which of the 

available strategies will optimize the criterion of the model. Ideally, in biological 

contexts, this criterion will be fitness (or inclusive fitness), but in most cases a more 

easily measured proxy is used—e.g. average energy intake. (Rice 2012, p. 687, emphasis 

added) 
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In his article, Beatty took this position as well:7 

 

Ideally, the design problem expresses fitness as a function of particular design variables. 

However, variables which vary proportionately with fitness may be substituted for 

fitness. For example, the design problem of Holling’s model expresses energy efficiency 

as a function of prey-size choice. (Beatty 1980, p. 535, emphasis added) 

 

If all of this were correct, a possible way of measuring relative fitness values from an optimality 

model would be to look at the values that its “fitness function” assigns to the different traits. 

Alternatively, if fitness is not used directly as a currency, relative fitness values could be inferred 

from the fitness substitute distribution. The following is an example of how that inference might 

work. Suppose that Holling’s model calculates that the energetic returns for hunting a prey of a 

given size are as in table 1: 

 

 

 
7 Note that, even though Beatty takes this position, proponents of the PIF do not need to claim 

that, in general, optimality models contain a proxy for fitness as currency. All they need to 

claim is that fitness values are measurable through optimality models in at least some cases 

(not necessarily all of them). 
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Prey size Energetic return 

1cm 10 cal 

2cm 20 cal 

3cm 30 cal 

4cm 40 cal 

5cm 0 cal 

 

Table 1. Example of a possible currency distribution for five trait values 

 

Then, in a population of mantids (for simplicity, let’s say one in which individuals have identical 

size, and in which each individual hunts for only one size of prey), the relative fitness 

distribution for those four behavioral traits will be w(1cm) = 0.25, w(2cm) = 0.50, w(3cm) = 

0.75, w(4cm) = 1 and w(5cm) = 0. These values were obtained simply by dividing each currency 

value by the greatest currency value (40 cal), so that the currency distribution is transformed 

into a relative currency distribution. This relative currency distribution is then identified with 

the relative fitness distribution (the idea being that one returns from the values of the “substitute” 
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quantity to the values of the substituted one).8 However, the next section shows that this way of 

considering things is untenable. 

 

4. Why Relative Currency Distributions Cannot be Identified with Relative Fitness 

Distributions 

 

As shown above, to avoid the problem of explanatory circularity, the PIF requires that the 

concept of fitness be operationally independent from actual reproductive success. The 

suggestion made by proponents of the PIF is that fitnesses can be independently measured 

through the use of optimality models. However, a detailed account of how these ways of 

measuring are supposed work has not yet been given. In section 3 we provided what we believe 

to be the most intuitive or obvious account, which is also in accordance with how the connection 

between fitness and currency is portrayed in the optimality literature. And in this section, we 

 
8 We should also note that we are assuming (for the sake of simplicity and consistency) that we 

are in a situation like that described by Holling, where the only relevant prey variable is size. 

There are other, more complex models in the optimal foraging theory literature (for instance, 

Schoener 1974) that incorporate more variables. For instance, in Schoener’s model, larger prey 

may be less abundant and more difficult to catch, and thus a predator could prefer smaller prey 

(even if it is mechanically possible for it to catch the larger prey). 
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will criticize this account. To do so, we offer two independent lines of reasoning. The first one 

shows that for the procedure outlined in section 3 to work, fitness and currency distributions 

must correlate linearly. However, since this is almost never the case, the procedure fails. Our 

second line of reasoning returns to the issue of circularity. We show that the appeal to optimality 

models as independent ways of establishing fitness differences does not, after all, avoid 

circularity. 

To illustrate the first of these two points, we may consider the following example. Let 

c(x) be the currency function from an optimality model (i.e. a function that relates a certain trait 

value x to a currency value), the currency being different from fitness, and let w(x) be the “real” 

fitness function for the organisms that possess such traits. To make our example more concrete, 

let the relevant traits x be the different diets of a mantid (where each diet consists of prey of a 

single size), let c(x) be the average energetic return of such diet, according to Holling’s model, 

and let w(x) be the fitnesses of the mantids that eat said diets. Let it also be the case that the 

distributions of c and w are as shown in figure 4 (the squares representing fitness values, the 

crosses currency values): 
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Figure 4. Hypothetical distributions of fitness (squares) and currency (crosses) values for five 

diets consisting solely of prey of a given size (represented in the horizontal axis). Up to prey of 

size 4, both distributions increase; however, there are diminishing returns on increasing energy 

consumption. Prey of size 5 are simply too large to eat, so an individual which exclusively 

consumes them has both currency and fitness of 0. 

 

Now, it is clear that, in this case, the optimal phenotype (according to the currency function c) 

and the fittest one (according to function w) coincide. As Parker and Maynard Smith have noted, 

every time both functions (currency and fitness) correlate, this will be the case (Parker and 

Maynard Smith 1990, pp. 28-29). That is, if every time one augments (or diminishes) the other 

1 2 3 4 5
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one augments (or diminishes), and vice versa, then the fittest phenotype and the optimal 

phenotype will coincide, regardless of the exact shape that both functions possess.9 

However, this alone does not allow us to use currency values as quantitative 

measurements of fitness in natural selection explanations. It is not enough that the highest points 

in both distributions coincide in the same trait value; there must be a sense in which the whole 

distribution coincides. The reason for this is obvious: in the above example, currency differences 

between organisms that possess different traits do not reflect fitness differences between them.10 

If, for example, we were to introduce those currency values into population genetics selection 

coefficients, we would obtain incorrect predictions for the next generation.  

Let us look at a numerical example of this. Consider now a population and a trait-type 

for which there are two different phenotypes, which we will call D1 and D2 (we can think of 

them, for example, as two diets, containing two different prey sizes). To make the case as simple 

 
9 In fact, Parker and Maynard Smith show that, in some special cases, when the correlation 

between functions is not linear (see what follows below) the optimum value and the fittest value 

may not coincide. For simplicity, we will leave this problem aside. We will show that even if 

one makes this assumption, there are still problems in thinking that currency values can be 

directly used to measure fitness values. 

10 One might reply here that, although quantitative fitness differences cannot be established, a 

qualitative ordering or ranking can be. This point will be addressed in the next section. 
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as possible, let us also assume that dietary behaviors are completely determined genetically, by 

a single locus, and that these organisms are haploid and reproduce by cloning. Gene A1 

determines diet D1, while gene A2 determines diet D2. Now suppose that A1’s fitness 

(understood as probability of survival to adulthood11) is 0.75, while the energy obtained from 

prey D1 is 20 calories per unit consumed. For A2, those values are 0.5 and 10. So, in this example, 

as before, the optimal trait and the fittest trait coincide, and currency and fitness distributions 

(consisting in only two values in this simple example) correlate. Observe now what happens if 

differences in currency values are used as relative fitness values. The “real” relative fitness 

values are 1 and 0.66, respectively, for A1 and A2, while their “relative fitnesses” (obtained via 

currency values by the procedure mentioned at the end of section 3) are 1 and 0.5. If we assume 

that, at generation n, A1 has a frequency of p = 0.5, the “real” prediction is that in the next 

generation p' = 0.59 (ceteris paribus, assuming no mutation, migration, drift, etc.). However, 

the prediction derived using currency values as fitness values is p' = 0.66. 

 
11 We are utilizing a very basic textbook population genetic model, in which fitness is interpreted 

as the probability of survival to adulthood. For our criticism to be more accurate, we should 

associate each diet with a probability distribution of leaving n offspring, and then some 

mathematical way of converting each distribution into a scalar. The first option was chosen for 

the sake of simplicity and clarity. 
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In order for both predictions to coincide, and in order for us to be able to claim that an 

optimality model contains a “fitness function” or a variable that can be quantitavely used as its 

substitute, we would need both variables (currency and fitness) to correlate linearly; that is, 

equal increases or decreases in one function (c or w) would have to correspond to equal increases 

or decreases in the other. So, whenever one wishes to measure fitness values from an optimality 

model (in this manner, by inferring them from relative currency differences), it must be the case 

that the currency of that model and fitness correlate linearly.  

However, there are reasons to think that in many models (for instance, those pertaining 

to optimal foraging theory, or OFT for short), this will tend not to be the case. The reason we 

should not a priori expect linearity to be the case can be seen from looking at biological practice 

and the way these models are tested. The process typically goes as follows. First, a trait is 

identified, and a problem is formulated (for instance, “what is the optimal diet of a predator in 

X and Y circumstances?”). Then, an optimization criterion is devised (in OFT, usually one that 

is not a component of fitness), and a number of constraints are identified. With all of this in 

mind, a mathematical model is formulated, and an optimum is derived. After this is done, real 

populations of organisms are checked to see if they possess the theoretically optimal trait or not. 

If not, then it may be a sign that some assumption in the model is not correct, or simply evidence 

that the real traits are not optimal. If, however, the optimal value is found, then the model is 

thought to be successful, regardless of whether or not the entire distribution of currency values 

correlates linearly with the distribution of fitness values. 
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What this shows is that the success of a model has, in practice, much weaker conditions 

than linear correlation. Within the literature on OFT, in the few cases where correlation with 

fitness was actually tested, a correlation was found but it tended not to be linear. In most cases, 

however, linearity has not even been tested (see Schoener 1987, p. 56; Sih 1982).  

Furthermore, in many cases, it could even be impossible to test for correlation with 

fitness. For example (now outside of OFT), Labouygues and Figureau (1984) studied the reason 

why, for aminoacids codified by more than one codon, variation in the code tends to occur in 

the same position (typically the third). Their explanation is based on optimality. The reason for 

the typical placement of the variation is that this minimizes the effects of punctual mutations 

(the change in the aminoacid coded). They compared the actual codes for each aminoacid with 

other possible codes. As a result, they found that, for example, the codes for the five aminoacids 

that are codified by four codons are included in a group of 48 optimal codes, out of more than 

630.000 possible ones. To do this, they did not perform any kind of evolutionary study about 

the differential fitness of extant organisms that have different codes. There might be reasons to 

think that an organism with a code that is less resistant to mutations would be less fit, but these 

reasons were not, and very likely cannot, be tested. Considering all this, the systematic 

occurrence of exact linear correlation between fitness and currency would be too much of a 

coincidence. 

As a side note, all of this also shows that the more general position outlined in section 

2, according to which every successful optimality model must contain a proxy for fitness as 
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currency, is also not adequate (though we noted that the PIF does not need to claim this, see 

footnote 3). That is, a model could in principle be considered successful (in the sense of the 

paragraph from above) without its currency linearly correlating with fitness. And since linear 

correlation with fitness is a necessary condition for a currency to act as a fitness proxy, then it 

could also be the case that a model is successful without having a fitness proxy as its currency.12 

In sum, the propensity account requires that we be able to measure relative fitness 

differences independently of actual reproductive success. However, in the cases at hand, the 

differences in currency values very likely do not coincide with the differences in fitness values. 

Thus, the currency in Holling’s model (and in most OFT models) is not fitness, nor a proxy for 

it, and fitnesses cannot be quantitatively established from it, in the way the propensity account 

requires. 

Our second line of argumentation shows that it is not that clear how the appeal to 

optimality models allows us to avoid circularity. We show this via a disjunction elimination. 

That is, either every optimality model contains fitness (or a proxy for fitness) as its currency, or 

this is not the case (we have already shown the first disjunct to be inadequate, but for the sake 

of argument—to make our two lines of reasoning truly independent—let us assume we did not). 

 
12 For a similar conclusion regarding OFT, although argued from different premises, the reader 

may see Bolduc & Cézilly (2012, pp. 860-861). 
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We will show that whether or not every optimality model contains fitness as its currency, 

circularity seems to reappear. 

Firstly, if not every optimality model contains a proxy for fitness as its currency, then 

not every optimality model is relevant for measuring fitness values (in the way suggested in 

section 3). Thus, before inferring fitness values from an optimality model, we must know that 

the model we are looking at is a relevant one. But knowing that requires knowing that its 

currency is in fact a proxy for fitness. And knowing that requires prior knowledge of fitness 

values (the very thing we are trying to establish). So, if not every model has a proxy for fitness 

as its currency, then independent measurements of fitness through optimality models are circular 

because the choice of a relevant model from which to infer fitness values requires prior 

knowledge of fitness values.13  

On the other hand, if every model must have a proxy for fitness as its currency, then the 

particular model we choose is not so relevant. However, circularity appears somewhere else. If 

the way to appropriately choose a currency (an optimality criterion) is to either choose fitness 

 
13 That the currency is a good proxy for fitness could perhaps be inferred from similar cases, not 

necessarily from the same population, or even the same species. However, as stated in footnote 

5, we would still need to have measured the fitnesses in that other population or species 

beforehand. Thus, we would not have a measurement of fitness that is independent of actual 

reproductive success. 
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itself or a proxy for fitness, then the choice of an appropriate currency is what presupposes prior 

knowledge of fitness values. That is, the construction of the model itself requires knowledge of 

fitness in order to choose a currency. In other words, independently estimating fitness requires 

building an optimality model, but building the model itself requires prior knowledge of fitness. 

In summary, whichever option one chooses (every optimality model contains a fitness 

proxy as currency, or not), establishing fitness values by directly inferring them from relative 

currency values requires prior knowledge of fitness values, either to choose an appropriate 

model or to choose a legitimate currency in the construction of the model itself.  

Having said all this, we do not believe that the idea that optimality models are somehow 

relevant for fitness estimations is wrong. The disjunction elimination argument presented above 

is too strong. Scientific theories do tend to have some (non-vicious) circularity because they 

sometimes propose new terms to explain phenomena, while at the same time such phenomena 

provide the criteria for the application of those terms, through the laws or principles that contain 

them. In the following section, we will argue that some such principles linking optimality and 

fitness are (implicit) in the practice of evolutionary biology, and thus that the mere appeal to 

propensities is not enough. This link does exist in the practice in evolutionary biology, and the 

question is how best to reconstruct it, in general, and how to develop the suggestion made by 

the PIF proponents, in particular. In the next section, we outline a metatheoretically more 

adequate way to capture this fact. 
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5. Optimality and Fitness Reconsidered 

 

Thus far, our argumentation has been mostly destructive. In this section, we introduce a general 

picture of what we believe to be a more adequate account of the relation between optimality 

models and fitness. 

The key to this is to return to what we had presented as a paradigmatic example of a 

successful application of a propensity-based account: the landing of a coin. As we said, a way 

of measuring the probability (propensity) of a coin landing heads, that is independent of past 

throws, would consist in looking directly at its physical properties (e.g. its weight distribution). 

But this would not be enough since, of course, an analysis of a weight distribution does not, by 

itself, imply any landing probabilities. We would also need to pay attention to the physical 

theories or principles that connect weight distributions with landing probabilities. In the same 

way, an optimality analysis does not, by itself, imply any fitness differences between organisms. 

Our arguments from the last section show that currency and fitness are conceptually distinct, 

since they can assume different values in a given case. Therefore, we need something else, some 

principle(s) that allow us to go from one to the other. 

What the standard optimality literature implicitly assumes as a principle is something 

along the lines of “differences in currency quantitatively correspond to differences in fitness” 
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(see the usual characterization of optimality models above). Section 4 has shown that this 

principle is too strong, and that we have no reason to believe it to be true.  

Alternatively, one could think of a weaker principle, that posits only a (possibly non-

linear) correlation between optimality and fitness. In that way, determining currency values in 

an optimality model could allow us to establish a fitness ranking between different kinds of 

organisms, though not their precise fitness values. Some authors (Casanueva 2011; Ginnobili 

2016) have tried to make this connection more explicit by introducing a second conditional to 

the PNS, which goes from the optimality / environmental effectiveness of a trait to fitness. For 

example, Ginnobili formulates the PNS as follows: 

 

Organisms that possess a trait that performs more effectively in a given environmental 

context tend to be fitter than organisms that do not possess it, tending to have (if the trait 

is heritable) a greater differential reproductive success than those other organisms. 

(Ginnobili 2016, p. 18, slightly modified to fit our terminological uses) 

 

The point would be, again, that the connection between trait effectiveness and fitness is 

factual/empirical. Optimality models (although Ginnobili does not specifically refer to them) 

directly measure something else, not fitness, and there is no requisite for them to have a fitness 

proxy as currency. Qualitative or comparative determinations of fitness through optimality 
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models occur via this principle, they do not stem from an a priori requirement of currency and 

fitness correlation for building the model (hence avoiding the circularity problem from above). 

An interesting consequence of this reconstruction of the theory of natural selection, if 

adequate, is that PIF would not provide a complete reconstruction of PNS but only of one of its 

parts. We will return to this point in the next section.   

However, some might argue that, in order to fully avoid circularity charges, the PIF 

needs more than qualitative / comparative independent determinations of fitness. That is, since 

it identifies fitness with a probability, and since probabilities are quantitative variables, a fully 

independent operationalization of fitness would have to be quantitative in nature. In other words, 

even though proponents of the PIF mostly discussed the circularity issue in relation to the PNS, 

this account purports to do more than show that the PNS in non-circular. In particular, it also 

purports to account for the uses of the concept of fitness within population genetics. As Pence 

and Ramsey recently put it: 

 

Fitness, however, fills more roles than merely the prevention of tautology. Most models 

of evolutionary change employ fitness as a scalar numerical value, comparable between 

organisms. In addition to providing a rank ordering of the organisms in a population—

which can justify claims like ‘a is fitter than b’—these fitness values are utilized by 

models such as those in population genetics to predict the future evolutionary trajectory 

of a given population.  
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The PIF, then, has traditionally been presented alongside a mathematical model 

which can serve to translate this probability distribution into a single, privileged measure 

on the distribution. (Pence and Ramsey 2013, p. 852) 

 

This is important because, again, within population genetics, fitness is a quantitative concept (it 

is represented as a set of probabilistic coefficients). This theory is also quantitative in the sense 

that it predicts/explains numerical variations in genotype/gene frequencies, and does so (at least 

partially) in function of the values of the fitness coefficients. Therefore, showing that the PNS, 

as it is specified (in Brandon’s terminology “instantiated”) in particular population genetic 

selection models, is operationally non-circular/vacuous, requires that fitness differences can be 

quantitatively measured independently of reproductive success. Optimality models were good 

candidates for establishing this connection in the first place precisely because they are 

quantitative in nature. The is still, then, an open puzzle for the PIF, and one for which their 

proponents must still provide an account. 

In the following section, we draw some more general implications from this analysis, 

regarding the status of probability theory and optimality analyses in evolutionary biology.   

 

 

6. The nature of the PNS and Evolutionary Biology 
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If the PIF advocates were correct, although not tautological or trivial, the PNS would have a 

peculiar status, since all it would do is relate expected frequencies to actual frequencies. Brandon 

(one of the original proponents of PIF), has focused on this point the most. According to him, 

the PNS is an instantiation of what he calls the “Principle of Direct Inference” from Probability 

Theory (Brandon 1978; 2006, p. 333), which is the principle that allows us to infer (or predict) 

actual frequencies from probabilities. This would imply that Natural Selection Theory has a 

peculiar status as a scientific theory, which is in consonance to his wider views about probability 

theory being the reductive foundation for all evolutionary biology (McShea and Brandon 2010, 

pp. 108-109). 

If what we held in the previous section is adequate, then certain limits to this idea can 

be pointed out. A strong criticism, assuming the tripartite presentation of the PNS, would be to 

hold that the PIF does not succeed in reconstructing natural selection theory in its entirety, since 

it only focuses on one of the parts of the PNS, leaving aside the part that links the differences in 

optimality with differences in fitness. Adopting a more complex version of PNS would show 

that it is more than just the principle of direct inference, and that evolutionary biology is more 

than just applied probability theory.14 

 
14 Notice that we are not claiming here that the PIF advocates are mistaken because the PNS is 

not a priori or analytical. What we did show in the previous sections is that their own claim that 

fitness has to be determinable independently from fitness, through the use of optimality models, 
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A weaker criticism can be made, which does not question PIF account in general, but 

rather only the additional thesis of the reducibility of evolutionary biology to probability. This 

would consist in pointing out that the determination of fitness through optimality presupposes 

factual principles that are essentially evolutionary (whether they are weak and comparative or 

of a more quantitative nature). In this sense, it would be shown that, although PIF is an adequate 

explication of the concept of fitness, it does not imply that evolutionary biology is nothing but 

applied probability. Once again, one could appeal to Sober and claim that these evolutionary 

principles (the source laws in his account) are a priori—at least when considered abstractly—

but even then they would be more than purely applied probability (for an example, see the source 

law about lions and zebras cited above). 

 

 

7. Conclusions 

 

In this article we have developed in more detail the proposed connection between the PIF and 

optimality models. We have shown that in order to avoid the issues of explanatory circularity or 

vacuousness, this account requires not only that fitness be conceptually independent from 

 

should lead them to reject the idea that evolutionary theory is nothing more than applied 

probability (because, as we showed, if this inference can be made, then it is much more indirect 

than thought and presupposes more than pure probability and the direct inference principle). 
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reproductive success, but also operationally independent from it. That is, the PIF requires that 

fitness values can be measured independently of actual reproductive success (either past success 

in the same population, or in similar populations). The way proponents had suggested this can 

be done is through optimality models. However, these proponents never set out to establish, in 

detail, how this independent determinations or measurements are supposed to work.  

The destructive part of our article aimed to show the way in which most of the optimality 

literature portrays this connection is inadequate, since quantitative relative fitness values cannot 

be directly extrapolated from distributions of currency values, at least in an important subset of 

cases. The reason is that this would yield incorrect fitness values since (in practice) currencies 

in successful optimality models are not required to correlate linearly with fitness. We have also 

argued, independently, that this proposal would also lead us back to circularity, because either 

the choice or the building of an appropriate model from which to infer fitness values would 

presuppose prior knowledge of fitness values. 

On the other hand, our positive proposal begins by noting that optimality (or currency) 

and fitness are two distinct concepts (there is no definitional or “analytic” equivalence between 

them), and thus any proposed connection between them must be made through some empirical 

principles. We argued that a weaker principle to the one implicitly assumed in the optimality 

literature can allow us to get fitness rankings from currency values. 

Both these points allow us to point out certain limits to the PIF. The sole appeal to 

propensities is not enough to explicate the role that optimal studies have in evolutionary biology 
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or to satisfactorily avoid the problem of tautologicity. For that, it is necessary to either make 

explicit the empirical principles that link optimality with fitness, allowing independent 

determinations of fitness, or to give more complete versions of PNS. As a corollary, we have 

shown that the idea that evolutionary biology is nothing more than probability theory is 

incorrect. 
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