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Abstract This paper applies the theoretical criteria laid out by D’Arms et al.
(1998) to various aspects of evolutionary models of signalling. The question
that D’Arms et al. seek to answer can be formulated as follows: Are the models
that we use to explain the phenomena in question conceptually adequate? The
conceptual adequacy question relates the formal aspects of the model to those
aspects of the natural world that the model is supposed to capture. More-
over, this paper extends the analysis of D’Arms et al. by asking the following
additional question: Are the models that we use sufficient to explain the phe-
nomena in question? The sufficiency question asks what formal resources are
minimally required for the model to get the right results most of the time.

Keywords Signalling Games · Evolutionary Game Theory · Evolutionary
Models · Robustness · Modelling

1 Introduction

To communicate meaningfully, members of a linguistic population must co-
operate—i.e., they must agree upon some convention: one individual should
use a signal to mean one thing if (most) other individuals use that signal
in the same way. Conventional language-use in a population of speakers can
be modelled using game-theoretic tools; this idea gives rise to the signalling-
game framework (Lewis, 2002/1969). To explain how simple communication
might evolve, contemporary scholars—following the initial work of Skyrms
(2014/1996, 2010a)—have built increasingly sophisticated models which pur-
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port to capture readily observable communicative phenomena in human and
non-human populations alike.

Shortly after the publication of Skyrms’ (2014/1996) evolutionary account
of social norms and the introduction of his evolutionary explanation of mean-
ing, D’Arms et al. (1998) pointed out how surprisingly little critical attention
this use of evolutionary models had received. Their analysis focused on Skyrms’
explanation of justice rather than his explanation of meaning. Notably, they
offered three general criteria which an evolutionary model must satisfy to pay
its explanatory debts: it must be representative, robust, and flexible. Since
then, a significant amount of work has been done applying the same evo-
lutionary principles in the context of signalling games and the evolution of
language. The models in these various works have become more sophisticated
and increasingly subtle; however, the practice of modelling the evolution of
communication using the signalling-game framework has still received very
little attention with respect the criteria laid out by D’Arms et al. (1998).

The question that D’Arms et al. (1998) seek to answer can be formulated as
follows: Are the models that we use to explain the target phenomena concep-
tually adequate? The conceptual adequacy question relates the formal aspects
of the model to those aspects of the natural world that are supposed to be
captured by the model. D’Arms et al. (1998) ask the question for evolution-
ary explanations of justice; however, it is not clear that the particulars of their
analysis apply, either in degree or in kind, to evolutionary models of communi-
cation, since this is a different sort of natural phenomenon. This paper applies
their critical analysis to various aspects of evolutionary models of signalling.1

Moreover, this paper extends the analysis of D’Arms et al. (1998) by ask-
ing the following additional question: Are the models that we use sufficient
to explain the target phenomena? The sufficiency question asks what formal
resources are minimally required for the model to get the right results most
of the time. It should be clear that these questions are closely related in how
they inform one another. To know what the correct results are to answer the
sufficiency question, the conceptual adequacy question must be appropriately
addressed in the first place. A model can be said to be sufficient and concep-
tually adequate if both of these questions are answered in the affirmative.

Section 2 offers some background regarding the Lewis signalling game and
highlights how evolutionary accounts of signalling help to surmount specific
explanatory problems that arise from Lewis’ initial attempt to model signalling
with (classical) game-theoretic tools. Section 3 describes the three initial crite-
ria that an evolutionary model must fulfil to answer the conceptual adequacy
question in the affirmative. Section 3.1 analyses various starting assumptions
made when modelling the simplest types of signalling games with respect to
the representativeness criterion. Section 3.2 sees whether the computational

1 There is, of course, a broader concern about modelling and simulations, in general, and
their explanatory significance; however, as a first step toward a critical analysis of the ever-
increasing literature on signalling games, I will here take a more narrow focus. However, for
more general discussion of modelling see, e.g., Sugden (2000) and Humphreys and Imbert
(2012).
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results fulfil the robustness criterion under varied initial parameters or various
extensions of the simplest models. Section 3.3 examines the flexibility of the
models with respect to different interpretations of their formal structures. Sec-
tion 4 discusses the sufficiency question with reference to evolutionary models
of signalling. Finally, Section 5 summarises the key results of this analysis and
suggests how future work might go.

2 Signalling Games

This section offers a brief overview of the signalling game, in addition to some
motivations for the move from classical models (Lewis, 2002/1969) to evolu-
tionary models (Skyrms, 2014/1996). This section also introduces some tech-
nical language and formal results, which will be helpful in subsequent sections.

2.1 Communication Conventions

The signalling game was introduced by Lewis (2002/1969) to provide a for-
mal model for the establishment of conventions. Using the tools of classical
game theory, he formalised interactions in which two players use arbitrary sig-
nals (messages) to transmit information. This gives a naturalistic account of
the emergence of meaning. His key insight is that successful communication
requires cooperation.2

The signalling game is a coordination game between two players, whom
we will call sender and receiver. For the simplest case, suppose there are two
possible states—s1 and s2—two possible messages—m1 and m2—and two pos-
sible actions—a1 and a2. We will suppose that there is an appropriate action
for each state; in particular, ai is appropriate in si. Call this a 2× 2 signalling
game, with the dimension of the game referring to the number of state-act
pairs by the number of messages. This can be extended in an obvious way to
an n × n signalling game, or, when the number of messages differs from the
number of state-act pairs, an n×m signalling game.

A strategy profile in the game is a complete course of action for a player.
Table 1 shows all the possible strategies for the sender and receiver in the 2×2
signalling game.

Once we couch communication as success or failure in coordinating (e.g.,
meanings to state-act pairs), it is necessary to provide some analysis of coor-
dination problems themselves to determine how they might be solved. Coor-
dination problems can be analysed from a game-theoretic perspective, giving
rise to equilibria concepts—namely, situations wherein each actor has done the
best she can, given what others are doing. The foremost equilibrium concept
in classical game theory is the Nash equilibrium (Neumann and Morgenstern,

2 Cooperation in this sense requires a notion of joint action—the idea that individuals
have shared intentions and, perhaps, awareness of their roles. See Gilbert (1989); Cohen and
Levesque (1991); Searle (1995); Clark (1996); Bratman (1999).
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Table 1: Sender and receiver strategies for the 2× 2 signalling game

Sender Strategies Receiver Strategies

σ1: m1 if s1, m2 if s2 ρ1: a1 if m1, a2 if m2

σ2: m2 if s1, m1 if s2 ρ2: a2 if m1, a1 if m2

σ3: m1 if s1, m1 if s2 ρ3: a1 if m1, a1 if m2

σ4: m2 if s1, m2 if s2 ρ4: a2 if m1, a2 if m2

2007/1944; Nash, 1951). This consists of a strategy for each player whereby no
player can unilaterally deviate from her strategy to increase her payoff. A strict
Nash equilibrium is one in which a player is strictly worse-off after unilateral
deviation from her strategy. In equilibrium, no single player has an incentive to
deviate from her strategy. This is true even if multilateral deviation—several
players simultaneously changing strategies—would result in a better outcome
for the group as a whole. Table 2 shows the payoff matrix for the 2×2 signalling
game. Note that there are two possible ways in which the sender and receiver

Table 2: Payoff table for combinations of strategies in the 2×2 signalling game

Receiver

ρ1 ρ2 ρ3 ρ4

S
en

d
er

σ1 1 0 1
2

1
2

σ2 0 1 1
2

1
2

σ3
1
2

1
2

1
2

1
2

σ4
1
2

1
2

1
2

1
2

can achieve perfect coordination in this case. Lewis referred to these combina-
tions of strategies as signalling systems. As such, the 2×2 signalling game has
2 possible signalling systems. These are shown in Figure 1. In general, there

Fig. 1: The two signalling systems of the 2× 2 signalling game

(a) Signalling system 1 (b) Signalling system 2



Evolutionary Explanations of Simple Communication 5

are n! possible signalling systems in the n× n signalling game.3

Lewis (2002/1969) points out that conventions may be maintained through
prior agreement, but this will not help to quell sceptical worries of how a com-
munity comes to agree upon a convention without already having a language
in place (Russell, 1922; Quine, 1967). Even so, Lewis (2002/1969) was able
to show that prior agreement is not necessary for a convention because the
strict Nash equilibria of a pure-coordination game—the signalling systems of
the game—are self-enforcing. Furthermore, signalling games have symmetric
properties that entail the conventionality of language: since every Lewisian sig-
nalling game necessarily has more than one signalling system, which signalling
system a community settles on is entirely arbitrary. What matters is that
the community prefers to play one signalling system over the other(s) given
that (almost) everyone else in the population prefers to play that signalling
system.4

However, while symmetry explains the conventionality of language, the
sceptical question comes back around as a problem of symmetry breaking. It
is unclear how a population ‘chooses’ one signalling convention over another.
Lewis suggests that natural salience—i.e., a choice-point that naturally stands
out from the others—is sufficient for this purpose. Even so, a model that
utilises the machinery of classical game theory inherits all of the rational bag-
gage that the theory carries.5 It is not generally clear how symmetries might
be broken spontaneously without either a prior language in place, untenable
assumptions about the players’ rationality, or potentially ad hoc explanations
that rely on natural salience. So, it is not clear how the problem of symmetry-
breaking can be solved without begging the question.6

With this in mind, Skyrms (2014/1996, 2004, 2010a) further developed the
simple Lewisian model using evolutionary (as opposed to classical) game theory
in both learning and biological contexts. An evolutionary model consists of an
underlying game and a dynamic which determines how individuals’ strategies
change over time. The idea is that the evolutionary dynamics of the model
(whatever they may be) will carry a population to one or another signalling
system as the game is repeated. Thus, evolutionary models give a non-question-

3 Though the symmetric case is not stated explicitly, Lewis (2002/1969) proves that, in an
asymmetric signalling game with m states and n signals (n ≥ m), there are n!

(n−m)!
possible

signalling systems. As such, when m = n, as we have here, it follows immediately that there
are n! possible signalling systems.

4 See Lewis’ formal definition of conventions (Lewis, 2002/1969, 78-9).
5 This ‘rational baggage’ is exemplified by Lewis’ (2002/1969) discussion of higher-order

expectations in the coordination game: “In order to figure out what you will do by replicating
your practical reasoning, I need to figure out what you expect me to do. I know that, just
as I am trying to figure out what you will do by replicating your reasoning, so you may be
trying to figure out what I will do by replicating my reasoning. [. . . ] So I may expect you
to try to replicate my attempt to replicate your attempt to replicate my reasoning. So my
own reasoning may have to include an attempt to replicate your attempt to replicate my
attempt to replicate your attempt to replicate my reasoning. And so on” (27-28). Without
an excessive requirement on the rationality of the players, or a prior language already in
place, it is not clear how Lewis’ notion of signalling can arise spontaneously.

6 See Skyrms (1990, 2014/1996); Vanderschraaf (1995).
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begging explanation of how symmetries are broken without reference to natural
salience, rationality, or prior (or tacit) agreement: the dynamics of the system
itself breaks symmetries randomly or dependent upon the starting point of the
system.

Two related questions arise in light of evolutionary models: Can the mean-
ing of a signal emerge spontaneously, by chance? Can signals spontaneously ac-
quire information through näıve learning in repeated interactions? Evolution-
ary models of signalling illustrate how and when a meaningful term-language
might evolve from initially meaningless random signals by way of adaptive
fitness and evolutionary dynamics. A Darwinian model of evolution by dif-
ferential reproduction, natural variation, and mutation gives an affirmative
answer to the first question, at least given certain starting assumptions. This
is a process of biological, or phenotypic, evolution of strategies. Trial-and-error
learning gives a way to model cultural, or economic, evolution of strategies.
This gives an affirmative answer to the second question, given certain starting
assumptions. As it turns out, these are two different ways of saying essentially
the same thing: the two models are closely related mathematically. Once a sim-
ple signalling language is up and running, we can ask the further questions:
How much information does an individual signal carry? What is the informa-
tional content of an individual signal? These questions can be answered with
more technically complex models which utilise information theory.7 Out of
this comes a highly interdisciplinary family of models that purport to explain
how language, meaning, and information transfer may have arisen through
evolutionary processes given minimal starting assumptions.

Nonetheless, while evolutionary models surmount the problems to which
classical models give rise, the framework and starting assumptions for these
evolutionary models have received little critical attention. We turn now to the
conceptual adequacy and sufficiency questions raised above.

3 The Adequacy of Our Models

This section details the criteria offered by D’Arms et al. (1998) for assess-
ing the conceptual adequacy of evolutionary models and motivates asking the
conceptual adequacy question in the first place. Once the terminology is de-
scribed, each criterion is applied to various aspects of the evolutionary models
for signalling games.

Mathematical models are used in a variety of disciplines with several goals
in mind. Models in the natural sciences accomplish these goals with two pri-
mary interrelated methods. First, they abstract away the irrelevant features
of real-world phenomena while retaining those features that are (presumed)
relevant; second, they make simplifying assumptions to grant some degree of
mathematical tractability to the modeller. There is obviously some theoretical
overlap between these two points, but the main challenge is that the modeller

7 In particular, Kullback-Leibler divergence (Kullback and Leibler, 1951). See Skyrms
(2010a,b).
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must be particularly sensitive to (1) precisely what is relevant and what is not,
and (2) what the acceptable trade-off is between computational simplicity and
accurate results.

Batterman (2009) points out that idealising is “a means for focusing on ex-
actly those features that are constitutive of a [phenomenal] regularity” (430),
which is to say the essential features of a particular phenomenon. Note, how-
ever, that understanding precisely what the crucial features of the phenomena
are is paramount in building a model. In particular, it is essential that the data
obtained from the model be interpreted appropriately, lest one interpret arte-
facts that arise from the mathematical structure, as opposed to the phenomena
the model is supposed to represent, as significant.

D’Arms et al. (1998) give three basic criteria for assessing the value of evo-
lutionary models in solving philosophical problems. The specific models they
examine concern the evolution of justice. Here, we are concerned with the
evolution of communication. Nonetheless, the meta-theoretical criteria that
D’Arms et al. (1998) offer should still apply. In general, if it is to be conceptu-
ally adequate, an evolutionary model should be (1) representative, (2) robust,
and (3) flexible.

For a model to be representative of a phenomenon, it must be the case that
“[c]ircumstances with the structure of the mathematically characterized inter-
action which the model treats must be realized with sufficient frequency in the
environment of evolutionary adaptation” (D’Arms et al., 1998, 89). D’Arms
et al. (1998) characterise two distinct senses of robustness. On the one hand, a
model is robust when it gives the desired result across a variety of parameters—
this is sometimes called structural stability; for a particular model, it is said to
be robust when the results it gives are stable under perturbation of starting
conditions (89). Flexibility is partitioned into two conditions. First, the evo-
lutionary strategy’s adaptiveness that the model supposedly models can be
realised by several different mechanisms, and, second, the model itself can be
interpreted as representing different possible processes (89).

D’Arms et al. (1998) show how Skyrms’ (2014/1996) evolutionary account
of justice succeeds in several different ways on the robustness and flexibility
criteria but fails on the representativeness criterion. Further, they show that
as the representativeness of the model increases, the flexibility and robustness
of the model actually decrease. However, their original criticisms do not clearly
or straightforwardly apply to evolutionary models of signalling behaviour. For
example, one charge against Skyrms (2014/1996), with respect to representa-
tiveness, is that there is no real-world analogue of, e.g., the ‘referee’ component
in the underlying game he uses to explain the evolution of justice;8 however,
the signalling game has no such component, so this criticism explicitly does
not apply here. Sections 3.1, 3.2, and 3.3 address each of the model-theoretic
criteria in turn and use these criteria as a means to assess the adequacy of the
signalling-game framework in general.

8 See Skyrms (2014/1996) for details of this model.
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There is an important assumption to make clear in considering the criticism
of D’Arms et al. (1998) in light of the evolutionary signalling models. Their
analysis was solely concerned with evolutionary explanations of justice. In this
case, the target phenomena (to which I referred in the introduction) to be
explained is justice, which is cashed out in terms of fairness—specifically, a
fair split in a Nash demand game. It seems evident that forwarding a medium
demand to one’s opponent in this framework captures a clear and intuitive
notion of ‘fair’. However, the Nash demand game and the signalling game
are not analogous in this sense: it is not entirely obvious what exactly the
explanatory target in the signalling game is supposed to be.

Several related questions arise here. For example, do we want to explain
how signalling arises in the simplest case—the 2×2 Lewis signalling game? Do
we want to explain how we can avoid partial-pooling equilibria in more complex
games? Do we want to show how efficient communication conventions arise
when there are more states/actions than messages? And so on. The ambiguity
of what our explanatory target for signalling games actually consists in is
further complicated by the fact that communication often fails in real life.9

Ultimately, the goal of any research in language origins is to explain how
possibly language evolved. An obvious, and oft-mentioned difficulty that arises
in such research is that we have no direct evidence to observe in support of
any given theory—for example, whether complex syntax itself was subject to
selective pressure (Pinker and Bloom, 1990; Jackendoff, 1999, 2002; Pinker
and Jackendoff, 2005) or sexual selection (Progovac, 2015), whether syntax
was a byproduct of physical changes that were themselves subject to selective
pressure (Lieberman, 2000), or whether it was purely the result of cultural
evolution (Tomasello, 1999). Nor can we go back in time to see what actual-
world precursors were in place to drive the evolution of this complex system.

In lieu of a time machine, analytic and simulation results can “provide
a novel empirical way of testing plausibility of evolutionary hypotheses, even
when they cannot themselves directly confirm or refute such hypotheses” (Pro-
govac, 2019, 61). To obtain such results, however, we first need a model, and
evolutionary game-theoretic models can shed light on a variety of linguistic
phenomena—at least in terms of a proof of possibility. Of course, many re-
searchers who utilise formal models acknowledge the limitations of these tools,
but they are helpful in conjunction with empirical evidence from, e.g., evolu-
tionary biology and linguistics. Thus, signalling games can be understood as
a useful tool in the sort of multi-component approach that is advocated by
Fitch (2010, 2017).

That said, the type of communication system that is well-modelled by the
basic signalling game is extremely simple. Even the oft-cited case of the alarm-
call signalling systems of vervet monkeys are not, strictly speaking, signalling
systems in the Lewisian sense.10

9 Note, however, that this is also true of fairness as a target phenomenon to be explained
by an evolutionary model.
10 Sterelny (2012) highlights that the underlying problem that the vervet alarm-call system

solves is decidedly not a coordination problem since a receiver vervet’s payoff for, e.g.,
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Even so, before Skyrms’ evolutionary analysis of the spontaneous emer-
gence of meaning, it was a genuine puzzle how this might happen. Skyrms
(2010a) suggests, however, that “[t]here is no mystery behind the emergence
of signaling” (177), since, under the right circumstances, adaptive processes
can lead to the spontaneous emergence of meaningful signals. This is a small,
but extremely important, piece of the larger puzzle of how bona fide languages
emerge. While the signalling-game framework does not (as of yet) provide a
solution to this problem, the simple evolutionary models suggested by Skyrms
provide a foundation for future work in language origins research to build
upon; as such, the foundation must be deemed to be stable.

3.1 Representativeness

The representativeness of evolutionary models with respect to signalling is,
perhaps, the most challenging criterion to be assessed. The phenomenon to
be explained is that language exists; the pertinent questions is “How could
language have arisen in the first place?” Signalling games appear to give a
prima facie answer that a community’s evolution toward some kind of proto-
language is at least possible—this is undoubtedly a necessary condition for
the existence of communication—and they also appear to explain how it is
possible.

However, though formal models must represent phenomena to some de-
gree in order to be effective, there has been relatively little discussion in the
philosophical literature about what precisely this means for signalling games.
One exception is Sterelny (2012), who is diffident about whether Skyrms’ evo-
lutionary explanation of signalling really is informative. This is because the
evolutionary signalling game “abstracts entirely away from proximate mecha-
nism” and ‘black-boxes’ the organism, thus betting on “the independence of
historical trajectories from mechanical implementation” (84-85).11 However,
as was mentioned in the previous section, the ‘first-step’ phenomenon to be
explained is merely the emergence of meaning, in order to show that this is
possible without deference to, e.g., salience or prior agreement.12

Skyrms initially showed, using numerical simulations, that in the 2 × 2
signalling game, something like meaning arises spontaneously as a “moral cer-
tainty”.13 Huttegger (2007a) gives an analytic proof that, in the 2×2 signalling

running up a tree (upon hearing bark) does not in any way depend upon the sender vervet’s
running up a tree. Thus, the vervets do not have mutually dependent rewards (76).
11 Proximate explanations are contrasted with (and complementary to) ultimate expla-

nations. The latter would require detailing the evolutionary trajectory by which signalling
arises in addition to the selective forces driving dynamic changes in the population, whereas
the former would require describing the developmental and physiological mechanisms by
which signalling is implemented. See Mayr (1961).
12 See also Brusse and Bruner (2017) for an explicit response to several of the worries

brought up in Sterelny (2012).
13 Here, Skyrms is referring to a definition in Jacob Bernoulli’s Art of Conjecture where

he says that something is morally certain if its probability comes so close to complete
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game, infinite populations always converge to a signalling system with prob-
ability 1 under the replicator dynamic.14 Pawlowitsch (2007) finds the same
result for finite populations, assuming the frequency-dependent Moran pro-
cess.15 Similarly, Argiento et al. (2009) prove convergence to a signalling sys-
tem in the limit under a simple reinforcement learning dynamic.16 Thus, given
certain starting assumptions, senders and receivers evolve toward one or the
other signalling system—a state of perfect (or near-perfect) communication—
in the simplest case—i.e., the 2× 2 signalling game with unbiased nature.

However, even in the simplest case, the assumptions that the model utilises
to obtain such promising initial results are questionably representative.17 Of
course, some flexibility should be granted to the representativeness of our as-
sumptions as long as there is adequate justification for making assumptions
that are unrepresentative. It is commonplace for, e.g., models of evolutionary
biology to assume that populations are infinite or continuous because these
simplifying assumptions allow such models to inherit the power of the calcu-
lus. So, the results more than pay for the cost of the assumptions. If represen-
tativeness is to be taken seriously, then each of the assumptions made in the
model needs to cash out at the ‘accurate representation’ check-out counter or
the ‘payoff of results’ check-out counter.18

Some of the assumptions that go into even the simplest signalling game
models include, but are not necessarily limited to, (1) population size, (2)
payoff structure and interpretation, (3) whether or not pairing is random, (4)
whether or not sender/receiver strategies are initially random, (5) whether or
not states are equiprobable. I offer a brief analysis (and justification, where
appropriate) of each of these assumptions in turn.

Infinite Populations. The assumption that a population is infinite is perhaps
the most obviously unrepresentative of all the assumptions made in signalling
game models. Nonetheless, assuming that a population can become arbitrar-
ily large can ease computational complexity, as limits are allowed to tend

certainty that the difference cannot be perceived. However, it should be noted that in light
of subsequent work in this area, Skyrms weakened this claim in a later edition of the book.
The claim itself is still true in a particular case; it is just not true generally.
14 The replicator equations capture the idea that an individual with higher-than-average

fitness is more likely to reproduce; the composition of the population changes over time,
resulting in corresponding changes to the fitness of a particular strategy relative to the
average fitness of the population. See Taylor and Jonker (1978) for further details.
15 In this case, an individual in the (finite) population is selected proportional to its fit-

ness; that individual produces an identical offspring which then replaces a randomly chosen
individual in the population. Crucially, it is possible for a single mutant strategy that has a
disadvantage with respect to relative fitness to generate a lineage that eventually takes over
the entire population. See Nowak et al. (2004); Nowak (2006) for further details.
16 Herrnstein reinforcement learning, based on the matching law (which, in turn, is a

formalisation of the law of effect), supposes that the probability of selecting a particular
action is proportional to the accumulated rewards for that action. See Thorndike (1905,
1911, 1927); Herrnstein (1970) for further details.
17 More complex cases will be examined in Section 3.2.
18 To borrow a turn of phrase from John Woods.
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toward infinity. However, the concept of a limit itself may be conceptually
suspect insofar as signalling conventions must be arrived at in finite time for
the model to explain how signalling may have actually arisen in nature. Still,
no one claims that this is, in fact, representative of the actual-world condi-
tions wherein signalling arises. So, it seems that this assumption cannot be
cashed out at the ‘accurate representation’ check out counter, even if it gets
the long-term qualitative behaviour quite right.

It should be noted that, in an evolutionary model, populations can refer
to strategies rather than individuals per se. As such, the concept of an ‘infi-
nite population’ might be interpreted as the existence of an infinite number of
strategies—e.g., when individuals mix over their strategies with some proba-
bility distribution. Even so, if we assume that there is an infinite number of
strategies, then one of two things must follow: there is an infinite population
of individuals each playing a finite (or infinite) number of strategies, or there
is a finite population of individuals each playing an infinite number of possible
strategies. In either case, it is not clear that this is going to be representative.

Nonetheless, for the 2×2 game, Pawlowitsch (2007) shows that the same re-
sults for infinite populations can occur assuming finite populations, so infinite
populations are not necessary for the desired results. The utility of assuming
infinite populations, then, obtains precisely in the simplicity of the mathe-
matics being used on them and the tractability of questions about robustness
under perturbations. So, even though this assumption is unrepresentative, it
pays for itself with the computational power it affords to the model. As such,
the payoff of relative computational simplicity pays for the unrepresentative-
ness of the assumption.

The assumption of infinite populations is closely related to whether pop-
ulations should be understood as continuous or discrete. If we denote the
proportion of a population playing a given strategy Si of the entire strategy
set S at a time t0 as P (Sit0

), then the discrete update of proportions for the

population at the next time, t1, is given by P (Sit1
) = P (Sit0

)
[
f(Si)
f(S)

]
, where

f(S) is the average fitness of all the strategies in the population, and f(Si)
the fitness of a particular strategy i.

If a strategy Si has high fitness, then f(Si)/f(S) > 0.5, and so a larger
proportion of the population will play strategy Si at time tn+1 than was the
case at time tn. Similarly, if Si has low fitness, then f(Si)/f(S) < 0.5, and
so the proportion of players playing that strategy at a later time, tn+1, will
decrease. Certainly, updates of strategies will more naturally be associated
with (perhaps irregular) discrete time intervals. Nonetheless, the continuous-
time model of the dynamics of a signalling game is simply an idealisation of the
discrete-time model: namely, the rate of change of a strategy in a population
is given by differential reproduction,

dP (Si)

dt
= P (Si) [f(Si)− f(S)] .
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This replicator equation, due to Taylor and Jonker (1978), is essentially the
application of a limiting process to the discrete-time dynamics.19 If populations
are finite, then analysis of the discrete-time dynamics is quite difficult. As
such, there is a computational payoff for assuming some continuous dynamics
for finite or infinite populations. Given the (relative) computational simplicity
in analyses of differential equations (or systems of differential equations), this
assumption cashes out at the ‘payoff of results’ check-out counter.

Payoff Structure and Interpretation. There are several interpretations that one
could make of the ‘payoff’ component of the signalling game. Unlike a lab set-
ting, subjects in a population may not literally be rewarded (punished) when
they achieve (fail to achieve) coordination. Some interpretations of payoff may
presuppose too much of an intentionality component. In Lewis’ (2002/1969)
initial formulation, he gives an example of a meeting as a coordination prob-
lem: if both players prefer to meet, then coordinating will pay the same for
each player when they coordinate and when they fail to coordinate. However,
this is not necessary. It is also perfectly reasonable to interpret ‘payoff’ less
literally. In this case, the word payoff is just a name for some evolutionary
structure—we call it payoff as a linguistic convention for the ease of reference
and mathematical computation. But, the idea of a payoff is not necessarily im-
posed by the technical components of the model itself; instead, payoff adds “a
fitness component to a birth-and-death process that introduces an element of
frequency-dependent selection in addition to drift” (Pawlowitsch, 2007, 612).
Indeed, the payoffs are arbitrary in some sense, and signalling games with a
variety of payoff structures have been examined. In this case, the particular
payoff structure that the modeller chooses to use will need to be justified on
a case-by-case basis.

The interpretation of payoff structure is closely related to the assump-
tion that signalling games lie arbitrarily close to the pure coordination end
of the spectrum (Lewis, 2002/1969).20 The assumption that signalling games
are games of pure coordination is not necessarily representative. The examples
that Lewis (2002/1969) gives are ones in which the players obviously desire
the same outcome—e.g., meeting one another somewhere, calling back or wait-
ing if a telephone call is disconnected, etc. However, real-world considerations
call this assumption into question. For example, in alarm calls of vervet mon-
keys (Cheney and Seyfarth, 1990), sending a signal—thus, possibly alerting
a predator to the sender’s whereabouts—makes the payoff apparently higher
for those players that were initially unaware that a predator was nearby. As
such, the choice to not send a signal gives high payoff to the potential sender
(who has seen the predator), and lower payoff to the receiver(s). The players’
interests are not purely coordinated.

19 See also, Zeeman (1980); Hofbauer and Sigmund (1998, 2003); Skyrms (2009, 2010a).
20 That is, each player gets exactly the same payoff. The spectrum that Lewis (2002/1969)

refers to is due to Schelling (1980/1960), with games of pure coordination at one extreme,
and games of pure conflict (i.e., zero-sum games) at the other extreme.
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If pure coordination is not representative of the actual-world phenomena,
then this may be problematic for the model. It is often assumed that in a zero-
sum game, no meaningful signalling could arise precisely because the players’
interests are purely opposed. As such, it will always be in the one player’s
interest to send the wrong signal given the state. As Franke et al. (2012) point
out: it “is easy to see that under conditions of extreme conflict (a zero-sum
game), no informative communication can be sustained. For why should we
give information to the enemy, or believe what the enemy tells us” (26). How-
ever, Wagner (2012) shows that meaning can arise even in a zero-sum game:
the dynamics of the system is chaotic, but in spite of the lack of equilibria,
the signals used in the game are still meaningful—i.e., they carry at least
some information. Franke and Wagner (2014) ask how meaning can evolve
when preferences are not equivalent. They point out that, except for the Sir
Philip Sydney Game (Maynard Smith, 1991) and Spence’s (1973) Job Market
Signalling Game, the question is still largely open.21

Random Pairing. In constructing a dynamical model, a decision must be made
as to how and when individuals are chosen to interact. Skyrms (2014/1996)
initially assumes that pairing is random in his evolutionary account of jus-
tice, and the same model is built for an evolutionary account of signalling.
When pairing is not random, there may be a correlation mechanism at play.
Indeed, this is a point which D’Arms et al. (1998) criticise in the evolutionary
explanation of justice, and their criticism applies equally well to an evolution-
ary explanation of communication. A correlation mechanism is a parameter,
ε. Here ε = 0 means that pairing is random, and ε = 1 means that pairing
is perfectly correlated. Once a correlation mechanism is introduced into our
model, the question might be asked where in the interval [0, 1] ε should lie to
achieve some degree of representativeness.

However, D’Arms et al. (1998) note that it is equally possible to assume
an anti-correlation mechanism, and this is shown to have significant effects on
otherwise robust results. Both of these mechanisms are discussed in Skyrms
(2000). In the context of Skyrms (2014/1996), the correlation parameter is
global. However, this too is an idealisation: interactions in any given real-world
population may be correlated in some ways and anti-correlated in others. Thus,
as far as representativeness is concerned, it would be a mistake to assume that a
single correlation parameter can entirely accurately represent real populations,
even if many populations may be approximated in this way.

The signalling game does not need to be played in abstract space—the
model can also impose some sort of geography on the population, which will
restrict the types of interactions that may take place. Zollman (2005) exam-

21 Note that this question is also taken up in Crawford and Sobel (1982); their results
suggest that “perfect communication is not to be expected in general unless agents’ interests
completely coincide” (1450); however, Ahern and Clark (2014) show that when misalignment
of preferences is not too strong, a ‘cyclic’ signalling system can evolve—they note a “range
of behavior, from separating, to cycling, to collapse” as conflict increases (31–32). See also
Godfrey-Smith and Mart́ınez (2013); Mart́ınez and Godfrey-Smith (2016).
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ines learning to signal with neighbours on a grid, using imitation dynamics,
where each individual can observe each of her eight neighbours and imitates
the best strategy that she sees. (The topology of the network is a 100 × 100
grid, placed on a torus, so that each of the 10, 000 individuals on the grid
has eight neighbours.) In this case, it is found that alternative signalling sys-
tems can co-exist, but occupying different regions of the topography. Wagner
(2009) extends this analysis and compares neighbourhood interactions with
more complex network structures.

Wagner (2009) shows that the behaviour of the system—i.e., whether and
when populations converge to signalling systems under a variety of starting
assumptions—depends significantly on the topological structure of the network
itself. One of the main results of his argument is that the topological structure
of so-called ‘small-world networks’ is very conducive to the efficient evolution
of meaning.22 This is significant because many real-world social interactions in
fact take place in small-world networks.23 Mühlenbernd (2011) Also examines
the evolution of signalling in a structured spatial society. This is similar to the
torus-grid networks considered in Zollman (2005); Wagner (2009), except the
agents can ‘choose’ to interact with more distant neighbours in the community.
The choice is established by a degree-of-locality parameter, whereby an indi-
vidual chooses to interact with a neighbour with some probability, determined
by the (Manhattan) distance of that neighbour from herself and the degree
of locality. This parameter fills the gap between Zollman (2005) and Wagner
(2009), whose models are at the extremes of the scale that Mühlenbernd (2011)
introduces. (For example, the higher the degree of locality, the more probable
that an agent will choose to interact with her immediate neighbours.)

Given that real-world interactions take place in physical space, these ex-
tensions capture a notion of correlation that is indeed (more) representative.
Social animals, like humans, live in groups and so are more likely to pair with
the same individuals repeatedly. Further, constraints on mobility give practical
reasons to assume that certain pairings amongst the entire population could
not have happened. It seems the best we can do in this case is offer a parame-
ter sweep to see how small changes to correlation and network structure might
affect the outcomes of the signalling game. Assumptions leading to positive or
negative results will need to be cashed out as representative or not on a case-by-
case basis. It is of some import, however, that correlation generally tilts the
balance in favour of signalling systems, since network interactions—as well
as kin selection, partner choice, group selection—are correlation-generating
mechanisms.24

22 small-world network is a technical term characterised by a graph with a specific set of
properties—e.g., high clustering coefficient (of nodes), short average path length (between
nodes), etc. For example, many forms of the underlying architecture of the internet are
small-world networks.
23 Mühlenbernd and Franke (2014) give a nice overview of how different network topologies

shift the basin of attraction for signalling systems and pooling equilibria (by assuming non-
equiprobable states).
24 See also the discussion of correlation in, e.g., Skyrms (1994); D’Arms (1996, 2000);

Kitcher (1999); Gintis (2000); Harms (2000); Alexander (2007).
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Initially Random Signals/Acts. Similar to the assumption of random pairing
between players, a question arises about the representativeness of initially
random signals or acts. In the initial formulation in Lewis (2002/1969), it was
assumed that natural salience would be one means of arriving at a signalling
system. However, while there may have been some natural salience in play in
the evolution of signalling, it seems premature to assume what that natural
salience may have been. Thus, the assumption in Skyrms (2010a) that there
are no initial saliences is a way of showing how signalling can arise even in the
hardest possible case, where everything is symmetric.

While it may be the case that natural salience makes it so that signalling
does not need to be initially random, if the population can converge to a
signalling system with initially random signals or acts, then something like
natural salience will help the system to converge more quickly. Indeed, this is
demonstrated in LaCroix (2018). As such, we assume less in order to obtain
stronger results. While a lack of salience is not necessarily representative, any
degree of salience is going to make effective signalling more likely.

Equiprobable States. A final assumption that we will consider is that the states
that obtain in the model do so with equal probability—If N(s) is the number
of states in a signalling game, and si is a particular state, then the probabil-
ity that si obtains is P (si) = 1/N(s). It is not clear that an assumption of
equiprobable states, as in the simplest model, is representative: one state may
obtain more often than another. In the 2-state model, if state one occurs with
P (s1) = 0.99, and state two occurs with P (s2) = 0.01, then a signal contains
little to no information in this game: the population ends up in a pooling equi-
librium where the sender sends the same signal regardless of the state, and the
receiver does the same act irrespective of the signal. Even though the signal
carries no information about the state, players actually do quite well (Skyrms,
2010a, 64-66). As such, this situation fails to capture the results that we want
from an explanation of how meaning (i.e., of signals) emerges. Furthermore, the
more significant the disparity between the state probabilities, the more likely
it will be that the population converges on a pooling equilibrium (Skyrms,
2010a).

Nonetheless, under the replicator-mutator dynamics, the line of pooling
equilibria in the game with significantly unequal probabilities of states col-
lapses to a single point. When the disparity between probabilities is not too
great, the pooling point is dynamically unstable (otherwise it is an attrac-
tor). Hofbauer and Huttegger (2008) show that this bifurcation occurs around
P (si) ∈ (0.78, 0.79), P (sj) = 1−P (si). As such, even if one state occurs three
times as often as the other, populations converge toward signalling systems
assuming some mutation in the dynamics.

In learning contexts, the results are similar. Skyrms shows that initial
weights have a significant effect on whether or not senders and receivers learn
to communicate effectively.25 Intuitively, one might think that a large dispar-

25 The results of the Roth-Erev model (Roth and Erev, 1995; Erev and Roth, 1998) are
quite similar to the results of the Bush-Mosteller reinforcement learning model (Bush and
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ity in state probabilities is less problematic if we assume that the stakes are
high: as Skyrms (2010a) points out, “[p]redators may be rare, but it does not
pay to disregard them” (67). This is precisely what Hofbauer and Huttegger
(2008) show. Their payoff parameter measures the importance of communica-
tion; even when there is a large disparity between probabilities of states, as
long as the information being communicated is important enough, populations
can still evolve toward effective communication.

As such, the simplest models seem to capture intuitively representative
assumptions about how and when states of the world obtain and how the im-
portance of communicating information, even about improbable states, affects
a population’s ability to converge toward a signalling system or to learn how
to signal.

The considerations above primarily have to do with assumptions made in
the simplest models of signalling games. However, more fruitful results are
obtained from more complex models. Nonetheless, several of the more com-
plex models make the same or similar assumptions at the outset, and only
extend those assumptions with different parameters—i.e., having more play-
ers interacting, having more states and signals, etc. Given the results that
have obtained in the literature so far, these more readily fall under the robust-
ness criterion. For the most part, many of the assumptions made in creating
a model of simple signalling games within a population are not representa-
tive of the circumstances of the actual world, per se. The claim here is that
many of the falsities pay their rent by easing computational complexity or by
strengthening the results obtained. So, while representativeness is challenging
to analyse, several justifications can still be given for the starting assumptions
made in the models.

3.2 Robustness

It was previously said that the simplest signalling games see populations con-
verging on signalling systems with near-certainty given certain starting as-
sumptions made in the model, and furthermore that several of these starting
assumptions can be cashed out as representative—or, if they cannot, then
they can at least be cashed out in terms of mathematical tractability. The
next criterion to examine is whether or not these results are robust. Recall
that for a model to be considered robust, in the sense of structural stability,
it should give the desired result across a variety of parameters. For a particu-
lar model, robustness requires that it be stable under perturbation of starting
conditions.26 Since the simple signalling game model presented in the previous
section is indeed robust in both senses of robustness, we will consider robust-
ness in the sense of structural stability. There are several ways in which the

Mosteller, 1955), where learning parameters play a role analogous to initial weights. See the
discussion in Skyrms (2010a, 97-98).
26 Though, see Huttegger (2007c) for an analysis of robustness across different dynamics.
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parameters of the model may be varied. The question then is whether the
results obtained are the same or similar. We turn now to other extensions of
the simplest models to see how and when the results differ.

One natural way to change the parameters of the simple model is to assume
that the number of initial states, acts, and signals is greater than 2, resulting
in an n× n game. Another way is to assume that there are either more states
and acts than signals, or more signals than states and acts, resulting in an
n×m game. Several of these cases have been analysed via simulation.

To start, let us look at the n×n game with n > 2. The question is whether
we get the same results as we did for the 2 × 2 model. It turns out that we
do not. Barrett (2006) extends the simple signalling game using an adjustable
reference point with truncation (ARP) learning model, due to Bereby-Meyer
and Erev (1998). He examines the results of running simulations with n = 3, 4,
and 8. The results of his simulations are shown in Table 3. Here we see partial

Table 3: Imperfect communication in symmetric signalling games with more
than 2 state/act pairs and messages

Model Run Failure Rate

3-State/3-Term 0.096
4-State/4-Term 0.219
8-State/8-Term 0.594

pooling and miscommunication arising very quickly.
Nonetheless, Barrett points out that in every case the players coordinate

better than chance: information is still transmitted. One should note that
Barrett’s simulations involve 103 runs, each with 106 plays. For each run, a
signalling game is said to ‘converge’ to a signalling system if it has a success
rate of at least 0.8—where the success rate is calculated as the number of
successful plays divided by the total number of plays. The 8-state/term case
is more open to interpretation as the data is presented here because, though
more than half of the runs failed to converge to a signalling system with cutoff
0.8, when the cutoff is relaxed to 0.75, only 4.6% of the runs failed.

This reiterates the question of what it means for a model to be adequate or
sufficient in representing the phenomena in question. We could see robustness
in a population’s convergence toward a signalling system in almost any case,
assuming we relax certain conditions—i.e., the cases in Table 3 could all be
shown to converge with near-certainty if we relaxed the parameters to a success
rate of 0.5 or 0.2. However, this would be unsatisfying because there is clearly
no justification for setting the success rate at anything less than chance (in the
very least). But, if communication evolves at rates better than chance, then
what is the justification for picking a cutoff of 0.8 rather than 0.75?27

27 One such justification is got by analysing the payoffs or success rates for suboptimal
pooling strategies. For example, in the 4 × 4 signalling game, the most efficient pooling
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One might think that, even with the more stringent success rate parame-
ters, the population may converge in the limit—since these are only numerical
simulations, perhaps the success would be higher if there were 107 or 1010 plays
in each run. Indeed, this might help to some extent; however, this turns out
to be somewhat optimistic: while there is no analytic proof of when signalling
systems evolve in these more complex games, Pawlowitsch (2008) gives a com-
plete characterisation of partial pooling equilibria, and shows (assuming the
replicator dynamics) that the partial pooling equilibria, in fact, have basins of
attraction with positive measure. So, Barrett’s negative results are robust.

However, does this mean that the signalling model fails the robustness
criterion? This would be hasty. It is true that minor changes in the starting
assumptions can significantly change the results, but this is not true of many of
the broad results—e.g., whether or not significant information transfer emerges
spontaneously. Thus, if our explanation requires that perfect communication
must evolve, then the signalling game model will fail the robustness criterion.
However, this does not preclude the reliable evolution of some, or even a sub-
stantial amount of, communication. Just because perfect communication does
not always evolve, this does not undermine the robustness of these models for
explaining the conventional origins of communication qua information transfer.

Indeed, we can afford to say something stronger than this. Even if almost
half of the experiments of 8 × 8 games do not result in a perfect signalling
system under basic conditions, as in Barrett (2006), they result mostly in near-
perfect signalling systems. It is true that there exists some partial pooling, but
the remaining states/signals/actions have one-to-one mappings. Thus, we can
argue that pure signalling evolves robustly, even in these complex cases. The
robustness criterion fails only under the strictest conditions for the expected
outcome.

It seems fair to relax our expectations here, given that no human language
constitutes a perfect signalling system due to the existence of synonyms and
polysemy. Thus, the supposed failures of robustness actually capture some-
thing representative of human languages. While signalling systems are global
maxima of the fitness landscape of information transfer, partial-pooling equi-
libria constitute local maxima. The type of (learning or evolutionary) dynamics
under consideration determine the probability that a signalling strategy will
reach a local or global maximum. This probability can be increased signif-
icantly by changing the dynamics to make it ‘explore’ more—for example,
adding mutation to the replicator dynamic (Huttegger et al., 2010), adding
mutation to the learning dynamic (Barrett, 2006), adding a forgetting param-
eter to the learning dynamic (Barrett and Zollman, 2009), or allowing for the
spontaneous invention of new signals (Alexander et al., 2012; Mühlenbernd

strategy has an expected payoff of 0.75, and a success rate of 0.75. A cutoff of 0.80, in this
case, is justified, since a suboptimal random walk may spend some time above the 0.75
success rate before settling into a partial-pooling equilibrium. However, the most efficient
pooling strategy in an 8 × 8 signalling game has an expected payoff (and success rate) of
0.875. As such, a cutoff of 0.80 is not warranted here, since this will include many runs that
ended up with suboptimal conventions.
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and Nick, 2014). Thus, if we require that the trajectories of our dynamics end
up in a global maximum in order to be called successful, then the model will
undoubtedly fail the robustness criterion; however, if we relax the conditions
for success to include near-perfect signalling systems, this will dramatically
increase the robustness of the model, since these local maxima can be arrived
at under a variety of different conditions.

Another possibility is that there are more than two states, acts, or signals,
but they are unequal. In the case where there are more signals than state-
act pairs, we get a system with synonyms, and in the case where there are
more state-act pairs than there are signals, we get informational bottlenecks.
Barrett (2006) also examines these possibilities with the ARP model.28 He
shows that having more terms helps the population evolve toward perfect
communication, though there will be informational redundancy. He also shows
that in signalling games where the states are not homogeneously distributed,
partial pooling appears with higher frequency. It has also been shown that, in
the synonym case, no equilibrium is evolutionarily stable (Donaldson et al.,
2007). Nonetheless, a correlation mechanism (in the evolutionary dynamics),
or some degree of negative reinforcement (in the learning dynamics) can help
to decrease the basins of attraction for sub-optimal polymorphic traps.

One final thing to highlight is the close connection between robustness and
representativeness, with respect to our target phenomena. If the target, based
on the results of the simple 2 × 2 signalling game, is to show how signalling
systems arise systematically, then the results discussed here show that the
signalling-game framework is not robust in the sense of structural stability.
However, there is no compelling reason to posit such a strict explanatory
target. On the one hand, it has been shown empirically that individuals do
not come to a perfect signalling system in more complicated cases (Bruner
et al., 2018). On the other hand, signalling phenomena in nature are often
significantly more complex than the signalling model suggests, so there is not
necessarily any reason to think that partial pooling constitutes a ‘failure’ in
any sense of the word.29

All of these models are obviously idealised; as such, they are simplifica-
tions.30 However, one aspect of the robustness (i.e., of a model) is that several
independent constructions might arrive at the same, or similar, qualitative
phenomena. This is precisely what we see in the signalling game. Rather than
being a burden of complexity, each novel model serves as a data point for
the robustness of the overall framework of the signalling game—i.e., the sim-
ple, core structure upon which such extensions are built. This is the core of
Levins’ (1966) notion of robustness analysis. When many similar or distinct

28 See also, Skyrms (2010a).
29 Both Sterelny (2012) and Santana (2014) highlight that signalling in nature is often

one-to-many or many-to-many, rather than the neat and tidy bijection that obtains in a
signalling system. Thus, in targeting more complex signalling phenomena than merely the
emergence of meaning, pooling should be expected.
30 For an extensive and systematic discussion of the problem of determining whether the

right simplifications have been chosen, see Wimsatt (2007).
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models lead to similar results, this can only serve to reinforce the usefulness
and strength of the models: “our truth is the intersection of independent lies”
(20).31

There are, of course, many other ways of extending the most straightforward
signalling game, but this serves to highlight an important feature of signalling
games: their models require a significant number of assumptions, and minor
changes in the starting assumptions can significantly change the results. Even
so, as we have seen, these results are robust on all but the most stringent
conceptions of what constitutes ‘success’.

3.3 Flexibility

We have seen that models for signalling games perform reasonably well under
the representativeness criterion, and reasonably well on the robustness crite-
rion, under some relaxed criteria for success. It remains to be seen how well
they do on the flexibility criterion. Recall that there are two conditions to be
met here: (1) the evolutionary strategy’s adaptiveness that the model suppos-
edly models can be realised by several different mechanisms, and (2) the model
itself can be interpreted as representing different possible processes. In fact,
signalling game models perform quite well on the flexibility criterion.

On the one hand, the actual-world adaptiveness of the signalling system
strategy can be realised through biological processes, which are modelled by
the replicator dynamic. This constitutes a model of phenotypic evolution. On
the other hand, the adaptiveness of the signalling system strategy can also
be realised by psychological learning processes, as is seen with reinforcement
learning models, which can be interpreted as a model of cultural evolution.
In this case, a species learns to signal given some positive (or negative) rein-
forcement. So, there are several different mechanisms by which the evolution
of meaning may occur.

Regarding the second question—whether there are different interpretations
of the models themselves—we get the same answer: one interpretation of the
signalling game is that the population evolves according to some (determinis-
tic) dynamic process, the other interpretation is that the population evolves
according to some (stochastic) learning process. Even though these are differ-
ent interpretations, it turns out that learning and evolution are closely related.
Beggs (2005) and Hopkins and Posch (2005) showed that the mean-field dy-
namic of Roth-Erev learning models (Roth and Erev, 1995; Erev and Roth,
1998) is a version of the replicator dynamic.32

The replicator dynamic itself has a dual interpretation—one biological and
one cultural, and simple reinforcement learning, when mathematically for-

31 Orzack and Sober (1993) provide a critical analysis of the views in Levins (1966). See
also the response to this in Levins (1993), and the general overview given in Weisberg (2006).
32 See also Schreiber (2001) for an analysis of the connection between the replicator dy-

namics and Pólya urns more generally.
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malised, produces a similar dynamic, and in some cases equivalent, to the
replicator dynamic.33 Thus, there is a certain generality to the dynamic frame-
work upon which evolutionary models of signalling conventions are based,
which gives them inherent flexibility in terms of both criteria.

4 The Sufficiency of Our Models

In the previous section, we have seen some considerations concerning the ad-
equacy of evolutionary models of signalling. We turn now to the sufficiency
question. With respect to the initial phenomenon to be explained, there are
really two questions being asked here: (1) Are the models that we use sufficient
to explain how and whether signalling arises spontaneously and is subsequently
maintained in nature? (2) Are these models sufficient to explain the evolution
of language? It is important to note that these are distinct questions—a sig-
nalling system may allow for meaningful communication, but this is not nec-
essarily equivalent to language (e.g., human language). Nonetheless, signalling
may be considered a proto-language which is a stepping stone to language
proper, or it may be a stepping stone to proto-language, which is itself a step-
ping stone toward language proper.

One thing to note is that signalling is ubiquitous in nature. Signalling can
be observed in various species of monkey, including vervet monkeys (Cheney
and Seyfarth, 1990), Diana monkeys (Zuberbühler, 2000), and Campbell’s
monkeys (Zuberbühler, 2001), as well as some species of Tamarins (Kirch-
hof and Hammerschmidt, 2006), lemurs (Macedonia, 1990), prairie dogs (Slo-
bodchikoff et al., 1991), red squirrels (Greene and Maegher, 1998), etc. More
impressively, perhaps, signalling can be observed in bees in the form of an
intricate dance (von Frisch, 1967); Black-capped chickadees have been found
to maintain a rigorous syntactic structure in signalling (Hailman et al., 1985).
Finally, we see the same simple signalling games can be used to model and
explain behaviour as it arises in certain types of bacteria (Berleman et al.,
2008).

Given that signalling is commonplace in nature, in order for our models
to be sufficient, they must give results that show why and how this is so.
The robustness of the results of the most straightforward case appears to pro-
vide a sufficient explanation for the ubiquity of signalling in nature: signalling
systems arise with near-certainty under a variety of (often representative) con-
ditions. Additionally, since there were minimal assumptions (regarding natural
salience, correlation, intentionality, rationality, etc.), this is equally sufficient
to explain signalling both in humans and monkeys, as well as in bees and
bacteria.

This highlights the difference between language and signalling: signalling
arises easily in nature and language apparently does not. One might argue that
only humans have language, or even that only humans are capable of having

33 For more details on this, see Sandholm (2010).
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language. However, even if we relaxed our criteria for considering something
a language in the first place, it is still clear that language is not equivalent to
signalling—if they were equivalent, then one would have to admit that quorum
signalling in bacteria is indeed ‘language’.

Evolutionary models seem, modulo some caveats raised in the discussion
on adequacy, sufficient to explain the advent of simple signalling across var-
ious species. However, the progress made to date in this programme is still
insufficient to explain the evolutionary jump from signalling to language.

One conceptual problem that falls within the purview of sufficiency is that,
although evolutionary models of signalling games seem to show how meaning
can arise in a population, it is not clear what that meaning is. There is an
interpretive symmetry to be noted here: suppose a population already has
a signalling system up and running wherein the strategy pairs in Figure 1a
obtain, and there is near-perfect information transfer. The problem is that it
is not clear whether the signal m1 means the declarative ‘s1 obtains’, or the
imperative ‘do a1’. This symmetry is pointed out by Harms (2004a,b) and is
subsequently analysed by Huttegger (2007b) and Zollman (2011). Huttegger’s
model adds a ‘deliberation’ component to the simple signalling game wherein,
if the receiver deliberates, then the signal is declarative, whereas if the sender
deliberates, then the signal is imperative. However, Zollman points out that
the same problem applies if we interpret the message as the declarative ‘we
are in s1’ or as the indicative ‘deliberate, and then do a1’. Zollman himself
constructs a different model to explain how this symmetry gets broken—his
model involves the addition of a third player. Zollman (2011) concludes by
saying that

I do not believe that the possibility of these two translations demon-
strates an inadequacy of the Lewis signaling games as a model for lin-
guistic behavior. Instead, this possibility is merely an example of the
more radical problem of translation suggested by Quine[’s Word and
Object]. Merely because I can offer two different English sentences which
both capture the meaning of the signals in the game is not sufficient to
demonstrate that meaning is not present in these games[.] (168)

However, Harms’ initial point is that there is not a translation of signals
to English language expressions. Rather than trying to build a model that
explains this lack of translation, one might just say (as Harms does) that a
signal qua signalling is primitive content, where ‘primitive content’ is similar
to the pushmi-pullyu representations of teleosemantics (Millikan, 1995). So,
the translation problem is evidence for the fact that signalling games do not
constitute languages. That said, if signalling games are sufficient for anything
at this point, they are sufficient for explaining how signalling can arise from
minimal assumptions, but not how language can arise from signalling.

Perhaps animals have not evolved past simple signalling because their bi-
ology is not naturally equipped for anything more complex—this may have
to do with cognitive capacities, or it may have to do with physical capacities.
One may argue that the reason humans evolved language where animals did
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not is simply because the right ingredients happened to be there: we may have
evolved signalling like any other animal, but for some fortuitous reason we also
had areas of the brain and anatomical tools like the larynx evolve to allow for
the capacity of language. However, this will obviously be of no explanatory
power here. In this way, sufficiency will require that future work focuses on
closing the gap between signalling and language. Indeed, to some extent, it
has already begun to do so.

Barrett (2007, 2009) also introduces an extension of the simple Lewis sig-
nalling game wherein there are more players.34 If there are two signals and
4 state/act pairs, perfect communication can still arise in the following way:
there are two senders, each picks a signal from {0, 1}, and each individually
sends her signal to the receiver. The receiver obtains each signal and picks an
act. One interpretation of this model is that each sender has partial informa-
tion, which combines to complete information for the receiver. Interpreted in
this way, we can begin to model the evolution of simple logics—for example, if
Sender 1 sends a signal meaning ‘s1 or s2’ and Sender 2 sends a signal meaning
‘¬(s1)’, then the receiver can infer s2.35

Skyrms (2010a) took this 2-sender game and showed how it could be played
with one player sending 2 signals in a particular order. This gives rise to the
notion of a syntactic signalling game. Franke (2016) adds ‘spill-over reinforce-
ment’ to this syntactic model and shows how something like compositionality
might evolve. This last paper is particularly interesting because it does seem
to be an effort to bridge the gap between signalling and language: Franke pre-
supposes that a signalling system is already up and running and shows how
something like compositionality can arise from that. These results, of course,
would require the same critical treatment seen above. In this vein, Steinert-
Threlkeld (2016) uses signalling games to explain why (instead of how) natural
languages might have become compositional.

Additionally, Barrett (2016, 2017) has built a model of a meta-game which
takes outcomes of a standard signalling game as its input and evolves a met-
alinguistic notion of truth in parallel with the evolving language. Further, Bar-
rett and Skyrms (2017) have built models in which complex signalling games
evolve from several simple signalling games through modular composition.36

Given the results of Spelke (2003), some notion of modularity seems to be of
explanatory significance in further narrowing the gap between simple signals
and language.

Pending further studies on the sufficiency and adequacy questions, sig-
nalling games at least have bridged the gap between the nonexistence and
the existence of (primitive) meaning, couched in terms of communication as
information transfer. Regarding the gap between signalling and language, the
literature has seen advancements in explanations of proto-compositionality

34 See also, Skyrms (2009, 2010a,b) for other cases of signalling networks.
35 Note that a lot is being assumed here, so this may seem question-begging. However,

Steinert-Threlkeld (2014) has shown that function words, such as ‘not’ may arise in signalling
contexts.
36 See also, Barrett et al. (2018); LaCroix (2019).
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(Nowak and Krakauer, 1999; Barrett, 2006, 2007, 2009; Franke, 2016; Steinert-
Threlkeld, 2016; Barrett et al., 2018), metalinguistic notions of truth and fal-
sity (Barrett, 2017), the evolution of simple logical connectives, etc.37 So, the
simplest models of signalling are undoubtedly sufficient to explain the exis-
tence of, e.g., quorum signalling in bacteria; further, though there is a large
gap between quorum signalling systems and natural languages, progress is
being made in bridging this gap.

5 Concluding Remarks and Future Research

We have seen now that signalling games perform reasonably well on all of
the adequacy conditions: for representativeness, justifications can be made for
nonrepresentative assumptions in the models; robustness is satisfied for all but
the most stringent requirements for what counts as a success; and for flexi-
bility, the simplest models perform well outright. Further, we saw that if the
evolutionary models used for signalling games are to be sufficient, we need
to differentiate what exactly they are supposed to be sufficient for. Note that
there is some difference between signalling and language, but it is unclear pre-
cisely wherein that difference lies.38 Nonetheless, simple signalling is certainly
sufficient for explaining the simplest communication phenomena that we see
in nature, though these models (and their underlying assumptions) will nec-
essarily need to be extended and modified to account for how language might
have arisen from simple communication.

The focus of this paper was the theoretical and empirical explanatory power
of evolutionary models for the emergence of signalling. However, it should also
be noted that there may be some practical application here to the advance-
ment of artificial cognitive systems and computational intelligence. To recreate
something like human intelligence, it is necessary to understand wherein that
intelligence arises. Spelke (2003) has argued that ‘what makes us smart’ may be
the way in which our different cognitive capacities combine through modules—
complex cognitive structures made up of more simple ‘core’ knowledge systems.
It is argued then that the difference in cognitive capacities between human and
non-human animals obtains in the combinatorial capacities that human cog-
nitive systems have that allow them to conjoin various representations of the
world to create new cognitive knowledge.

Furthermore, it is commonly believed that there is a close relationship be-
tween language and thought. As such, a clear understanding of how languages
arise and are maintained in a population can give us some further insight into
human cognitive capacities. The possibility to model and understand these sort
of linguistic systems may allow for more sophisticated replication of human

37 See also the iterated learning model (Kirby and Hurford, 2002; Smith et al., 2003), which
is connected to the signalling game framework by Spike et al. (2013).
38 Most researchers hold that key distinction between language and animal communication

systems is that the former utilises compositional syntax. See Progovac (2019) for an overview.
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cognitive capacities in artificial intelligence programs, for example. So, even
the simplest of these models may additionally have some practical significance.
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