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Abstract 

Although Bohr’s Correspondence Principle (CP) played a central role in the first versions of 

quantum mechanics, its original version seems to have no present-day relevance. The purpose 

of the present article is to show that the CP, with no need of being interpreted in terms of the 

quantum-to-classical limit, still plays a relevant role in the understanding of the relationships 

between the classical and the quantum domains. In particular, it will be argued that a generic 

version of the CP is very helpful for elucidating the physical meaning of the phenomenon of 

quantum decoherence.  
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1.- Introduction 

Although historians and philosophers of physics agree on that Niels Bohr’s Correspondence 

Principle (CP) played a central role in the first versions of quantum mechanics, in general 

they do not reach a consensus about the interpretation of the principle. Nevertheless, 

independently of this disagreement, a good question is what relevance the principle may have 

at present, since it was formulated in the context of the “old quantum theory,” already set 

aside in the present-day practice of physics. Perhaps precisely for this reason most physicists 

rapidly forgot the original presentation of the CP, and the principle turned out to be conceived 

as the general requirement that quantum mechanics approximate the results of classical 

mechanics in the appropriate limit. As a consequence, the CP in its Bohr’s original version 

became only interesting for the historians of quantum mechanics. 

The purpose of the present article is to recover Bohr’s original version of the CP as a 

useful theoretical tool to face conceptual problems in the foundations of quantum mechanics. 

From this perspective, we will show that the CP, with no need of being interpreted in terms of 

a quantum-to-classical limit, still plays a relevant role in the understanding of the 

relationships between the classical and the quantum domains. In particular, it will be argued 

that a generalized version of the original CP is very helpful for elucidating the physical 

meaning of the phenomenon of quantum decoherence. For this purpose, in Section 2, the 

origins of the CP in the old quantum theory will be recalled, stressing how a claim about the 

relationship between frequencies and motions in the model of the atom gradually became a 

requirement about the classical limit of quantum mechanics. Section 3 will deal with Robert 

Batterman’s proposal of appealing to the CP, in its original formulation, as a conceptual tool 

to face the hard problem of defining quantum chaos. Batterman’s strategy will lead us in the 

way toward the elucidation of the concept of decoherence. In order to follow this way, first 

the theoretical foundations of quantum decoherence will be summarized in Section 4, 

stressing the issue of the interpretation of the reduced state in terms of what Bernard 

d’Espagnat called “improper mixture”. Section 5 will be devoted to elucidate the nature of the 

reduced state by establishing the analogy between the classical and the quantum cases. Such 

an analogy, manifested as a structural correspondence at the level of expectation values, 

shows that quantum reduced states are coarse descriptions, analogously to coarse-grained 
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states and to reduced states in classical statistical mechanics. This result will be the basis, in 

Section 6, to generalize the CP as the correspondence between analogous quantum and 

classical concepts and regularities, and to conceive the structural correspondence presented in 

the previous section as a particular case of this generalized CP. Thus, following Batterman’s 

strategy regarding using the CP as a tool to face conceptual difficulties in quantum mechanics, 

it can be concluded that, since quantum reduced states are coarse descriptions, then 

decoherence is a coarse phenomenon, relative to the relevant observables considered for the 

description. Finally, in the last section, after summarizing the main results of the article, the 

conceptual lines opened by this way of conceiving decoherence will be pointed out, in 

particular those related to the classical limit of quantum mechanics and to quantum chaos. 

2.- From the correspondence principle to the classical limit 

As Alisa Bokulich (2014) points out, the CP was not only an essential assumption that marked 

the birth of quantum mechanics, but also the cornerstone of Bohr’s interpretation of the 

theory, strongly linked to his view of complementarity. In a nutshell, the principle establishes 

a correspondence between radiation and motion: the energy spectrum of an atom, with the 

possible transitions between stationary states, is connected with the periodic motions of the 

electrons in the atom. 

Although in Bohr’s 1913 lecture “On the constitution of molecules and atoms” the idea 

of correspondence is preannounced, it is in the 1918 article “On the quantum theory of line 

spectra” that Bohr explicitly talks about “the analogy between the quantum theory and the 

ordinary theory of radiation” (Bohr 1918: 70). The terms ‘correspondence’ and 

‘correspondence principle’ appear for the first time in a lecture of 1920, in which Bohr 

explains that, despite the difference between ordinary electrodynamics and the new theory,  

“there is found, nevertheless, to exist a far-reaching correspondence between the 

various types of possible transitions between the stationary states on the one hand 

and the various harmonic components of the motion on the other hand.” (Bohr 

1920, in Bohr 1976: 245-246). 

As Robert Batterman (1991) stresses, in these first works, the CP does not amount to a claim 

to the effect that the quantum theory must contain the classical theory as a limiting case. By 

contrast, Bohr claims that 

“[t]his application of the Correspondence Principle [...] on the whole expresses 

clearly the close connection between radiation and motion in the quantum theory, 
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which persists in spite of the fundamental difference between the character of the 

postulates and the continuous description of the classical theory.” (Bohr 1924: 26) 

In other words, Bohr does not conceive the CP as stating the agreement between the classical 

and the quantum descriptions in a limiting domain, but rather, as a substantive claim: “this 

Correspondence Principle must be regarded purely as a law of the quantum theory” (Bohr 

1924: 22). Thus, in Bohr’s version, the CP is first formulated as a contingent claim derived 

from experimental facts, but then it is promoted to the status of a principle, that is, of a law of 

the theory, endowed with physical necessity. 

Some contemporary physicists embraced Bohr’s CP and even developed it further. This 

is the case of Hendrik Kramers in his 1919 doctoral dissertation under Bohr supervision, and 

of John van Vleck in a 1924 article, which bears the subtitle “Some extensions of the 

correspondence principle.” Nevertheless, and despite Bohr’s high reputation, several 

contemporary authors manifested their dissatisfaction regarding the CP: if quantum 

mechanics is a fundamental theory, in principle universally applicable, it is difficult to 

understand why merely “phenomenological” classical facts play a relevant role in the 

understanding of the quantum domain. This was the view of Arnold Sommerfeld, who 

considered the CP “a magic wand […], which allows us immediately to make use of the 

results of the classical wave theory in the quantum theory.” (Sommereld 1923: 275). 

Sommerfeld’s dislike of CP seems to be the result of what he considered an illegitimate 

mixing of quantum and classical concepts: “I cannot view it [the CP] as ultimately satisfying 

on account of its mixing of quantum-theoretical and classical viewpoints. (Sommerfeld 1924: 

1048). 

Perhaps due to the influence from Sommerfeld, who was the supervisor of his doctoral 

dissertation, Wolfgang Pauli was also very skeptical about the relevance of the CP. In fact, he 

outrightly rejected Bohr’s suggestion of grounding the exclusion principle on CP:  

“I personally do not believe, however, that the correspondence principle will lead 

to a foundation of the rule […].The justification of the exclusion […] in the H-

atom by pointing to the collision with the nucleus has never pleased me much. It 

would be much more satisfying if we could understand directly on the grounds of 

a more general quantum mechanics (one that deviates from classical mechanics).” 

(Pauli to Bohr, December 31st, 1924, quoted in Heilbron 1983: 306) 

This dissatisfaction with the CP seems to contrast with the fact that, in his doctoral 

dissertation, Pauli (1922) had introduced what he had called a “mechanical correspondence 
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principle”, in analogy with the original electrodynamical CP as proposed by Bohr. Pauli’s 

idea was that classical mechanics should break down when applied to inelastic collision 

processes because the amount of energy transferred in the process cannot be continuous. 

However, the seed of a reinterpretation of the CP can be found already in this idea, since 

Pauli’s initial assumption was the requirement that the results of quantum theory and classical 

mechanics coincide in the case of large quantum numbers, where the energy states converge 

toward a continuum. As Robert Rynasiewicz points out, the advance toward a reinterpretation 

of the CP was perceived by some contemporary physicists, who complained that “Pauli did 

not establish a correspondence, in Bohr’s sense of the word” (Rynasiewicz 2015: 184).  

Pauli’s treatment of the CP was the first step toward a new reading of the principle in 

terms of the classical limit of quantum mechanics. In fact, just a few years after Pauli’s 

dissertation, Paul Dirac characterized the CP as the requirement that “the classical theory 

gives the right results in the limiting case when the action per cycle of the system is large 

compared to Planck’s constant h, and in certain other special cases.” (Dirac 1925: 642). Since 

then, the CP began to be conceived as a limiting requirement, and under this reading appeared 

in the most used textbooks of quantum mechanics. For instance, in Max Born’s classic book, 

the CP is introduced with the following words: 

“The leading idea (Bohr’s correspondence principle, 1923) may be stated broadly 

as follows. Judged by the test of experience, the laws of classical physics have 

brilliantly justified themselves in all processes of motion […] it must be 

demanded that, for the limiting cases of large masses and of orbits of large 

dimensions, the new mechanics passes over into classical mechanics.” (Born 

1933: 103) 

The CP is introduced in David Bohm’s well-known textbook in a similar way: 

“[T]he correspondence principle […] states that the laws of quantum physics must 

be so chosen that in the classical limit, where many quanta are involved, the 

quantum laws lead to the classical equations as an average” (Bohm 1951: 31) 

Summing up, from being a principle that establishes a correspondence between 

radiation and motion in Bohr’s writings, the CP gradually became the general requirement 

that quantum mechanics be able to recover the empirical success of classical mechanics in the 

limit of large masses and orbits of large dimensions. It may seem that the classical limit 

requirement is the only version of the CP that makes sense to survive in the standard version 

of quantum mechanics, once the old quantum theory has been set aside in the current practice 
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of physics. However, here we will focus on Bohr’s original “correspondence” version, in 

order to show that it can still be useful for the conceptual understanding of certain aspects of 

the theory. 

3.- Correspondence principle and quantum chaos 

Rynasiewicz (2015) explicitly points out the tension “constraint versus postulate” regarding 

the interpretation of the CP, that is, the tension between viewing the CP as a heuristic 

principle for theory construction and conceiving it as a law of quantum mechanics. Perhaps 

the two views are not incompatible: even if for Bohr himself the CP was a fundamental law of 

quantum mechanics, retrospectively it may be interpreted as a leading heuristic factor in the 

construction of the theory. Anyway, at present the CP seems to be superfluous from the two 

viewpoints: it is clearly not a part of the new formalism, nor is it necessary to construct a 

theory that is already complete. Despite this unfavorable opinion regarding the present-day 

relevance of the CP, here it will be shown that the principle can still play an interesting role in 

the understanding of the relationship between the quantum and the classical domains. Let us 

see this in the case of quantum chaos. 

Although the existence of chaos in classical mechanics has been rigorously proved only 

in a few highly idealized systems, the behavior of many classical systems exhibits features 

that can be easily interpreted as results emerging from a chaotic dynamics. These empirical 

manifestations contrast with the fact that chaos in quantum systems seems to be the exception 

rather than the rule. The relative scarcity of quantum chaos has been repeatedly conceived as 

a challenge for the CP: “some have used the quantum chaos problem to cast doubt on the 

correspondence principle and, as a result, on the empirical adequacy of quantum mechanics” 

(Kronz 1998: 51). For instance, Belot and Earman talk about the “widely shared sense that 

chaos presents a challenge either to quantum mechanics itself or to our understanding of the 

correspondence principle” (Belot and Earman 1997: 149). 

At least two general strategies have been adopted to stress the pressure that chaos seems 

to put on the CP. The first one is a top-down strategy, which relies on quantizing simple 

classical chaotic models: the problem is that the resulting quantum models are usually non-

chaotic according to some feature considered as an indicator of chaos. This is the 

argumentative path followed by Joseph Ford and his colleagues (Ford, Mantica, and Ristow 

1991, Ford and Mantica 1992): by taking the notion of complexity as the key concept for 

defining chaos, they argue that the systems resulting from the quantization of classical chaotic 

systems have null complexity and, therefore, are intrinsically non-chaotic. On this basis, the 
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authors conclude that the CP has been refuted and that quantum mechanics should be replaced 

with a theory capable of accounting for chaotic behavior. 

The second general strategy consists in searching for the usual indicators of chaos 

directly in quantum systems and verifying that those indicators are absent in quantum 

evolutions. The particular arguments differ from each other with respect to the specific feature 

to be regarded as the relevant indicator of chaotic behavior. For instance, when the 

exponential divergence of trajectories is focused, the usual claim is that quantum mechanics 

suppresses chaos because it is not possible to define precise trajectories in quantum evolutions 

(see, e.g., Schuster 1984). Since non-linearity is usually taken as a necessary condition for 

chaos in classical systems, some researchers have concluded that quantum systems are 

unavoidably non-chaotic because the Schrödinger equation is linear (Berry 1989). Another 

feature that has been used to explain the scarcity of quantum chaos is the unitarity of the 

Schrödinger evolutions: due to the fact that quantum evolutions change neither the angle nor 

the distance between vectors corresponding to different states, quantum systems are not 

sensitive to initial conditions and, therefore, they are non-chaotic (see discussion in Kronz 

1998). 

Independently of how the CP is conceived, the different views about the tension 

between chaos and quantum mechanics disagree on which the correct or, at least, the best 

indicator of quantum chaos is. This disagreement points to a problem that is conceptually 

previous to the supposed tension: what ‘chaos at the quantum level’ means. Since the concept 

of chaos still lacks a precise and completely general definition in the classical domain (for a 

detailed conceptual discussion, see Batterman 1993; for the difference among mathematical 

definitions, see Smith 1998: Chapter 10), drawing fatal conclusions from a supposed scarcity 

of quantum chaos seems to be a too extreme maneuver. Perhaps for this reason Batterman 

turns the problem upside down: the issue is not to understand why there is no chaos in the 

quantum domain, but rather to understand what quantum chaos means. And in the search for a 

definition of quantum chaos, the CP plays a guiding role:  

“(2) the CP can be maintained and, in fact, used to further investigate the 

connections between classical motions and quantum properties and processes. If 

(2) holds, then it may be quite reasonable to think that the CP can serve as a guide 

or signpost to finding a proper definition of quantum chaos.” (Batterman 1991: 

215) 
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But, as remarked in the previous section, Batterman stresses that Bohr does not understand the 

CP as simply expressing that the two theories must agree in a limiting domain. By contrast, 

the CP is a substantive claim that expresses an intimate connection between periodic classical 

motion and the stationary states of quantum systems.  

Batterman’s strategy consists in extending the method that he calls ‘torus quantisation’ 

(following Berry 1983) to the case of systems whose classical counterparts may exhibit chaos. 

Torus quantization, strictly valid in the integrable case, shows that the classical periodic orbits 

can be used to yield the quantum energy spectrum. Batterman finds the modern expression of 

the CP in the extension of the correspondence between periodic motion and energy spectrum 

to the ergodic case. On the basis of this reading, “the CP […] makes plausible a definition of 

quantum chaos in terms of the statistics of spectra.” (Batterman 1991: 221). As a 

consequence, Batterman concludes that “once the CP is properly interpreted, it is not 

threatened by the fact that QM does not appear to exhibit chaotic behavior of the kind present 

in CM. In fact, […] the CP actually does help settle the definitional debate.” (Batterman 1991: 

191). 

In the present context the interest is focused not on the technical details of Batterman’s 

proposal, but rather on his general strategy: given a conceptual problem in the quantum 

domain, in particular regarding its relationship with the classical world, the CP is appealed 

to as a guiding principle that provides the framework for a satisfactory solution. The plan is 

to apply the same strategy to face certain conceptual problems related to the interpretation of 

quantum decoherence. For this purpose, the theoretical foundations of decoherence and 

certain conceptual difficulties of the decoherence program will be first recalled. 

4.- Environment-induced decoherence 

The roots of the environment-induced decoherence program can be found in certain works of 

the seventies, in which the measurement problem began to be addressed from an open-system 

perspective: the point was that macroscopic systems, such as measurement apparatuses, are 

never perfectly closed, but interact significantly with their environments (see Zeh 1970, 

1973). On the basis of those pioneers works, the theory of decoherence was systematized and 

developed by Wojciech Zurek (1981, 1982, 1991, 2003) and his collaborators, by conceiving 

decoherence as a process resulting from the interaction between a quantum system and its 

environment. Let us recall the basics of this environment-induced decoherence approach, at 

present the orthodox approach to quantum decoherence. 
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Given an open quantum system S in the state i i ic   and its environment E , the 

initial state of the whole system SE  can be expressed as 

0(0) i i

i

c                         (1) 

where 0  is the state of the environment before its interaction with S . The initial state 

(0)  evolves into ( ) t , such that the density operator ρ̂( ) ( ) ( )  t t t  results  

*ρ̂( ) ( ) ( )i j i i j j

ij

t c c t t                      (2) 

where the ( )i t  are the states of the environment associated with the different states i , 

and the * 0i jc c  , with i j , represent the quantum correlations that preclude classicality. The 

orthodox approach relies on computing the reduced density operator ρ̂ ( )S

r t  of the open system 

S, which results from tracing over the environmental degrees of freedom: 

*ˆ ˆρ ( ) ρ( ) ( ) ( )S
r E i j i j i j

ij

t Tr t c c t t                   (3) 

where the factor ( ) ( )i jt t  , with i j , determines the size of the off-diagonal terms at 

each time. Many standard models for the interaction Hamiltonian show that, for environments 

with a very large number of degrees of freedom, the states i  rapidly approach 

orthogonality, ( ) ( )i j ijt t    . As a consequence, after an extremely short “decoherence 

time”, the reduced state of the open system becomes diagonal in a “pointer basis”  i  

corresponding to the classically behaving observable: 

2
ˆ ˆρ ( ) ρS S

r r i i i

i

t c                      (4) 

According to the orthodox interpretation of decoherence, the decohered state ρ̂S

r
 is the 

quantum state of the open system S  and represents a quantum mixture that contains only the 

terms corresponding to classical correlations. It is precisely for this reason that decoherence 

would offer the essential ingredient for solving the quantum measurement problem and for 

explaining the quantum-to-classical transition. In particular, Zurek conceives the process of 

decoherence as the dynamical description of the phenomenon of collapse (see Zurek 1981), 

since “quantum entanglement will be converted into an effectively classical correlation as a 

result of the interaction” (Paz and Zurek 2002: 90). As a consequence, decoherence would 

supply the explanation of the emergence of classicality: “the environment distills the classical 

essence of a quantum system.” (Zurek 2003: 3).  
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This way of conceiving the physical phenomenon led Zurek and his collaborators to 

claim that decoherence produces the “degradation” of pure states into mixtures:  

“When the system is open, interaction with the environment will inevitably result 

in an incessant “monitoring” of some of the observables by the environmental 

degrees of freedom. This will result in the degradation of the pure states into 

mixtures.” (Paz and Zurek 2002: 14) 

“pure states turn into mixtures and rapidly diagonalize in the einselected states” 

(Zurek 2003: 13) 

In order to quantify such a “degradation”, the evolution of the purity   of the open system is 

studied, as defined as (see Zurek 2003: 18):  

 
2

ˆ( ) ρ ( )S
rt Tr t                         (5) 

According to Zurek, this quantity is equal to one for a pure state and decreases when the state 

becomes mixed. 

However, Bernard d’Espagnat (1976) warned against the interpretation of reduced states 

as quantum states by introducing the already classical distinction between proper and 

improper mixtures: whereas a proper mixture is the quantum state of a closed system, an 

improper mixture is a density operator obtained by disregarding some degrees of freedom of 

the closed system. If only the retained degrees of freedom are considered, the resulting 

improper mixture cannot be distinguished from the analogous proper mixture. But, as 

d’Espagnat stresses (1995), there is no theoretical reason that prevents from having access to, 

at least, some of the traced over degrees of freedom: this access would show that the proper 

mixture and the improper mixture are, in principle, testably different. In the context of 

decoherence, the difference is also pointed out by Heinz-Dieter Zeh, one of the founding 

fathers of the decoherence theory: “The conceptually important difference between true and 

apparent ensembles was clearly pointed out by Bernard d’Espagnat (1976) when he 

distinguished between proper and improper mixtures […] this difference can even be 

observed as recoherence (a relocalization of the superposition, that would be impossible for a 

proper mixture).” (Zeh 2005: 2). 

It is interesting to notice that the discussion about the conceptual difference between 

proper and improper mixtures makes sense because both are represented by the same kind of 

mathematical object a density operator. However, this feature essentially depends on the 

Hilbert space formalism used to articulate the theory; but the situation is different in other 
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formalisms. For instance, proper and improper mixtures are represented by different kinds of 

density operators in the quaternionic formulation of quantum mechanics (Masillo, Scolarici, 

and Sozzo 2009, see also Adler 1995); therefore, in this formal framework they can be 

distinguished not only physically but also mathematically. 

On the basis of the above considerations it is quite clear that the reduced state of an 

open system cannot be strictly considered its quantum state. Nevertheless, this does not imply 

to deprive the reduced state of any meaning, since it does supply a certain description of the 

open system. The correspondence between the quantum and the classical domains will offer 

conceptual elements to elucidate the nature of the reduced state and, with this, to clarify how 

decoherence should be interpreted.  

5.- Analogy and correspondence between classical and quantum domains 

The content of this section will be devoted to show that a general concept of coarse 

description can be defined such that, both in the classical and in the quantum cases, coarse 

descriptions result from two related but different operations: coarse-graining and partial trace. 

The analogy between the classical case and the quantum case will supply the basis to offer, in 

the next section, a meaningful version of the CP and, in turn, to understand the physical 

meaning of decoherence. 

5.1.- Coarse-graining 

In Gibbsian statistical mechanics, the system under study is represented by an ensemble of 

abstract systems in different microstates that are compatible with the system’s macrostate. 

The statistical state of the system is represented by a density function ( , )r t  normalized to 

unity, defined on a phase space  , where r  represents a possible microstate (position 

and momentum). In turn, the physical magnitudes depending on the microstates r are 

represented by observables ( )O r , such that :O  . The density function ( , )r t  allows 

computing the phase average (average on all the members of the ensemble) of any observable 

( )O r  as 

( , )
( ) ( , ) ( )

r t
O r r t O r dr

 
                    (6) 

In this Gibbsian approach, statistical equilibrium is defined as the situation in which the phase 

averages are independent of time; this situation is represented by the microcanonical 

ensemble, whose corresponding density distribution is uniform over all the accessible region 

of the phase space. 
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One of the central problems in this theoretical context is how to explain the approach to 

equilibrium by means of the reversible time-evolution of the density function. In fact, the 

evolution of ( , )r t  is ruled by the Liouville equation and, as a consequence, has no limit for 

t  : as proved by the Liouville theorem, the volume of the support of ( , )r t  in   is time-

invariant. Therefore, the problem of irreversibility in classical statistical mechanics turns out 

to be how to account for an irreversible approach to equilibrium in systems ruled by an 

underlying time-invariant evolution law (see Frigg 2007). The standard answer in the context 

of the Gibbsian approach relies on coarse graining: the phase space   is partitioned into cells 

iC  of the same volume ( )iC  in  , and a coarse-grained distribution ( )cg r  is defined such 

that 

 

 

1

2

1 1

2 2

1/ ( ) ( ) if 

( ) 1/ ( ) ( ) if 

C

cg
C

C r dr r C

r C r dr r C

   



    






                (7) 

Since the coarse-grained state cg  is not the original statistical state, it is not ruled by the 

dynamical law of classical statistical mechanics and, as a consequence, its evolution is not 

constrained by the Liouville theorem: ( , )cg r t  may approach a definite limit for t  . This 

is what effectively happens when the system has a sufficiently high degree of instability: it 

can be proved that, if the system is mixing, the coarse-grained state approaches a time-

independent equilibrium state, ( )( , ) ( )cg cg eqr t r   (see, e.g., Berkovitz, Frigg, and Kronz 

2006). 

The expectation values of the observables of the system can be computed in the coarse-

grained state ( )cg r  analogously to eq. (6): 

( )
( ) ( ) ( )

cg
cgr

O r r O r dr
 

                     (8) 

It is quite clear that the same result can be obtained if certain “gross observables” are defined 

as follows: 

 

 

1

2

1 1

2 2

1/ ( ) ( ) if 

( ) 1/ ( ) ( ) if 

C

cg
C

C O r dr r C

O r C O r dr r C

  



  






               (9) 

In fact,  
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( ) ( )
( ) ( )

 


cg
cgr r

O r O r                     (10) 

In quantum mechanics a similar strategy can be developed. Let us consider a closed 

system whose Hilbert space  is spanned by the eigenstates r  of an observable R of 

continuous spectrum; so, any state ̂  and any observable Ô  can be expressed, respectively, as 

ˆ ( , ') ' 'r r r r drdr                       (11) 

ˆ ( , ') ' 'O O r r r r drdr                      (12) 

In this case, coarse graining is the result of partitioning the space   into regions 

corresponding to ( , ) ir r C  . On the basis of this partition, coarse-grained states and coarse-

grained observables can be defined as follows. First, certain coarse-grained functions that 

average the components of states and observables in the regions iC  are defined: 

( , ') ( , ) if ( , )
i

cg i
C

r r r r r r drdr r r C                   (13) 

( , ') ( , ) if ( , )
i

cg i
C

O r r O r r r r drdr r r C                 (14) 

Second, the corresponding operators are obtained as 

ˆ ( , ') ' 'cg cg r r r r drdr                     (15) 

ˆ ( , ') ' 'cg cgO O r r r r drdr                    (16) 

This leads to a situation completely analogous to the classical case: the coarse-grained 

description can be obtained both by averaging the fine-grained observables in the coarse-

grained state or by averaging the coarse-grained observables in the fine-grained state (see eq. 

(10): 

ˆ ˆ

ˆ ˆ
cg

cgO O
 

                        (17) 

This quantum coarse-graining procedure was the strategy followed in certain early 

attempts to explain the emergence of classicality during a period that can be considered as the 

pre-history of the decoherence program. In the 1950s and the early 1960s, the issue was 

treated in the context of the study of irreversibility in closed systems (van Kampen 1954, van 

Hove 1957, 1959, Daneri, Loinger, and Prosperi 1962). From this perspective, the states that 

are indistinguishable from the viewpoint of certain “gross” observables are described by the 

same coarse-grained state, whose evolution can be proved to reach equilibrium in a certain 
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relaxation time. The main problem of this period was that the relaxation times so obtained 

turned out to be too long to account for the experimental emergence of classical behavior (see 

Omnès 2005). 

Summing up, although coarse graining is a traditional procedure to explain 

irreversibility in classical statistical mechanics, it can be appealed to when the issue is 

quantum irreversibility; see Table 1 for the analogy between the two cases (Fortin and 

Lombardi 2018). 

 

 

 

 

 

 

 

 

 

 

 

5.2.- Partial trace 

Although the reduced state of an open system can be computed by tracing over the degrees of 

freedom of its environment, the very definition of the concept of reduced state does not appeal 

to partial trace. The reduced state ρ̂S

r
 of the open system S  is defined as the density operator 

by means of which the expectation values of all the observables of S  can be computed. 

Precisely, if S  and E  are the Hilbert spaces of the open system S  and its environment E  

respectively,  S E  is the Hilbert space of the closed system SE , ˆ  S S SO  is an 

observable of S , ˆ
EI  is the identity in E E , and ρ̂   is the state of SE , then the 

reduced state of S  is defined as the density operator ρ̂S

r
 such that 

ˆ ˆ

ˆ ˆ
 


S
r

SE
S SO O                        (18) 

Table 1: Coarse graining in classical statistical mechanics and in 

quantum mechanics. 
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C
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C


   
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1
( ) ( ) if 

( ) i
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C
i
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C


 
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Coarse graining in variable r 

( , ) ( , ) if ( , )
i

cg i
C

r r r r drdr r r C      
 

ˆ ( , )cg cg r r r r drdr      

( , ) ( , ) if ( , )
i

cg i
C

O r r O r r drdr r r C    
 

ˆ ( , )cg cgO O r r r r drdr     
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where ˆ ˆ ˆSE
S S EO O I  . On the basis of this definition, the reduced state can be computed by 

tracing over the degrees of freedom of E , as ˆ ˆρ ρS
r ETr .  

In the quantum domain, the operation of partial-trace was used not only in the account 

of the phenomenon of decoherence. It was already implicit in what Erwin Schrödinger (1926) 

called “density of electricity” or “electric charge density”, a quantity defined in the space of 

three dimensions, which he considered the quantum magnitude with direct physical meaning 

(see Przibram 1967).  

In classical statistical mechanics an analogous strategy can be developed. Let us 

consider a closed system SE of N particles described by a phase space   of 6N dimensions. 

The states and observables of the system are functions of the 3N positions iq  and the 3N 

momenta ip  of the N particles: 

1 1 3 3( ) ( , ,..., , )N Nr q p q p                      (19) 

1 1 3 3( ) ( , ,..., , )N NO r O q p q p                    (20) 

If the purpose is to describe an open subsystem S of s particles, the interest is centered on the 

observables 
1 1 3 3( , ,..., , )S s sO q p q p . In order to compute the expectation values of these 

observables, a reduced state ( )S

r r  can be computed by means of a partial trace:  

1 1 3 3 1 1 3 3 3 1 3 1 3 3( , ,..., , ) ... ( , ,..., , ) ...S

r s s N N s s N Nq p q p q p q p dq dp dq dp          (21) 

The reduced state 
1 1 3 3( , ,..., , )S

r s sq p q p  of the subsystem S of s particles disregards the degrees 

of freedom of the environment E composed by the remaining N s  particles. In turn, the 

observable of the open system S can be expressed from the viewpoint of the closed system of 

N particles as a function on the phase space  : 

1 1 3 3 1 1 3 3( , ,..., , ) ( , ,..., , )SE

S s s S N NO q p q p O q p q p              (22) 

The reduced state 
1 1 3 3( , ,..., , )S

r s sq p q p  can also be expressed from the viewpoint of the closed 

system as a function on  : 

1 1 3 3 1 1 3 3( , ,..., , ) ( , ,..., , )S SE

r s s S N Nq p q p q p q p                 (23) 

Therefore, the expectation values of the observables of S can be computed alternatively from 

the perspective of the closed system SE of N particles or from the perspective of the open 

subsystem S of s particles (see the analogy with the quantum case given by eq. (18)): 

 
S

r

SE
S SO O                        (24) 
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In this classical statistical context, reduced densities are used to compute the expectation 

values of the observables (phase functions) that depend on the dynamical variables of a subset 

of the particles of the system, such as, for instance, the kinetic energy of a single particle, or 

the potential energy of two particles. The evolution of the reduced densities is described by 

the set of equations known as BBGKY hierarchy due to the name of its authors: Nicolái 

Bogoliubov (1946), Max Born and Herbert Green (1946), John Kirkwood (1946), and Jacques 

Yvon (1935). 

Summing up, although partial trace is a traditional procedure to account for the behavior 

of open systems in quantum mechanics, it is also used in classical statistical mechanics when 

the interest is focused on certain particular magnitudes; see Table 2 for the analogy between 

the two cases (Fortin and Lombardi 2018). 

 

 

 

 

 

 

 

 

 

 

 

5.3.- Coarse descriptions 

As explained in Subsection 5.1, coarse-grained descriptions result from a partition of the 

space of states into discrete and disjoint cells iC : this operation defines the coarse-grained 

distribution. Since applying the same coarse-graining operation to the coarse-grained 

distribution does not modify the result, the relationship between the coarse-grained and the 

fine-grained descriptions can be described in terms of projection: 

classical: cg cg cg       cg                  (25) 

quantum: cg cg cgˆ ˆ ˆˆ ˆ ˆ       cg                  (26) 

System :  (  particles) ; ;SE N O   ˆˆSystem : ; ;SE O   

CSM 

Table 2: Partial trace in classical statistical mechanics and in 

quantum mechanics. 

QM 

S
r

SE
S SO O

 
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ˆ ˆ

ˆ ˆ
S
r

SE
S SO O

 
  

Subsystem S (s particles) 

1 1 3 3( , ,..., , )S s sO q p q p  

 

1 1 3 3( , ,..., , )SE

S N NO q p q p  

 

3 1 3 1 3 3... ...S

r s s N Ndq dp dq dp      

Subsystem S (open system) 

ˆ
S S SO    

 

ˆ ˆ ˆSE
S S EO O I   

 

ˆ ˆS

r ETr    
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where the projectors cg  and cg̂  perform the operations described by eq. (7) and eq. (15), 

respectively (strictly speaking, in the Hilbert-space formalism of Koopman (1931) in the 

classical case). 

On the other hand, as explained above, the reduced state of an open system S  in 

interaction with its environment E  is defined as the state by means of which the expectation 

values of all the observables of S  can be computed. But, in this case, the state of the closed 

composite system SE  and the reduced state of S  belong to different mathematical spaces. 

Therefore, for dimensional reasons the reduced state of S  cannot be directly expressed as the 

result of a projection onto the state of SE . Nevertheless, a coarse description from the 

viewpoint of the closed composite system can be defined in the following way (the 

explanation corresponds to the quantum case, but it is completely analogous for the classical 

case in the formalism of Koopman). The expectation value of ˆ
SO  in the reduced state ˆ S

r , 

originally computed as in eq. (18), can also be expressed as the expectation value of the 

observables ˆ ˆ ˆSE
S S EO O I   of the closed system SE in a state ˆ SE

r   : 

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
S SE SE
r r r

SE
S S S EO O O I

  
                    (27) 

The density operator ˆ SE
r  can be obtained as 

pt pt ptˆ ˆ ˆˆ ˆ ˆ       SE
r                      (28) 

where the projector pt̂  performs the following operation: 

 ptˆ ˆ ˆ ˆ       
ES

EE rTr                   (29) 

and 
E

E E    is a normalized identity operator with coefficients /
E

  
     (see 

Fortin and Lombardi 2014). In turn, if we trace off the degrees of freedom of the environment 

E on ˆ SE
r , we recover the reduced state of the open system S: 

 ˆ ˆ ˆρ ρ
ESE S S

E r E r rTr Tr                       (30) 

This means that the ˆ SE
r , which “erases” the components of the quantum state ρ̂  

corresponding to the environment E, supplies the same information about the open system S 

as the reduced state ρ̂
S
r , but now from the viewpoint of the closed system SE. Therefore, the 

relationship between the traced and the non-traced description can also be described in terms 

of projection: 

classical: 
pt pt pt       SE

r    
              (31) 

quantum: 
pt pt ptˆ ˆ ˆˆ ˆ ˆ       SE

r                  (32) 
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Summing up, both in the case of coarse graining and in the case of partial trace, a state 

that supplies a coarse description of the closed system can be defined, in such a way that it 

can be obtained as a projection onto the “fine description”. The difference between the two 

cases lies in what is disregarded in each one of them. As clearly explained by Michael 

Mackey (1989), coarse graining implies the loss of some information about the exact values of 

all the dynamical variables, whereas partial trace implies the loss of all the information about 

the exact value of some dynamical variables. 

Table 1 and Table 2, as well as the two pairs of equations (25)-(26) and (31)-(32) show 

relevant analogies between the classical and the quantum domains concerning expectation 

values. These analogies can be regarded as a case of what Stephan Hartmann (2008) calls 

‘structure correspondence’, in his systematization of the different types of correspondence 

relations. In the next section we will show how this structure correspondence can be 

conceived as a particular case of a generalized version of the correspondence principle. 

6.- Correspondence and the physical meaning of decoherence 

6.1.- Generalizing the Correspondence Principle 

Although the original CP was designed to establish a link between frequencies and motions, 

the idea was broadened already in Bohr’s times. In fact, in his doctoral dissertation under 

Sommerfeld’s supervision, Pauli (1922) introduced what he called a “mechanical” CP: since 

classical mechanics applied to inelastic collision processes should also break down because of 

energy quantization, a CP for this case, in analogy with Bohr’s electrodynamical principle, 

was necessary.  

Of course, in Pauli’s extrapolation to the mechanical domain, the CP has not exactly the 

original meaning devised by Bohr. Nevertheless, the “mechanical CP” still retains the idea of 

a certain correspondence between quantum and classical. This extrapolation suggests the 

possibility of formulating a generalized version of the CP, concerned with the 

correspondence between analogous quantum and classical concepts and regularities. In the 

light of this proposal, the structural correspondence between the classical and the quantum 

domains concerning expectation values, as described in Section 5, turns out to be a particular 

case of that generalized version of Bohr’s CP. On this basis, two remarks are in order. 

First, it is worth emphasizing again that the structural correspondence appears at the 

level of the expectation values. In the early days of the environment-induced program, and 

following the works of other authors (e.g., Ballentine, Yang, and Zibin 1994), some 
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decoherence theorists conceived the CP as the demand for the agreement between quantum 

and classical expectation values (see, e.g., Habib, Shizume, and Zurek 1998), and claimed that 

decoherence is the physical process that leads to such an agreement. But this expectation-

value perspective got lost in later works, in which the phenomenon of decoherence came to be 

seen as the result of the dynamical evolution of the open system’s reduced state. In the light of 

the structure correspondence exhibited in the previous section, here we will come back to the 

perspective based on expectation values in order to understand decoherence. 

Second, and related with the previous remark: from the perspective opened by structure 

correspondence, this particular case of the generalized CP becomes an expectation-value 

requirement, that is, the demand for the agreement between classical and quantum expectation 

values. This is the view adopted by Belot and Earman when, in their article about the CP in 

the context of the problem of quantum chaos, they require “that the quantum expectation 

values mimic classical expectation values computed from the appropriate  .” (1997: 169). It 

is precisely in this point that quantum decoherence plays a substantial role: the agreement 

required by the CP is reached only when decoherence occurs. In other words, decoherence is 

the phenomenon that allows the CP, in its expectation-value version, to be fulfilled. And, in 

turn, as will be argued below, this version of the CP offers the conceptual elements to 

understand the physical meaning of decoherence. 

6.2.- Using the Correspondence Principle as a conceptual tool 

At this point we have all the elements to follow Batterman’s strategy: appealing to the CP as a 

guiding principle to face conceptual problems related with the relation between classical and 

quantum. In particular, the CP as a conceptual tool will help us to elucidate the nature of the 

reduced state and, with it, the physical meaning of the phenomenon of decoherence. 

In the classical case, the diverse ways of conceiving the coarse-grained state express the 

different interpretations of irreversibility, in the context of a debate that is still as alive as in 

the birth of statistical mechanics (see, e.g. Frigg 2007). Nevertheless, despite the debates 

about interpretation, nobody ignores the difference between the statistical state, which evolves 

unitarily according to the dynamical postulate of the theory, and the coarse-grained state, 

which may approach a final stable state. Even those who take a heterodox position by 

claiming the priority of the coarse-grained state regarding objectivity are clear on that such a 

move requires a reformulation of the fundamental dynamical law of statistical mechanics (see, 

e.g., Misra, Prigogine, and Courbage 1979, Nicolis and Prigogine 1989). In other words, 

independently of the particular disagreements about irreversibility, nobody attempts to endow 
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the statistical state and the coarse-grained state with the same interpretation. On the basis of 

the generalized version of the CP, given that in the quantum case the reduced state is also a 

coarse description regarding the fine description, there is no reason to conflate the reduced 

state of the open system with its quantum state. 

As a consequence, both in the classical and in the quantum cases, the system’s state, 

which evolves according to the dynamical postulate of the respective theory, must not be 

confused with a coarse-grained state or a reduced state, which offers a coarse description of 

the system. Once it is accepted that cg  and 
S
r  are not classical-statistical states, it must be 

admitted that ˆ
cg  and ˆ S

r  are not quantum states either. This is particularly relevant for the 

interpretation of quantum mechanics, since endowing reduced states with the same 

interpretation as quantum states yields interpretive difficulties, in particular, is an obstacle for 

no-collapse interpretations to explain consecutive measurements (Ardenghi, Lombardi, and 

Narvaja 2012). When the coarse nature of 
S
r  is accepted, the decoherence of the reduced 

state is a phenomenon that proceeds at a coarse level of description, analogously to the case of 

classical irreversibility. In fact, as Roland Omnès (2001, 2002) stresses, decoherence is a case 

of quantum irreversibility. 

In turn, describing decoherence as a coarse-level phenomenon amounts to interpreting it 

as a process that happens to expectation values: the description in terms of reduced state is 

only a shortcut to explain an expectation-value process. More precisely, when considered 

from a fundamental viewpoint, decoherence involves the convergence of the expectation 

value of any observable of the open system to a value that can be computed as if the system 

were closed and in a state represented by a diagonal density operator.  

ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ
  

 
S S
r r

SE
S S S

t t
O O O                  (33) 

As Maximilian Schlosshauer claims in his well-known book about decoherence, strictly 

speaking a reduced density operator is only “a calculational tool” for computing expectation 

values (Schlosshauer 2007: 48). For this reason, the author warns us “against a 

misinterpretation of reduced density matrices as describing a proper mixture of states” (2007: 

69). 

This view of decoherence based on the expectation-value perspective contrasts with 

Zurek’s reading of the phenomenon. Zurek embraces a dynamical interpretation, according to 

which decoherence is a process that transforms quantum states, turning pure states into 

mixtures. From the expectation-value perspective, decoherence is a phenomenon that involves 
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reduced states, which are not quantum quantum states but coarse states. An it is precisely the 

parallel with the classical case, brought to light by the quantum-classical structural 

correspondence, that supports this view that clearly distinguishes between quantum state and 

reduced state. 

Summing up, the expectation-value version of the generalized CP backs up an 

interpretation of the phenomenon of decoherence different from the dynamical approach 

implicit in most presentations: since the reduced state is not the quantum state of the open 

system, but a coarse description of the closed composite system, decoherence should not be 

conceived as a phenomenon resulting from the interaction between an open system and its 

environment (see Castagnino, Fortin, and Lombardi 2010a). By contrast, decoherence is a 

coarse process that emerges, under appropriate conditions, from taking into account only the 

evolution of some degrees of freedom of the whole closed system and disregarding the 

remaining degrees of freedom conceived as the environment (see Fortin and Lombardi 2016). 

7.- Conclusions and perspectives 

In this article, we began by recalling the first versions of the CP in old quantum theory, 

showing how the original claim about a link between frequencies and motions in the atom 

gradually turned out to be conceived by physicists as a requirement of the classical limit of 

quantum mechanics. Once the CP and the demand for the classical limit of quantum 

mechanics are distinguished, a principle proposed in the context of the old quantum theory 

seems to have no other relevance to present-day physics than a historical interest. In contrast 

with this view, we claimed that the CP can still be useful to elucidate the relationship between 

the quantum and the classical domains. In order to argue for this position, we recalled Robert 

Batterman’s proposal of appealing to the CP, in its original formulation, as a conceptual 

resource to face the hard problem of defining quantum chaos.  

On the one hand, inspired by Batterman’s strategy, we undertook the task of elucidating 

the concept of decoherence in the light of the CP. Since the core of the meaning of 

decoherence lies in the concept of reduced state, we developed a detailed structural 

correspondence between quantum mechanics and classical statistical mechanics in order to 

elucidate that concept. Such a correspondence made clear that, both in the classical and in the 

quantum cases, the coarse-grained state and the partial-traced state supply coarse 

descriptions, in such a way that they can be obtained as projections of the corresponding “fine 

description”. In turn, this is a manifestation of the fact that the quantum-classical structural 

correspondence holds at the level of expectation values, 
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On the other hand, Pauli’s mechanical extrapolation of the CP led us to formulate a 

generalized CP, concerned with the correspondence between analogous quantum and classical 

concepts and regularities. Therefore, the CP, as the demand for the agreement between 

classical and quantum expectation values, turns out to be a particular case of that generalized 

version of the CP. In this context, decoherence is the phenomenon that allows the CP, under 

this expectation-value form, to be fulfilled. As a consequence, decoherence must be 

understood as a process that occurs at the level of the expectation values; the reduced state 

must be viewed as a calculation tool for computing the expectation values of interest. This 

means that decoherence is a coarse phenomenon resulting from taking into account only the 

evolution of some degrees of freedom of the whole closed system and disregarding the 

remaining degrees of freedom conceived as the environment. In other words, it is a 

phenomenon relative to the observables selected to be studied. This way of understanding 

decoherence, devised under the guide of the CP, is completely different than the dynamical 

reading based on assuming the transformation of pure states in mixtures, typical in the 

writings of the main theorists of environment-induced approach to decoherence. 

This understanding of decoherence offers a simple way out for the difficulties that 

challenge the orthodox environment-induced approach, which are byproducts of interpreting 

reduced states as quantum states (see Castagnino, Laura and Lombardi 2007): 

 The “open-system” problem: If only open systems may decohere, the issue of the 

emergence of classicality in closed systems, in particular, in the universe as a whole, cannot 

even be posed. In Zurek’s words: “the Universe as a whole is still a single entity with no 

‘outside’ environment, and, therefore, any resolution involving its division into systems is 

unacceptable.” (1994: 181). This difficulty has led to the development of non-dissipative 

approaches to decoherence (see, e.g., Bonifacio et al. 2000, Ford and O’Connell 2001, 

Frasca 2003). 

This “open-system” problem vanishes from the new perspective. Now decoherence is no 

longer conceived as the result of the interaction of an open system with its environment. 

When understood as a coarse evolution, as in the case of classical irreversibility, 

decoherence may happen in closed systems regarding certain relevant observables (this 

closed-system view leads to a generalized view of decoherence, see Fortin, Lombardi, and 

Castagnino 2014, Fortin and Lombardi 2016). 

 The “defining-system” problem: The orthodox approach offers no general criterion to place 

the “cut” between system and environment: given the possibility of “internal” 

environments, the partition must be decided case by case, and usually depends on the 
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previous assumption of the observables that will behave classically. In Zurek’s words: “In 

particular, one issue which has been often taken for granted is looming big as a foundation 

of the whole decoherence program. It is the question of what are the ‘systems’ which play 

such a crucial role in all the discussions of the emergent classicality. This issue was raised 

earlier, but the progress to date has been slow at best.” (1998: 22). 

The “defining-system” problem is simply dissolved by the expectation-value view. In fact, 

any coarse description depends on how the relevant information is selected. As a 

consequence, decoherence is relative to the relevant observables selected to be studied 

(Castagnino, Fortin, and Lombardi 2010b, Dugić and Jeknić-Dugić 2012, Lychkovskiy 

2013). In turn, since there is no privileged or essential decomposition of the closed system 

(Harshmann and Wickramasekara 2007a, 2007b, Harshman 2019), there is no need for an 

unequivocal criterion to identify the systems involved in decoherence (for a detailed 

discussion, see Lombardi, Fortin, and Castagnino 2012). 

The interpretation of decoherence as a relative phenomenon can be generalized leading 

to a closed-system view of quantum mechanics, also inspired in the classical-quantum 

correspondence. In the case of classical statistical mechanics, the dynamical postulate the 

Liouville equation is applied to closed systems, which can be also approached from different 

coarse descriptions. Analogously, the only legitimate quantum systems are the unitary 

evolving closed systems, which can be coarsely described in many different ways. This view 

finds a significant affinity with the so called “quantum structure studies”, dealing with the 

different ways in which a quantum system can be decomposed into subsystems (quantum 

structures) (see, e.g., Zanardi 2001, Jeknić-Dugić, Arsenijević, and Dugić 2013). From this 

closed-system perspective, entanglement is also relative to the partition of the closed system 

into parts (Barnum et al. 2003, 2004, Viola and Barnum 2010), and this relativity dissolves 

what John Earman (2014) calls “puzzles about quantum entanglement”, derived from the lack 

of a univocal criterion to decompose a closed quantum system. 

These recent works show that the CP, with no need of being interpreted in terms of a 

quantum-to-classical limit but conceived as a guiding principle regarding the relations 

between the classical and the quantum domains, may continue to offer relevant contributions 

to the understanding of quantum mechanics.  
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