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COMPOSING LOGICAL OPERATORS VIA SELF-ASSEMBLY

TRAVIS LACROIX

Abstract. I consider how complex logical operations might self-assemble in a

signalling-game context via composition of simpler underlying dispositions. On
the one hand, agents may take advantage of pre-evolved dispositions; on the

other hand, they may co-evolve dispositions as they simultaneously learn to
combine them to display more complex behaviour. In either case, the evolution

of complex logical operations can be more efficient than evolving such capac-

ities from scratch. Showing how complex phenomena like these might evolve
provides an additional path to the possibility of evolving more or less rich no-

tions of compositionality. This helps provide another facet of the evolutionary

story of how sufficiently rich, human-level cognitive or linguistic capacities may
arise from simpler precursors.
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1. Signalling and Self-Assembly

The signalling game, presented in a classical context in Lewis (1969) and an evo-

lutionary context in Skyrms (1996, 2010), has been well-studied. The basic sender-

receiver model has been extended to shed light on a variety of philosophically in-

teresting phenomena that arise in communicative contexts.1 Barrett and Skyrms

(2017) ask how such games might evolve in the first place. In some cases, actors

may interact in such ways that can usefully be characterised as a game. This is the

focus of their notion of self-assembly. Under this description, individuals with prior

strategies for solving decision problems may come to interact. These interactions

then compose to form games. Once such simple games have arisen, they may them-

selves compose to form more complex games—ones that can, perhaps, deal with

novel phenomena more efficiently than learning new dispositions from scratch. This
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1For example, differentiating indicatives and imperatives (Huttegger, 2007; Zollman, 2011); sig-
nalling in social dilemmas (Wagner, 2014); network formation (Pemantle and Skyrms, 2004; Bar-
rett et al., 2017b); deception (Zollman et al., 2012; Mart́ınez, 2015; Skyrms and Barrett, 2018);

meta-linguistic notions of truth and probability (Barrett, 2016, 2017); syntactic structure (Barrett,
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may happen in a variety of plausible ways—via ritualisation, template transfer,

analogical reasoning, or modular composition. Thus, self-assembly concerns how

games and the dispositions that they implement might evolve together.

Here, I provide novel models to show how modular compositional processes may

provide some benefit over learning complex dispositions from scratch. I use logical

operations as a testbed for comparing the efficacy and efficiency of several different

models. In one case, the agents may utilise pre-evolved dispositions, which then self-

assemble, via modular composition, to exhibit more complex behaviour. In another

case, simple dispositions may evolve even while the means of composing them into

more complex dispositions evolves.2

Each of these models utilises only simple reinforcement learning, with no pun-

ishment.3 Reinforcement learning is often considered the simplest dynamic that we

can study, regarding the agents’ computational resources. All other things being

equal, this is the simplest dynamic that readily illustrates the particular phenom-

ena of interest.4 Further, since this is the dynamic that Barrett and Skyrms (2017)

discuss, using the same dynamic allows for more simple comparison of their results

(as a baseline) with the results of the present models.

In the unary logic game (Section 2), I show how a function that takes a single

proposition as its input, and which outputs a truth value, can be modelled in a

sender-receiver context, like a signalling game. Once this architecture is available

to the agents, I demonstrate how we can understand a binary logical operator—

specifically, nand—as the modular composition of two unary operations (Sec-

tion 3.1). Thus, the key idea is that rather than having to evolve a binary disposition

from scratch, the agents may learn to compose two pre-evolved unary dispositions

appropriately. In one way, this is an extension of previous work on self-assembly,

insofar as the complex signalling behaviour examined here is the same as that which

is examined in Barrett and Skyrms (2017)—namely, the evolution of logical opera-

tions; however, the mechanism by which this behaviour evolves is wholly different.5

I compare the efficacy and efficiency of several means for evolving logical operations

by examining the cumulative success rates of the agents’ evolving strategies under

2See also LaCroix (2018b).
3This dynamic has a long psychological pedigree is a standard model for human and non-human an-
imal learning. The role that the ‘law of effect’ plays in animal learning was discussed by Thorndike

(1905, 1911, 1927); this notion was formalised by Herrnstein (1961, 1970) and empirically tested
as a model for human learning (Roth and Erev, 1995, 1998). Argiento et al. (2009) analyse limit-

ing results of signalling games under simple reinforcement. For alternative dynamics, see Barrett
(2006); Barrett and Zollman (2009); Skyrms (2010); Huttegger et al. (2010); Alexander et al.

(2012); Barrett et al. (2017a). Sutton and Barto (1998) provide a computational perspective on
reinforcement learning.
4Though some bandit-type problems, which simple heuristics like Herrnstein reinforcement readily

solve, cause problems for more ‘sophisticated’ learners. See Vermorel and Mohri (2005); Kuleshov
and Precup (2014).
5Yet another mechanism for self-assembly via modular composition is examined in Barrett (2019).
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simulation.6 Finally, understanding binary operations as the composition of inde-

pendent (pre-evolved) unary operations, I show how this model can be extended in

several ways to obtain a more general picture of how such dispositions may co-evolve

(Sections 3.2, 3.3, 3.4, 3.5).

Demonstrating how complex phenomena like these might evolve provides an

additional path to the possibility of evolving more-or-less rich notions of composi-

tionality. Independent modelling accomplishments of this sort make successful com-

position that much more plausible as a natural phenomenon. With sparse cognitive

resources, agents can exhibit a surprising and subtle degree of complexity. This

provides another facet of the evolutionary story of how sufficiently rich, human-

level cognitive or linguistic capacities may arise from simpler precursors. Such an

explanation is indispensable for research in language origins, insofar as most re-

searchers take complex (i.e., compositional, hierarchical) syntax to be a defining

characteristic of human linguistic capacities.7 This has additional implications for

the evolution of cognition, inasmuch as a broader picture of self-assembly would

show how completely general algorithms might evolve. Furthermore, this sheds

light on how a cognitive system might self-assemble to perform epistemic functions,

such as representation, communication, and inference.8

Though the models presented here are couched in the language of logical op-

erations, it should be clear from the outset that these operators provide a simple

testbed for the broader sort of compositional phenomena under consideration. This

should be understood as providing a how-possibly explanation of the type that is

common in this field (Hempel, 1965; Resnik, 1991).9

6Cumulative success of a run is calculated simply by dividing the number of successful plays in
that run by the total number of plays. The cumulative success rate is the proportion of runs that

achieved a cumulative success above some threshold. The cumulative success rate approaches 1
when the players have fixed upon a signalling system—i.e., a maximally-efficient communication
convention. A different measure of efficacy is given by the expected payoff of the players’ strategies

at a particular play of the game—the communicative success rate. The communicative success rate

is a ‘snapshot’ which is better suited than the cumulative success rate at providing a picture of
the estimated size of pooling equilibria: a sub-optimal random walk could spend some time above

the expected cumulative success rate for pooling equilibria, though this becomes less likely as the
threshold for the cumulative success rate increases. Still, neither of these measures guarantees
what the results will be in the limit.
7See discussion in Progovac (2019); LaCroix (2019).
8See discussion in Barrett (2019); Barrett and LaCroix (2019).
9For example, the evolutionary signalling game described in Skyrms (2010) shows how commu-
nication might evolve without natural salience, but not that or how it actually did so. In the

conclusion (Section 5), I discuss in more detail empirical examples that display the more gen-
eral sort of compositional processes, of which the logic games considered here provide a specific
example.
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2. Simple Unary Logic Games

I will begin with an excessively simple model. Whereas Barrett and Skyrms

(2017) use the binary operator nand to compare the evolution of new dispositions,

we will see that we can understand such a binary operation as the modular composi-

tion of two unary logical operators. Consider the following four (exhaustive) unary

operations on a single input (proposition) in the context of a two-player sender-

receiver game: identity (id), negation (neg), tautology (taut), and contradiction

(cont); see Table 1.

p id(p) neg(p) taut(p) cont(p)
1 1 0 1 0
0 0 1 1 0

Table 1. Unique outputs for unary functions

Each of these unary functions can be modelled as a sender-receiver game, with

each game being differentiated by the composition of its respective payoff matrix. I

will denote the game that models the id function as the ‘id game’, and similarly for

the other unary functions. The payoff matrices for the games corresponding to each

of these unary logical operations are given in Table 2.10 The id game is equivalent

a0 a1

s0 1 0

s1 0 1

(a) id Game

a0 a1

s0 0 1

s1 1 0

(b) neg Game

a0 a1

s0 0 1

s1 0 1

(c) taut Game

a0 a1

s0 1 0

s1 1 0

(d) cont Game

Table 2. Four possibilities for payoffs matching states to acts: (a) is a coordination
game, which corresponds to the unary identity function; (b) is an anti-coordination game,
corresponding to the unary negation function; (c) and (d) are, what we might call, pooling
games, corresponding to the tautology and contradiction functions, respectively.

to the standard 2 × 2 signalling game. On this model, there are two states (the

truth values of p), two messages, and two actions (the truth values defined by the

operation that the game models). Reinforcement is modelled as an urn-learning

process. The sender has an urn for each state, and each urn initially contains a ball

for each message. Similarly, the receiver has an urn for each message, and each of

these urns initially contains a ball for each action.

10I follow the convention that ‘s0’ [‘a0’] corresponds to input [output] 0, and ‘s1’ [‘a1’] corresponds

to input [output] 1. Since the payoffs are also denoted by ‘0’ and ‘1’, this is meant to help keep

the state, act, and payoff disambiguated. I will refer to the input [output] as either ‘0’ and ‘1’, or
‘s0’ and ‘s1’ [‘a0’ and ‘a1’] depending upon the context and which notation allows for the most

clarity.
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On a given play of the game, nature picks a truth value for the proposition, ran-

domly and without bias. The sender sees the state and chooses a message randomly

from the appropriate urn for the current state. The receiver sees the message but

not the state; she chooses an action randomly from the urn for the current message.

If the action ‘matches’ the state (as defined by the payoff tables in Table 2), then

the play is counted as a success. In this case, the players each replace the ball they

chose on that round to the urn from which it was chosen and add another ball of

the same type to that urn. If the play was not successful, then they return the ball

to the urn from which it was chosen. Thus, over time, their propensities to act shift

proportional to their past successes.

Given that the id game just is a 2× 2 signalling game, we know that the players

will (eventually, but usually quickly) coordinate upon one or the other signalling

system with probability 1, when nature is unbiased (Argiento et al., 2009). Indeed,

the neg game is functionally equivalent to the id game—modulo a permutation of

the payoffs, or a re-labelling of the states or acts. Thus, it follows immediately that

the neg game also gives rise to one or the other signalling system with probability

1 (subject to the same caveats). Further, the receiver in the taut- and cont

games has an action available to her which is strictly dominant. Therefore, each

of these will converge to an optimal strategy under simple reinforcement learning,

since this dynamic converges on a dominant strategy, if there is one (Beggs, 2005).

Accordingly, success is guaranteed eventually in each of these four simple unary

logic games under reinforcement learning.

However, analytic results do not capture what happens in the short term, or how

quickly these effective strategies might arise. On simulation, the average cumulative

success rates (1000 runs each) for the id- and neg games are both around 0.70 after

102 plays per run. In contrast, by 102 plays per run, the average cumulative success

rates for the taut- and cont games are already near 0.92. A comparison of the

cumulative success rates for each of these games for several thresholds is given in

Table 3. Figures 1 and 2 illustrate the difference in speed of convergence between

id game neg game taut game cont game
102 106 102 106 102 106 102 106

µ 0.692 0.999 0.700 0.998 0.916 1.00 0.917 1.00
0.99 0.00 0.98 0.00 1.00 0.05 1.00 0.04 1.00
0.95 0.00 1.00 0.00 1.00 0.20 1.00 0.21 1.00
0.90 0.03 1.00 0.03 1.00 0.76 1.00 0.78 1.00
0.80 0.27 1.00 0.29 0.98 1.00 1.00 1.00 1.00

Table 3. Comparison of cumulative success rates for unary logic games with a variety of
thresholds for success

these games graphically. The relative speed of the taut- and cont games will be
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Figure 1. Comparison of average cumulative success rates for unary-input logic games
in the short term (102 plays per run)

Figure 2. Comparison of average cumulative success rates for unary-input logic games
in the long term (106 plays per run)

necessary for explaining the results discussed in Section 3 below. Therefore, it is

instructive to discuss why the taut- and cont games should evolve faster than the

id- and neg games.

In the id- and neg games, the players must co-evolve their strategies to reach

a maximally-effective set of strategies—namely, the ‘signalling systems’ of these

sender-receiver games.11 However, there are more maximally-effective sets of pure

11Technically, the maximally-effective sets of strategies are only signalling systems in the id- and

neg games since these are properly signalling games, which require coordination on the part of the

agents. In the taut- and cont games, the players need not coordinate to achieve maximal payoff—
signals need not carry any information—so it makes little sense to talk of ‘signalling systems’ or

‘coordination conventions’ in these latter contexts.
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strategies available to the players in the cont- and taut games.12 Taking account

of mixed strategies implies a continuum of maximally-effective strategies for the

taut- and cont games: every mixed strategy for the sender in conjunction with

the appropriate pure total-pooling strategy for the receiver will result in a maximal

payoff in the taut- and cont games, whereas no mixed strategy proffers maximal

payoff in the id- and neg games.

Thus, it is sufficient, but not necessary, that the players co-evolve their strategies

in the taut- and cont games to achieve maximal payoff; the receiver may learn

that the signal does not matter—she should always choose action 0 in the cont

game and action 1 in the taut game.

Unary functions are simple enough that they are essentially guaranteed to emerge

in a sender-receiver context under simple reinforcement learning.13 With these ini-

tial results outlined, I describe how a binary logical operator can be composed out

of unary logical operators.

3. Composing Unary Functions for Binary Inputs

In this section, I demonstrate how actors in a signalling context might compose

unary dispositions into more complex binary dispositions. I begin with the relevant

background, against which I will compare the novel models in this paper. This in-

cludes learning to evolve a binary disposition from scratch via syntactic signalling

(Barrett, 2006, 2007, 2009) and appropriating a pre-evolved binary disposition for

a novel context via template transfer (Barrett and Skyrms, 2017). In Section 3.1,

I present a novel means for agents to utilise pre-evolved dispositions (the unary

logic dispositions discussed in Section 2) to learn more complex novel dispositions

(a binary-input nand disposition). This model presupposes that the agents have

already learned the unary logical operations and further learn to combine them

into binary logical operations. However, the assumption that the unary logical op-

erations are pre-evolved is relaxed in Section 3.2 using a hierarchical model similar

to the one employed in Barrett et al. (2018). This too involves several simplifying

assumptions, which are incrementally relaxed in Sections 3.3, 3.4, and 3.5.

Each of the models I discuss uses only simple reinforcement learning, where

the propensities for actions are proportional to the accumulated rewards for prior

actions. Nature is unbiased, and players’ initial weights are always 1 so that the

probability distribution over any player’s actions is uniform to start. Finally, the

12In the atomic n-game, there are n2n strategy combinations, n! of which are signalling systems.

Thus, for the id- and neg games there are 24 = 16 combinations of pure strategies, and 2! = 2
of these are signalling systems. However, in the taut game and the cont game, there are 4

maximally-effective sets of (pure) sender-receiver strategies.
13This guarantee requires that nature is not too biased for the id- and neg games (Hofbauer and

Huttegger, 2008); no such assumption is required for the taut- and cont games.
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rewards are always 1 for successful actions. There is no discounting, no error rate,

no punishment, and no bounds in any of these models. In terms of our urn-learning

metaphor, each urn always starts with one ball of each type, and a single ball of

the appropriate type is added when agents act successfully.14

Since Barrett and Skyrms (2017) examine template transfer for nand, I will use

the same operator to analyse the evolution of binary logical functions via modular

composition of the unary operations that were discussed in Section 2.15 There are

several ways that we might model the evolution of a nand game using reinforcement

learning. The first, which I will refer to as the atomic two-sender nand game, is

shown in Figure 3. There are two senders, called Sender A and Sender B. There

sA

sB

mi−

m−j

Nature

s0

s1

Sender A

s0

m0 m1

s1

m0 m1

Sender B

s0

m0 m1

s1

m0 m1

Receiver

m00

a0 a1

m01

a0 a1

m10

a0 a1

m11

a0 a1

Figure 3. Reinforcement learning model for simple binary-input logic game with two
senders. Nature chooses twice from one of two states; each sender chooses one of two mes-
sages from the urn matching the state received; the receiver chooses one of two actions
from the urn matching the two-input signal received. Both the senders and receiver rein-
force just in case the act corresponds (sA nand sB)—i.e., the state shown to sender A
and the state shown to sender B, respectively.

are two values for the state of the world, s0 = 0 and s1 = 1, and a full input state

is an ordered pair. Thus, there are four input states, 〈0, 0〉, 〈0, 1〉, 〈1, 0〉 and 〈1, 1〉.
To be clear on notation, I will use si to indicate the state-value i ∈ {0, 1} and

sij to denote the full binary state, 〈i, j〉. I will use sA to refer to the state seen by

sender A and sB to refer to the state seen by sender B. Nature chooses each state

14This is the most straightforward case, but there is good reason to think that the results pre-
sented will be robust to variation of these parameters. For example, Barrett et al. (2017a) discuss

a low-rationality hybrid of simple reinforcement and the “win-stay/lose-randomise” learning dy-
namic and show that it is reliable, stable, and exceptionally fast for learning in signalling contexts.

LaCroix (2018a) discusses a novel learning rule which helps avoid partial pooling, even in com-

plex games. Similarly, adding punishment or forgetting can help agents evolve optimal signalling
conventions (Barrett and Zollman, 2009).
15Barrett (2018) also discusses the evolution of nand in the context of a sender-predictor game.
However, his simulations use bounded reinforcement with punishment, which is radically different
(and importantly more sophisticated) than the generic, straightforward dynamic I consider. Still,

his general remarks regarding the effectiveness of appropriation of logical operations are relevant
here—specifically, the empirical case of appropriation in the context of rule-following in pinyon
and scrub jays (Bond et al., 2003).
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independently, and each sender only sees one aspect of the full state.16 mi− denotes

A’s message, and m−j denotes B’s message. mij denotes the full 2-bit message that

the receiver observes. Consistent with previous work on two-sender signalling games,

I assume that the receiver knows which sender sends which message.17 Further, the

senders’ messages are independent in the sense that neither sender knows which

message the other sent. Finally, there is no requirement that the two senders be

interpreted as distinct agents—they might be understood as functional components

of a single organism.

The atomic two-sender nand game involves learning the appropriate outputs

for nand from scratch. Nature chooses a state-value randomly to send to A and

separately chooses another state-value to send to B. The ordered combination of

values 〈sA, sB〉 constitutes the full state, which can be interpreted as the binary

input for the logical function in question. Each sender chooses a message from the

urn that matches the state that she sees and sends that message to the receiver.

The receiver sees which message each sender sent, and who sent the message, and

chooses an output action, a0(= 0) or a1(= 1), from the urn corresponding to the

full 2-bit message. In the nand game, a play is successful just in case the receiver

chooses the act corresponding to (sA nand sB)—namely, she should choose a0

when both state-values are 1, and she should choose a1 otherwise. The payoff table

for the nand game, with both the state and act labels, sij and ak, and the actual

input-output values, 0 or 1, is shown in Table 4.

a0 a1

0 1

s00 〈0, 0〉 0 1

s01 〈0, 1〉 0 1

s10 〈1, 0〉 0 1

s11 〈1, 1〉 1 0

Table 4. Payoff table (states and acts) for atomic nand game

16This game can also be modelled so the senders each see the full state of nature and must
coordinate on how they partition nature, to encode complete information about the state. Barrett

(2018) highlights that a truth-functional rule is more likely to evolve when the senders each have
access to different, independent states of nature than when they have access to the full state.
However, such a constraint is not artificial, since the receiver must use information from both
senders; hence, this allows for a generalisable truth-functional operation. In either case, I discuss

role-free senders in Section 3.5.
17See Skyrms (2000, 2010); Barrett (2006, 2007, 2009, 2018, 2019); Barrett and Skyrms (2017).



10 TRAVIS LACROIX

On simulation, after 106 plays per run, the cumulative success rate is 0.9053, on

average (1000 runs), when the players must learn a nand disposition from scratch.

More often than not (0.54), the players achieve a cumulative success rate higher

than 0.95, and about one-quarter of the time (0.26), they achieve a near-perfect

cumulative success rate (≥ 0.99). In approximately one-quarter (0.26) of the runs,

the agents appear to get caught in a partial-pooling equilibrium. Here, they fail to

learn a maximally-efficient signalling convention for a reduced expected payoff of

0.75. In such cases, the receiver always chooses a1.18

Once the agents have learned a nand disposition, they may appropriate this

disposition, via template transfer, for use in a novel context (Barrett and Skyrms,

2017). This process is an order of magnitude more efficient than learning the same

disposition in the new context from scratch. A schematic for the template-transfer

model is shown in Figure 4. We suppose that the agents have already coordinated

s′A

s′B

mi−

m−j

sA

sB

Nature

s′0

s′1

Translation Urns

Sender A

s′0

s0 s1

s′1

s0 s1

Sender B

s′0

s0 s1

s′1

s0 s1

Pre-Evolved Disposition

Sender A

s0 s1

Sender B

s0 s1

Pre-Evolved Disposition

Receiver

m00 m01

m10 m11

Figure 4. Transfer learning model for simple binary-input logic game with two senders.
Nature chooses twice from one of two states; each sender chooses one of two messages
from the urn matching the state received; the receiver chooses one of two actions from the
urn matching the two-input signal received. Both the senders and receiver reinforce just
in case the act corresponds (sA nand sB).

upon a convention for outputting (sA nand sB) on input 〈sA, sB〉. Thus, the urns

for these pre-evolved dispositions are already populated and fixed. Now, given a

new context with novel state-values, s′0 and s′1, the senders learn to appropriate the

previously evolved disposition by translating the novel states into their analogues

in the prior context. This model additionally shows how individuals who have al-

ready learned nand can quickly learn a different logical operation, such as or. See

Figure 5.

Barrett and Skyrms (2017) report that on 1000 runs with 105 plays per run, 0.78

of the runs exhibit a cumulative success rate of better than 0.80, 0.61 of the runs

better than 0.90, and 0.50 of the runs better than 0.95. This is roughly the same

18On 107 plays per run, the agents still get caught in partial pooling at a rate of about 0.25.
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p′ q′

0 0
0 1
1 0
1 1

p q (p nand q)
0 0 1
0 1 1
1 0 1
1 1 0

(p′ ∨ q′)

Pre-evolved DispositionNovel Context

Figure 5. Example of translating a novel context (or) into a pre-evolved disposition
(nand) via template transfer

level of success that the atomic two-sender nand game achieves on 106 plays per

run.

The template-transfer model for nand is meant to be suggestive. However, this

set up has several short-comings—for example, though the players might evolve

or via template transfer on a pre-evolved nand disposition, it is less clear how (or

whether) they might be able to use this pre-evolved nand disposition to evolve, e.g.,

and, since this operation has a different number of ‘0’ values. I will discuss these

and other considerations in more detail in Section 4 below. But first, we will see how

modular composition can be applied to the evolution of binary logical operations

out of the unary logical operations that were presented in Section 2.

3.1. Utilising Pre-Evolved Dispositions. In this section, I present one of the

key insights of this paper: the payoff table for the atomic nand game (Table 4) can

be understood as the composition of two unary logic games—in this particular case,

taut and neg; see Table 5. This insight is crucially important for understanding

a1 a2
0 1

s00 〈0, 0〉 0 1
}

taut Game
s01 〈0, 1〉 0 1

s10 〈1, 0〉 0 1
}

neg Game
s11 〈1, 1〉 1 0

Table 5. Payoff Table for nand Game as the Composition of Two Unary Games

the subsequent models presented in this paper, as each of these builds off of and

relaxes certain assumptions of the basic model shown here. The sense in which I

mean that the binary logical operation nand can be understood as the composition

of the unary logic operations taut and neg is as simple as this: the truth table
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for nand (Table 4) just is the truth table for unary taut stacked on top of the

truth table for unary neg (Table 5). This compositional idea is at the core of every

model that follows in this section.

This may seem somewhat trivial; however, the order of the inputs plays a par-

ticular role in this game: the second input corresponds to the input of the unary

sub-game, whereas the first input differentiates the two sub-games that compose

the nand game. Put another way, the first input tells us whether we are in the top

half or bottom half of the (binary-nand) truth table, and the second input codes

for which output is appropriate given the context that is differentiated by the first

input. Therefore, if sender A codes for the first input, and sender B codes for the

second input, then the receiver might learn to interpret the first signal as specifying

which unary game should take the state that is encoded by the second signal as

input, and then output the appropriate value for that game and input.

If we assume that players have pre-evolved the unary sub-game (so their dis-

positions are already fixed), then the binary-input nand game with pre-evolved

unary sub-games can be modelled as in Figure 6. I will refer to this model as the

pre-evolved composition model. There are two senders, as with the atomic nand

sA

sB

mi−

m−j

Nature

s0

s1

Sender A

s0

m0 m1

s1

m0 m1

Sender B

s0

m0

s1

m1

Receiver

m0−

id

game

m−0

m−1

a0

a1

neg

game

m−0

m−1

a0

a1

taut

game

m−0

m−1

a0

a1

cont

game

m−0

m−1

a0

a1

m1−

id

game

m−0

m−1

a0

a1

neg

game

m−0

m−1

a0

a1

taut
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Figure 6. Reinforcement learning model for binary-input logic game assuming a pre-
evolved unary-input logic game. Nature chooses one of two states for the sender; the
sender chooses one of two messages to send to the receiver; the receiver acts according
to her pre-evolved disposition for the message received. The solid rectangles (the urns)
are determined by the input seen by a particular player. Once an urn is determined, the
circles (the balls) show what choices are available to the agent.

game (Figure 3). A’s message codes for the first input from Nature—i.e., the unary
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logic sub-game that ought to be played. The receiver must learn the meaning of this

message. B’s message codes for the second input from Nature—i.e., the input of

the unary sub-game. We assume that B’s dispositions are fixed so that she always

sends mi on input si. Thus, the receiver must choose a unary sub-game to make use

of B’s message; however, once the receiver chooses a unary sub-game, she already

knows how to proceed to choose an output based on B’s message, since the four

unary sub-games are pre-evolved.19

On a given play of the game, nature chooses a state-value randomly to show to

A and separately chooses a state-value to show to B. A chooses a message from

the urn matching the observed state to send to the receiver. B’s choices are fixed.

The receiver sees each of the messages and chooses, from the urn matching A’s

message, a unary sub-game to play. Once the sub-game is chosen, everything else is

determined: the receiver performs the action corresponding to the message received

from B, given the sub-game which she has chosen to play. There are ways in which

the players can miscoordinate for a partial payoff in this game. The full payoff

table is shown in Table 6.20 As with the atomic binary-input nand game, when

a0 a1 a2 a3
id neg taut Cont

s0− 〈0,−〉 0.5 0.5 1 0
s1− 〈1,−〉 0 1 0.5 0.5

Table 6. Payoff Table for nand Game as the Composition of Two Unary Games

the players act randomly, the chance payoff is 0.5; if they fail to evolve a signalling

system, efficient pooling strategies have a success rate of 0.75.

On simulation, after 106 plays per run, the cumulative success rate for the pre-

evolved composition game is 0.9440, on average (1000 runs). The players often (0.66)

achieve a cumulative success rate higher than 0.95, and about one-third of the time

19This model assumes the senders’ roles are fixed—namely, A codes for the game and B codes
for the input. However, this assumption is not necessary. A role-free game with pre-evolved unary

sub-game dispositions has almost identical results as the fixed-role game presented here. Hence,

I have opted to show the simpler of these models; however, I discuss role-free senders in detail in
the co-evolutionary game presented in Section 3.5.
20Compare this with Table 5. Recalling that the unary logic sub-game dispositions are pre-evolved,
and so fixed, consider the following situation. Suppose sA = 1 and the receiver chooses to play the
neg game. Then regardless of what sB is, the receiver will choose the correct action, affording each

player a payoff of 1. Suppose, however, that the receiver chooses the id game. Then regardless of
what SB is, the receiver will choose the wrong action, affording each player a payoff of 0. Finally,

suppose that the receiver chooses to play the taut game. Then, if sB was 0, she outputs 1, which
was the correct action (since she should have chosen the neg game, which outputs 1 on input 0);
however, if sB was 1, then she again outputs 1, which is the incorrect action (since she should
have chosen the neg game, which outputs 0 on input 1). Therefore, the players will average a
payoff of 0.5, since the states are uniformly distributed. The same is true if the receiver chooses

the cont game when she should have chosen the neg game.
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(0.31) achieve a near-perfect cumulative success rate (≥ 0.99). Less than 10% of

the time (0.08), they fail to evolve a maximally-efficient signalling convention and

get caught in pooling equilibria—in these rare cases, the receiver fails to learn the

differentiating feature of the first sender’s signal and always chooses the taut game

as the unary sub-game.

For ease of comparison, the results for 105 and 106 plays per run, for each of the

atomic, template-transfer, and pre-evolved nand games, are displayed in Table 7.21

As with template transfer, composition that takes advantage of pre-evolved unary

Atomic Template Pre-Evolved
nand Transfer Composition

105 106 105 106 105 106

0.95 0.35 0.54 0.50 — 0.47 0.66
0.90 0.50 0.63 0.61 — 0.64 0.79
0.80 0.66 0.74 0.78 — 0.84 0.92

Table 7. Comparison of evolutionary efficacy for learning nand (a) as a novel disposition,
from scratch; (b) via template transfer on a pre-evolved nand disposition; and (c) via
simple reinforcement on pre-evolved unary dispositions

dispositions appears to allow the agents to learn the binary disposition an order of

magnitude faster than learning it from scratch. When the agents learn to compose

pre-evolved unary dispositions, they do comparably well to template transfer on

a pre-evolved binary nand disposition. However, although template transfer and

pre-evolved unary composition both take advantage of prior dispositions, the model

presented here is more efficient at evolving a nand disposition than with template

transfer, in the following sense.

The atomic nand game sometimes (0.25 on 107 plays per run) fails to evolve

nand, but pools strategies for an expected payoff of 0.75. Barrett and Skyrms (2017)

report that their template-transfer game fails to evolve nand at about the same rate

(0.23 on 107 plays per run). Therefore, when the players do learn the disposition,

they learn more quickly with template transfer than atomically. However, they fail

to learn as often with template transfer as they do atomically. In contrast, utilising

pre-evolved unary sub-games to learn a composed nand disposition fails less often

than either template transfer or atomic nand—only 0.08 of the runs fail to evolve

nand on 106 plays per run, and only 0.16 of the runs fail to evolve nand on 105

plays per run. Therefore, the agents in a pre-evolved nand game learn as quickly

as in template transfer, but they also learn significantly more often. Composing

pre-evolved dispositions is both as efficient and more effective.22

21The results for the template-transfer game are as reported in Barrett and Skyrms (2017); they

do not report results for 106 plays.
22There is a subtle point to be made clear here: recall that the cumulative success rate gives a

measure of all of the plays over the course of all of the runs. If agents are slow to learn, then early
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Since the discussion of template transfer in Barrett and Skyrms (2017) presup-

poses that the underlying disposition is already evolved, the assumptions in my

pre-evolved composition model seem relevantly justified—at least for comparing

these results.23 However, by cashing out binary operators in terms of the composi-

tion of (pre-evolved) unary operators, this model can do slightly more.

I mentioned previously that Barrett and Skyrms (2017); Barrett (2019) suggest

that an or disposition can easily be transferred from a nand disposition by dint of

the parity of their truth tables—both or and nand have three inputs yielding ‘1’

and one input yielding ‘0’. However, it is not so obvious how this translation can be

generalised: nand cannot be transferred to learn an xor disposition effectively since

its truth values do not exhibit this sort of parity with nand—xor has two inputs

yielding ‘1’ and two inputs yielding ‘0’. Thus, understanding binary operations in

terms of the composition of unary operations has at least this theoretical virtue

over and above simple template transfer.

We have seen how nand can be composed of unary taut and neg operations;

similarly, or can be composed by unary id and taut operations, xor can be

composed by unary id and neg, etc. Since there are 4 distinct unary operators, and a

binary operator consists of some particular permutation of these (with replacement,

so we can account for, e.g., a 2-input tautology or contradiction), we have 24 = 16

unique permutations of unary operations, which correspond precisely to the 16

unique binary logical operators.

Furthermore, we know from the results of Section 2 that all of the unary opera-

tions are a ‘sure thing’ when nature is not too biased, and taut and cont are a sure

thing regardless of whether nature is biased. Therefore, it is not unreasonable to

assume that these simple dispositions come pre-evolved. In such a case, the agents

can learn a complex disposition by merely learning how to code for which unary

disposition is appropriate in which context. Though the assumption that the unary

sub-game comes pre-evolved is perhaps theoretically justified, we would like a more

general picture that does not necessarily presuppose such favourable circumstances

are already in place. In Section 3.2, this simple model is extended to account for

dispositions that co-evolve.

3.2. Co-Evolving Logical Dispositions. The co-evolutionary logic game is a

variant of the special composition game presented in Barrett et al. (2018); it is

failures may not be truly washed out. However, the communicative success rate is not history-

dependent in the same way. In this case, the pre-evolved nand game has a failure rate between
0.02 and 0.05 by 106 plays per run, as compared with a failure rate between 0.15 and 0.25 in the

atomic case. This implies that some of the runs that count as failures in the pre-evolved game

are just slow to learn. However, as was noted above, increasing the number of runs in the atomic
case does not change the failure rate—the runs that are counted as failures appear genuinely to

be caught in partial-pooling equilibria.
23Note that the roles of the senders are also fixed in the template-transfer model.
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a cooperative game with two base senders (whom we will call A and B) and one

base receiver. The agents in this game must evolve a particular sort of signalling

system to be uniformly successful. Additionally, there are two ‘hierarchical’ agents—

an ‘executive’ sender and an ‘executive’ receiver—who can learn to influence the

behaviour of the base agents. See Figure 7.24
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Figure 7. Reinforcement learning model for hierarchical, co-evolutionary binary-input
logic game.

A complete specification of the state is given by two properties (or features) and

a context. The properties are game (i.e., the unary sub-game) and input. Each of

the properties has two values. Considering nand as a concrete example, the value

of the game property can be taut or neg, and the value of the input property

can be 0 or 1. Therefore, the state on a particular play of the game will be either

〈taut, 0〉, 〈taut, 1〉, 〈neg, 0〉, or 〈neg, 1〉. The context indicates which aspect of

the state—i.e., which of the two properties—needs to be known by the receiver for

her to perform a successful action on that particular play of the game. Thus, the

values for the context are game, input, or both.

The game is played by two base senders, an executive sender, one base receiver,

and an executive receiver. Each base sender is assigned a particular property and

only has access to that aspect of nature. (This condition is dropped in Section 3.5,

where I discuss role-free senders.) As such, one base sender sees the game, and the

other base sender sees the input. Initially, the executive sender randomly determines

whether the game sender (A), the input sender (B), or both will send a signal.

24Note that I shift the notation for representing the first index from nature as “0” to explicitly

representing it as the game. It should be clear that “s00” “〈0, 0〉”, and “〈taut, 0〉” are different
representations for the exact same thing. See Table 5.
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Over time, the executive sender may learn what type of signal the current context

demands—i.e., a unary logical operation or a binary logical operation.

The base receiver sees the signals sent by the base senders and knows which

sender sent each signal. The executive receiver also sees who sends the signals,

and she determines whether the base receiver will interpret the signal as a 1-bit

message—game or input—or a 2-bit message—both. The receiver performs an action

based upon her interpretation. The actions for the receiver are represented by 〈game,

input〉-pairs, matching the states of nature. We assume, for now, that the receiver

‘just knows’ what the output is for this representation. (This condition is dropped

in Section 3.3.)

This can be interpreted as follows: the receiver understands the appropriate

output—0 or 1—for a given state; however, she does not have access to the current

state. Thus, the players must co-evolve a communication system whereby the re-

ceiver gains knowledge about the current state. Once the receiver knows the current

state, she automatically knows the correct output. Thus, the actions are represented

by 〈taut, 0〉, 〈taut, 1〉, 〈neg, 0〉, and 〈neg, 1〉. Note that, on this model, the re-

ceiver does not have access to representations for cont or id. (This condition is

dropped in Section 3.4.)

The agents are successful on a particular play of the game just in case (1) the

base receiver performs the correct action given the current context and (2) the base

senders only sent the signals required for success given the context. Thus, to be

successful, the receiver’s action must be appropriate for the state, and the senders

must be as efficient as possible—i.e., they must not send any irrelevant signals.

The ‘efficiency’ condition requires the base senders to coordinate, additionally, on

something like a pragmatic maxim of relation—namely, the signal sent must be

relevant to the current type of context (Grice, 1975). This condition is what drives

the co-evolution of the unary dispositions and their composition.25 See Figure 8 for

an example.

Again, agents learn via simple reinforcement. On each play, nature determines a

state by choosing a value for each of the two properties and the context randomly

and with uniform probabilities. The executive sender is equipped with an urn for

25For example, when the value of the context is game, the input is irrelevant, so the sender need
only pick an action having to do with the game-value of the state on that round; and, mutatis

mutandis when the value of the context is input. It may seem counterintuitive to ‘successfully’

play a game without knowing the appropriate input, or to ‘successfully’ choose an output without
knowing the game. However, recall that ‘game’ and ‘input’ are peculiar to the structure of the
logic game being discussed. The game itself, as was mentioned in the introduction, is only meant
to serve as a relatively clear testbed for the types of compositional processes of interest here.
Nonetheless, I discuss real-world interpretations in Section 5. An alternative way of enforcing

efficiency is to posit a cost for signals. However, to maintain consistency with the parameters of
the other models presented here—i.e., no punishment—a more stringent condition is placed on
what counts as a success.
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Nature Base Senders Base Receiver

Context

Both

Game

Input

Who Sends?

Sender A

Sender B

Sender A Only

Sender B Only

State Action

〈neg, 0〉 〈neg, 0〉

〈neg, 0〉
〈neg, 0〉
〈neg, 1〉

〈neg, 0〉
〈neg, 0〉
〈taut, 0〉

Figure 8. Example of success conditions for the three types of context. Each row specifies
what is required for success in that row’s context. Not pictured here are the roles of
the executive players; however, they play a part in the success conditions, insofar as
the executive sender determines which sender sends a signal, and the executive receiver
determines how the sender interprets the signal.

each of the three context-values—game, input, and both. Each urn begins with one

ball of each type: Sender A, Sender B, and Both. The executive sender observes

the context and randomly draws a ball from the corresponding urn. The drawn ball

determines who will send a signal.

A is equipped with an urn labelled taut, and an urn labelled neg; each initially

contains a ball labelled m0, and a ball labelled m1. If the executive sender draws

a ball requiring A to send a signal, then A randomly draws a ball from the urn

corresponding to the property she observes, and she sends the corresponding signal.

Similarly, B is equipped with an urn labelled 0, and an urn labelled 1—each initially

containing a ball labelled m0, and a ball labelled m1. If required by the executive

sender, she draws a ball from the urn corresponding to the property that she sees

and sends that signal to the receiver.

The receiver has four urns, one for every ordered pair of signals she might receive

from A and B, respectively: m00, m01, m10, and m11. Each urn begins with one

ball for each of the game-input pairs: 〈taut, 0〉, 〈taut, 1〉, 〈neg, 0〉, or 〈neg, 1〉. If

both senders send a signal, then the receiver draws a ball randomly from the corre-

sponding urn. If only one sender sends a signal, then the receiver randomly chooses,

with unbiased probabilities, one of the two urns corresponding to the sender’s signal

then draws a ball randomly from that urn.

The executive receiver determines how the receiver will interpret the type of

signal she received. This interpretation, in conjunction with the ball the receiver

drew determines how the receiver will act. The executive receiver is equipped with

a game-sender urn, an input-sender urn, and a both urn. Each of these initially

contains a game ball, an input ball, and a both ball. The ball drawn by the executive
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receiver determines what type of act the receiver takes as salient given the signal(s)

that she has received.

If a play of the game is successful, as per the conditions described above, then

each agent who was involved in that particular play returns the ball she drew to

the urn from which she drew it and adds another ball of the same type to that urn.

Otherwise, each agent simply returns the ball she drew to the urn from which she

drew it.

On simulation, the agents nearly always evolve a successful and optimally efficient

communication system. After 106 plays per run, the cumulative success rate is

0.9716, on average (1000 runs). The players usually (0.88) achieve a cumulative

success rate higher than 0.95, and most of the time (0.63) they achieve a near-perfect

cumulative success rate (≥ 0.99). Rarely (0.04), they fail to evolve a maximally-

efficient signalling convention and get caught in pooling equilibria.26

Comparing the cumulative success rates, we see that the co-evolutionary nand

game evolves an order of magnitude faster than the pre-evolved nand game, which

in turn evolved an order of magnitude faster than the atomic nand game on the

same learning dynamic. This is despite the fact that the chance payoff for the co-

evolved nand game is less than the chance payoff for the atomic or pre-evolved

games. (Since the receiver has twice as many options, the chance payoff is 0.25,

rather than 0.50.) Thus, this game starts with a significant handicap, but still

outperforms learning nand from scratch by at least an order of magnitude. See

Table 8. Part of the reason for this is the full set of conditions for what success

Atomic Template Pre-Evolved Co-Evolved
nand Transfer Composition Composition

105 106 105 106 105 106 105 106

0.95 0.35 0.54 0.50 — 0.47 0.66 0.64 0.88
0.90 0.50 0.63 0.61 — 0.64 0.79 0.79 0.92
0.80 0.66 0.74 0.78 — 0.84 0.92 0.89 0.96

Table 8. Comparison of evolutionary efficacy for learning nand (a) as a novel disposition,
from scratch; (b) via template transfer on a pre-evolved nand disposition; (c) via simple
reinforcement on pre-evolved unary dispositions; and (d) via co-evolved unary dispositions

consists in. The payoffs structure the dispositions of the agents so that they cannot

be successful in any way unless they are successful in every way. This is discussed

in more detail in Section 4.

26Again, if we examine the ‘snapshot’ measure of the communicative success rate, the results are

slightly better. The average expected payoff after 106 plays per run is 0.9747. More than three-

quarters of the time, the agents achieve a near-perfect communication convention for a payoff
greater than 0.99. Still, 0.04 runs fail to exceed a payoff that could be got by a partial-pooling

convention.
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There are a significant number of simplifying assumptions made in this model,

which one may worry are allowing for the high rates of success that we see on

simulation. First, I assumed that the receiver ‘just knows’ how to interpret an

action, such as 〈taut, 1〉—i.e., by outputting 1. Second, I assumed that the only

possible states for the game were taut and neg. This is a simplification, given

that there are two additional unary operations which the agents may well learn in a

general framework, but which happen not to be useful for producing the appropriate

action in the nand context. Finally, I assumed that each base sender is assigned a

particular property—game or input—and only has access to that aspect of nature.

Thus, the roles of the senders are fixed.

I relax the first assumption in Section 3.3, where the receiver must also learn

which output, 0 or 1, is appropriate for which state. The second assumption is

relaxed in Section 3.4, where I extend the composition game to account for the full

action space of unary operations. Finally, in Section 3.5, I drop the assumption that

the roles of the base senders are fixed.27 These results are discussed in more detail

in Section 4.

3.3. Learning Appropriate Outputs. In this section, I drop the condition that

the receiver ‘just knows’ what to do with the ‘action’ she has chosen from her

urn. This game is modelled precisely as the co-evolutionary logic game, except for

the following modification. Instead of 4 balls with the state labels, each of the

receiver’s urns has 8 balls with the state-labels plus an output—0 or 1. Thus, each

ball has three-part label corresponding to the game component of the state, the

input component of the state, and the output component of the state—thus, balls

on this interpretation are labelled 〈game, input, output〉.
Now, it is not pre-supposed that the receiver ‘just knows’ what action she ought

to perform when she draws the ball 〈taut, 0〉, since she has balls labelled 〈taut,

0, 0〉 and 〈taut, 0, 1〉. Thus, she must learn which output is correct, given the

complex state.

On this model, the players are successful in coordinating their actions just in

case (1) the receiver performs the correct action for the given context, and (2) the

senders only sent the signals required for success given the context, and (3) the

receiver chooses the correct output given the action selected. The rest of the game

is as was described before.

On the co-evolutionary logic game with learned inputs, the agents still effectively

always learn a successful and optimally efficient communication system. After 106

27Each of these assumptions is dropped independently of the others. This is meant only to be

suggestive concerning the effects of these individual assumptions on the simulation results. It
would be ideal, though due to space constraints impractical, to look at dropping combinations of

assumptions to see whether there are interaction effects between these several parameters.
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plays per run, the cumulative success rate is 0.9313, on average (1000 runs). More

than half the time (0.57), the senders and receiver achieve a cumulative success

rate higher than 0.95, though they rarely (0.03) achieve a near-perfect cumulative

success rate (≥ 0.99). In very few cases (0.07), they fail to evolve a maximally-

efficient signalling convention and get caught in pooling equilibria. These results

are comparable to the basic co-evolutionary nand game, where it is assumed that

the receiver knows what to do given the state, even though the players start at a

significant disadvantage—the chance payoff at the outset is half that of the basic

co-evolved nand game and one-quarter that of the pre-evolved and atomic nand

games.

3.4. Taking Account of the Full State Space of Unary Games. In this

section, I drop the assumption that the only games available to the receiver are taut

and neg. Though the id and cont games are not appropriate for the nand game,

one might argue that the receiver must learn that these actions are inappropriate.

This condition is dropped by extending the basic co-evolutionary nand game (3.2)

to a more general logic game. Now, there are 8 actions that the receiver might

choose, corresponding to the eight combinations of taut, cont, id and neg with

the inputs 0 and 1.28

On the co-evolutionary logic game where the receiver needs to differentiate the

appropriate action from the full state space of unary sub-games, the results are

similar to the case where the agent needs to learn the correct output for a given

state—it is slightly less efficient and slower to learn initially. Both of these facts

make sense since the models are similar in complexity, but, in this case, there are

fewer situations that constitute a success. After 106 plays per run, the cumulative

success rate is 0.9458, on average (1000 runs). More than three-quarters of the time

(0.78), the agents achieve a cumulative success rate higher than 0.95, and they

often (0.43) achieve a near-perfect cumulative success rate (≥ 0.99). In some cases

(0.10), they fail to evolve a maximally-efficient signalling convention and appear to

get caught in pooling equilibria.

3.5. Role-Free Composition. The final assumption that I examine is that the

roles of the base senders are fixed. As was mentioned previously, assuming that the

roles of the base senders are pre-assigned imposes a fair amount of structure on the

hierarchical co-evolutionary nand model. For one, this guarantees that the execu-

tive agents always learn to coordinate. On the other hand, a truth-functional rule

28Formally, this model is similar to the model of Section 3.3, where the receiver must additionally
learn the appropriate output for a given state. However, the success conditions are different when

the context is game only; thus, these models are not functionally equivalent.
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is more likely to evolve when the senders each have access to different, independent

states of nature than when they have access to the full state of nature.29

On the role-free co-evolutionary logic game, the base senders have no pre-assigned

representational roles. Instead, they are both shown the full state of nature. In this

case, the base senders must learn to coordinate their roles to partition nature fully,

and the executive agents must learn what roles the base senders are playing. The

executive agents thus co-evolve their dispositions even while the base agents are

learning their representational roles.

Since there are no stipulated roles for the base senders, there is no stipulated

game sender or input sender. On each play of the game, the senders are both shown

one of the four states (but not the context-value). These, again, are 〈taut, 0〉,
〈taut, 1〉, 〈neg, 0〉, and 〈neg, 1〉. Each sender has an urn for each of these states,

and each urn contains balls labelled m0 and m1. Each sender still has only two

available messages, and so neither sender can convey full information about the state

of the world. Thus, to be successful, they must coordinate so that they partition

nature fully—that is, their signals ought to give complementary information about

the full state of nature. So, one sender ought to learn to code for the game, and the

other sender ought to learn to code for the input.

Since there are no pre-assigned roles in the role-free composition game, the con-

ditions for success are also slightly different. A play now counts as a success just in

case (1) the receiver performs the correct action given the current context (as be-

fore), and (2) Both senders send a signal if and only if the context given by nature

requires both game and input.

After 106 plays per run, the cumulative success rate is 0.9450, on average (1000

runs). About two-thirds of the time (0.67), the agents achieve a cumulative success

rate greater than 0.95, and they sometimes (0.21) achieve a near-perfect cumula-

tive success rate (≥ 0.99). Rarely (0.05), they fail to evolve a maximally-efficient

signalling convention and appear to get caught in pooling equilibria.

4. Discussion

4.1. Efficacy and Efficiency of Learning Complex Dispositions. Several

subtleties should be noted about the results discussed in the previous sections.

Particularly, a distinction can be made between how effective the agents are at

learning a signalling disposition and how efficient they are at learning that disposi-

tion. Efficacy is highlighted by the long-run results—particularly by the avoidance

of partial-pooling equilibria. In this case, as we have already seen, composing sim-

ple dispositions is always more effective than learning a complex disposition from

29See discussion in Barrett (2018).
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scratch to achieve a maximally-efficient signalling strategy in the nand game. See

Table 9.

Atomic Template Pre-Evolved Co-Evolved
nand Transfer Composition Composition

105 106 105 106 105 106 105 106

0.95 0.35 0.54 0.50 — 0.47 0.66 0.64 0.88
0.90 0.50 0.63 0.61 — 0.64 0.79 0.79 0.92
0.80 0.66 0.74 0.78 — 0.84 0.92 0.89 0.96

Learned Full State- Role-Free
Outputs Space Composition

105 106 105 106 105 106

0.95 0.43 0.78 0.10 0.57 0.31 0.67
0.90 0.65 0.84 0.41 0.82 0.60 0.85
0.80 0.79 0.90 0.77 0.93 0.87 0.95

Table 9. Comparison of evolutionary efficacy for learning nand (a) as a novel disposition,
from scratch; (b) via template transfer on a pre-evolved nand disposition; (c) via simple
reinforcement on pre-evolved unary dispositions; and (d) via co-evolved unary dispositions.
These base models are compared with (e) learning the appropriate outputs, (f) learning
from the full state-space, and (g) learning with role-free agents

This comparison is made clear in terms of the communicative success rate (av-

erage expected payoff) over the long-term (106 plays per run) course of these runs

in Figure 9. The co-evolved disposition (3.2) is the most effective, followed by the

Figure 9. Comparison of average communicative success rates over 106 plays per run
(efficacy considerations)

model that utilises a pre-evolved unary sub-game disposition (3.1). The extended

models of Sections 3.3, 3.4, and 3.5 perform slightly worse in the long run than the

base models; however, they all outperform the atomic case.
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The reason for this has to do with the efficacy of the learning rule in the following

sense. When the agents do learn a maximally-efficient signalling disposition in the

atomic nand game, they generally do as well as in any other game. However, they

fail to evolve such a maximally-efficient communication system more often than

in the other cases, which brings the average down. A signalling system obtains a

maximal payoff of 1 in the limit; however, if 0.25 of the runs get caught in partial-

pooling equilibria, then the average payoff will rise no higher than 0.937 in the

limit. Thus, these averages tell us something about how effective each model is at

avoiding partial-pooling equilibria.

Upon reflection, this ordering makes some sense. The co-evolutionary nand game

takes advantage of a more complex, hierarchical structure than the flat pre-evolved

and atomic nand game models. The base co-evolutionary model contains fewer

situations that constitute success, which in turn enhances the ability of the agents

to avoid pooling. Furthermore, we can analyse the game in terms of its structural

components: there are situations in which only the sub-game dispositions are rele-

vant. Since we saw in Section 2 that taut and cont are learned more quickly than

id and neg, this comes to bear in a significant way on the co-evolution of complex

dispositions. That is, the complex disposition can be broken up into structural com-

ponents which themselves vary in how difficult they are to learn. The extensions of

the co-evolutionary model do slightly worse because the receiver has more choice

points available to her; however, these complex games still perform better than the

atomic case because they still have components which, in some rounds, are decou-

pled from the more complex game itself. In the atomic case, no such decomposition

is available to the agents.

These long-run results say nothing about how quickly the agents learn such

dispositions. To get a sense of how efficient learning is, we can compare the short-

run results of each of these models. Although the atomic nand game is the least

effective of these models, it is also one of the most efficient. However, because it is

not as effective as the other models, it is eventually surpassed in every case. This

comparison is made clear in terms of the average expected payoff over the short

term (104 plays) in Figure 10. Note further that the co-evolutionary games, due

to their complexity, start at a significant disadvantage from the atomic game—the

chance payoff is significantly lower in each of these cases. Thus, learning is slow and

steady in each of the co-evolved instances, but it is also extremely effective.

A final note about the efficacy of composing unary functions compared to tem-

plate transfer. Barrett and Skyrms (2017) suppose that a nand disposition has

already been evolved. So, evolving a nand disposition, and learning to apply that

disposition to a novel context, are modelled as independent processes. However,
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Figure 10. Comparison of average communicative success rates over 104 plays per run
(efficiency considerations)

having learned a nand disposition is a necessary condition for there to be a tem-

plate to transfer to a novel context. As such, these should be understood as serial

processes.

The simulation results for learning an atomic nand game from scratch suggest

that approximately 0.25 of the runs result in pooling equilibria. Suppose we have a

population of pairs of senders and receivers. Then, around 0.75 of these pairs will

learn a nand disposition, on average. Those who failed to learn nand would not be

able to transfer these dispositions successfully. We also know from the simulation

results that learning a nand disposition is not sufficient for successful transfer

in a novel context: approximately 0.25 of the template transfer runs also result in

pooling equilibria, failing to learn nand in the new context successfully. Thus, when

considering the serial evolution of the complex disposition, slightly more than half

of the population might be successful.

In contrast, we know that the unary neg disposition is a sure thing. Therefore,

every pair of individuals will learn this disposition. Further, taut is also a sure

thing, so that every pair of individuals will also learn this disposition. Finally,

based on the simulation results of Section 3.1, success in coordination is high so

that approximately 0.92 of those individuals who learned the pre-evolved unary

dispositions will also learn to combine them appropriately into a nand disposition.

Thus, almost everyone in the population will learn this disposition when we consider

the evolution of these dispositions as a combined serial process.

4.2. Other Binary Operations. There is a subtle distinction that comes to light

when we understand binary operators in terms of unary operators. We saw in

Section 2 that taut and cont evolve more quickly than id and neg. So, the
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composition of, e.g., taut and cont together should evolve faster than id and

neg, since each of these dispositions is, independently, easier to learn in the former

case than in the latter. I discussed the nand game, since this is the logical operation

that Barrett and Skyrms (2017); Barrett (2019) discuss. However, the nand game—

which is composed of taut and neg—should then evolve faster than, e.g., an iff

game, which is composed of id and neg. We should also expect a binary operation

that is composed of two completely pooling unary operations—for example, a binary

taut operator, to evolve more readily.

Simulation results suggest that this intuition is correct. A comparison of the

cumulative success rates for iff, nand, and taut—being completely representative

of the combinations of completely-separating, half-pooling, and totally-pooling sub-

games—are shown in Table 10. This shows a clear ordering concerning how easy it

Atomic iff Atomic nand Atomic taut
104 106 104 106 104 106

Average 0.7502 0.8997 0.8326 0.9053 0.9968 0.9999
0.99 0.02 0.56 0.00 0.26 1.00 1.00
0.95 0.25 0.72 0.14 0.54 1.00 1.00
0.90 0.35 0.76 0.29 0.63 1.00 1.00
0.80 0.50 0.80 0.53 0.74 1.00 1.00

Table 10. Comparison of three different ways of combining unary operations (cumulative
success rate) over the short term (104 plays per run) and long term (106 plays per run)

is to (quickly) learn a binary disposition as a function of how easy it is to learn the

constituent unary dispositions which underlie it.

The binary tautology (which takes two inputs and always outputs 1) is easiest

to evolve because, in essence, the signal does not matter: the receiver needs only

to react to any signal with the same disposition—a1. This is quickly learned even

in the atomic case. In the case of atomic iff—a binary operation which has no

pooling and thus requires co-evolution of strategies—the results are as expected.

Specifically, nand is more likely to get caught in partial-pooling equilibria than iff

and iff is more efficient than nand overall; however, because of the difficulty in

co-evolving strategies, iff is more difficult for agents to learn—the variance in the

payoffs is significantly larger for iff (1.74×10−1) than it is for nand (9.95×10−2).

Thus, Barrett and Skyrms (2017) do not look at the simplest case when they discuss

template transfer, but they also do not look at the most challenging case.

4.3. To Infinity, and Beyond. How well do these results generalise? There are

two different ways that agents can learn a ternary-input logical operation: they

might learn to compose two binary-input logical operations appropriately, or they
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might learn to compose four unary input logical operations. These two possibilities

are illustrated in Table 11 for evolving nand.

a1 a2
0 1

s000 〈0,0, 0〉 0 1
}

taut
s001 〈0,0, 1〉 0 1

s010 〈0,1, 0〉 0 1
}

taut
s011 〈0,1, 1〉 0 1

s100 〈1,0, 0〉 0 1
}

taut
s101 〈1,0, 1〉 0 1

s110 〈1,1, 0〉 0 1
}

neg
s111 〈1,1, 1〉 1 0

(a) Ternary logical operator as the compo-

sition of two binary logical operators

a1 a2
0 1

s000 〈0, 0, 0〉 0 1
2-taut

s001 〈0, 0, 1〉 0 1
s010 〈0, 1, 0〉 0 1
s011 〈0, 1, 1〉 0 1

s100 〈1, 0, 0〉 0 1
2-nand

s101 〈1, 0, 1〉 0 1
s110 〈1, 1, 0〉 0 1
s111 〈1, 1, 1〉 1 0

(b) Ternary logical operator as the compo-

sition of two binary logical operators

Table 11. Two different ways of composing a ternary nand operation. (a) shows the
composition of four unary operations, whereas (b) shows the composition of two binary
operations.

In the unary case, the last index of the ternary state provides the unary input for

the unary sub-game. The first index of the ternary state distinguishes the top two

possibilities from the bottom two, and the second index distinguishes the top unary

sub-game from the bottom one (for each partition). In the binary case, there are 16

unique binary operations that we might take account of, assuming the order of the

outputs matters. When the sender and receiver play a game which takes advantage

of an underlying binary predisposition, we have a signalling game with two states,

two signals, and 16 actions.

As with the binary-input nand game, the players might co-evolve their strategies.

The co-evolved ternary-input nand game may also be modelled in several different

ways, depending on whether or not the underlying co-evolved game is a logic game

with unary inputs or binary inputs. As the dimension of the game increases, so too

do the degrees of freedom concerning modelling decisions.

5. Conclusion

One thing that came out in the discussion of unary functions is that the id- and

neg games are structurally more similar to one another than they are to either

of the taut- and cont games, and vice-versa. This highlights a subtlety that the

analysis of Barrett and Skyrms (2017) ignores. Barrett and Skyrms (2017) suggest

that “[o]nce nand has evolved, it may be appropriated to a new context by template

transfer to play the role of a different logical operator more efficiently than that
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operator might evolve on its own” (350-1). They report that evolving or from nand

happens an order of magnitude faster than evolving or from scratch.

In a suggestive footnote, they point out that “[m]ore generally, if one had five

binary logical operators, one for each number of false outputs, one could get the

other eleven by template transfer. And each would evolve an order of magnitude

faster this way than on its own.” However, it would not do to have four binary

logical operators. Further, template transfer fails to explain how one might be

able to evolve, e.g., and from nand, given that they have a different number of

‘false’ values in their truth tables. A virtue of the model presented here is that it is

obvious how one would evolve each binary operator from combinations of two unary

operators—it was mentioned that the unique permutations of two unary sub-games

cover all 16 binary games. Finally, template transfer does not show how to evolve a

ternary-input logical operator from a binary-input logical operator. Though Barrett

and Skyrms (2017) do not suggest this, their process of modular composition more

generally should be sufficient for this purpose, as has been shown here.

The key insight was to start with unary logical operations, and show how these

can compose to more efficiently evolve binary logical operations. Further, the as-

sumption that the underlying simple disposition(s) must be pre-evolved was relaxed.

Finally, this compositional extends in a natural way to learn ternary logical oper-

ations from two binary logical operations or four unary logical operations, and so

on ad infinitum.

In some sense, the efficacy of template transfer on a pre-evolved disposition

should come as no surprise. Since the sender dispositions in the original context are

fixed, the sender in the new context is effectively playing a sensory-manipulation

game. Furthermore, since the two senders are entirely independent, these branches

constitute two independent 2 × 2 sensory-manipulation games—the work of com-

posing these two games has already been achieved by the pre-evolved disposition.

We have now seen, in a more general case, once the agents in a signalling context

have evolved simple unary operators, they might be able to use these previously

evolved dispositions to learn new, more complex binary, ternary, etc. operations.

Though I have discussed logical operations as a concrete example, it should be

clear that it is the process of modular composition itself that gives rise to efficacy

in the evolution of complex dispositions.

Such compositional processes (more generally) might be instantiated in nature

in terms of the computational principles or neurobiological underpinnings of any

adaptive decision-making process. Modular composition may arise, and aid efficacy

or efficiency of such processes, in several different settings; for example, composing

multiple sensory modalities, such as tactile and visual stimulation (Fazeli et al.,
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2019); arranging dominance-relations to form a hierarchical representation of a so-

cial group (Seyfarth and Cheney, 2018); cognitive reasoning involving hierarchically

organised decision-making (Sarafyazd and Jazayeri, 2019); or other such functional-

demand protocols in nature, such as the availability of food, density of populations,

and presence of predators in migratory species (Hopcraft et al., 2014).

When signals mediate these processes, the models provided here illustrate par-

ticular circumstances under which we might expect modular composition to be

successful. When the agents in a signalling game are understood as distinct organ-

isms, this may give rise to complex social behaviour; when they are interpreted as

functional components of a single organism, this may give rise to complex cognition.

In the context of language origins, this sort of explanation is essential since an

adequate description of how linguistic capacities might arise from simple commu-

nicative precursors is a diachronic story of how language gets to be complex over

time via a combination of genetic and cultural evolution. Results of this sort help

carve out the space of possibilities for how such dispositions may have arisen in the

first place.
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