
Follow the Flow: sets, relations, and categories as

special cases of functions with no domain

Adonai S. Sant’Anna∗ Otávio Bueno†

Marcio P. P. de França‡

Draft 2.6

Disclaimer
This is a report of an ongoing research project.

This text is supposed to work as a simple reference
for seminars to be delivered in Brazil.

Updated versions will be available soon.

Abstract

We introduce, develop, and apply a new approach for dealing with
the intuitive notion of function, called Flow Theory. Within our frame-
work all functions are monadic and none of them has any domain. Sets,
proper classes, categories, functors, and even relations are special cases
of functions. In this sense, functions in Flow are not equivalent to func-
tions in ZFC. Nevertheless, we prove both ZFC and Category Theory are
naturally immersed within Flow. Besides, our framework provides major
advantages as a language for axiomatization of standard mathematical
and physical theories. Russell’s paradox is avoided without any equiva-
lent to the Separation Scheme. Hierarchies of sets are obtained without
any equivalent to the Power Set Axiom. And a clear principle of duality
emerges from Flow, in a way which was not anticipated neither by Cat-
egory Theory nor by standard set theories. Besides, there seems to be
within Flow an identification not only with the common practice of do-
ing mathematics (which is usually quite different from the ways proposed
by logicians), but even with the common practice of teaching this formal
science.

Key words: functions, set theory, category theory.

∗Department of Mathematics, Federal University of Paraná. E-mail: adonai@ufpr.br.
†Department of Philosophy, University of Miami.
‡Coordination of Pedagogy, Federal University of Paraná

1

Contents

1 Introduction 2

2 Flow theory 7
2.1 Functions . 8
2.2 Sets and Proper Classes . 32

3 ZFC is immersed in Flow 34
3.1 ZFC Axioms . 34
3.2 ZFC translation . 36

4 Category theory is immersed in Flow 39
4.1 Category axioms . 40
4.2 Every static category is a category 41
4.3 Categories translation . 43
4.4 Functors and natural transformations 45
4.5 Set and other standard categories 46
4.6 The Cantor-Schröder-Bernstein theorem 46

5 Intuitive Flow theory 47

6 Axiomatization as a flow-theoretic predicate 48
6.1 Group theory . 48
6.2 Other mathematical theories . 49
6.3 Classical particle mechanics . 49
6.4 Reformulating classical particle mechanics 51

7 The full potential of Flow 52
7.1 Composition . 52
7.2 n-ary functions . 54
7.3 Mathematics teaching . 56

8 Variations of Flow 57
8.1 Closure . 57
8.2 Regularity . 58
8.3 Clones and equiconsistency . 58

9 Final remarks 59

10 Acknowledgements 59

1 Introduction

Throughout the ages mathematicians have considered their objects,
such as numbers, points, etc., as substantial things in themselves.

2

Since these entities had always defied attempts at an adequate de-
scription, it slowly dawned on the mathematicians of the nineteenth
century that the question of the meaning of these objects as substan-
tial things does not make sense within mathematics, if at all. The
only relevant assertions concerning them do not refer to substantial
reality; they state only the interrelations between mathematically
“undefined objects” and the rules governing operations with them.
What points, lines, numbers “actually” are cannot and need not be
discussed in mathematical science. What matters and what corre-
sponds to “verifiable” fact is structure and relationship, that two
points determine a line, that numbers combine according to certain
rules to form other numbers, etc. A clear insight into the neces-
sity of a dissubstantiation of elementary mathematical concepts has
been one of the most important and fruitful results of the modern
postulational development.

Richard Courant, What is Mathematics, 1941.

All usual mathematical approaches for well-known physical theories can be
easily associated to either differential equations or systems of differential equa-
tions. Newton’s second law, Schrödinger’s equation, Maxwell’s equations, and
Einstein field equations are all differential equations which ground classical me-
chanics, quantum mechanics, classical electromagnetism, and general relativity,
respectively. Other similar examples may be found in thermodynamics, gauge
theories, the Dirac electron, etc. Solutions for those differential equations (when
they exist) are either functions or classes of functions. So, the concept of func-
tion plays a major role in theoretical physics. Actually, functions are more
relevant than sets, in a very precise sense [4] [5].

In pure mathematics the situation is no different. Continuous functions,
linear transformations, homomorphisms, and homeomorphisms, for example,
play a fundamental role in topology, linear algebra, group theory, and differential
geometry, respectively. And category theory emphasizes such a role in a very
clear, elegant, and comprehensive way.

Functions allow us to talk about the dynamics of the world, in the case
of physical theories. Regarding mathematics, functions allow us to talk about
invariant properties, whether those properties refer to either algebraic operations
or order relations.

From a historical point of view, some authors have advocated the idea that
functions are supposed to play a strategic role into the foundations of mathemat-
ics [17] and even mathematics teaching [9], rather than sets. Notwithstanding,
the irony of such discussions lies in a closer look at Georg Cantor’s seminal
works about the concept of set. Cantor - the celebrated father of set theory -
was strongly motivated by Bernard Bolzano’s work on infinite multitudes called
Menge [25]. Those collections were supposed to be conceived in a way such
that the arrangement of their components is unimportant. However, Bolzano
insisted on an Euclidian view that the whole should be greater than a part,
while Cantor proposed a quite different approach. According to the latter, in

3

order to compare infinite quantities we should consider a one-to-one correspon-
dence between collections. That means Cantor’s concept of collection (in his
famous Mengenlehre) was strongly committed to the idea of function. Subse-
quent formalizations of Cantor’s “theory” were developed in a way such that all
strategic terms were associated to an intended interpretation of collection. And
the result of that effort is a strange phenomenon which we describe in the next
paragraphs, based on [21].

Let S be an axiomatic system whose primitive concepts are c1, c2, ..., cn.
One of these concepts, say ci, is independent (undefinable) from the remaining
if and only if there are two models of S in which c1, ..., ci−1, ci+1, ..., cn have the
same interpretation, but the interpretations of ci in such models are different.
(Of course, a model of S is a set-theoretic structure in which all axioms of S
are true, according to the interpretation of its primitive terms [15].)

As an example, consider a very simple axiomatic system, namely, a Mini-
malist Space ⟨X, f⟩, whose axioms are:

MS1 X is a non-empty set.

MS2 f is a function whose domain and codomain are both X.

By using Padoa’s method [1] [18] [24] we can easily prove that f is undefin-
able, since we can exhibit two models of a minimalist system such that X has
the same interpretation in both models but f has two different interpretations
within these models. Consider, for this: the Model A, where X is interpreted
as the set of real numbers ℜ and f is the identity function f(x) = x defined on
X; and the Model B, where X is interpreted again as the set ℜ, but f is the
function given by f(x) = 2x, with the same domain X. This means that the
interpretation of X does not fix the interpretation of f . In other words, f can-
not be defined (or fixed) from X. On the other hand, X is definable, since any
two models with two different interpretations for X would unavoidably entail
different interpretations for f . The reason for this is grounded on the fact that
the domain and the codomain of a function f are ingredients for the definition
of the function itself, at least within the scope of a standard set theory like
Zermelo-Fraenkel’s. Different domains imply different functions.

So, at least two questions remain:

1. How to define X?

2. What does it mean to say that X is eliminable?

The answers are:

1. X = dom(f) = cod(f) (X is the domain and the codomain of f).

2. We do not need to explicitly mention X. We could rephrase the definition
of a minimalist system by saying that a minimalist system is just a function
f whose domain is equal to its codomain.

4

In a similar way, it is possible to prove that in usual axiomatic frameworks
for physical theories, time and spacetime are concepts that are definable, and so,
eliminable. That happens because time and spacetime are usually considered
as domains of functions that describe forces, fields, currents, and so on. For
example, according to Padoa’s principle, the primitive concept time (described
as an interval of real numbers) in a physical theory is independent from the
remaining primitive concepts (mass, position, force, speed, magnetic field etc.)
if, and only if, there are two models of the physical theory such that time has
two interpretations and the remaining primitive symbols have the same inter-
pretation. But usually these two interpretations are not possible, since mass,
position, force, speed, magnetic field and other physical concepts are in general
described as functions whose domains are time. If we change the interpreta-
tion of time, we change the interpretation of the other primitive concepts. So,
time is not independent and hence can be defined. Since time is definable, it
is eliminable. Time is eliminable in the sense that many physical theories can
be rewritten without any explicit mention of time. A similar argument can be
used to dispense with spacetime. (Details about this approach can be found in
[4, 5].)

Results of this kind suggest the idea that functions are indispensable, but the
explicit presence of sets as the domains of these functions is questionable. After
all, it’s not clear that the notion of a set is playing any strategic explanatory
role in the context of physical theories, since these sets are definable by means
of functions. Sets seem to be carried along as just a surplus structure of the
mathematical framework in which these theories are formulated. Moreover, in
the context of standard set theories, such as Zermelo-Fraenkel’s, to reformulate
a physical theory without any explicit mention of either time or spacetime is not
an easy task—after all, the latter notions are typically expressed in terms of sets.
Such reformulations of physical theories in Zermelo-Fraenkel are also unnatural,
given that usually the functions that are invoked in the theories demand an
explicit mention of their domains, and in this way, sets are brought back. (For an
example of a mathematical description of thermodynamics without any explicit
mention of time, see [5].)

Sets can be viewed as the result of a process of collecting objects. An object
is collected if it is assigned to a given set. But the fundamental mechanism here
is to attribute something to a certain collection. And that notion of attributing
something to a given collection resembles a function. From another point of
view, we should recall that sets and functions are meant to correspond to an
intuitive notion of properties. Usually properties allow to define either classes
or sets (like the Separation Schema in ZFC). But another possibility is that
properties correspond to functions. Talking about objects that have a given
property P corresponds to associate certain objects to a label which represents
P ; and any other remaining objects are supposed to be associated to a differ-
ent label. The correspondence itself between P and a given label does have a
functional, rather than a set-theoretical, appeal. And usually, those labels are
called sets. So, why do we need sets? Why cant we deal only with functions? In
other words, why cant we label those intended properties with functions instead

5

of sets?
What would happen if we could avoid any explicit mention of domains of

functions? Could we obtain better axiomatic formulations of physical theories?
Could we avoid the presence of time and spacetime structures in a natural
way? Could we go more directly to the point, i.e., to the functions that usually
describe fields and forces, tensors and metrics, speeds and accelerations?

It could be thought that category theory provides a framework to develop
this sort of approach. After all, category theory deals primarily with “func-
tions”, called morphisms (see [12]). However, even morphisms have domains,
which are other morphisms, and so we still wouldn’t have the appropriate frame-
work to develop the approach we have in mind. So, even Category Theory is
somehow committed to set-theoretic view about what a function is supposed to
be.

What we are looking for is a mathematical theory where functions have
no domains at all. In this way, we would immediately avoid the introduction
of superfluous primitive notions, such as sets or domains, when we use this
theory as the mathematical basis for the formulation of physical theories. Sets
work as the stage where functions, the actor, play. So, we advocate a way of
doing mathematics where the stage itself is unimportant. The relevant agents
of mathematics are functions, and functions alone.

In 1925, John von Neumann introduced his axiomatization of set theory [17].
There are two major assumptions in his approach, namely, the use of two kinds of
collections, sets and classes, and the use of functions as the intuitive basic notion,
instead of sets or classes. More specifically, von Neumann deals with three
kinds of terms: I-objects (arguments), II-objects (characteristic functions of
classes), and I-II-objects (characteristic functions of sets). The axiomatic system
originally proposed was further developed by R. M. Robinson, P. Bernays, and
Kurt Gödel, and it came to be known as the von Neumann-Bernays-Gödel
(NBG) set theory. However, NBG is not faithful to the idea of the priority of
functions instead of collections. In the end, NBG is a standard approach to
set theory, where the novelty is the use of classes (mainly proper classes: those
classes which are not sets), besides sets.

Intuitively speaking, a function is supposed to be a term which allows us to
uniquely associate certain terms to other terms. In standard set theories, for
example, a function is a special case of set, namely, a specific set of ordered
pairs of sets. That means standard set-theoretic functions do not actually act
on terms in the sense of transforming them into other terms. In contrast, in
category theory morphisms have an intended interpretation which is somehow
associated to functions. But even in that case we show morphisms can always be
treated as restrictions of an identity function. Besides, in both cases functions
are somehow attached to domains and codomains which are sets in set theories
and identity morphisms in category theories. In this paper we develop a new
approach - Flow Theory - for dealing with the intuitive notion of function.
In a precise sense, in Flow Theory functions have no domain at all. Within
our approach, a set is a special case of function. Russell’s paradox is avoided
without any equivalent to the Separation Scheme. We provide a comprehensive

6

discussion of Flow Theory as a new foundation for mathematics, where functions
explicitly play a more fundamental role.

The name Flow is a reference to Heraclitean flux doctrine, according to
which things are constantly changing. Accordingly, in Flow theory all terms are
“active objects” under the action of other “active objects”.

So, this paper is strongly motivated by [17] and [21] and related papers as
well ([4] [5]). In [21] it was provided a reformulation of von Neumann’s original
ideas (termed N theory) which allowed the authors to reformulate standard
physical and mathematical theories with much less primitive concepts in a very
natural way. Nevertheless, in N theory there are two fundamental constants
which are not clarified in any way. Those constants, namely, 0 and 1, allow
us to define sets as particular cases of functions, in a way which is somehow
analogous to the usual sense of characteristic functions in standard set theories.

In this paper Flow theory is introduced as a generalized formulation of con-
cepts derived from N theory. Constants 0 and 1 are still necessary. Notwith-
standing, we are able to define them from our proposed axioms and some related
theorems. And that fact entails an algebra defined over functions. Such an al-
gebra shows us that both category theory and ZFC set theory are naturally
present within our framework.

Besides the presentation and discussion of Flow axioms, we introduce several
applications and foundational issues by comparing Flow with ZFC set theories
and Category Theory.

Our punch line may be summarized by something like this: (i) the concept
of set (as a collection of objects) is somehow implicitly assumed through ZF
axioms; (ii) nevertheless, sets play a secondary role in mathematics and applied
mathematics, since the true actors are always functions, while sets work as
just a stage (setting) for such actors; (iii) so, why cannot we explicitly assume
the notion of function right at the start on the foundations of mathematical
theories?

2 Flow theory

Flow is a first-order theory with identity, where the formula x = y should be
read as “x is equal to y”. The formula ¬(x = y) is abbreviated as x ̸= y. Flow
has one functional letter f21 (f, x), where f and x are terms. If y = f21 (f, x),
we abbreviate this by f(x) = y, and we say y is the image of x by f . We call
f21 evaluation. All terms of Flow are called functions. We use lowercase Latin
and Greek letters to denote functions. Uppercase letters are used to denote
predicates (which are eventually defined). The axioms of Flow follow in the
next subsections. But first we need to make a remark. Any explicit definition
in Flow is an abbreviative one, in the sense that for a given formula F , the
definiendum is just a metalinguistic abbreviation for the definiens given by F .

7

2.1 Functions

P1 - Weak Extensionality ∀f∀g(((f(g) = f ∧g(f) = g)∨ (f(g) = g∧g(f) =
f))⇒ f = g)).

This first axiom is tricky. Any function f such that f(g) = f is said to be
rigid with g. And any function f such that f(g) = g is said to be flexible with
g. So, if both f and g are rigid with each other, then we are talking about the
very same function (f = g). Another possibility to identify a function is by
checking if f and g are both flexible with each other. If that is the case, then
again f = g.

P2 - Self-Reference ∀f(f(f) = f).

Our first theorem has a very intuitive meaning.

Theorem 1 ∀f∀g(f = g ⇔ ∀x(f(x) = g(x))).

Proof: By using the substitutivity of identity in the formula f(x) = f(x) (which
is a theorem in any first-order theory with identity), proof of the⇒ part is
quite straightforward. After all, if f = g, then f(x) = g(x), for any x. In
particular, we have f(f) = g(g) = f(g) = g(f) = f = g. Concerning the
⇐ part, suppose for any x we have f(x) = g(x). In particular, for x = f ,
we have f(f) = g(f). And for x = g, we have f(g) = g(g). Nevertheless,
according to P2, f(f) = f and g(g) = g. So, g(f) = f and f(g) = g. And
from P1, that entails f = g.

Axiom P2 says every function is rigid and flexible with itself. That fact
deserves a more detailed discussion. Our main purpose here is to avoid any
Flow-theoretic version of Russell’s paradox. Consider, for example, the next
statement: y is a function such that

∀x(y(x) = r ⇔ x(x) ̸= r).

In the formula above we are explicitly trying to define a function y. On
the left side of ⇔ we have the definiendum and on the right side we have
the definiens. If we ignore P2, what about y(y)? If y(y) = r, then we are
considering y(x) = r where x is y. Hence, according to the formula above we
entail y(y) ̸= r. Analogously, if y(y) ̸= r, we are considering x(x) ̸= r where x is
again y. And according to the formula above we have y(y) = r. Consequently,
we have y(y) = r ⇔ y(y) ̸= r. That is Russell’s paradox! To avoid such an
embarrassment (which could explode Flow theory, since we are grounding our
axiomatic system within classical logic) all we need to do is to introduce axiom
P2. According to P2, any function y defined by the formula above guarantees
that y cannot be equal to x. Since for any x we have x(x) = x and the definiens
above demands that x(x) ̸= r, that entails x ̸= r. But the definiendum states
y(x) = r. Hence, y(x) ̸= x = x(x). Therefore, Theorem 1 guarantees y ̸= x,
since x and y do not share all their images. Hence, there is no paradox! After all,

8

the paradox was entailed from the possibility that x = y. Axiom P2 prohibits
the definition of a function like y. Otherwise, a formula like the one proposed
above would be creative, allowing us to derive contradictions. That is a much
simpler solution to Russell’s paradox than any equivalent to the Separation
Scheme in Zermelo-Fraenkel-like set theories. Besides, as we shall see below,
Flow theory allows us to talk about sets and proper classes in the usual sense
of standard set theories, like ZFC with classes, NBG and their variations.

It is worth to observe that axioms P1 and P2 could be rewritten as one
single axiom as it follows:

P1’ - Alternative Weak Extensionality ∀f∀g(((f(g) = f ∧ g(f) = g) ∨
(f(g) = g ∧ g(f) = f))⇔ f = g)).

If that was the case, then P2 would be a consequence from P1’. Ultimately,
f = g would entail that f(g) = f (from P1’). And substitutivity of identity
entails f(f) = f . On the other hand, we prefer to keep axioms P1 and P2
(instead of P1’) for pedagogical purposes. From P1 and P2, we can analogously
see that P1’ is a theorem.

One philosophical remark concerning axiom P2 refers to Richard Courant’s
quote presented in the Introduction. Functions, by themselves, are irrelevant.
What matters is what they do. That point is gradually clearer thanks to the
next postulates.

P3 - Identity ∃f∀x(f(x) = x).

This is the first axiom which guarantees the existence of a specific function.
Any function f which satisfies P3 is said to be an identity function.

Theorem 2 The identity function is unique.

Proof: Suppose both f and g satisfy axiom P3. Then, for any x we have
f(x) = x and g(x) = x. Thus, f(g) = g and g(f) = f . Hence, according
to P1, f = g.

In other words, there is one single function f which is flexible to every
function. In that case we simply say f is flexible. That means “flexible” and
“identity” are synonyms.

P4 - Rigidness ∃f∀x(f(x) = f).

In other words, there is at least one function f which is rigid with any
function. Observe the symmetry between axioms P3 and P4! Any function f
which satisfies this last postulate is simply said to be rigid .

Theorem 3 The rigid function is unique.

Proof: Suppose both f and g satisfy axiom P4. Then, for any x we have
f(x) = f and g(x) = g. Thus, for any x we have f(g(x)) = f(g) = f and
g(f(x)) = g(f) = g. Thus, according to P1, f = g.

9

Now we are able to justify the extensionality axiom P1. Our purpose here
is to define constants 0 and 1, in order to accommodate our view about von
Neumann’s ideas. So, 1 is the identity (flexible) function and 0 is the rigid
function, since we proved they are both unique. In other words

∀x(1(x) = x ∧ 0(x) = 0)

If we recall that f(x) = y is an abbreviation for f21 (f, x) = y, we can read
axioms P3 and P4 as statements regarding the existence of two “spurs”. Axiom
P3 states there is a function f such that for any x we have f21 (f, x) = x, while
P4 says there is f such that for any x we have f21 (f, x) = f .

Theorem 4 0 is the only function which is rigid with 0.

Proof: The statement above is equivalent to say that ∀x(x ̸= 0⇒ x(0) ̸= x). In
other words, ∀x(x(0) = x⇒ x = 0). But we already know that 0(x) = 0.
Therefore, if we have x(0) = x∧0(x) = 0, according to P1, we have x = 0.

Theorem 5 1 is the only function which is flexible with 1.

Proof: The statement above is equivalent to say that ∀x(x ≠ 1⇒ x(1) ̸= 1). In
other words, ∀x(x(1) = 1⇒ x = 1). But we already know that 1(x) = x.
Therefore, if we have x(1) = 1∧1(x) = x, according to P1, we have x = 1.

The last two theorems do not say what are the images x(0) or x(1) (when
x ̸= 1, in the last case). Nevertheless, such values prove to be rather important
for future applications of Flow Theory. But before discussing that, we introduce
another axiom.

P5 - Composition ∀f∀g∃!h(h ̸= 0 ∧ h ̸= 1 ∧ ∀x((x ̸= f ∧ x ̸= g)⇒ (x ̸= h⇒
h(x) = f(g(x)))) ∧ (g ̸= h⇒ h(g) = 0) ∧ (f ̸= h⇒ h(f) = 0)).

P5 allows us to define unique functions h from other functions f and g.
That means this last postulate allows us to define a “binary operation” over
functions. To be clearer about that, we state the next definition, based on P5.

Definition 1 For any functions f and g we may define the composition h =
f ◦ g of f with g. Function h is the one stated in axiom P5.

Beware! We never calculate (f ◦ g)(f ◦ g) as f(g(f ◦ g)), since (f ◦ g)(f ◦ g)
is always f ◦ g according to P2.

The idea of composition f ◦g is quite simple, although it is not a constructive
process. Given functions f and g, we can build the composition f ◦ g through
a three-step process as it follows:

1. First we establish a label h for f ◦ g.

2. Next we calculate f(g(x)) for any x which is different of f and g. By doing
that we are assuming those x are different of h. Thus, if such a choice of
x entails f(g(x)) = y for a given y, then h(x) = y.

10

3. Next we evaluate the following possibilities: is h equal to either f , g or
something else? How can we answer to that question? If h is different of
g, then h(g) is supposed to be 0. If h(g) = 0 entails a contradiction, then
h is simply g. And an analogous method is used for assessing if h is f .
Eventually, h is neither f nor g, as we can see in the next theorems.

Remarkable examples of how to calculate compositions can be found in the
proofs of Theorems 18 and 19.

Theorem 6 Composition ◦ is associative.

Proof: Here is a sketch for the proof. Both situations f ◦ (g ◦ h) = p and
(f ◦ g) ◦ h = q correspond, according to Definition 1, to the formula
y = f(g(h(x))), as long we are talking about values x which are different
of f , g, h, p, and q. That means f ◦ (g ◦ h) = (f ◦ g) ◦ h, if x ̸= f ∧ x ̸=
g ∧ x ̸= h ∧ x ̸= p ∧ x ̸= q. Now, all we have to do is to consider four
situations which contemplate all possible relations among f , g, h, p, and
q, in order to evaluate the images p(x) and q(x) when x is either one of
those remaining terms: (i) p ̸= f ∧ p ̸= g ∧ p ̸= h; (ii) p = f ; (iii) p = g;
(iv) p = h. If we have situation (i), then p(f) = p(g) = p(h) = 0. That
means p has all the features of composition q. But, according to P5,
any composition is unique. Thus, p = q. Regarding situation (ii), which
states p = f , we should consider two possibilities: either p(g ◦ h) ̸= 0 or
p(g ◦ h) = 0. If p(g ◦ h) ̸= 0, that means g ◦ h = p (according to P5).
That entails p ◦ p = p (an idempotent function); and associativity among
idempotent functions is a trivial result, when g = p and h = p. On the
other hand, if g ̸= p and h ̸= p, then we have p(g) = p(h) = 0, and once
again p has all the features of q. Hence, from uniqueness of composition,
p = q. If g = p, while h ̸= p, then from f ◦(g◦h) = p we have p◦(p◦h) = p,
which entails (p ◦ p) ◦ h = p for the case p ◦ h = p, since in that case p
is idempotent. And the case p ◦ h ̸= p was already discarded within the
first possibility of situation (ii). And if h = p, while g ̸= p, then p(g) = 0,
and once again p has the same features of q; hence, p = q. Going back
to the second possibility of situation (ii), when p = f while p(g ◦ h) = 0,
the last identity implies g ◦ h ̸= p, since no composition p can ever be
0 (the only function f such that f(f) = 0). So, neither g nor h can be
p, since p ◦ (g ◦ h) = p. That implies p ◦ g = p and p ◦ h = p. Hence,
(p ◦ g) ◦ h = p ◦ h = p. The proof of situations (iii) and (iv) is analogous
to that one for situation (ii).

This last theorem is somehow interesting, since evaluation f21 is not associa-
tive and composition is defined from evaluation. Consider, for example, x(1(x)),
for x different of 0 and different of 1, and such that x(1) = 0 (functions like
this will be available afterwards). Thus, x(1(x)) = x(x) = x. If evaluation was
associative, we would have x(1(x)) = x(1)(x) = 0(x) = 0. A contradiction!
Of course this rationale works only if we prove the existence of other functions
besides 0 and 1. That happens thanks to the last axiom, as we discuss below.

11

So, although evaluation f21 is not associative, we are still able to define a binary
functional letter ◦ from f21 such that ◦ is associative. That happens because f
and f(x) are not necessarily the same thing. So, contrary to the usual slogan
from category theory [11], evaluation is not a special case of composition.

Actually, it is good news that evaluation is not associative. According to
P2, we have, for all t, g(t) = (g(g))(t), since for any g we have g(g) = g. If
evaluation was associative, we would have g(t) = g(g(t)) for any t, and thus,
g = g ◦ g. So, composition would be an idempotent operation. That would be
an undesirable result for anyone who intends to develop, e.g., category theory
within Flow.

Theorem 7 There is a unique function h such that h ̸= 0 but h(x) = 0 for any
x ̸= h.

Proof: According to Definition 1 and axiom P5, 0◦0 is a unique function h ̸= 0
such that for any x ̸= 0, we have h(x) = 0(0(x)) = 0(0) = 0. But since
h ̸= 0, then P5 guarantees that h(0) = 0. Thus, h(x) is 0 for any x ̸= h,
while h itself is different of 0.

Such a function h of last theorem is rather important for future applications.
So, we label it with a special symbol, namely, ϕ0. That means 0◦0 = ϕ0, where
ϕ0 ̸= 0.

Theorem 8 For any x we have 0 ◦ x = ϕ0

Proof: According to Definition 1 and axiom P5, (0 ◦ x)(t) = 0(x(t)) = 0 for
any t ̸= 0 and t ̸= x. But P5 demands 0 ◦ x is different of 0. Hence,
(0 ◦ x)(0) = 0. Now, regarding x, there are three possibilities: (i) x = 0;
(ii) x = ϕ0; (iii) x is neither 0 nor ϕ0. The first case corresponds to
Theorem 7, which entails 0◦x = ϕ0. In the second case, if 0◦x is different
of x = ϕ0, then (0 ◦ x)(ϕ0) = 0. But that would entail (0 ◦ x)(t) = 0 for
any t ̸= 0, which corresponds exactly to function ϕ0 proven in Theorem
7, a contradiction. So, 0 ◦ x is indeed ϕ0, when x = ϕ0. Concerning the
last case, since x ̸= 0 and x ̸= ϕ0, then (according to Theorem 1) there is
t ̸= ϕ0 such that x(t) ̸= 0 for x ̸= t. Thus, according to P5, (0 ◦ x)(t) = 0
for such value of t. But once again we have a function 0 ◦ x such that
(0 ◦ x)(t) = 0 for any t ̸= 0, which corresponds exactly to function ϕ0
proven in Theorem 7

Concerning x◦0, that value is supposed to be discussed later, due to Theorem
4.

Theorem 9 0 ◦ 1 = 1 ◦ 0 = ϕ0

Proof: This proof is similar to the previous one in the last theorem.

Theorem 10 There is a unique function h such that h ̸= 1 and h(x) = x for
any x such that x ̸= 1.

12

Proof: According to Definition 1 and axiom P5, 1◦1 is a unique function h ̸= 1
such that for any x ̸= 1, we have h(x) = 1(1(x)) = 1(x) = x. But since
h ̸= 1, then P5 guarantees that h(1) = 0. Thus, h(x) is x for any x ̸= h,
while h itself is different of 1.

Such a function h of last theorem is rather important for future applications.
So, we label it with a special symbol, namely, ψ.

The next theorem is rather important for a better understanding about the
weak extensionality axiom P1 (which entails Theorem 1), although its proof
does not demand the use of such a postulate.

Theorem 11 ∀x((x ̸= 0 ∧ x ̸= 1)⇒ (1 ◦ x = x ∧ x ◦ 1 = x)).

Proof: Suppose h = 1 ◦ x, for the sake of abbreviation. That means for any t
different of 1 and different of x, we have h(t) = 1(x(t)) = x(t). Suppose
now h is different of x. According to P5, that would entail h(x) = 0.
But x(t) = x(t) for any t such that t ̸= x and t ̸= 1 as well (as long
x ̸= 1 ∧ x ̸= 0, of course). And according to P5 h is supposed to be
unique, which entails h = x. The proof of x ◦ 1 = x is analogous to the
proof of 1 ◦ x = x.

Observation 1 This last result is quite subtle. If it wasn’t for the uniqueness
requirement of compositions (axiom P5), Flow Theory would be consistent with
the existence of many functions, like x and h, which “do” the same thing. By
multiple functions “doing the same thing” we mean different functions x and
h which share the same images x(t) and h(t) for any t different of both x and
h. Since P2 demands x(x) = x and h(h) = h, that would allow h(x) = 0
and x(h) = 0. And according to Theorem 1, that fact would guarantee x ̸= h.
We use this ambiguity for functions “doing the same thing” in Flow to prove
Theorems 7 and 10, since 0 ◦ 0 = ϕ0 and 1 ◦ 1 = ψ, where ϕ0 ̸= 0 and ψ ̸= 1.
Function ϕ0 “does the same things” 0 “does”, and ψ “does the same things”
1 does. Notwithstanding, we stop using that opportunity when we are talking
about functions which are neither 0 nor 1. Observe, however, the uniqueness of
both 0 and 1 is not imposed. Their uniqueness is granted by Theorems 2 and 3.
That is why we refer to P1 as “weak extensionality”. A strong extensionality
postulate would demand that functions which “do the same thing” are necessarily
the same. But that assumption is inconvenient for us, since it does not allow us
to guarantee the existence of other functions besides 0 and 1 without considering
other primitive concepts besides evaluation f21 . In order to guarantee a strong
concept of extensionality we use, along several axioms of Flow, the quantifier
∃!. The pragmatic impact of axioms of Flow Theory is that all of them work
together into the direction of a strong concept of extensionality, in the sense
that functions x and h who “do the same thing” are the very same, with the sole
exceptions of 0 and ϕ0, and 1 and ψ. On the other hand, in Section 8 we discuss
about some possible variations of Flow. And one those variations considers the
possibility of replacing all occurrences of ∃! within our axioms by ∃. In this
sense, we consider the possibility of grounding such a variation of Flow with an

13

intuitionistic logic rather than a classical predicate calculus, as the one used in
this article.

One of the major advantages of our concept of composition is that it allows us
to mimic many-variables functions, although all functions in Flow are monadic.
That feature allows us to talk even about non-associative binary operations,
despite the fact that composition is associative. For details, see Section 7.

Theorem 12 Suppose f is idempotent with respect to composition, and there
are some x and y such that f(x) = y. Then, f is flexible with y.

Proof: If f(x) = y, then f(f(x)) = f(y). But f(f(x)) = (f ◦f)(x) for x ̸= f ◦f .
Since f is idempotent with respect to composition, then f ◦ f = f . Thus,
f(x) = f(y). Hence, y = f(y).

This last theorem is not important for further developments of Flow Theory.
We just proved it to show that our framework is able to mimic well known results
regarding the usual way composition is defined within standard set theories.
Similar results about idempotent functions can be generated.

P6 - Expansion ∃!σ(∀f(f ̸= σ ⇒ (σ(f) ̸= 0⇔ ∃g(g ̸= f ∧ σ(f) = g ∧ f(g) =
0 ∧ ∀x((x ̸= g ∧ x ̸= σ)⇒ g(x) = f(x)))))).

This last axiom guarantees the existence and uniqueness of a special function
σ. Differently from other functions in Flow, this one deserves a special notation.
From now on we write σf instead of σ(f), where f is any term. If we take a
look at the right hand of ⇔ above, we see that in the case where σf is different
of 0, we have g(f) = f(f) = f , since f is different of g. Within this context, σ
may be defined as it follows:

Definition 2 σ is a function such that for any f , σf = g ∧ g ̸= 0 iff g ̸=
f ∧ f(g) = 0 ∧ ∀x((x ̸= g ∧ x ̸= σ)⇒ g(x) = f(x)).

The intuitive idea of a term like σf is that of successor of a given function
f . If the successor of f is a non-0 term g, then f and g share the same images
for any x different of g and σ, although f and g are different. Besides, f(g) = 0.
That is why f and g are different, since f(g) = 0 while g(g) = g (remember we
are considering the case where g is a non-0 term). In the case where there is no
g which satisfies such demands, then σf is simply 0, and once again f and g are
different (if, of course, we guarantee the existence of any function like σ, as it
is done in axiom P6).

AxiomsP1-P5 work as “a soil prep to enhance the germination of functions”.
Axiom P6, on the other hand, states the existence of another function σ. And
that fact (together with the next axiom) entails the existence of infinitely many
other functions. Besides 0 and 1, there is a unique function σ0 whose images are
either 0 or σ0 itself, where σ0 is different of 0. In other words, P6 is consistent
with the existence of a σ0 ̸= 0 such that for any t different of σ0, both 0 and σ0
share the same images σ0(t) and 0(t). Such a function σ0 is simply ϕ0.

14

Theorem 13 σ0 = 0 ◦ 0 = ϕ0.

The proof of this last theorem was already done in the previous paragraph.
Function ϕ0 is quite handy here. Actually, ϕ0 is ubiquitous within our

discussions, since we prove latter ϕ0 can be associated to the empty set within
ZFC. Since we intend to introduce further axioms regarding the existence of
multiple functions (specially those functions which capture the everyday needs
of standard mathematics), it is perfectly possible that some compositions f ◦ g
correspond to certain functions whose images (f ◦ g)(t) are always 0, except for
t = f ◦g, of course. In view of the fact that axiom P5 demands the composition
f ◦ g can never be 0, function ϕ0 proves to be quite valuable to cope with such
situations. In other words, if (f ◦ g)(t) is always 0 for any t different of f ◦ g,
then f ◦ g is simply ϕ0.

Observation 2 A word of caution is necessary here. Rigorously speaking, the
label “Definition 2” by itself does not necessarily refer to a definition. Consider,
for example, there is a function ϕ′0 such that ϕ′0 ̸= ϕ0 and ϕ′0 = σ′

0, where σ
′ has

the same properties of σ in Definition 2. In that case, we have ϕ0(ϕ
′
0) = 0 and

ϕ′0(ϕ0) = 0. That is a result which confirms ϕ0 ̸= ϕ′0, according to the axiom of
weak extensionality. On the other hand, something odd is happening here, since
there seems to be two successors for the same function 0, despite the fact that
0 is unique. From an intuitive point of view, we cannot actually see or decide
which is which. It does not matter which function is a successor of 0, if there
is more than one successor σ which satisfies the allegedly definition 2. All that
matters is how this successor does work. An analogous remark can be done about
the successor of any function f which admits a non-0 successor (as we intend
to pursue in the next paragraphs). Nevertheless, if ϕ0 = σ0 and ϕ′0 = σ′

0 = σ0,
that entails ϕ0 = ϕ′0, which conflicts with the assumption that ϕ0 ̸= ϕ′0. That
means, from a rigorous point of view, “Definition 2” may somehow be a creative
statement. After all, if “Flow without Definition 2” is consistent, then “Flow
with Definition 2” may allow us to entail a contradiction. That means our choice
above for stating Definition 2 and axiom P6 has a pedagogical rationale. That
is why we used the quantifier ∃! in P6. In the next postulate, we intend to talk
about the successor of some other functions, in the sense that the successor of the
successor of 0 does exist and so on. But from now on we don’t have to worry with
the ∃! quantifier, since the uniqueness of σ guarantees the uniqueness of σf for
any f . Our pedagogical solution to cope with Flow is based on the convenience
of how to easily read our axioms.

P7 - Infinity ∃i((∀t(i(t) = t ∨ i(t) = 0)) ∧ σi ̸= 0 ∧ (i(σ0) = σ0 ∧ ∀x(i(x) =
x⇒ (i(σx) = σx ∧ σx ̸= 0)))).

Definition 3 Any function i which satisfies axiom P7 is said to be inductive.

Since the existence of ϕ0 is granted by P6 and P7 (and independently by
P5), we can now apply σ again to get a function ϕ1 = σϕ0 = σσ0 such that
ϕ1(ϕ1) = ϕ1, ϕ1(ϕ0) = ϕ0, and for the remaining functions t (functions t which

15

are neither ϕ0 nor ϕ1) we have ϕ1(t) = 0. Concerning P7, this postulate states
the existence of another function i. It says if a function x admits a non-0
successor σx (in a way such that i(x) = x), then i(σx) = σx. Analogously we
can get (from P6) functions ϕ2, ϕ3, and so on. Besides, according to P7, any
inductive function i admits its own non-0 successor σi.

Subscripts 0, 1, 2, 3, etc., are simply metalinguistic symbols based on an
alphabet of ten symbols (the usual decimal numeral system) which follows the
lexicographic order. The lexicographic order is denoted here by ≺, where 0 ≺
1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7 ≺ 8 ≺ 9. If n is a subscript, then n+ 1 corresponds
to the next subscript, in accordance to the lexicographic order. In that case, we
write n ≺ n+1. n+m is an abbreviation for (...(...((n+1)+1)+ ...1)...) with m
occurrences of + and m occurrences of pairs of parentheses. And again we have
n ≺ n+m. As it is well known for any finite alphabet, ≺ is a strict total order.
That fact allows us to talk about a minimum value between two subscripts m
and n. Within that context, min{m,n} is m iff m ≺ n, it is n iff n ≺ m, and it
is either one of them if m = n. Of course, m = n iff ¬(m ≺ n) ∧ ¬(n ≺ m). If
m ≺ n ∨m = n, we denote this by m ≼ n.

Such a vocabulary of ten symbols endowed with ≺ is called here (meta)
language L.

Thus, P6 provides us some sort of “recursive definition” for functions ϕn,
while P7 allows us to guarantee the existence of inductive functions:

• ϕ0 is such that ϕ0(x) is ϕ0 if x = ϕ0 and 0 otherwise.

• ϕn+1 is such that ϕn+1(ϕn+1) = ϕn+1, ϕn+1 ̸= ϕn, and ϕn+1(x) = ϕn(x)
for any x different from ϕn+1.

Observe that ϕn+1(ϕn) = ϕn(ϕn) = ϕn, while ϕn(ϕn+1) = 0. Moreover,
ϕn+2(ϕn+1) = ϕn+1, and ϕn+2(ϕn) = ϕn+1(ϕn) = ϕn; while ϕn(ϕn+2) = 0. For
a generalization of such results, see Theorems 15, 16, and 17.

Notwithstanding, P7 says much more, since it states function i itself has its
own non-0 successor σi.

The diagrams below (Figure 1) help us to illustrate how can we represent
any function f in a quite straightforward way. Each diagram is formed by a
rectangle. The left top corner of any rectangle introduces the label f of the
function which is represented by the diagram. The remaining labels refer to
functions x such that f(x) ̸= 0. For each label x there is a unique corresponding
arrow which indicates the image of x by f . Since for any function f we have
f(f) = f , then the function represented at the left top corner of the rectangle
does not need to be attached to any arrow. So, our first three examples below
refer to functions ϕ0, ϕ1, and ϕ2.

From left to right, the first diagram refers to ϕ0. It says, for any x, ϕ0(x) is
0, except for ϕ0 itself. The second diagram says ϕ1(ϕ1) = ϕ1, and ϕ1(ϕ0) = ϕ0.
Observe the circular arrow attached to label ϕ0 in the second diagram is not a
reference to the fact that ϕ0(ϕ0) = ϕ0. Circular arrows referring to axiom P2
are simply omitted. So, the circular arrow associated to ϕ0 in the second dia-
gram says solely that ϕ1(ϕ0) = ϕ0. Finally, the third diagram says ϕ2(ϕ2) = ϕ2,

16

ϕ2(ϕ1) = ϕ1, and ϕ2(ϕ0) = ϕ0. The diagram representations for 0 and 1 are, re-
spectively, a blank rectangle and a filled in black rectangle. More sophisticated
examples of functions are represented by diagrams in the next Section.

ϕ0 ϕ1

x
ϕ0

ϕ2

x
ϕ0

x
ϕ1

· · ·

Figure 1: From left to right, diagram representations for functions ϕ0, ϕ1,
and ϕ2.

Observe those diagrams above may be easily identified with reflexive graphs,
from Graph Theory. Since objects and morphisms of a category (in the sense
of Category Theory) may be viewed as, respectively, the vertices and edges of a
graph, that fact seems to ease our discussion in Section 4 concerning Category
Theory. Nevertheless, we show latter that is not the case.

Theorem 14 If i is inductive, then for any n of language L we have i(ϕn) = ϕn

The proof is straightforward.
The next theorems are provable by induction.

Theorem 15 For any m and n of the vocabulary given above, ϕm+n(ϕm) = ϕm
and ϕm+n(ϕn) = ϕn.

Theorem 16 For any m and n of the vocabulary given above, if at least one of
them is different of 0, then ϕm(ϕm+n) = 0 and ϕn(ϕm+n) = 0.

Recall our previous argument for the non-associativity of evaluation holds,
since we can now guarantee the existence of other functions besides 0 and 1.

Definition 4 f [t] iff t ̸= f ∧ f(t) ̸= 0.

While f(t) is a term for any f and t, f [t] is a metalinguistic abbreviation for
a formula. We read f [t] as “f acts on t”. And f acts on t iff t is not f itself and
f(t) ̸= 0. The intuitive idea of this last definition is to allow us to talk about
what effectively a function f does. For example, both 0 and ϕ0 do nothing at
all, since there is no t on which they act. On the other hand, there is a term t
on which ϕ1 acts, namely, ϕ0.

Theorem 17 For any m and n of the vocabulary of language L, ϕm ◦ ϕn =
ϕn ◦ ϕm = ϕmin{m,n}.

Proof: We present here a sketch for the proof. Without loss of generality,
suppose first m ≺ n. That is equivalent to say there is some p such
that m + p = n. So, we can use the previous propositions regarding
functions ϕn. According to Definition 1, if x ̸= ϕm ◦ ϕn, then the images

17

of ϕm ◦ ϕn are given by (ϕm ◦ ϕn)(x) = ϕm(ϕn(x)). But according to
the last two propositions, those are exactly the same images of ϕm. Since
those functions of kind ϕn are generated by axiom P6, then ϕm ◦ ϕn is
exactly ϕm. An analogous argument shows that ϕn ◦ ϕm = ϕm. For the
case where m = n, the proof is straightforward.

This last proposition proves all functions ϕn are idempotent with respect
to composition. Besides, composition is commutative among functions ϕn, al-
though a given ϕn does not necessarily commute with any arbitrary function x,
as we can see in the next two theorems.

Theorem 18 For any n from language L, σ ◦ ϕn is a function h such that: (i)
h(h) = h; (ii) h(ϕm) = ϕm+1 for any m ≺ n (if there is any); (iii) h(σ) =
h(ϕn) = 0; and (iv) h(x) = ϕ0 for the remaining values of x.

Proof: Item (i) is a direct consequence from axiom P2. If σ ◦ ϕn = h, then
h(x) = σ(ϕn(x)), for x ̸= h, x ̸= σ, and x ̸= ϕn. If m ≺ n, then
h(ϕm) = σ(ϕn(ϕm)) = σ(ϕm) = ϕm+1. So, item (ii) is satisfied. That
means h is different of ϕn, which entails h(ϕn) = 0, according to P5. On
the other hand, if, e.g., x = 1 (which is different of σ, of ϕn and of h), then
ϕn(x) = 0, which entails h(x) = σ(ϕn(x)) = σ(0) = ϕ0. That means h
is not σ either. Therefore, item (iii) is satisfied. For the remaining terms
(those x which are different of ϕm for m ≺ n, different of ϕn, different of
σ and different of h), we have h(x) = σ(ϕn(x)) = σ(0) = ϕ0. Therefore,
item (iv) is satisfied.

The proof of last theorem helps us to understand the non-constructive char-
acter of the calculation of compositions. In standard differential and integral
calculus, for example, the definition of limit of a real function on a given point
does not allow us to calculate limits, even when they do exist. Theorems about
limits are the usual tools which allow us to calculate limits. A similar situa-
tion happens regarding composition in Flow. Axiom P5 does not provide any
methodology for calculating compositions in a constructive fashion. But all
theorems about composition can provide useful tools for calculations. Next the-
orem together with the previous one, e.g., show us that σ ◦ ϕn is never equal to
ϕn ◦ σ, for any n.

Theorem 19 For any n from language L, ϕn ◦ σ is a function h such that: (i)
h(h) = h; (ii) h(ϕm) = ϕm+1 for any m ≺ n (if there is any); (iii) h(σ) =
h(ϕn) = 0; (iv) h(0) = ϕ0; and (v) h(x) = 0 for the remaining values of x.

Proof: Item (i) is a direct consequence from axiom P2. If ϕn ◦ σ = h, then
h(x) = ϕn(σ(x)), for x ̸= h, x ̸= σ, and x ̸= ϕn. If m ≺ n, then
h(ϕm) = ϕn(σ(ϕm)) = ϕn(ϕm+1) = ϕm+1. So, item (ii) is satisfied. That
means h is different of ϕn, which entails h(ϕn) = 0, according to P5. On
the other hand, if, e.g., x = ϕn+1 (which is different of σ, of ϕn and of
h), then σ(x) = ϕn+2, which entails h(x) = ϕn(σ(x)) = ϕn(ϕn+2) = 0.

18

That means h is not σ either. Therefore, item (iii) is satisfied. Besides,
ϕn(σ(0)) = ϕn(ϕ0) = ϕ0 for any n, which satisfies item (iv). For the
remaining terms x, all we have to do is to remember ϕn(x) ̸= 0 only for
those x such that x = ϕm, where either m ≺ n or m = n. But those cases
were already analysed. Therefore, h(x) = ϕn(σ(x)) = 0. That concludes
item (v).

The next diagram represents function ϕn ◦ σ. If ϕn ◦ σ = h, then h(0) = ϕ0
(first arrow from left to right), h(ϕ0) = ϕ1, and so on; until h(ϕn−1) = ϕn,
and h(ϕn) = 0. The remaining values have images 0. That is why do no not
represent them in the diagram.

ϕn ◦ σ

ϕ0- ϕ1- - · · · - ϕn−1
- ϕn

Theorem 20 σ1 = 0.

Proof: Suppose g = σ1. According to definition 2, 1(g) = 0. That happens
only if g = 0. That means the successor of 1 does not share all images of
1. That happens because the successor of 1 is not a non-0 term.

Theorem 21 σ ◦ 1 = 1 ◦ σ = σ.

Proof: That is a corollary from the fact that for any x, we have x◦1 = 1◦x = x,
if x is neither 0 nor 1.

Definition 5 Cy(f) iff ∃y∀x(x ̸= f ⇒ f(x) = y).

Formula Cy(f) is read as “f is a constant function with constant value y” or
simply “f is a constant function”, if there is no risk of confusion. That means a
constant function is a term f such that, for a given y, f(x) is either y (for any
x ̸= f) or f itself (which is consistent with P2).

The next theorem says the composition σ ◦ 0 is a constant function with
constant value ϕ0.

Theorem 22 Cϕ0(σ ◦ 0).

Proof: For any t we have (σ ◦ 0)(t) = σ(0(t)) = σ(0) = σ0 = ϕ0. That means
σ ◦ 0 has images ϕ0 for any t ̸= σ ◦ 0 and image σ ◦ 0 for t = σ ◦ 0. Thus,
σ ◦ 0 is a constant function with constant value ϕ0.

Theorem 23 0 is the only constant function which assumes one single image
for any x.

19

Proof: According to A5, any constant function f has at most two images,
namely, either a constant value c or f itself (see axiom P2). So, if f is a
constant function and it has one single image for any x, then that image
is supposed to be f itself, according to P2. Well, that is exactly the
statement of axiom P4. And according to theorem 3, there is one single
function like this, namely, 0.

On the other hand, P6 guarantees the existence of at least one other con-
stant function, namely, ϕ0 such that ϕ0(x) = 0(x) for any x different from
ϕ0. Nevertheless, ϕ0 is not 0, despite the fact that both 0 and ϕ0 are constant
functions with the same constant value 0.

Theorem 24 For any n of language L, there is a constant function f whose
constant value is ϕn.

Proof: From the proof of Theorem 22 it is easy to see that Cϕ1
(σ ◦ σ ◦ 0),

Cϕ2(σ ◦ σ ◦ σ ◦ 0), and so on.

The last theorems state there are infinitely many constant functions in Flow,
namely, those with constant values 0, ϕ0, ϕ1, ϕ2, etc.

It is worth to observe as well, both evaluation f21 and composition ◦ are not
commutative. For example, while σ ◦ 0 is a constant function with constant
value ϕ0, 0 ◦ σ is ϕ0. Besides, 0(σ) = 0, but σ(0) = σ0 = ϕ0. Other examples
are provided in the next paragraphs.

A final word of caution is necessary here regarding evaluation versus com-
position. We cannot make confusion between formulas f(x) = 1 and f ◦ x = 1.
The former is perfectly possible for f = x = 1. The latter is impossible, since
no composition results 1.

Next we want to guarantee the existence of proper restrictions of a given
function. By proper restriction of a function f we mean a function g such that:
(i) g(f) = 0; and (ii) for the remaining values x, we may have either g(x) = f(x)
or g(x) = 0 (except, of course, when x is g; in that case, g(g) = g).

So, if F (x) is a formula where all occurrences of x are free and such that
there is no free occurrences of g in F (x), then the following is an axiom.

P8F - Restriction ∀f(f ̸= 0⇒ ∃!g(g ̸= 0 ∧ (g ̸= f ⇒ g(f) = 0) ∧ ∀x∀y((x ̸=
g ∧ x ̸= f)⇒ (g(x) = y ⇔ ((f(x) = y ∧ F (x)) ∨ (y = 0 ∧ ¬F (x))))))).

The antecedent for the first conditional ⇒ above guarantees the necessary
condition for the existence of any restriction g of a given function f , namely,
f ̸= 0.

Hence, if f is different of 0, then there is a unique function g such that:
(i) g(f) = 0 if g ̸= f ; (ii) g(g) = g; (iii) g and f share non-0 images for
some x as long x does satisfy formula F ; and (iv) when g and f do not share
non-0 images for any x, then g(x) = 0. We call g a restriction of f under
F (x), or simply a restriction of f . In a sense, this last axiom is very similar to
the Separation Scheme in ZFC. Nevertheless, Separation Scheme’s role is not

20

limited to guarantee the existence of subsets. Thanks to that postulate, ZFC
avoids antinomies like Russell’s paradox. In the case of Flow Theory, those
antinomies are avoided by means of the self-reference axiom P2.

To adjust the mathematics of Flow into common practice, the next definition
if quite handy.

Definition 6 For any function f different of 0, its restriction g is either f
itself, or any proper restriction g of f , as long g is not 0. Formally, we denote
this by

g ⊆ f iff (g = f)∨(g(f) = 0∧∀x∀y((x ̸= g∧x ̸= f)⇒ (g(x) = y ⇒ f(x) = y)),

where both f and g are different of 0.

Proper restrictions are defined as:

Definition 7 g ⊂ f iff g ⊆ f ∧ g ̸= f .

We abbreviate ¬(g ⊆ f) and ¬(g ⊂ f) as, respectively, g ̸⊆ f and g ̸⊂ f .
Accordingly, for all f we have 0 ̸⊆ f and f ̸⊆ 0.

As an example, consider f = ϕ2.

ϕ2

x
ϕ0

x
ϕ1

Figure 2: Diagram of function ϕ2.

According to axiom P8F , there are three proper restrictions g to ϕ2. If F (x)
is the formula “x = ϕ0”, then g = ϕ0. If F (x) is the formula “x = ϕ0 ∨x = ϕ1”,
then g = ϕ1. If F (x) is “x = x”, then again g = ϕ1. If F (x) is “x ̸= x”, then
once more g = ϕ0. Both ϕ0 and ϕ1 have their diagrams already represented
some paragraphs above. The novelty here, however, happens for the formula
F (x) given by “x = ϕ1”. In that case we have a proper restriction γ such that
γ ̸= ϕ1, γ(γ) = γ, γ(ϕ1) = ϕ1, and γ(x) = 0 for any x different of ϕ1 and γ
itself. Its diagram is as follows.

γ

x
ϕ1

Figure 3: Diagram of function γ, a special restriction of ϕ2.

21

Thus, ϕ2 admits four restrictions: ϕ0, ϕ1, function γ in the diagram above,
and ϕ2.

For practical purposes, it seems useful to adopt a rule of thumb for a better
understanding of the concept of restriction. Any function f which satisfies
the antecedent of the first conditional in axiom P8F is a function which “acts
on something”. That means there is a t different of f such that f(t) is not
0. For example, ϕ2 acts on ϕ0 and ϕ1. So, all restrictions of ϕ2 correspond,
intuitively speaking, to all possible combinations of ϕ0 and ϕ1. Those possible
combinations, in that case, are: (1) nothing at all , since ϕ0 does not act on
anyone; (2) ϕ0, since ϕ1 acts only on ϕ0; (3) ϕ1, since γ acts only on ϕ1; and,
finally, (4) everything , since ϕ2 acts both on ϕ0 and ϕ1.

There are infinitely many other functions (besides 1) which do not have any
non-0 successor, as stated by one of the next theorems. But before that, it is
useful to adopt the next convention. The term below

f
∣∣
F (x)

denotes a restriction of f by use of axiom P8F and formula F (x).

Theorem 25 There is a function g such that σg = 1

Proof: Consider g = 1
∣∣
x ̸=1

. That means g(x) = 0 only if either x = 0 or x = 1.

For the remaining values we have g(x) = x, which satisfies the definition
of successor in the sense that σg = 1.

Theorem 26 σ1◦1 = 1.

Proof: The formula above is equivalent to say that the successor σh of function
h from Theorem 10 is 1. Well, function h of Theorem 10 is such that
h(x) = x for any x different of 1. Besides, h(1) = 0. And that is exactly
function g of Theorem 25.

Recall the unique function h from Theorem 10 was abbreviated as ψ. That
means ψ = 1 ◦ 1. And now again we see ψ as a function whose successor is 1.
In other words, σψ = 1.

Theorem 27 The successor σg for any g = Φn =def 1
∣∣
x ̸=ϕn

is 0, if n belongs

to language L.

Proof: According to P8F , g(ϕn) = 0. That means g is different of 1, since
1(ϕn) = ϕn. And Theorem 1 entails that g ̸= 1. Consequently, g(1) = 0,
according to P8F ; and g(0) = 0, since g is a restriction of 1 and 1(0) = 0.
Now, suppose there is σg ̸= 0. Definition 2 demands that g(σg) = 0.
Besides, g ̸= σg and g and σg are supposed to share the same images
for any x different of σg. But g(x) = 0 iff x = 0 or x = 1 (as already
established) or x = ϕn, according to P8F . For the remaining values of
x, g(x) = x ̸= 0 (axiom P8F again). That means there are only three

22

possible values for σg, namely, 0, 1 or ϕn. And only two of them are
different of 0. Now consider ϕm, where n ≺ m. Function ϕm is different
of either one of those three possible values. So, if anyone of them is σg, it
is supposed to share the same images of g, for x = ϕm. Notwithstanding,
ϕn(ϕm) = 0 (according to the recursive definition of functions ϕn), while
g(ϕm) = ϕm. That means σg cannot be ϕn. Finally, 1(ϕn) = ϕn, while
g(ϕn) = 0. That means σg cannot be 1 either. Thus, the only possible
value for σg is 0, despite the fact that g and 0 do not share the same
images for any x.

This last theorem does not consider all possible cases of functions f with no
successor σf ̸= 0. Similar results may be obtained, e.g., for 1

∣∣
x ̸=ϕn∨x ̸=ϕm

(where

m ̸= n), 1
∣∣
x ̸=ϕn∨x̸=ϕm∨x ̸=ϕp

(for m ̸= n, n ̸= p and m ̸= p) etc. Even if we

consider F (x) as any finite disjunction of the form x ̸= ϕn1 ∨x ̸= ϕn2 ∨· · ·∨x ̸=
ϕnm for any m, we still cannot guarantee that all possible cases of functions
with no successor different of 0 are ran out. But this last theorem is proven to
be rather important for our discussion regarding the translation of ZFC axioms
into Flow, as we see in the next Section.

The last theorems teach us the following:

1. If a function f does have a successor σf ̸= 0, that does not necessarily
entail that any restriction of f has a non-0 successor. For example, any
function Φn of Theorem 27 is a proper restriction of ψ (Theorem 25).
Nevertheless, although there is a successor of ψ, which is different of 0, no
Φn has a successor different of 0.

2. If a function f has 0 as its successor, that does not entail that every
restriction of f has its successor equal to 0. For example, every Φn has
successor 0. Nevertheless, ϕ3 is a proper restriction of any Φn, for n ̸= 3.
And despite the fact that such a Φn has successor 0, ϕ3 has its successor
different of 0.

3. If a function f has successor σf ̸= 0, that does not entail that σf has
successor different of 0. For example, the successor of ψ is 1. But the
successor of 1 is 0. So, there is σψ ̸= 0, but there is no σσψ ̸= 0.

Hence, Flow teaches us that restrictions of a function f are not informa-
tive enough about the behavior of any f . We need something else. And that
something else is provided by axiom P11, which is displayed some pages below.

So far, most functions f in Flow behave like “children” of 1, in the sense
that for any x we have either f(x) = x or f(x) = 0. One exception for this rule
is σ. Notwithstanding, if we want to ground standard mathematics, we need
much more than that. So, in order to discuss about that, we need something
which resembles the usual notion of ordered pair.

Definition 8 f is an ordered pair (a, b) iff there are α and β such that α ̸= f ,
β ̸= f , α ̸= a, β ̸= b and

23

f(x) =

 α if x = α
β if x = β
0 if x ̸= f ∧ x ̸= α ∧ x ̸= β

where α(a) = a, α(x) = 0 if x is neither a nor α, β(a) = a, β(b) = b, β(x) = 0
if x is neither a nor b or β.

Observe we did not demand α ̸= b. That means we may have two kinds of
ordered pairs, namely, those where α ̸= b (first kind) and those where α = b
(second kind). The diagram for an ordered pair f = (a, b), where α ̸= b, may
be written as follows:

f
x

α
x

β

axx xba

Figure 4: Diagram of an ordered pair f = (a, b) of the first kind.

The diagram above says f acts only on α and β, while α acts only on a, and
β acts only on a and b. In the particular case where a = b, we have α = β,
and the ordered pair f is denoted by (a, a). Observe that in the diagram above
f(a) = f(b) = 0, which means that f never acts neither on a nor on b, if f is the
ordered pair (a, b) of the first kind. In other words, f is an ordered pair (a, b)
iff f acts only on functions α and β which act, respectively, only on a and only
on a and b. To get (b, a), all we have to do is to exchange α by a function α′

which acts only on b. Hence, our definition for ordered pair is obviously inspired
on the standard notion by Kuratowski. In standard set theory an ordered pair
(a, b) is a set {{a}, {a, b}} such that neither a nor b belong to (a, b). In Flow,
on the other hand, an ordered pair (a, b) of the first kind is a function which
does not act neither on a nor on b.

Nevertheless, the second kind of ordered pair shows our approach is not
equivalent to Kuratowki’s. In the case where α = b, we have the following
diagram.

f

x
x

β
α = b

ax

Figure 5: Diagram of an ordered pair f = (a, b) of the second kind.

In this non-Kuratowskian kind of ordered pair f = (a, b), f acts on b, al-
though it does not act on a. In the general case, no ordered pair f = (a, b) ever
acts on a.

24

Since any ordered pair (a, b) is a function, we abbreviate x((a, b))) as x(a, b)
for a given function x.

We intend to use the notion of ordered pair to guarantee the existence of
other functions, besides our previous “children” of 1 (which are “children” of
0 as well, since usually most of their images are 0). So, our idea is as follows.
Consider, for example, function ϕ2, whose restrictions are ϕ0, ϕ1, ϕ2 and γ, as
previously discussed. If we guarantee the existence of a function f which acts
only on ϕ1 and ϕ2 (in a way such that f(ϕ1) = ϕ1 and f(ϕ2) = ϕ2), then we can
easily prove f is the ordered pair (ϕ0, ϕ1). After all, ϕ1 acts only on ϕ0; and ϕ2
acts only on ϕ0 and ϕ1. On the other hand, if we can guarantee the existence of
function g such that g acts only on γ and ϕ2 (in a way such that g(γ) = γ and
g(ϕ2) = ϕ2), we can easily prove that g is the ordered pair (ϕ1, ϕ0). Ultimately,
γ acts only on ϕ1; and ϕ2 acts only on ϕ1 and ϕ0. Observe that (ϕ0, ϕ1) is a
non-Kuratowskian ordered pair (second kind), while (ϕ1, ϕ0) is a Kuratowskian
ordered pair (first kind).

Once Flow is endowed with ordered pairs (ϕ0, ϕ1) and (ϕ1, ϕ0), all we have to
do is to guarantee the existence, e.g., of functions l and m such that l(ϕ0) = ϕ1
and m(ϕ1) = ϕ0. In that case we are no longer restricted to functions f such
that f(x) is either x itself or 0.

Fortunately, the next theorem guarantees we can always define ordered pairs
(a, b) for any functions a and b as long we state that none of them is 1. Such a
restriction comes from the fact that we use restrictions applied to 1 in order to
prove the next result. And any proper restriction of 1 is a function f such that
f(1) = 0.

Theorem 28 If a and b are functions both different of 0 and 1, then there is a
function f such that f = (a, b).

Proof: First, we use axiom P8F to define the proper restriction of 1 for “x =
a ∨ x = b” as formula F (x). Such a proper restriction can be denoted
as β. So, β is a function such that β(a) = a, β(b) = b, β(β) = β, and
β(x) = 0 for all remaining values of x. Analogously, the proper restriction
of 1 for “x = a” as formula F (x) in P8F gives us the function α such that
α(a) = a, α(α) = α, and α(x) = 0 for the remaining values of x. Finally,
the proper restriction of 1 for “x = α ∨ x = β as formula F (x) in P8F
provides us a function f such that f(α) = α, f(β) = β, f(f) = f , and
f(x) = 0 for all the remaining values of x. But function f is exactly that
one in definition 8. Hence, f = (a, b).

This last theorem says we do not need ϕ2 to produce ordered pairs (ϕ0, ϕ1)
and (ϕ1, ϕ0), as we did above. Since axiom P6 guarantees the existence of
functions ϕn, we can use P8F to obtain any ordered pair (ϕm, ϕn).

Observation 3 Now, what is the first valuable lesson taught by Flow? From
the first five axioms we learn the existence of two functions, namely, 0 and
1. Besides, we learn how to distinct one from the other, thanks to P1. That
fact, per se, suggests some notion of duality which is reinforced by the concept of

25

successor: the successor of 1 is 0, and the successor of 0 is ϕ0. Thus, more than a
principle of duality, we have a principle of complementarity, where the function
successor establishes some sort of cycle which connects those two extremes, 0
and 1. In its turn, axiom P5 teaches us how to compose functions. But what is
the advantage of composing functions if all we have is a few privileged functions?
Compositions involving 0 and 1 do not produce any new functions besides ϕ0 and
ψ. So, axioms P6 and P7 allow us to build infinitely many functions from 0.
Those are functions ϕn (n = 0, 1, 2, · · ·). On the other hand, axiom P8F allows
us to “deconstruct” 1 to achieve another vast myriad of functions, including
ordered pairs. Without P7, P8F is useless, for the latter demands the existence
of a function f which acts on some t. And no function can do that in a universe
where all we know is the existence of 0, 1, ϕ0, and ψ. And without P8F , P7
is very poor. Hence, 0, under the influence of P6 and P7, can be seen as a
creation function. Analogously, 1, under the influence of P8F , can be seen as
an annihilation function. Both, creation and annihilation, allow us to shape a
whole universe of functions. First we create, then we destroy. That is the main
difference between our approach and the usual notions of standard set theories.
Standard set theories like ZFC build whole universes of sets from one single
source, the empty set. That means the standard approach for deriving sets is
by means of a single process of creation. In Flow, however, we build new terms
from two fronts: good and evil, light and darkness, creation and annihilation,
expansion (P6) and restriction (P8F). That is how Flow Theory flows.

Theorem 29 ∀f(f ̸= 0⇒ (ϕ0 ⊆ f)).

Proof: If f = ϕ0, the proof is trivial, since according to Definition 6 every
function different of 0 is a restriction of itself. If f ̸= ϕ0, all we have to
do is to use “x ̸= x” as formula F (x) in axiom P8F . In that case ϕ0 is a
proper restriction of f .

Definition 9 z is the power function of f (or simply the power of f) iff z ̸=
f ∧ ∀x(x ̸= z ⇒ ((z(x) = x⇔ x ⊆ f) ∧ (z(x) = 0⇔ x ̸⊆ f))). We denote z as
P(f).

Theorem 30 For any function h different of 0 there is a unique P(h).

Proof: All we have to do is to apply axiom P8F over function f = 1 and assume
“x ⊆ h” as formula F (x). Function g guaranteed by P8F is precisely P(h).

So, for example, P(ϕ0) = ϕ1, P(ϕ1) = ϕ2, and P(ϕ2) is a function f such
that f ̸= ϕ2, f(ϕ0) = ϕ0, f(ϕ1) = ϕ1, f(ϕ2) = ϕ2, f(γ) = γ, f(f) = f , and
f(x) = 0 for all the remaining values of x.

One interesting side effect of the concept of power function is that P(1) is
somehow a “smaller” function than 1. What do we mean by that? It means
that 1 acts on every single function, with the only exceptions of 0 and 1, since
1(0) = 0 and 1(1) = 1. But P(1) is a function z which is different of 1 and such
that z acts only on those functions t such that for any x we have either t(x) = x

26

or t(x) = 0. So, Flow is apparently free of any paradox regarding the notion of
power.

The next theorem is a first step to prove the existence of relations in Flow.
So, contrary to usual set-theoretic notions, relations are special cases of func-
tions.

Theorem 31 Let l and m be functions such that they are both different of 0
and ϕ0. Then there is a function g such that for any t ̸= g we have g(t) ̸= 0 iff
t = (a, b), where a and b are such that a ̸= l, b ̸= m, l(a) ̸= 0, and m(b) ̸= 0.

Proof: All we have to do is to apply Axiom P8F over function f = 1, by
assuming as formula F (x) the following one, for a given l and a given m:
a ̸= l ∧ b ̸= m ∧ l(a) ̸= 0 ∧m(b) ̸= 0⇔ x = (a, b).

This unique function g is called the trivial product between l and m, and it
is denoted by l ⊗m.

For example, if l = ϕ3 and m = ϕ2 (both do satisfy the conditions demanded
by the theorem above), then g = ϕ3 ⊗ ϕ2 is the following function.

g

(ϕ0, ϕ0)
x x x

x x x
(ϕ0, ϕ1) (ϕ1, ϕ0)

(ϕ1, ϕ1) (ϕ2, ϕ0) (ϕ2, ϕ1)

Figure 6: The trivial product between ϕ3 and ϕ2.

The arrows in Figure 6 say that g(ϕ0, ϕ0) = (ϕ0, ϕ0), g(ϕ0, ϕ1) = (ϕ0, ϕ1),
g(ϕ1, ϕ0) = (ϕ1, ϕ0), g(ϕ1, ϕ1) = (ϕ1, ϕ1), g(ϕ2, ϕ0) = (ϕ2, ϕ0), and g(ϕ2, ϕ1) =
(ϕ2, ϕ1). Besides, g(g) = g and g(x) = 0 for the remaining values of x.

As expected, this operation ⊗ is not commutative since, e.g., ϕ3 ⊗ ϕ2 is
different of ϕ2 ⊗ ϕ3. That means we can define relations as it follows:

Definition 10 If g is the trivial product between l and m, then any f such that
f ⊆ g is called a relation with domain l and co-domain m.

If we want to define a relation f with domain l and co-domain m, we just
need to apply P8F over l⊗m for a given formula F (x). As an example, consider
the following definition:

Definition 11 Let l and m be functions such that they are both different of
0 and ϕ0. Function g is a trivially arbitrary function with domain l and co-
domain m iff f ⊆ l⊗m and for all a such that l[a] there is a unique b such that
m[b] and g(a, b) = (a, b). We denote this by Tl→m(g).

That means trivially arbitrary functions are special cases of relations.

27

Theorem 32 For any functions l and m which are both different of 0 and ϕ0,
there is at least one g such that Tl→m(g).

Proof: All we have to do is to apply Axiom P8F over function f = l ⊗ m,
by assuming as formula F (x) the following one: ∀a((a ̸= l ∧ l(a) ̸= 0) ⇒
∃!b(b ̸= m ∧m(b) ̸= 0 ∧ x = (a, b))).

If we use the particular case illustrated in Figure 6, one example of trivially
arbitrary function f with domain ϕ3 and co-domain ϕ2 is the following:

f
x x

x
(ϕ0, ϕ1) (ϕ1, ϕ0)

(ϕ2, ϕ1)

Figure 7: Example of a trivially arbitrary function f with domain ϕ3 and
co-domain ϕ2.

Notwithstanding, despite all those results above, all functions in Flow work
as some some sort of restriction of 1, in the sense that all our functions f (until
now) are such that for any x we have f(x) is either x or 0. To accommodate
arbitrary functions, we need the next axiom.

P9 - Freedom ∀l∀m∀f(Tl→m(f)⇒ ∃!g(∀a∀b(f(a, b) ̸= 0⇒ g(a) = b))).

The intuitive idea of this last axiom is quite simple. If we have a trivially
arbitrary function f with domain l and co-domain m which acts on ordered
pairs (a, b) in a way such that f(a, b) is always (a, b), then there is a function g
such that g(a) = b. That means we have now new functions g where g(a) is not
necessarily a.

If we apply axiom P9, e.g., over function f illustrated in Figure 7, we can
get now the following:

g

ϕ0 ϕ1

ϕ2

-
�

�
��

Figure 8: Example of a function g obtained from f (of Figure 7) by use of
Axiom P9.

The example above refers to a function g such that g(ϕ0) = ϕ1, g(ϕ1) = ϕ0,
g(ϕ2) = ϕ1, g(g) = g, and g(r) = 0 for the remaining values of r.

By using the same ideas, we can define as well, from i ⊗ i (where i is an
inductive function), a function λ such that λ(ϕn) = ϕn+1, λ(λ) = λ and λ(r) = 0

28

for the remaining values of r. That function λ is particularly useful in later
discussions.

The next definition is quite useful for dealing with unions, as we intend to
do in the next axiom:

Definition 12 Let g, h and t be functions. Then,

1. X�(g, h← t) iff g[t] ∧ h[t] ∧ g(t) = h(t),

2. X♢(g, h← t) iff g[t] ∧ h[t] ∧ g(t) ̸= h(t),

3. X△(g, h← t) iff t ̸= g∧t ̸= h∧(g(t) = 0∨h(t) = 0)∧¬(g(t) = 0∧h(t) = 0),

4. X⃝(g, h← t) iff t ̸= g ∧ t ̸= h ∧ g(t) = 0 ∧ h(t) = 0.

X�(g, h ← t) says both g and h act on a given t and share the same value
for g(t) and h(t). X♢(g, h← t) says both g and h act on a given t; but in that
case they do not share the same image for t. X△(g, h ← t) says either g or h
acts on a given t, while the other one gives us an image equal to 0. Finally,
X⃝(g, h← t) simply says both g and h share the same image for a given t, and
that image is 0.

P10 - Union ∀f((f ̸= 0 ∧ ∀x(f [x]⇒ σx ̸= 0))⇒
∃!u(σu ̸= 0 ∧ (∀g∀h((f [g] ∧ f [h])⇒ ∀t(t ̸= u⇒
(X�(g, h← t)⇒ u(t) = g(t)) ∧
((X♢(g, h← t) ∨ X⃝(g, h← t))⇒ u(t) = 0)) ∧
(X△(g, h← t)⇒ (u(t) ̸= 0 ∧ (u(t) = g(t) ∨ u(t) = h(t))))))).

We hope the reader does not feel intimidated by the apparent complexity of
this last formula. Actually, this postulate is quite intuitive.

Suppose f acts on many functions, like g and h. So, we have four possibilities
for an arbitrary t (as long neither g nor h is t): (i) both g and h act on t and
share the same value (g(t) = h(t)); (ii) both g and h act on t, but do not share
the same value (g(t) ̸= h(t)); (iii) either g or h does not act on t, but one of
them does act on t; (iv) both g(t) and h(t) have value 0. In the first case, u(t)
has the value shared by both g and h on t. In the second case, u(t) is 0. And the
same happens for the fourth case. Finally, in the third case, u(t) has the same
value of either g(t) or h(t), as long we are talking about the only one which acts
on t.

This last axiom allows us to obtain arbitrary unions of functions, even if they
do not share the same images. And the resultant unique union u is a function.
So, in a precise sense, this last axiom generalizes the standard notion of union
in theories like ZFC, NBG, and others. We denote function u as

u =
∪
f [g]

g,

where f acts on g.

29

Consider the following example.
Let f be such that f(g) = g, f(h) = h, f(f) = f , and f(r) = 0 for the

remaining values of r, where g and h are represented below:

g

ϕ0 ϕ1

ϕ2

-
�

�
��

h

ϕ0 ϕ1

ϕ2

�

�
��@

@R

Figure 9: Example of functions to be unified.

That means g(ϕ0) = ϕ1, g(ϕ1) = ϕ0, g(ϕ2) = ϕ1, g(g) = g, and g(r) = 0
for the remaining values of r. Besides, h(ϕ0) = ϕ2, h(ϕ1) = ϕ0, h(ϕ2) = ϕ1,
h(h) = h, and h(r) = 0 for the remaining values of r. Observe that for both
cases we have g(x) ̸= 0⇒ σx ̸= 0 and h(x) ̸= 0⇒ σx ̸= 0. That fact entails that
both g and h have their respective non-0 successors. In other words, there is a
union u which is associated to f . So, we have X�(g, h ← ϕ1), X�(g, h ← ϕ2),
X♢(g, h ← ϕ0), and X⃝(g, h ← r) for the remaining values of r. By applying
axiom P10, we have that u =

∪
f [i] i (where f acts on i) is simply

u

ϕ0 ϕ1

ϕ2
�

��

�

Figure 10: Union between functions g and h of Figure 9.

where the arrow which escapes the diagram says that u(ϕ0) = 0, despite the
fact that u(ϕ1) = ϕ0.

As a second example, consider a function f ′ such that f ′(g) = h, f ′(h) = g,
f ′(f ′) = f ′, and f ′(r) = 0 for the remaining values of r. Clearly, f ′ ̸= f .
Nevertheless, we have

u =
∪
f ′[j]

j =
∪
f [i]

i,

where both f ′ and f act, respectively, on j and i. That means different functions
may generate the same union u, a result which is analogous to what happens,
e.g., in ZFC.

If we want the particular case of standard union, all we need to do is to
consider the definition given below.

Definition 13 Any function f is strictly unifiable iff f is not 0 and ∀g∀h((f(g) ̸=
0 ∧ f(h) ̸= 0) ⇒ ∀t((g(t) ̸= 0 ∧ h(t) ̸= 0) ⇒ g(t) = h(t))). We denote this by
U(f).

30

So, if f is strictly unifiable, its arbitrary union corresponds, intuitively speak-
ing, to the standard notion of union. That is proved in the next section.

Theorem 33 Let x and y be functions such that both σx and σy are different
of 0. If x ◦ y ̸= 0 and y does not act on σx, then σx ◦ σy ⊆ σx◦y.

Proof:

(σx ◦ σy)(t) = σx(σy(t)) =

 σx ◦ σy if t = σx ◦ σy
σx(y(t)) if t ̸= σx ◦ σy ∧ t ̸= σy
σx(σy) if t = σy

=


σx ◦ σy if t = σx ◦ σy
x(y(t)) if t ̸= σx ◦ σy ∧ t ̸= σy ∧ y(t) ̸= σx
σx(σy(t)) if t = σx
σx(σy) if t = σy

So, according to the second line of the last brace, unless y acts on σx, we
have that σx ◦ σy ⊆ σx◦y.

P11 - Coherence ∀f((σf ̸= 0 ∧ ∀x(f [x]⇒ σx ̸= 0))⇒
(∀g(g ⊆ f ⇒ σg ̸= 0) ∧ ∀g∀h((h[g]⇒ g ⊆ f)⇒ σh ̸= 0))).

This last postulate allows us to establish a frontier between standard objects
of Flow Theory and those who are non-standard. For now, standard objects
are those directly associated to the concept of a non-0 successor. If f has a
non-0 successor and it acts only on terms who have non-0 successor, then any
restriction of f has a non-0 successor and any h which acts on those restrictions
has a non-0 successor. Later on we identify those standard objects to those
terms who can be found in ZFC. Its intuitive appeal is quite clear.

Definition 14 f ∼ g iff ∀t((t ̸= f ∧ t ̸= g)⇒ f(t) = g(t)).

This last definition has an important role to be discussed at the end of this
paper. For now, all the reader needs to know is that its main purpose is to be
used in the next postulate.

P12 - Choice ∀f(∀x∀y((f(x) ̸= 0∧f(y) ̸= 0∧x ̸= y)⇒ (x ̸= ϕ0∧¬∃s(x(s) =
y(s) ∧ x(s) ̸= 0)))⇒
∃c∀r(f(r) ̸= 0⇒ ∃!w(c(w) = r(w) ∧ r(w) ̸= 0)) ∧ ∀d(d ∼ c⇒ c = d)).

The term c above is called the choice function associated to f .
If the reader is missing any axiom regarding regularity , see Section 8.

31

2.2 Sets and Proper Classes

In this subsection we introduce concepts which are intuitively associated to some
notion of collection. Such collections are organized as classes, proper classes,
sets, and ZF-sets.

Definition 15 Col(f) iff f ̸= 0 ∧ ∀x(f(x) ̸= 0⇒ f(f(x)) ̸= 0).

In the definition above we read Col(f) as “f is a collection” or “f is a class”.

Theorem 34 ¬Col(σ).

Proof: We proved in Theorem 26 that σ1◦1 = 1 ̸= 0. Nevertheless, σσ1◦1 =
σ1 = 0, according to Theorem 20. That means σx ̸= 0 does not entail
σσx ̸= 0, for an arbitrary x. Therefore, σ is not a class.

Definition 16 x ∈ f iff x ̸= f ∧ f(x) ̸= 0.

The negation of the formula x ∈ f is abbreviated as x ̸∈ f . We read x ∈ f as
x belongs to f . It is immediate to see that x ∈ f iff f [x]. Observe as well that
we do not demand f to be a class. That will allow us, hopefully, to talk about
some sort of fuzzy sets concept in the case where f is not a class. For example,
as we proved above, σ is not a class. But since σ0 = ϕ0, that means 0 ∈ σ.
Actually, infinitely many functions belong to σ, like ϕ0, ϕ1, etc. Nevertheless,
we do not intend to discuss about such fuzzy terms in this paper. That is a
task for the future. Finally, it is worth to observe that 0 and ϕ0 are terms such
that no one belongs to any of them; but only ϕ0 is a class (by vacuity), since,
by definition, 0 cannot be a class. Thus, Flow can be understood as a theory
with one single atom (Urelement), namely, 0.

Theorem 35 The next formulas are all theorems: (i) Col(1); (ii) ∀x((x ̸=
1 ∧ x ̸= 0)⇒ x ∈ 1); (iii) ∀x(x ̸∈ x).

Their proofs are straightforward.

Definition 17 A structure-free class is a class f such that for any x we have
f(x) ̸= 0⇒ f(x) = x.

It is easy to check that every function ϕn is a structure-free class. The same
happens with 1.

Definition 18 Any class which is not a structure-free class is said to be a
structured class.

Definition 19 f is a set iff f is a class and for any x, f [x]⇒ σx ̸= 0.

If f is a set, we denote this by Set(f). Examples of sets are each and every
ϕn.

Inspired on P11, next we define ZF-sets.

32

Definition 20 Z(f) iff ∀x((f [x]⇒ (f(x) = x∧σx ̸= 0))∧∀g(g ⊆ f ⇒ σg ̸= 0)).

We read Z(f) as “f is a ZF-set”. Any ZF-set f is a structure-free class, and
if f acts on any x, then x has a non-0 successor. Besides, every restriction of a
ZF-set has its own non-0 successor.

Theorem 36 ¬Z(σ).

Proof: Since σ(ϕ0) = ϕ1 ̸= ϕ0, that is enough to prove σ is not a ZF-set.

Theorem 37 If f is a ZF-set, then f = 1
∣∣
f [x]

.

The proof is straightforward.

Theorem 38 If f is a ZF-set, then σf ̸= 0.

Proof: If f is a ZF-set, then for any x, f [x] entails σx ̸= 0. But according
to axiom P11, any restriction of f (under such assumption) has a non-0
successor. Since f is a restriction of f (for any f different of 0), then
σf ̸= 0.

Theorem 39 Every ϕn is a ZF-set.

Proof: Z(ϕ0) is vacuously valid. Now, let n > 0. Then any ϕn acts only on ϕm
and ϕn(ϕm) = ϕm, where 0 < m < n. And each ϕm has a non-0 successor,
from the definition itself for ϕm. And according to P11, that entails that
any restriction g of ϕn has a non-0 successor. So, Z(ϕn) for any n from
language L.

This last theorem helps us to see how to start building ZF-sets from the
axioms of Flow. Next theorem shows us how to build standard hierarchies of
ZF-sets.

Theorem 40 If f is a ZF-set, then P(f) is a ZF-set.

Proof: According to Theorem 30, P(f) = 1
∣∣
t⊆f . Let us denote P(f) by p, for

the sake of abbreviation. Since f is a ZF-set, that means any restriction
t of f has a non-0 successor σt. In other words, p[t] entails that p(t) = t
(since p is a restriction of 1) and t ⊆ f . Thus, σt ̸= 0 (since Z(f)). But
according toP11, if f is a ZF-set, then any h such that h[t]⇒ t ⊆ f entails
σh ̸= 0. Well, p is exactly like that, since p[t]⇒ t ⊆ f . So, there is a non-0
σp. Consequently, according to P11, every restriction g of p has its own
non-0 successor σg. That, finally, corresponds to say that p is a ZF-set.
In other words, ∀t((p[t]⇒ (p(t) = t ∧ σt ̸= 0)) ∧ ∀g(g ⊆ p⇒ σg ̸= 0)).

So, we have here a vast universe of ZF-sets who are built from ϕ0 and the
notion of successor, in a way which allows us to build hierarchies defined through
the power function and corresponding restrictions. All of them are ZF-sets.

33

Theorem 41 Any inductive function i is a ZF-set.

Proof: Straightforward from the definitions of inductive function and ZF-set.

All previous results motivate us to define the concept of a proper class.

Definition 21 f is a proper class iff f is a class and anyone of the next con-
ditions is satisfied: either (i) σf = 0 or (ii) there is some x such that f acts on
x but x has σx = 0.

That means no proper class is a ZF-set. If a proper class f is a free-structure
class, then we say f is a free-structure proper class. Otherwise, we say f is a
structured proper class.

Examples of proper classes are 1 and 1
∣∣
x ̸=ϕn

(see Theorem 27), for a given

n of language L. That happens because neither 1 nor any 1
∣∣
x̸=ϕn

has a non-0

successor. Another example of proper class is function ψ from Theorem 25.
Although ψ has a non-0 successor, ψ acts on any 1

∣∣
x̸=ϕn

. So, ψ acts on certain

terms t such that there is no non-0 σt.

Theorem 42 There is one single ZF-set f such that for any x, we have x ̸∈ f .

Proof: f = ϕ0. And, according to P6, ϕ0 is unique. In other words, ϕ0 is the
empty set, which can be denoted by ∅.

3 ZFC is immersed in Flow

There are two reasons for referring to ZFC at this point. First, presenting the
theory provides a framework that will allow us to compare our proposal to a
standard and well-known formulation of set theory. Second, having ZFC in
place will be useful for our proof that we can still use standard mathematical
results when we adopt Flow-theoretic principles. After all, as we’ll show shortly,
there’s a translation from the language of ZFC into a variation of Flow theory
such that every translated axiom of ZFC is a theorem in our proposed formal
system. However, as we will see, to adopt Flow has the significant advantage of
providing a whole new universe to work with.

3.1 ZFC Axioms

ZFC is a first-order theory with identity and with one predicate letter f21 , such
that the formula f21 (x, y) is abbreviated as x ∈ y, if x and y are terms, and is
read as “x belongs to y” or “x is an element of y”. The negation ¬(x ∈ y) is
abbreviated as x ̸∈ y.

The axioms of ZFC are the following:

ZF1 - Extensionality ∀x∀y(∀z(z ∈ x⇔ z ∈ y)⇒ x = y)

ZF2 - Empty set ∃x∀y(¬(y ∈ x))

34

ZF3 - Pair ∀x∀y∃z∀t(t ∈ z ⇔ t = x ∨ t = y)

The pair z is denoted by {x, y} if x ̸= y. Otherwise, z = {x} = {y}.

Definition 22 x ⊆ y =def ∀z(z ∈ x⇒ z ∈ y)

ZF4 - Power set ∀x∃y∀z(z ∈ y ⇔ z ⊆ x)

If F (x) is a formula in ZFC, such that there are no free occurrences of the
variable y, then the next formula is an axiom of ZFC:

ZF5F - Separation Scheme ∀z∃y∀x(x ∈ y ⇔ x ∈ z ∧ F (x))

The set y is denoted by {x ∈ z/F (x)}.
If α(x, y) is a formula where all occurrences of x and y are free, then the

following is an axiom scheme of ZFC:

ZF6α - Replacement Scheme

∀x∃!yα(x, y)⇒ ∀z∃w∀t(t ∈ w ⇔ ∃s(s ∈ z ∧ α(s, t)))

ZF7 - Union set ∀x∃y∀z(z ∈ y ⇔ ∃t(z ∈ t ∧ t ∈ x))

The set y from ZF7 is abbreviated as

y =
∪
t∈x

t

The intersection among sets is defined by using the Separation Scheme as
follows:

∩
t∈x

t =def

{
z ∈

∪
t∈x

t/∀t(t ∈ x⇒ z ∈ t)

}

ZF8 - Infinite ∃x(∅ ∈ x ∧ ∀y(y ∈ x⇒ y ∪ {y} ∈ x))

ZF9 - Choice ∀x(∀y∀z((y ∈ x ∧ z ∈ x ∧ y ̸= z)⇒ (y ̸= ∅ ∧ y ∩ z = ∅))⇒
∃y∀z(z ∈ x⇒ ∃w(y ∩ z = {w})))

As is well known, most if not all classical mathematics can be reformulated in
ZFC. As a result, ZFC provides a rich framework for the formulation of physical
theories—although perhaps not the most economical. As an alternative, we
will now consider a different version of set theory, and explore its use in the
foundations of physics.

35

3.2 ZFC translation

For the sake of abbreviation, we call Flow Theory F .
Having presented the main features of Flow, we can now prove that standard

mathematics, as formulated in Zermelo-Fraenkel set theory with the Axiom of
Choice (ZFC), is preserved in a Flow-like axiom system, namely, F . After that,
we discuss the meaning of such a result. But first, it is helpful to define the
concept of arbitrary intersection.

Definition 23 For a given x ̸= 0, let F (r) be the formula “r = z ⇔ ∀t(x[t]⇒
t[z])”. Then

∩
x[t]

t =def

∪
x[t]

t

∣∣∣∣∣
F (r)

.

In the particular case where x acts only on two values p and q, such an
arbitrary intersection may be rewritten simply as p ∩ q.

Now, our main result from this section.

Proposition 1 There is a translation from the language of ZFC into the lan-
guage of F such that every translated axiom of ZFC is a theorem in F .

To prove this proposition, we need to exhibit a translation from ZFC into
F . This translation is given by the table below:

Translating ZFC into F
ZFC F
∀ ∀Z
∃ ∃Z

x ∈ y y[x]
x ⊆ y x ⊆ y

where Z is the predicate “to be a ZF-set” from Definition 20.
The proof of Proposition 1 is made through the following lemmas. The first

lemma is quite sensitive. A discussion about its proof is delivered afterwards.

Lemma 1 The translation of the Axiom of Extensionality in ZFC into Flow is
a theorem. That means ⊢F “Translated ZF1′′.

Proof: The translated ZF1 is the formula ∀Zx∀Zy(∀Zz(x[z]⇔ y[z])⇒ x = y).
If x and y are ZF-sets and x[z] and y[z], that means x(z) = z and y(z) = z
(Definition 20). If ¬x[z] or ¬y[z], that means either x(z) = 0 or y(z) = 0;
or z = x or z = y. So, the translated ZF1 considers the case where both x
and y share the same images, except perhaps for z = x or z = y. In other
words, x[z]⇔ y[z] is equivalent to say that for any z we have x(z) = y(z),
except perhaps for z = x or z = y. Now, suppose x ̸= y, despite the fact
that both x and y share the same images for any z ̸= x and any z ̸= y.

36

After all, in principle we may have the following situation: x(y) = 0 while
y(y) = y (this last identity is due to P2). Analogously, we may have
x(x) = x while y(x) = 0. In both particular cases (z = x ∨ z = y),
we have ¬x[y] ∧ ¬y[y], a situation which satisfies the antecedent of ⇒ in
the translated ZF1. Nevertheless, all functions in Flow are built from 0
and 1 through operations like composition, successor, restriction, union,
freedom, and choice. And those functions built from 0 and 1 are defined by
means of terms where they act. According to Theorem 2, 1 is unique; and
according to Theorem 3, 0 is also unique. Besides, any successor σf for any
f is unique. Uniqueness of composition is guaranteed in P5. Uniqueness
of restriction is guaranteed in P8. Uniqueness of union is guaranteed in
P10. Uniqueness of arbitrary functions (freedom) is guaranteed in P9.
And the uniqueness of any given choice function c is guaranteed in P12,
in the sense that once c is obtained and d ∼ c, for any d, then d = c. That
means there can be no two functions x and y which act on all the same
terms z in a way such that x(z) = y(z).

After the proof of this first lemma, one natural question seems to be unavoid-
able. Why didn’t we introduce a stronger version for extensionality instead of
Axiom P1? If we had done something like this, all those strange maneuvers used
for proving Lemma 1 could be easily avoided. That is true. Notwithstanding,
we intend to suggest here another way of doing mathematics. If we had adopted
a stronger version of extensionality, we would have a kind of mathematics which
is quite similar to the standard way. So, at the end of this paper we perform a
detailed philosophical discussion about this issue. Our main purpose here is to
let an open door which can lead us to what we call a Heraclitean Mathematics.
And such a Heraclitean Mathematics has no room for ZFC.

Lemma 2 ⊢F “Translated ZF2′′

Proof: The translated ZF2 is the formula ∃Zx∀Zy(¬(x[y])). That result is
a straightforward corollary from Theorem 42. Function x is simply ϕ0,
which is a ZF-set (and, by the way, unique).

Lemma 3 ⊢F “Translated ZF3′′

Proof: The translated ZF3 is the formula ∀Zx∀Zy∃Zz∀Zt(z[t]⇔ (t = x ∨ t =
y)). All we have to do is to define z = 1

∣∣
F (t)

for formula F (t) given by

“(t = x ∨ t = y)”, where x and y are any two ZF-sets. That can be
done thanks to P8F . Since both x and y are ZF-sets, according to P11
there are non-0 σx and σy. Hence, z is a ZF-set, since z[x] and z[y] entail
z(x) = x, z(y) = y (remember z is a restriction of 1), σx ̸= 0, and σy ̸= 0.

Lemma 4 ⊢F “Translated ZF4′′

Proof: The translated ZF4 is the formula ∀Zx∃Zy∀Zz(y[z] ⇔ z ⊆ x). That
corresponds exactly to Theorem 40.

37

Lemma 5 ⊢F “Translated ZF5′′

Proof: The translated ZF5 is the formula ∀Zf∃Zg∀Zx(g[x] ⇔ f [x] ∧ F (x))
(we changed the names of variables in order to facilitate the reading of
our proof). According to Axiom P8F , ∀f(f ̸= 0 ⇒ ∃g(g ̸= 0 ∧ (g ̸= f ⇒
g(f) = 0)∧∀x∀y((x ̸= g∧x ̸= f)⇒ (g(x) = y ⇔ ((f(x) = y∧F (x))∨(y =
0 ∧ ¬F (x))))))). In other words, P8F says that for a given f different of
0 there is a g which shares the same images of f for a given x, as long
F (x) (where F has the same syntactical restrictions of formula F from
translated ZF5); otherwise, g has images 0. That entails g ⊆ f . And
in the case where g ⊂ f , then g(f) = 0. But from Definition 20, it is
easy to see that any restriction g of a ZF-set f is also a ZF-set, even in
the case where f acts on ZF-sets x. So, the translated ZF5 is simply a
straightforward consequence from P8F .

Lemma 6 ⊢F “Translated ZF6′′

Proof: The translated ZF6 is the formula ∀Zx∃!Zyα(x, y)⇒ ∀Zz∃Zw∀Zt(w[t]⇔
∃Zs(z[s] ∧ α(s, t))). That means we are talking about a specific formula
α such that for any ZF-set x there is a unique ZF-set y where α(x, y). By
applying Axiom P8Z over 1 with formula F (t) as “z[s]∧α(s, r)⇔ r = t”,
for a given ZF-set z and a given formula α like the one demanded by the
translated ZF6, we get a function w. In other words, w = 1

∣∣
z[s]∧α(s,r)⇔r=t

.

So, if w acts on any t, then w(t) = t and there is a successor σt (due to
the way formula α is defined and thanks to Theorem 38). Hence, w is a
ZF-set.

Lemma 7 ⊢F “Translated ZF7′′

Proof: The translated ZF7 is the formula ∀Zf∃Zu∀Zt(u[t]⇔ ∃Zr(r[t]∧f [r])).
Once again we changed the names of the original variables in order to
facilitate its reading. According to P10,
∀f((f ̸= 0 ∧ ∀x(f [x]⇒ σx ̸= 0))⇒
∃!u(σu ̸= 0 ∧ (∀g∀h((f [g] ∧ f [h])⇒ ∀t(t ̸= u⇒
(X�(g, h← t)⇒ u(t) = g(t)) ∧
((X♢(g, h← t) ∨ X⃝(g, h← t))⇒ u(t) = 0)) ∧
(X△(g, h← t)⇒ (u(t) ̸= 0 ∧ (u(t) = g(t) ∨ u(t) = h(t))))))).
But since we are talking about ZF-sets, the possibility of X♢(g, h ← t) is
simply discarded. After all, if f acts on both g and h, and both g and h
act on t, then it is impossible that g(t) ̸= h(t), since g(t) = t and h(t) = t.
Now observe that terms g and h from P10 have the same role of r in
translated ZF7. Thus, u(t) has the same non-0 value t of either g(t) or
h(t) only in the case where either g(t) = t or h(t) = t (which corresponds
to the cases X�(g, h ← t) and X△(g, h ← t)). That is equivalent to say
that u[t]⇔ ∃Zr(r[t]∧f [r]). But since f is a ZF-set, then it acts on ZF-sets
r. Since each r is a ZF-set, then each r acts on a ZF-set t. That means u
acts only on ZF-sets, which makes itself a ZF-set.

38

Lemma 8 ⊢F “Translated ZF8′′

Proof: The translated ZF8 is the formula ∃Zx(x[∅]∧ ∀Zy(x[y]⇒ x[y ∪ {y}])).
Axiom P7 states that ∃i((∀t(i(t) = t ∨ i(t) = 0)) ∧ σi ̸= 0 ∧ (i(σ0) =
σ0 ∧ ∀x(i(x) = x ⇒ (i(σx) = σx ̸= 0)))). Well, ∅ is exactly ϕ0. So, i acts
on ϕ0 and i(ϕ0) = ϕ0. Besides, ϕ0 is a ZF-set. Besides, if y is a ZF-set,
then there is σy. And y ∪ {y} is exactly such σy, where {y} = 1

∣∣
t=y

. And

the union of ZF-sets is a ZF-set, as already proved in the previous lemma.
So, if i acts on a ZF-set t, then i acts on the ZF-set σt, which makes i
itself a ZF-set.

Lemma 9 ⊢F “Translated ZF9′′

Proof: The translated ZF9 is the formula ∀Zx(∀Zy∀Zz((x[y]∧x[z]∧y ̸= z)⇒
(y ̸= ϕ0 ∧ y ∩ z = ϕ0)) ⇒ ∃Zy∀Zz(x[z] ⇒ ∃Zw(y ∩ z = {w}))). On the
other hand, P12 says ∀f(∀x∀y((f(x) ̸= 0 ∧ f(y) ̸= 0 ∧ x ̸= y) ⇒ (x ̸=
ϕ0 ∧ ¬∃s(x(s) = y(s) ∧ x(s) ̸= 0)))⇒
∃c∀r(f(r) ̸= 0 ⇒ ∃!w(c(w) = r(w) ∧ r(w) ̸= 0))). Thus, the translated
ZF9 is just a particular case for a ZF-set x. Since c acts on ZF-sets, then
c is a ZF-set itself.

4 Category theory is immersed in Flow

The intuitive notion of a category is quite simple. A category refers to some
sort of universe where we can find two kinds of terms, namely, objects and
morphisms. Within a set-theoretic interpretation, objects can be associated to
either sets or proper classes, while morphisms can be associated to some sort of
general notion of function. Besides, there is a binary operation called compo-
sition, which is applicable over some pairs of morphisms. Composition, when
defined, is associative and it allows the existence of (left and right) neutral ele-
ments. Usually Category Theory is referred to as a general theory of functions.
Nevertheless, we prove in this section that Category Theory corresponds to a
minor fragment of Flow Theory. After all, while composition in Category The-
ory is not always feasible, within Flow there always exist a composition between
any two functions. Those facts lead us to one more important lesson from Flow
Theory.

Observation 4 We proved in Section 3 that ZFC is immersed within Flow.
Nevertheless, we did that by assuming as ZF-sets only special cases of free-
structure classes. In this Section we prove Category Theory is immersed within
Flow as well. And once again we do that by assuming morphisms (including their
domains and co-domains) as special cases of free-structure classes. More than
that, we prove next that all standard categories may be dealt with through the
exclusive use of free-structure classes. From a philosophical point of view, our
results point to an interesting perspective. Despite all the propaganda regarding
Category Theory as a general theory of functions, the truth is that all standard

39

categorical results may be reduced to a world of restrictions of 1. So, Category
Theory may be reduced to a particular study of functions f whose images for
any x are either x itself or 0. The main advantage of Category Theory lurks
in its power to establish a connection between different domains, like topology
and analysis, algebra and number theory. But that could be achieved within
any set theory endowed with proper classes and universes. And once again
we are still committed to the standard view that a function is nothing more
than a collection of ordered pairs, let it be a morphism, a functor or a natural
transformation. One of the epistemological barriers of Category Theory lies in
the usual set-theoretic assumption that every morphism is somehow associated
to some sort of domain (and a co-domain). And that fact yields to a quite
prejudiced perspective about the dynamic nature functions are supposed to have.
From a Flow-theoretic point of view, functions have no domain. And from this
same perspective, a function f can genuinely act on a given a in a way such that
f(a) is not necessarily identical to a. So, after all this discussion about standard
mathematics, we explore in the next sections the first steps towards what Flow
Theory can really offer to us.

4.1 Category axioms

We follow here a first order language recipe for defining categories as presented
by William S. Hatcher in his classical book [7]. Category Theory K is a first
order theory with identity and one ternary predicate letter K of degree three
and two monadic function letters D and C. The intended interpretation of its
terms is that of morphism. All terms are represented by lower case Latin letters.
Intuitively speaking, we read K(x, y, z) as z is the composition of x with y; D(x)
as “the domain of x”; and C(x) as “the codomain of x”. The proper axioms of
K are the following.

The domain of the codomain of any morphism a is the codomain of a. And
the codomain of the domain of a is the domain of a:

K-1 ∀a(D(C(a)) = C(a) ∧ C(D(a)) = D(a)).

Composition is unique:

K-2 ∀a∀b∀c∀d((K(a, b, c) ∧K(a, b, d))⇒ c = d).

The composition of a with b is defined if and only if the codomain of a is
the domain of b:

K-3 ∀a∀b(∃c(K(a, b, c)⇔ C(a) = D(b))).

If c is the composition of a with b, then the domain of c is the domain of a
and the the codomain of c is the codomain of b:

K-4 ∀a∀b∀c(K(a, b, c)⇒ (D(c) = D(a) ∧ C(c) = C(b))).

40

For any a, the domain of a is a left identity for a under composition, and
the codomain of a is a right identity:

K-5 ∀a(K(D(a), a, a) ∧K(a,C(a), a)).

Composition is associative when it is defined:

K-6 ∀a∀b∀c∀d∀e∀f∀g((K(a, b, c)∧K(b, d, e)∧K(a, e, f)∧K(c, d, g))⇒ f = g).

4.2 Every static category is a category

First we need the concept of surjective trivially arbitrary function.

Definition 24 Let r, s, and g be functions such that Tr→s(g). In other words, g
is a trivially arbitrary function with domain r and codomain s. We say that g is
surjective iff for any b such that s[b], there is a such that r[a] and g(a, b) = (a, b).

Next we define a static morphism.

Definition 25 Let g, r, and s be functions. Then,M†(g, r, s) iff

1. ∀t(r[t]⇒ r(t) = t) ∧ ∀t(s[t]⇒ s(t) = t),

2. Tr→s(g),

3. g is surjective.

We read the ternary predicate above as “g is a static morphism with domain
r and codomain s”. The first condition says r and s are structure-free classes.
Observe that both r and s are restrictions of 1. And any restriction of 1 is a
structure-free class. The second one says g is a trivially arbitrary function. In
other words, g is a particular case of a structure-free class as well. The third
condition guarantees the codomain of a trivially arbitrary function is coincident
with it range.

We intend to prove that surjective trivially arbitrary functions work just
fine for describing usual categories from standard mathematics. That means
the usual concept of category cannot be considered as “a general theory of
functions”.

Definition 26 Let r, s, and g be functions such thatM†(g, r, s). Then,

1. d†g = h iffM†(h, r, r) ∧ ∀a(r[a]⇔ h(a, a) = (a, a)).

2. c†g = h iffM†(h, s, s) ∧ ∀b(s[b]⇔ h(b, b) = (b, b)).

Besides, both d†g and c†g have images 0 iff r does not act on a or s does not
act on b, respectively.

41

We read d†g = h as “h is the static domain of g”. And c†g = h says “h is

the static codomain of g”. That means d†g is a function which acts on ordered

pairs (a, a), as long g acts on (a, b). Analogously, c†g acts on ordered pairs (b, b)

as long g acts on (a, b). Thus, while g[(a, b)] entails g(a, b) = (a, b), d†g[(a, a)]

entails d†g(a, a) = (a, a), and c†g[(b, b)] entails c
†
g(b, b) = (b, b).

Definition 27 Let g, r, s, h, and t be functions such that Tr→s(g) and Ts→t(h).
Then g ◦† h is a function such that,

1. Tr→t(g ◦† h),

2. ∀a∀b∀c((g[(a, b)] ∧ h[(b, c)])⇒ (g ◦† h)[(a, c)]).

3. ∀a∀c((g ◦† h)[(a, c)]⇒ ∃b(g[(a, b)] ∧ h[(b, c)])).

We read g ◦† h as “the static composition of g with h”. The notation (g ◦†
h)[(a, c)] says the composition g ◦† h acts on (a, c).

Definition 28 Let f be a function. Then C†(f) iff

1. f ̸= 0,

2. ∀g(f [g]⇒ f(g) = g),

3. ∀g(f [g]⇒ (∃r∃s(M†(g, r, s) ∧ ∀h(M†(h, r, s)⇒ f [h] ∧ f [d†h] ∧ f [ch†])))),

4. ∀g∀h((f [g] ∧ f [h] ∧ ∃i(i = g ◦† h))⇒ f [i]).

We read the monadic predicate above as “f is a static category”. The first
two conditions above say any static category is a free-structure class. The third
condition says if a static category f acts on any g, then g is a static morphism
from r to s, and f acts on g’s static domain and on g’s static codomain. Besides,
the same happens with every h which is a morphism from r to s. Finally, last
condition says if f acts on g and h, then it acts on the static composition of g
with h. But that happens obviously if such a static composition exists. In other
words, static composition is a quite limited perception about composition, in
the sense that static composition in a static category does not necessarily exist,
while compositions within Flow always do exist.

Definition 29 Let g be a function. Then †f (g) iff g is a function such that
a specific static category f acts on g. If there is no risk of confusion, we may
rewrite †f (g) simply as †(g).

Before we prove static categories do satisfy all axioms of K (if a proper
translation is provided), it might be useful to introduce here a rather simple
example (although non-trivial) of a static category. Let f be given as it follows:

f

g
x x x

h i · · ·

42

where g, h, and i are given as:

g

(ϕ0, ϕ0)
x x

(ϕ1, ϕ1)

h

(ϕ0, ϕ1)
x x

(ϕ1, ϕ2)

i

(ϕ1, ϕ1)
x x

(ϕ2, ϕ2)

In that case, f is a static category. Besides, d†g = c†g = d†h = g, d†i = c†i =

c†h = i, and g ◦† h = h ◦† i = h, while neither h ◦† g nor i ◦† h do exist. The
ellipsis above just indicates there are other functions with static domain (static
codomain) g and static codomain (static domain) h.

The translation provided in the next subsection allows us to prove that f
given above is a category in the sense given by William Hatcher [7].

4.3 Categories translation

Here we prove the main result of this Section.

Proposition 2 There are translations from the language of Category Theory
K into the language of F such that every translated axiom of K is a theorem in
F in each translation.

To prove this proposition scheme we need to exhibit a translation from K
into F , for every possible static category f . Such a translation is given by the
table below:

Translating K into F
K F
∀ ∀†
∃ ∃†

D(g) d†g
C(g) c†g

K(g, h, i) i = g ◦† h

where predicate † refers to the specific static category f . In other words, ∀†x(P)
means ∀x(f [x] ⇒ P), and ∃†x(P) means ∃x(f [x] ∧ P), where P is a formula
from Flow.

The proof of last proposition scheme is made through the following lemmas.
We keep the same labels used for terms in K axioms when it is convenient for
us. Otherwise, we change them.

Lemma 10 ⊢F “Translated K-1”.

Proof: The translated K-1, for the static category f , is ∀†g(d†
c†g

= c†g ∧ c
†
d†g

=

d†g). Notwithstanding, c
†
g is a function such that c†g[(b, b)] iff c

†
g(b, b) = (b, b)

and s[b] for a given s; and c†g(t) = 0 iff t is different of c†g or different of any
b where that given s acts, according to Definition 26. But that is precisely
the static domain of c†g, according again to Definition 26 and Theorem 1

An analogous argument can be used for proving that c†
d†g

= d†g.

43

Lemma 11 ⊢F “Translated K-2”.

Proof: The translated K-2, for the static category f , is ∀†a∀†b∀†c∀†d((c =
a ◦† b ∧ d = a ◦† b) ⇒ c = d). According to Definition 27, both c and d
share the same images, for a given a and a given b. So, from Theorem 1,
c = d.

Lemma 12 ⊢F “Translated K-3”.

Proof: The translatedK-3, for the static category f , is ∀†g∀†h(∃†i(i = g◦†h⇔
c†g = d†h)). According to Definition 27, i[(a, c)] iff g[(a, b)] and h[(b, c)]. But

according to Definitions 25 and 26, g[(a, b)] entails c†g[(b, b)], and h[(b, c)]

entails d†h[(b, b)]. Thus, i[(a, c)] iff c
†
g[(b, b)] and d

†
h[(b, b)], which is equiva-

lent to say that c†g = d†h, according to Theorem 1.

Lemma 13 ⊢F “Translated K-4”.

Proof: The translated K-4, for the static category f , is ∀†g∀†h∀†i(i = g◦†h⇒
(d†i = d†g ∧ c

†
i = c†h)). According to Definition 27, i[(a, c)] iff g[(a, b)] and

h[(b, c)]. But according to Definitions 25 and 26, g[(a, b)] entails d†g[(a, a)],

and h[(b, c)] entails c†h[(c, c)]. Thus, once again Definition 27 shows that

i[(a, c)] entails d†i [(a, a)] and c
†
i [(c, c)], which is equivalent to say that d†i =

d†g and c†i = c†h, according to Theorem 1.

Lemma 14 ⊢F “Translated K-5”.

Proof: The translatedK-5, for the static category f , is ∀†g(d†g◦†g = g∧g◦†c†g =
g). According to Definitions 26 and 25, g[(a, b)] iff d†g[(a, a)] and c

†
g[(b, b)].

And according to Definition 27, d†g ◦† g acts on (a, a), while g ◦† c†g acts on

(b, b). That is equivalent to say that d†g ◦† g = g and g ◦† c†g = g, according
to Theorem 1.

Lemma 15 ⊢F “Translated K-6”.

Proof: The translated K-6, for the static category f , is
∀†a∀†b∀†c∀†d∀†e∀†f∀†g((a ◦† b = c ∧ b ◦† d = e ∧ a ◦† e = f ∧ c ◦† d =
g)⇒ f = g). According to Definition 27 and according to the antecedent
of conditional ⇒ above, we have the following: for certain values α, β,
γ, and δ, a[(α, β)], b[(β, γ)], and d[(γ, δ)]. Besides, c[(α, γ)] and e[(β, δ)].
Thus, f acts on (α, δ) iff g acts on (α, δ). That is equivalent to say f = g,
according to Theorem 1.

Hence, as promised, any category in the general sense provided by Hatcher
is reducible to a structure-free class f which acts only on structure-free classes.
That is somehow identifiable with the current view that any small category is
isomorphic to a subcategory of Set (Category of sets, in standard mathematics).

44

Nevertheless, our result shows that no category (either small or not) demands
any notion which goes beyond the intuitive concept of a (structure-free) class.
That is one of the main reasons why we try to explore this new approach called
Flow Theory. We did not check if Flow is reducible to Category Theory. But
that is a task we intend to undertake.

4.4 Functors and natural transformations

Definition 30 Let a and b be static categories, such that † and ‡ refer, respec-
tively, to a and b. A static covariant functor from a to b is a function θ such
that:

(i) ∀t((θ[t]⇔ a[t]) ∧ b[θ(t)])

(ii) ∀t(b[t]⇒ ∃r(a[r] ∧ θ(r) = t)

(iii) ∀t(θ(d†t) = d‡θ(t))

(iv) ∀t(θ(c†t) = c‡θ(t))

(v) ∀t∀u(θ(t ◦† u) = θ(t) ◦‡ θ(u))

The first condition says a static covariant functor from a to b acts only
on those terms where the static category a acts. Besides, the static category
b acts on the images of θ. Second item says every static covariant functor
is surjective. In other words, we have the following: ∀t(∃p∃q(M†(t, p, q)) ⇒
∃r∃s(M‡(θ(t), r, s)))). Conditions (iii) and (iv) say a static covariant functor θ
from a to b associates objects from a to objects in b. And the last item says any
static covariant functor is supposed to preserve static composition.

Next we define the corresponding dual of static covariant functors, namely,
static contravariant functors.

Definition 31 Let a and b be static categories, such that † and ‡ refer, respec-
tively, to a and b. A static contravariant functor from a to b is a function θ
such that:

(i) ∀t((θ[t]⇔ a[t]) ∧ b[θ(t)])

(ii) ∀t(b[t]⇒ ∃r(a[r] ∧ θ(r) = t)

(iii) ∀t(θ(d†t) = c‡θ(t))

(iv) ∀t(θ(c†t) = d‡θ(t))

(v) ∀t∀u(θ(t ◦† u) = θ(u) ◦‡ θ(t))

Definition 32 If a is a static category, then t is a static object of a iff a[t] and
t is either the static domain or the static codomain of a given static morphism
m such that a[m]. We denote this by Obja(t).

45

Definition 33 Let a and b be static categories, such that † and ‡ refer, respec-
tively, to a and b. Let θ and ϑ be static covariant functors from a to b. A static
natural transformation from θ to ϑ is a function η such that:

(i) For any x, if Obja(x), then η(x) is a static morphism, denoted by ηx, with
static domain θ(x) and static codomain ϑ(x) and

(ii) For every static morphism f with static domain x and static codomain y
in a we have the following:

ηy ◦‡ θ(f) = ϑ(f) ◦‡ ηx

The corresponding concept of a static natural transformation from a con-
travariant static functor θ to a static contravariant functor ϑ is straightforward.

4.5 Set and other standard categories

Before we define examples of standard categories within Flow, it seems useful
to show an insightful theorem.

Theorem 43 1
∣∣
Z(x)

has successor 0.

Proof: Let us denote 1
∣∣
Z(x)

by c. In other words, c[x] ⇔ Z(x). That means

any x where c acts has a non-0 successor. Now suppose c has a non-0
successor. That would entail, from P11, that c is a ZF-set. So, c acts on
c. But no function acts on itself. So, there is no σc different of 0.

Now, we show how to describe a well known category from standard math-
ematics.

Definition 34 Set, the static category of ZF-sets, is a function f such that
f = 1|F (x), where F (x) is a formula given as follows:

∃r∃s(Z(r) ∧ Z(s) ∧M†(x, r, s))

That means the static category Set of ZF-sets is a function f which acts
on static (surjective) morphisms x whose domains and codomains are ZF-sets.
Thus, even if f does not act on certain ZF-sets g such that g(a) is either a or 0,
it still acts on static morphisms x such that x(a, a) = (a, a). So, such morphisms
x can be easily identified with ZF-sets like g. Those terms like g work as the
objects of Set.

4.6 The Cantor-Schröder-Bernstein theorem

Despite the fact that Category Theory emphasizes the role of functions (called
morphisms) in mathematics, that theory does not allow us to prove the Cantor-
Schröder-Bernstein Theorem. That happens because Category Theory algebra
is related to composition. In Flow theory, however, our algebra of functions is
primarily based on functions valuations.

46

Theorem 44 (Cantor-Schröder-Bernstein) Let M(f, r, s) and M(g, s, r)
such that both f and g are injective. Then, there is a function h such that
M(h, r, s) and h is bijective.

Proof: All we have to do is to follow Kolmogorov-Fomin style in their book
Introductory Real Analysis [10].

5 Intuitive Flow theory

For practical purposes, all that matters is how to operate within a Flow-theoretic
approach in everyday mathematics. So, in this Section we provide the main
features of a naive Flow theory.

The first basic features are as follows:

Principle I Every function f has an image f(t) for any function t. And that
image is either f itself, 0 or another value g. And 0 is a privileged function
such that 0(t) is always 0 itself.

Principle II For any function f we have f(f) = f .

Principle III Any functions f and g which share the same images are the
same.

Principle IV If t ̸= f and f(t) is different of 0, then we say f acts on t. And
we denote this by f [t]. So, no function acts on itself.

Principle V For any functions f and g there is the associative composition
f ◦ g, such that (f ◦ g)(t) = f(g(t)), except when t = f ◦ g. In that case,
(f ◦ g)(f ◦ g) = f ◦ g.

Principle VI The successor σf of a function f is supposed to be a function
g which shares the same images of f for any t ̸= g, but in a way such
that f ̸= g. If that is not possible, then the successor σf of f is simply
0, except for the case when f is σ itself. In that case, σσ = σ. In
standard mathematics (based on ZFC), however, the successor σf always
corresponds to the first case mentioned above.

Principle VII The restriction g of a given function f is such that for any t, if
g[t], then f [t] and g(t) = f(t).

Principle VIII The power P(f) of any function f is the function which acts
on every restriction of f .

Principle IX There are functions f which are ordered pairs (a, b). That means
such functions f act on functions α and β which, in turn, act on a,
and on a and b, respectively. Analogously, there are ordered n-tuples
(a1, a2, · · · , an).

47

Principle X The union of functions g and h is a function f which shares the
same images shared between g and h. If g and h do not share any image
for a specific t, then f(t) = 0. An analogous result holds for arbitrary
unions.

Principle XI The intersection of functions may be defined from union in an
analogous way how it is done within ZFC.

From those principles above we are able to define usual concepts, since ZFC
is immersed within Flow.

n-variable functions A two-variable function f is a function which acts only
on ordered pairs (a, b). An analogous concept can be defined for n-variable
functions. If ⋆ is a two variable function, then we can abbreviate ⋆(a, b)
as a ⋆ b.

Finiteness Let f be a n-variable function which acts on ordered n-tuples
(a1, · · · , an). We say f is finite on entry i (where 1 ≼ i ≼ n) iff there
is a finite number of possible values ai such that f [(a1, · · · , ai, · · · , an)].

Closed n-variable function A two-variable function f is closed iff f [(a, b)]
and f [(c, d)] entails that f [(f(a, b), f(c, d))]. An analogous concept can be
defined for n-variable functions.

Intersecting n-variable functions Two n-variable functions f and g are in-
tersecting iff either f [(a1, · · · , an)] entails g[(a1, · · · , an)], or g[(a1, · · · , an)]
entails f [(a1, · · · , an)].

6 Axiomatization as a flow-theoretic predicate

In this section we briefly propose and discuss a static Flow-theoretic version for
the axiomatization program proposed by Patrick Suppes [23] [2] [3]. Roughly
speaking, Suppes Program is associated to his famous slogan “to axiomatize a
theory is to define a set-theoretic predicate”. Our proposed slogan can be read
like this: “Any theory is a function”.

We start with a “static version” for Group Theory. That means we are
working only with structure-free classes.

6.1 Group theory

Definition 35 A static binary operation is a function f such that ∀t(f [t] ⇒
∃a∃b(t = (a, b) ∧ f(t) = t)).

So, if ∗ is a static binary operation, we may denote ∗(a, b) simply as a ∗ b.

Definition 36 A static binary operation f is closed iff ∀a∀b∀c∀d((f [(a, b)] ∧
f [(c, d)])⇒ f [(f(a, b), f(c, d))].

48

Definition 37 A static binary operation f has neutral element iff ∃e∀a∀b(f(f(a, e), b) =
f(f(e, a), b) = f(a, b)). Term e is the neutral element of f .

Definition 38 A static binary operation f is universally invertible iff f has
neutral element e and ∀a∃a−1∀b(f(f(a, a−1), b) = f(f(a−1, a), b) = f(e, b).
Term a−1 is called the static inverse of a in f .

Definition 39 A static binary operation f is associative iff ∀a∀b∀c(g(a, g(b, c)) =
g(g(a, b), c))).

So, one way to define a static group is like this:

Definition 40 A static group is a function g such that:

1. ∀t(g[t]⇒ ∃a∃b(t = (a, b) ∧ g(t) = t)).

2. ∀a∀b∀c∀d((g[(a, b)] ∧ g[(c, d)])⇒ g[(g(a, b), g(c, d))].

3. ∀a∀b∀c(g(a, g(b, c)) = g(g(a, b), c))).

4. ∃e∀a∀b(g(g(a, e), b) = g(g(e, a), b) = g(a, b)).

5. ∀a∃a−1∀b(g(g(a, a−1), b) = g(g(a−1, a), b) = g(e, b).

Another way is like this:

Definition 41 A static group is a binary static operation ∗ which is closed,
associative, and universally invertible.

Next we prove that any ZFC-theoretic group is associated to some Flow-
theoretic group, but the converse is not valid.

6.2 Other mathematical theories

Definition 42 A static field is an ordered pair ⟨+, ·⟩ such that + and · are
intersecting two-variable functions which do satisfy the usual axioms of a field.

6.3 Classical particle mechanics

The next example of application of Flow refers to an axiomatic framework for
a very simple form of non-relativistic classical particle mechanics. The system
below is essentially based on the axiomatization of classical particle mechanics
due to P. Suppes [22], which, in turn, is a variant of the formulation by J. C. C.
McKinsey, A. C. Sugar and P. Suppes [13]. We call this McKinsey-Sugar-Suppes
system of classical particle mechanics “MSS system”.

MSS system, grounded on ZFC language, has six primitive notions: P , T ,
m, s, f , and g. P and T are sets; m is a real-valued unary function defined
on P ; s and g are vector-valued functions defined on the Cartesian product
P × T , and f is a vector-valued function defined on the Cartesian product

49

P × P × T . Intuitively, P corresponds to the set of particles and T is to be
physically interpreted as a set of real numbers measuring elapsed times (in terms
of some unit of time, and measured from some origin of time). In turn, m(p)
is to be interpreted as the numerical value of the mass of p ∈ P ; whereas sp(t),
with t ∈ T , is a 3-dimensional vector which is to be physically interpreted as
the position of p at instant t. Moreover, f(p, q, t), with p, q ∈ P , corresponds
to the internal force that the particle q exerts over p at instant t. Finally, the
function g(p, t) is to be understood as the external force acting on the particle
p at instant t.

We can now give the axioms for the MSS system:

Definition 43 ⟨P, T, s,m, f ,g⟩ is a MSS system if and only if the following
axioms are satisfied:

M1 P is a non-empty, finite set.

M2 T is an interval of real numbers.

M3 If p ∈ P and t ∈ T , then sp(t) is a 3-dimensional vector (sp(t) ∈ ℜ3) such

that
d2sp(t)
dt2 exists.

M4 If p ∈ P , then m(p) is a positive real number.

M5 If p, q ∈ P and t ∈ T , then f(p, q, t) = −f(q, p, t).

M6 If p, q ∈ P and t ∈ T , then [sp(t), f(p, q, t)] = −[sq(t), f(q, p, t)].

M7 If p, q ∈ P and t ∈ T , then m(p)
d2sp(t)
dt2 =

∑
q∈P f(p, q, t) + g(p, t).

Some remarks regarding the axioms are in order here: (a) The brackets in
Axiom M6 denote the external product. (b) Axiom M5 corresponds to a weak
version of Newton’s Third Law: to every force there is always a counter-force.
(c) Axioms M6 and M5 correspond to the strong version of Newton’s Third
Law. Axiom M6 establishes that the direction of force and counter-force is the
direction of the line defined by the coordinates of particles p and q. (d) Axiom
M7 corresponds to Newton’s Second Law.

Now, in the study of a MSS system, it’s sometimes useful to consider only
certain parts of the system—perhaps only a subsystem needs to be considered.
But is the subsystem of a MSS system still a MSS system? In [13] this question
is positively answered in full details. But the point here is not that kind of
question. We are interested on the use of Padoa’s Principle and its consequences.
Now we have all the resources in place to start asking questions regarding the
independence of primitive notions in a MSS system. Using Padoa’s method, it’s
not difficult to prove the following theorem:

Theorem 45 Mass and internal force are each independent of the remaining
primitive notions of a MSS system.

50

After presenting the MSS system, and in light of the last theorem, Suppes
raised a significant issue regarding the definability of the notions of force in the
system. As he points out [22]:

Some authors have proposed that we convert the second law [of
Newton], that is, M7, into a definition of the total force acting
on a particle. [...] It prohibits within the axiomatic framework any
analysis of the internal and external forces acting on a particle. That
is, if all notions of force are eliminated as primitive and M7 is used
as a definition, then the notions of internal and external force are
not definable within the given axiomatic framework.

It was natural then to extend Suppes’ point even further, considering the
notions of time and spacetime. And in [4, 5], the authors have proved that time is
definable—and, thus, dispensable—in some very natural axiomatic frameworks
for classical particle mechanics and even thermodynamics. Furthermore, they
have established, in the first paper, that spacetime is also eliminable in general
relativity, classical electromagnetism, Hamiltonian mechanics, classical gauge
theories, and in the theory of Dirac’s electron. Having an axiomatic framework
in place allows one to obtain results of this type.

In particular, returning to the MSS system, here is one of the theorems
proved in the papers quoted above:

Theorem 46 Time is eliminable in a MSS system.

The proof is quite simple. According to Padoa’s principle, the primitive con-
cept T in a MSS system is independent from the remaining primitive concepts
(mass, position, internal force, and external force) iff there are two models of
MSS system such that T has two interpretations and the remaining primitive
symbols have the same interpretation. But these two interpretations are not
possible, since position s, internal force f , and external force g are functions
whose domains depend on T . If we change the interpretation of T , then we
change the interpretation of three other primitive concepts, namely, s, f , and g.
So, time is not independent and hence can be defined. Since time is definable,
it is eliminable.

In [5], the authors have shown that time is dispensable in thermodynamics
as well, at least in a particular (although very natural) axiomatic framework for
the theory. Moreover, in the same paper, they have shown how to define time
and how to restate thermodynamics without any explicit reference to time. In
the case of the MSS system, time can be defined by means of the domain of the
functions s, f , and g. A similar procedure is used in [5].

6.4 Reformulating classical particle mechanics

Definition 44 Let s and g be two two-variable functions, m a one-variable
function, and f a three-variable function. Besides, let v be a one-variable func-
tion which acts only on vectors of a three-dimensional real vector space endowed

51

with usual scalar product ×. A non-relativistic classical particle system is an
ordered 4-uple ⟨m, s, f, g⟩ such that:

1. m is finite on its only entry. Besides, if m acts on p, then m(p) is a real
number greater than zero.

2. s[(p, t)] iff m[p] and t belongs to an interval i of real numbers. Besides,
v[s(p, t)].

3. f [(p, q, t)] iff m acts on both p and q, and s acts on both (p, t) and (q, t).
Besides, v[f(p, q, t)].

4. g[(p, t)] iff s[(p, t)]. Besides, v[g(p, t)].

5. s[(p, t)]⇒ ∃d
2s(p,t)
dt2 .

6. f [(p, q, t)]⇒ f(p, q, t) = −f(q, p, t).

7. f [(p, q, t)]⇒ s(p, t)× f(p, q, t) = −s(q, t)× f(q, p, t).

8. f [(p, q, t)]⇒ m(p)d
2s(p,t)
dt2 =

∑
m[q] f(p, q, t) + g(p, t).

So, what is a particle? According to our view, only mass, position and forces
are primitive concepts. Within this context, a particle is any function p where
m acts.

7 The full potential of Flow

In this Section we suggest a way of doing mathematics without limiting ourselves
to structure-free classes, as already done in the previous sections.

7.1 Composition

First of all, it is rather important to realize the Flow-theoretic concept of com-
position (see Definition 1) is not equivalent to the usual notion of composition
within standard mathematics. By “standard mathematics” we mean the study
of those trivially arbitrary functions we used here to reconstruct both ZFC and
Category Theory. Trivially arbitrary functions and static morphisms (including
static functors and static natural transformations) are simply restrictions of 1.
In other words, those special cases of functions f act on certain ordered pairs
(a, b) in a way such that f(a, b) = (a, b). Within this context, a static composi-
tion works, intuitively speaking, like this: if f acts on (a, b) and g acts on (b, c),
then f ◦† g acts on (a, c). Notwithstanding, that does not correspond to the
concept of composition introduced in Definition 1. What do we mean by that?

In ZFC, many functions can be bijective. That means many functions f
admit the existence of an inverse f−1. And such an inverse is defined through
the use of composition (ZFC-composition). In Flow Theory, however, 1 is the
only restriction of 1 which is an injective function, in the sense that for any

52

other restriction f different of 1 we have at least two functions x and y such that
f(x) = 0 and g(y) = 0. In other words, any ZF -set is a non-injective function,
in the sense above. That means the standard strategy to define inverse (by
means of composition) is not applicable in Flow. Besides, even the successor
function σ is not injective in this sense. That means it is really hard do find
any other injective function besides 1 in Flow.

One natural way of coping with this limitation is by means of a definition of
“local” invertibility, as we introduce in the next definition.

Definition 45 f is locally invertible iff there is g such that ∀t((g[t]⇒ f(g(t)) =
t) ∧ (f [t] ⇒ g(f(t)) = t)). In that case, we call g the local inverse of f , and
denote g as f−1.

Theorem 47 If f is a restriction of 1, then it is locally invertible, and its local
inverse is f itself.

Proof: If f is a restriction of 1, according to axiom P8F , then for any t we
have f [t]⇒ f(t) = t. That entails f [t]⇒ f(f(t)) = t.

The shortcoming of this last definition is that any ZF-set is locally invertible,
since every ZF-set is a restriction of 1, according to Definition 20. So, even the
notion of local invertibility does not correspond to the way how invertibility is
addressed in ZFC.

As a non-trivial example (a function which is not a restriction of 1), consider
a function f such that f(ϕ1) = ϕ2, f(ϕ2) = ϕ4, f(ϕ3) = ϕ6, f(f) = f , and
f(r) = 0, where r stands for the remaining possible values. The existence of f
is guaranteed by axiom P9. According to our definition above, a local inverse of
f is f−1 such that f−1(ϕ6) = ϕ3, f

−1(ϕ4) = ϕ2, f
−1(ϕ2) = ϕ1, f

−1(f−1) = f−1,
and f−1(r) = 0, where r stands for the remaining possible values.

Notwithstanding, there is an intriguing consequence for locally invertible
functions. The existence of a local inverse function does not entail its uniqueness.
Consider, e.g., the next function:

f

- -ϕ5 ϕ6

According to the diagram above, f is a function which acts only on 0 and
ϕ5, in a way such that f(0) = ϕ5, and f(ϕ5) = ϕ6, while f(ϕ6) = 0. If we follow
Definition 45, we find both functions g and h below are local inverses of f .

g

- -ϕ6 ϕ5

h

-ϕ6 ϕ5

53

While g acts on 0, that does not happen with h.
It is possible the reader finds this result somehow suspicious. After all, since

composition is associative, we could expect the uniqueness of the local inverse
f−1 of a given function f . Nevertheless, it is worth to recall our notion of
local inverse refers only to values where a given function acts. That means the
concept of local inverse does not encompass all possible values of the universe
of Flow.

Definition 46 f is locally injective iff ∀r∀s((f [r]∧f [s]∧r ̸= s)⇒ f(r) ̸= f(s)).

Theorem 48 If f is locally injective, then it is locally invertible.

Proof: If, for a given t, f [t] entails f(t) = u, all we have to do is to define
a function f−1 such that f−1(u) = t. That is possible because we are
assuming f is locally injective. That means f−1 is indeed a function. Thus,
if f [t], then f−1(f(t)) = f−1(u) = t. On the other hand, f(f−1(u)) =
f(t) = u.

Observe in the proof above we are not assuming neither that f−1 necessarily
acts on u nor that u is necessarily different of 0.

Theorem 49 If f is locally injective and, for any t, f [t] ⇒ f [f(t)], then its
local inverse f−1 is unique.

Proof: Here is a sketch for the proof. As previously discussed in the last
theorem, if, for a given t, f [t] entails f(t) = u, all we have to do is to
define a function f−1 such that f−1(u) = t. Now suppose g ̸= f−1 is a
local inverse of f . The only way to guarantee that g ̸= f−1, is by assuming
either f−1(0) = u or g(0) = u for a specific u where f(t) = u for a specific
t, since f is locally injective. But that would entail f(u) = 0, since both
f−1 and g are local inverses of f . Notwithstanding, that would entail
f(u) = f(f(t)) = 0, which contradicts the assumption that f [f(t)] for any
t where f [t].

A more detailed discussion about the Flow-theoretic concept of composition
is presented in the next subsection.

7.2 n-ary functions

Consider a function ∗ which acts only on functions ϕn, for any n of language
L. For the sake of abbreviation, we may denote ∗(r) simply as ∗r. That means
∗r is different of 0 (and of ∗ itself, of course) iff r = ϕn for some n. Now let
us assume, for any r such that ∗[r], we have that ∗r acts on every s such that
∗[s], in a way such that ∗r(s) is equal to ϕm, for some specific m of language L.
That means ∗[∗r(s)] for any r and any s such that ∗[r] and ∗[s].

If we denote ∗r(s) as r ∗ s (once again for the sake of abbreviation), we can
easily see that ∗ behaves, for practical purposes, as a binary operation, despite

54

the fact we are not explicitly working with ordered pairs (r, s). Intuitively
speaking, ∗ behaves like a “family” (indexed by r) of monadic functions ∗r.

For example, consider a function + such that +(ϕn) is a function +n such
that +n(ϕm) = ϕm+n. Intuitively speaking, that corresponds to the summation
between any two natural numbers. The idea is something like this: the binary
summation + is a “family” of monadic summations; there is the summation
+0, the summation +1, the summation +2, and so on. In elementary school,
a similar idea has been used for a long time, namely, multiplication tables.
Actually, multiplication tables date at least from four thousand years ago [19].
There is the multiplication table of 7, and the multiplication table of 9. Within
Flow, we work with the multiplication table of any natural number. And we do
not restrict ourselves only to multiplication tables, but rather to any operation’s
table. Thus, the statement ϕn + ϕm can be assumed as an abbreviation for
(+◦+n)(ϕm), which is +(+n(ϕm)). Notwithstanding, observe we are not talking
about natural numbers within a ZFC framework, since neither + nor +n (for
any n of language L, such that n ̸= 0) is a ZF-set. We are not talking about
restrictions of 1 anymore.

A lot of questions can be raised from our approach. And one of them refers
to the usual ways of teaching mathematics. Why multiplication tables are so
common along history? Are multiplication tables a simple pedagogical strategy?
Or can we believe on the possibility that multiplication tables refer to a quite
natural way of grounding mathematics itself? Once upon a time, the axiomatic
method was nothing more than a methodology of teaching. Now, since 19th
century it is well known that the axiomatic method is a genuine branch of
mathematics. Can we say something analogous about multiplication tables?

Now, going back to our arbitrary ∗, suppose we want to say ∗ is commutative.
That is easily accomplished by stating the following formula:

∀r∀s(r ∗ s = s ∗ r),

which is equivalent to

∀r∀s(∗r(s) = ∗s(r)).

Nevertheless, the most interesting question is this: how to say that ∗ is
associative?

If we write such a statement by means of our proposed abbreviation, we have
obviously this:

∀r∀s∀t((r ∗ s) ∗ t = r ∗ (s ∗ t)).

Nevertheless, this last formula corresponds to say:

∀r∀s∀t(∗∗r(s)(t) = ∗r(∗s(t))).

In other words, the statement that ∗ is associative corresponds to say:

∀r∀s(∗∗r(s) = ∗r ◦ ∗s),

55

which is equivalent to say

∀r∀s((∗ ◦ ∗r)(s) = ∗r ◦ ∗s).

Hence, we proved here that associativity of a “binary” operation ∗ is some-
how associated to composition of monadic functions. Observe also that our
discussion here can be easily extended to operations which act on other terms,
besides functions ϕn.

In standard set theories, operations are simply functions which, in turn, are
sets. Within Flow, “binary” operations can be coped as special cases of monadic
functions (since all functions in Flow are monadic). And that fact helps us to
get a new perspective about how operations work in mathematics. Besides, it
is worth to observe that the “domain” of ∗ is ∗ itself, since the domain of any
function f can be defined as a function which acts on all terms where f acts.
Well, that means we can always say the domain of f is f . That is the meaning
of our claim in the Abstract that functions in Flow have no domain.

7.3 Mathematics teaching

Besides times tables, there are other issues regarding Flow theory and its pos-
sible repercussion into the common practice of mathematics.

There are many issues regarding at least three ways of doing mathematics: (i)
the common practice of the working mathematician (including those who work
with applied mathematics, like physicists, engineers, economists, psychologists,
statisticians, and so on); (ii) the common practice of logicians; and (iii) the
common way how mathematics is taught at school.

For example, within ZFC, a function is simply a set of ordered pairs. Nev-
ertheless, no working mathematician says the ordered pair (1, 2) belongs (in the
set-theoretic sense of the predicate letter ∈) to a specific function f whose do-
main is the set of real numbers and which doubles all real numbers. Working
mathematicians simply say “f(1) = 2”. And the intended interpretation of this
last statement is simply that f “transforms” 1 into 2. Well, that intended inter-
pretation is somehow safe within our proposal, as long we do not limit ourselves
to situations like those regarding the translation of ZFC into Flow.

However, there are other issues a little more sensitive. For example, usually
the quotient r/s between real numbers r and s is referred to as an operation over
real numbers, despite the fact that from the logical point of view that is not the
case. That happens because it is unusual to define r/0. The usual way of dealing
with this situation is by claiming r/0 is not definable. Nevertheless, that is a
false claim. For details, see, for example, [22]. From a Flow-theoretic point of
view, the quotient r/0 can be regarded simply as ψ (a function already discussed
above, which cannot be regarded as a real number). In other words, r/0 is just
a term which is not a real number, nothing else. So, unlike multiplication over
real numbers, quotient is not a closed operation over real numbers. That is all.

Other examples may be found in standard text books of differential and
integral calculus. For example, it is quite common to say that if f a real function

56

defined over the set of real numbers, then limx→a f(x) = L iff ∀ε > 0∃δ > 0(0 <
|x− a| < δ ⇒ |f(x)− L| < ε). Clearly we are not using the standard language
of predicate calculus here. But that is not the point. The point is that such
a statement is usually referred to as a definition for limit. But that is not the
case, since every definition is supposed to be eliminable [22], in the sense that
the definiendum is supposed to be replaceable by the definiens. Nevertheless,
that is an impossible demand (according to logicians) for the case where there
is no limit L. If for every ε > 0 there is no δ which satisfies the formula
used in the alleged definiens, then how can we replace the definiendum by its
corresponding definiens? From a Flow-theoretic point of view there is clear
answer to that question.

Within standard calculus, there are three distinct cases of non-existent lim-
its: (i) functions which grow indefinitely with positive values; (ii) functions
which grow indefinitely with negative values; (iii) and the remaining cases.
When a mathematician says limx→a f(x) =∞, that is clearly disturbing, from
a logical point of view. After all, ∞ is not a real number. Worse than that, ∞
is not even a term within ZFC. An analogous situation happens when a working
mathematician says limx→a f(x) = −∞. From a Flow-theoretic point of view,
that problem is easily solved. We can say, for example, that limx→a f(x) = ∞
means limx→a f(x) = 1, and that limx→a f(x) = −∞ means limx→a f(x) = 0,
while for other cases of non-existent real limits L we may say limx→a f(x) = l,
where l is an arbitrary term which is neither a real number, nor 0 or 1, like,
e.g., function ψ (that function whose successor is 1). So, limit may be regarded
as an operation, like quotient. Nevertheless, limit is not closed over the set of
real numbers. That means Flow theory allows us to introduce a justification for
common practices among working mathematicians and teachers and authors in
general.

8 Variations of Flow

We briefly discuss here some possible variations of Flow to be investigated in
the future.

8.1 Closure

One possible variation of Flow has to do with the inclusion of one more axiom:

Closure ∀x(x(0) = 0 ∧ (x ̸= 1⇒ x(1) = 0)).

The main advantage of this strategy is that it simplifies many calculations
within Flow. Besides, if we add Closure, we have a well behaved algebra for
composition, specially regarding operations involving 0 and 1. For example,
Closure guarantees that for any x, 0◦x = 0; x◦1 = x; 1◦x = x; and x◦0 = 0.
This last formula is not a theorem in Flow, unless we add Closure.

On the other hand, an inconvenient side effect of “Flow + Closure” is
that Theorems 22 and 24 are no longer valid. Those results refer to constant

57

functions. And both theorems use the fact that σ(0) is ϕ0. In other words,
“Flow + Closure” is inconsistent, since axiom P6 guarantees the existence of
a unique function σ such that σ(0) is different of 0. Moreover, P6 guarantees
the existence of a vast universe of functions x such that x(0) is different of 0.
For example, σ(σ(0)) is ϕ1, σ(σ(σ(0))) is ϕ2, and so on. So, if x is either σ,
σ ◦ σ, or σ ◦ σ ◦ σ, then the proposed new axiom Closure is not satisfied.

To avoid such an obvious inconsistency, one possible solution is to erase P6
from the list of axioms of Flow and to introduce a new primitive concept into
Flow’s language, namely, a monadic functional letter f11 (abbreviated, e.g., as
Σ) which plays a similar role of σ. Besides, all remaining axioms where σ occurs
are supposed to be rewritten in a way such that σ is replaced by Σ.

We prefer here to avoid new primitive concepts, besides evaluation f21 . That
is why we omitted formula Closure as an axiom. Nevertheless, the fact is that
such a variation deserves to be explored.

8.2 Regularity

One of our aims for the future is a thorough discussion about the metamath-
ematics of Flow Theory. Thus, we should consider the possibility of one extra
Axiom of Regularity which avoids the possibility of functions f and g such that
for both we have f [g] and g[f]. That would entail the impossibility of f ∈ g and
g ∈ f . Hopefully, with this extra axiom we will be able to rank all functions
in the sense of defining a cumulative hierarchy of terms. So, our additional
postulate could be, e.g., the following one:

Regularity ∀f∀g((f ̸= g ∧ f(g) ̸= 0)⇒ g(f) = 0).

In principle that would allow us to talk about Flow-theoretic versions of
induction, recursion, rank, inaccessible cardinals, and other usual concepts from
standard set theories [8]. But that is a task to be pursued in future works.

8.3 Clones and equiconsistency

Half of our axioms use the quantifier ∃! for several functions. Such functions
refer to composition (P5), successor (P6), restriction (P8F), terms which are
no restriction of 1 (P9), union (P10), and choice (P12). In the specific case
of the Axiom of Choice P12, our concern with uniqueness is almost ludicrous,
since we simply impose that any d such that d ∼ c, where c is a choice function,
is necessarily identical to c. So, why do we worry so much with uniqueness?

As previously discussed in Observation 1, if it wasn’t for the uniqueness
requirement of axioms like P5 and others, Flow would be consistent with the
existence of many functions which “do” the same thing. By multiple functions
“doing the same thing” we mean different functions x and y which share the
same images x(t) and y(t) for any t different of both x and y. That is why we
introduced Definition 14, which says that f ∼ g iff ∀t((t ̸= f ∧ t ̸= g)⇒ f(t) =
g(t)).

58

The fact is that our weak extensionality P1 does not guarantee equivalent
functions f and g (i.e., f ∼ g) are necessarily identical. And since we wanted to
prove ZFC is immersed within Flow, it seemed reasonable to impose uniqueness
for composition, successor, restriction, union, and choice. That was our almost
unavoidable way for dealing with the strong extensionality imposed by ZFC
axioms.

Nevertheless, another possible variation of Flow is supposed to replace all
occurrences of ∃! in axioms P5, P6, P8F , P9, P10, and P12 by quantifier ∃.
Besides, the last part of P12 (∀d(d ∼ c ⇒ c = d)) is supposed to be simply
deleted. So, what would be the consequences of such a variation? Well, we do
not know yet. In order to cope with such a possibility, we feel to be necessary to
apply model theoretic techniques into Flow Theory. First of all, can we prove
any equiconsistency theorem for any version at all of Flow? If we can prove
Flow theory, in its present form, is equiconsistent to, e.g., ZFC, that would be a
nice result. But even if that is possible, what about this (in principle possible)
variation of Flow where there is no ad hoc assumption regarding the uniqueness
of composition and other functions? Can we guarantee that such a variation is
consistent with classical logic? If there is some ambiguity in defining functions
which “do the same thing” but are not necessarily identical, can we guarantee
that any given closed formula is necessarily either true or false? If that is not
the case, what would be a proper logic for such a variation of Flow? Are we
talking about the possibility of an intuitionistic logic whose models rely on a
Heyting algebra? Well, if that is the case, then the Axiom of Choice is supposed
to be removed, since intuitionistic logic is inconsistent with such a statement
[14]. Or can we consider the possibility of a paraconsistent logic [6]?

9 Final remarks

As a reference to Heraclitus’s flux doctrine, we are inclined to call all terms
of Flow fluents, rather than functions. That is also an auspicious homage to
the Method of Fluxions by Isaac Newton [16]. Newton referred to functions as
fluents. And their derivatives were termed fluxions. Whether Newton was in-
spired by Heraclitus, that is historically uncertain ([20], page 38). Nevertheless,
we find such a coincidence quite inspiring.

10 Acknowledgements

We thank Aline Zanardini, Bruno Victor, and Cléber Barreto for insightful
discussions regarding a very (very!) old version of this paper. We acknowledge
with thanks as well Edélcio Gonçalves de Souza and Renato Brodzinski for
valuable criticisms.

59

References

[1] Beth, E. W., “On Padoa’s method in the theory of definition” Indagationes
Mathematicæ 15 330–339 (1953).

[2] da Costa, N. C. A. and Chuaqui, R., “On Suppes’ set theoretical predi-
cates”, Erkenntnis 29 95–112 (1988).

[3] da Costa, N. C. A. and Doria, F. A., “Suppes predicates for classical
physics”, in J. Echeverria et al. (eds.), The Space of Mathematics (Wal-
ter de Gruyer, Berlin, pp. 168–191, 1992).

[4] da Costa, N. C. A. and Sant’Anna, A. S., “The mathematical role of time
and spacetime in classical physics” Foundations of Physics Letters 14 553–
563 (2001).

[5] da Costa, N. C. A. and Sant’Anna, A. S., “Time in thermodynamics”
Foundations of Physics 32 1785–1796 (2002).

[6] Estrada-González, L., “The evil twin: the basics of complement-toposes”,
In: Beziau J.-Y., Chakraborty M., Dutta S. (eds.) New Directions in Para-
consistent Logic (Springer Proceedings in Mathematics & Statistics, vol.
152. Springer, New Delhi, 2016).

[7] Hatcher, W. S., Foundations of Mathematics (W. B. Saunders Company,
1968).

[8] Jech, T., Set Theory (Springer, Berlin, 2003).

[9] Klein, F., Elementary Mathematics from a Higher Standpoint (Springer,
2016).

[10] Kolmogorov, A. N., Fomin, S. V., Introductory Real Analysis (Dover, 1975).

[11] Lawvere, F. W., Rosebrugh, R., Sets for Mathematics (Cambridge Univer-
sity Press, 2003).

[12] Mac Lane, S., Categories for the Working Mathematician (Springer-Verlag,
New York, 1994).

[13] McKinsey, J. C. C., Sugar, A. C., and Suppes, P., “Axiomatic founda-
tions of classical particle mechanics”, Journal of Rational Mechanics and
Analysis 2, 253–272 (1953).

[14] McLarty, C., “Two constructivist aspects of category theory” Philosophia
Scientiæ 27 (Cahier spécial) 95-114 (2006).

[15] Mendelson, E., Introduction to Mathematical Logic (Chapman & Hall, Lon-
don, 1997).

[16] Newton, I., Methodus fluxionum et serierum infinitarum (1664-1671).

60

[17] von Neumann, J., “An axiomatization of set theory”, in J. van Heijenoort
(ed.) From Frege to Gödel (Harvard University Press, Cambridge, 346–354,
1967).

[18] Padoa, A., “Essai d’une théorie algébrique des nombres entiers, précédé
d’une introduction logique à une théorie déductive quelconque” Bib-
liothèque du Congrès International de Philosophie 3, 309–365 (1900).

[19] Qiu, J. “Ancient times table hidden in Chinese bamboo strips” Nature
News doi:10.1038/nature.2014.14482.

[20] The Royal Society, Newton Tercentenary Celebrations (Cambridge Univer-
sity Press, 1946).

[21] Sant’Anna, A. S., Bueno, O., “Sets and functions in theoretical physics”
Erkenntnis 79 257-281 (2014).

[22] Suppes, P., Introduction to Logic (van Nostrand, Princeton, 1957).

[23] Suppes, P., Representation and Invariance of Scientific Structures (CSLI,
Stanford, 2002).

[24] Tarski, A., “Some methodological investigations on the definability of con-
cepts”, in A. Tarski, Logic, Semantics, Metamathematics (Hacket, Indi-
anapolis, pp. 296–319, 1983).

[25] Trlifajová, K., “Bolzano’s infinite quantities”, Foundations of Science 23
681-704 (2018).

61

