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Abstract

In this article I raise a new problem for quantum mechanics, which I call the control

problem. Like the measurement problem, the control problem places a fundamental

constraint on quantum theories. The characteristic feature of the problem is its focus on

state preparation. In particular, whereas the measurement problem turns on a premise

about the completeness of the quantum state (‘no hidden variables’), the control problem

turns on a premise about our ability to prepare or control quantum states. After raising the

problem, I discuss some applications. I suggest that it provides a useful new lens through

which to view existing theories or interpretations, in part because it draws attention to

aspects of those theories which the measurement problem does not (such as the role of

conditional and relative states). I suggest that it also helps clarify the physical significance

of the well-known no-go result—the no-cloning theorem—on which it is based.
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1 Introduction

There is a compelling argument that it is impossible to reconcile Schrödinger’s quantum

theory with the determinateness of measurement outcomes, unless we give up on the claim

that the theory provides us with a complete description of physical systems. This is what I will

call ‘the standard measurement problem’. More precisely, the problem is that the following

assumptions, though individually innocent, are jointly untenable (Maudlin [1995]):

(A1) The quantum state of a system determines, directly or indirectly, all of its physical

properties [Completeness].

(A2) The quantum state of an isolated system always evolves in accord with a linear

dynamical equation, such as the Schrödinger equation [Linearity].

(A3) Given determinate inputs, our measuring devices always produce unique, determinate

outcomes [Determinate Outcome].

One desideratum for a quantum theory (or interpretation) is that it solve the standard

measurement problem. A theory must reject at least one of the assumptions listed, and explain

how the resulting gap is to be filled in—preferably, without introducing ‘measurement’ as a
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basic, unanalysed term in the dynamical laws.1 Bohmian mechanics, for instance, rejects

(A1), GRW theory rejects (A2), and Everettian mechanics rejects (A3).

I argue that there is another problem for quantum mechanics, distinct from the standard

measurement problem. The characteristic feature of this new problem, which I call the control

problem,2 is that it introduces considerations of state preparation on top of considerations of

measurement. In particular, the problem is that the following claims are jointly incompatible:

(B1) We can successfully prepare quantum states: at least some of our preparation devices are

such that, if determinately fed many inputs, they output a non-trivial fraction of those

inputs in some specified range of quantum states [Preparation] (here the ‘inputs’ are

subsystems, and we define ‘the quantum state of a subsystem’ in the standard way, as its

reduced state).

(B2) The quantum state of an isolated system always evolves in accord with a deterministic

dynamical equation that preserves the inner product, such as the Schrödinger equation

[Unitarity].

(B3) It is always determinate whether or not a subsystem has been input into a given

(measuring or preparation) device [Determinate Input].

(There is another background assumption needed to generate the incompatibility, which is also

taken for granted in the standard measurement problem:

(A4, B4) There is always, from a first-person view, an experienced ‘observed outcome’ of a

measurement, even if—from a ‘God’s eye view’—there is no unique determinate

outcome. Moreover, our measuring devices are at least somewhat informative and

reliable. For example, if a spin-z measuring device is determinately fed an electron in

the eigenstate ↑z, it will output ‘UP’ (and not ‘DOWN’) [Competent Measurement].
1Authors often use the term ‘measurement problem’ to refer specifically to this deficiency of textbook collapse-

on-measurement accounts. That is not how I am using the term here, but there is no real disagreement behind this
difference; all agree that an account can reject one of (A1)–(A3), in this case (A2), and yet fail to be an acceptable
fundamental physical theory for various reasons. For more on this terminological issue, see (Lewis [2007], pp.
750-1). For other presentations of the measurement problem that are similar to Maudlin’s above, see for example
(Albert [1992]; Wallace [2012]; Healey [2017]; Myrvold [2018]).

2I thank an anonymous referee for suggesting this name.
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This assumption would be disastrous to deny, which is why it is background.)

Another desideratum for a quantum theory is that it solve the control problem. A theory

must reject at least one of the assumptions listed above and explain how the resulting gap is to

be filled in—preferably, without introducing ‘measurement’ or ‘preparation’ as basic,

unanalysed terms in the dynamical laws. GRW theory rejects (B2). Everettian mechanics

rejects (B3). Bohmian mechanics, it turns out, rejects (B1) in favour of:

(B1’) Given determinate inputs, our preparation devices can prepare those inputs in desired

conditional quantum states (relativized to an extra parameter) but not desired quantum

states simpliciter [Conditional Preparation].

Why are (B1)–(B4) incompatible? Briefly, the idea is to consider a certain type of

preparation protocol, in which one chooses which quantum states to prepare based on which

outcome of some initial measurement one (first-personally) observes. It is straightforward to

show that if the assumptions were all true, then these protocols would violate a variant of the

‘no-cloning theorem’ (Wootters and Zurek [1982]) and so would be impossible to implement.

But this cannot be right; we implement such protocols all the time. Therefore, at least one of

the assumptions must be false.

The main difference between the control problem and the standard measurement problem is

the difference between (A1) and (B1). Whereas the standard measurement problem makes an

assumption about what quantum states are (what physical properties they determine), the

control problem makes an assumption about what we can do with quantum states—about the

extent to which we can control the quantum states of the subsystems that we study in the

laboratory. It is rare to find, for any interpretation or theory, detailed discussion of preparation

and its limits. My hope is that the control problem will motivate such discussion.

Is the control problem just a ‘non-standard’ version of the measurement problem? On the

one hand, the measurement problem is often glossed as a problem with interpreting quantum

mechanics as a complete physical theory, and most discussions involve some sort of state

completeness assumption, suggesting Completeness is a defining feature of the problem. If

that is the case, then solving the measurement problem does not entail solving the control

problem; consider, for example, a theory which denies that quantum states specify

4



Alexander Meehan A New Problem for Quantum Mechanics

macro-properties (like the readings on measuring devices), but maintains that we can prepare

certain micro-systems in certain quantum states.

On the other hand, the control problem invokes Competent Measurement, and crucially

involves a measurement-type interaction (combined with a preparation). So if the

measurement problem is defined as the general puzzle that measurement interactions can be

problematic under Schrödinger dynamics, then the control problem should be viewed as a

specific aspect of it.

Of course, to some extent this question of how broadly to define ‘the measurement problem’

is a terminological one. What matters, for our purposes, is whether the control problem is of

interest to the foundations of quantum mechanics. In this paper, I aim to show that it is.

The plan is as follows. In Section 2, I review the standard measurement problem. In Section

3, I clarify Preparation and discuss whether it is already in tension with Unitarity. It turns

out that this question has been raised under the header of the ‘preparation problem’ (Ruetsche

[1996]; Wessels [1997]), so I take the opportunity to review this problem as well. In Section 4,

I present the main result of the paper, the incompatibility argument for the control problem. I

also compare the control problem with some non-standard versions of the measurement

problem that have been raised (Maudlin [1995]; Gao [2019]). In Section 5, I turn to consider

how different interpretations may respond to the control problem. The treatment here is

necessarily brief, but some basic direction is given. Finally, in Section 6, I relate the problem

to another foundational issue. There is a folklore in the literature that the no-cloning theorem

rules out the possibility of ‘individual state determination’ (D’Ariano and Yuen [1996];

Vaidman [2015]). In this section, I argue that the folklore is mistaken, and suggest that the

right result in the vicinity is actually a variant of the control problem. The payoff is a revised

understanding of the physical significance of the no-cloning theorem.

2 The Standard Measurement Problem

We begin by briefly recalling why (A1)–(A4) are jointly untenable. This will set the stage for

my own incompatibility argument for (B1)–(B4), which has a similar set-up and structure.

First, the set-up. Zarna is a physicist who specializes in quantum mechanics. Her laboratory
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is set up as shown in Figure 1. She has a collection of electrons, and a measuring device which

takes those electrons as input and measures their spin in the z direction. We suppose, without

loss of generality, that the lab is isolated, and so Linearity is applicable.

Figure 1: Set-up of Zarna’s laboratory.

Suppose for reductio that (A1)–(A4) are all true. Suppose Zarna feeds an ↑z electron from

her collection into her measuring device. By Competent Measurement the device will read

‘UP’. By Completeness, the final quantum state of the lab will specify this fact. So, letting

−→ denote the evolution of the quantum state of the entire lab from the initial to final time,

and letting ‘initial’ denote the initial quantum state of the rest of the lab, we have,

↑z ⊗ initial −→ device reads ‘UP’, (1)

where the final quantum state of the lab is written ‘device reads “UP”’ to indicate any state

which agrees on this specification of the device. (We stay neutral, for example, on the final

state of the measured electron, since this was not specified by our assumptions.)

Next, we ask how the quantum state of the lab would have evolved if the electron were in

the ↓z spin state instead. By the same reasoning,

↓z ⊗ initial −→ device reads ‘DOWN’. (2)

Finally, we ask how the quantum state of the lab would have evolved if the electron were ↑x
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instead. Since ↑x = 1
√

2
↑z + 1

√
2
↓z, (1)–(2) and Linearity imply the following answer:

↑x ⊗ initial −→
1
√

2
(device reads ‘UP’) +

1
√

2
(device reads ‘DOWN’). (3)

However, consider any possibility in which the right-hand side of (3) is the final quantum state

of the lab. By Completeness, this quantum state must specify the reading on the measuring

device, if there is one. And now we have a problem. As Maudlin ([1995], p. 8) puts it:

Since ‘UP’ and ‘DOWN’ enter symmetrically into the final state, by what

argument could one attempt to show that this device is, in fact, in exactly one of

the two indicator states?

So the only plausible option is to insist that, in all these possibilities, there is not a determinate

fact of the matter as to what the measuring device reads (and so there is no failure of

Completeness). But this contradicts Determinate Outcome.

As Maudlin acknowledges, ‘symmetry arguments [like this one] are not a matter of logic’

([1995], p. 10) and so it is not a strict incompatibility. Nevertheless, the argument is highly

illustrative. Decades of effort to convincingly remove the inconsistency by denying the

symmetry, or by employing more detailed models of the measurement process, have not

succeeded.

3 Quantum State Preparation

Like measurement, preparation plays a crucial role in our experimental practice. Countless

quantum mechanical experiments, including many foundational Gedanken-experiments,

involve steps of the form ‘prepare an ensemble of systems in such-and-such quantum state’.

The function of preparation, however, is rather distinct from that of measurement. In

particular, it would be misleading to think of preparation as a special case of measurement. As

Margenau ([1963], p. 6) writes:

In general, a preparation of state is any physical operation which assures that, if a

system has been subjected to the operation, it will afterward be in a specifiable

7



Alexander Meehan A New Problem for Quantum Mechanics

quantum state (ψ, or perhaps a mixture of ψ’s). A measurement, on the other

hand, [is] a physical operation which yields a number [an outcome] that refers to

the state present before the operation.

Here ‘assures’ may be too strong, and we may not wish to require that the operation uniformly

prepares the same ψ (or mixture of ψ’s) each time. But the basic contrast is clear, and can be

restated in terms of devices. Roughly speaking, a preparation device is an object or physical

set-up which, when fed the right sort of subsystem as input, subjects it to a preparation

operation. Unlike measuring devices, there is no general requirement that a preparation device

display an outcome, or that its final state be correlated with some aspect (initial quantum state,

observable) of the input system. Indeed, at least for the purposes of this paper, all we will

assume of a preparation device is that it satisfy the conditions of Preparation: it occasionally

succeeds in outputting its inputs in some pre-specified range of quantum states. (We do

require that this range is not trivial. In particular, in the next section we will take Preparation

to imply that there are at least two ‘distinct’ preparation devices, in the sense that their ranges

do not significantly overlap.)

While preparation is not measurement, the issue remains that the success of certain

preparation procedures in the lab looks incompatible with the Schrödinger dynamics. This

issue has become known as ‘the preparation problem’ (Ruetsche [1996]; Wessels [1997]). I

discuss the issue in some detail now. An important upshot is that Preparation is nevertheless

perfectly compatible with Unitarity and Linearity. Readers who therefore wish to move on

to the incompatibility (B1)–(B4) may skip directly to Section 4. That said, the preparation

problem is of independent interest, and provides valuable context for the result that follows.

3.1 The preparation problem

Consider the (apparently successful) preparation procedure depicted in Figure 2. Zarna feeds a

beam of electrons through a z-oriented Stern-Gerlach apparatus that has its lower path

blocked. She then goes on to perform experiments using the upper beam.

A quick analysis shows that, if Linearity is true, then almost none of Zarna’s electrons end

up in a spin state close to ↑z. Rather, almost all end up in some distinct (mixed) spin state ρ
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Figure 2: Purported preparation procedure for ↑z.

which varies from electron to electron, depending on the electron’s initial spin state

ω0 = α · ↑z + β · ↓z.3 Intuitively, this is because Linearity forbids simply ‘throwing out’ the ↓z

component (the β part of the superposition) just because it corresponds to hitting the blocker.

This component of the superposition, suitably evolved, must also be considered when

determining the final spin state of each electron.

At first glance, this result looks disastrous for Linearity. If this device does not really

prepare ↑z, then what explains why, when we measure the spin-z of its outputs, we obtain

measurement statistics that correspond to ↑z? For example, what explains why, when Zarna

places another z-oriented Stern-Gerlach apparatus as well as a scintillation screen along the

upper path, she always obtains the outcome ‘UP’ at this screen?4

The result is not as disastrous as it appears. As Wessels argues ([1997], pp. 264-270), one

can give a relatively interpretation-neutral story for why we should expect to observe the

statistics of the filtered state even though (assuming Linearity) each subsystem is actually in

an entangled, mixed state. The approach is piecemeal and involves taking into account how

the measuring device works in each case. In the Stern-Gerlach case, note that the second

Stern-Gerlach apparatus and scintillation screen are spatially localized to the upper beam, far

from the blocker. So, while one should expect a position reading at the screen to see

3 Namely, ρ ≈ |α|2 · |↑z〉 〈↑z| + |β|
2 · σ where σ depends on how the blocker entangles with the electron’s spin

degree of freedom; if it doesn’t, σ = |↓z〉 〈↓z|. See (Wessels [1997], 254) for details.
4The worry is not restricted to this Stern-Gerlach case, but extends to other uses of ‘filters’ such as the double

slit experiment (Wessels [1997], p. 255). Unsurprisingly, it’s common in the literature to model these filter proce-
dures with a projection-type, non-unitary operation; see for example (Busch et al. [1996], §III.9) and (Ruetsche
and Earman [2011], §2.2).
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contributions from any components of the electron’s spatial wave function that are localized to

this upper region, one should not expect to see contributions from any components that are

localized to the lower region next the blocker. (We assume, as seems reasonable, that the

interaction between the electron and scintillation screen is highly local.) And precisely the

effect of the first Stern-Gerlach apparatus was to correlate these upper and lower spatial

components with the ↑z and ↓z spin components respectively.

This account at least temporarily rescues Linearity from making false empirical

predictions.5 But it raises two more questions. First, if these particular preparation procedures

do not really prepare their associated quantum states under the Schrödinger dynamics, are

there any procedures which do? And second, if the above preparation procedures still ensure

we obtain the measurement statistics corresponding to the desired quantum state ↑z (for

example), then why should we be interested in whether they ‘really prepare’ ↑z?

The answer to the first question, as foreshadowed, is yes. Linearity is compatible with

Preparation, and so is Unitarity. This is thanks to the lack of constraints on the final state of

a preparation device. For instance, take the ideal case of a ‘uniform’ preparation which, given

an input in any initial quantum state ω0, will output it in the same desired quantum state ψ:

ν ⊗ ω0 −→ ν′(ω0) ⊗ ψ, (4)

for all ω0, where ν is the fixed initial quantum state of the device and ν′ is its final quantum

state, written ν′(ω0) to indicate that it varies with ω0. Thanks to the lack of constraints on ν′,

there do exist −→ which satisfy both (4) and Unitarity (Wessels [1997], pp. 249-250). Thus

even this ideal kind of preparation is compatible, in principle, with Unitarity. And though

they are not ideal, there are several laboratory procedures of this rough form. A simple

example is the placement of a crystal in a cold vacuum, to cool it to its ground energy state.6

In fact this is only one of a wide class of ‘environment-induced’ preparations, a general

technique in which one first unitarily tunes the dynamics of the system-plus-environment so

5It is possible that we will not be able to offer such a story for every case (see previous footnote), leaving some
situations where the measurement statistics must be explained on an interpretation-by-interpretation basis. See
also the problem of effect (Section 4.3).

6See (Park and Band [1992], §3). A similar procedure can be used to prepare, say, a collection of rubidium
atoms in a Bose-Einstein condensate (Healey [2017], §5).
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that the desired state-to-be-prepared is the ground state, and then lets the system relax for

sufficient time (Fröhlich and Schubnel [2016]). It is also crucial to point out that even though

it is inconsistent with Unitarity that the ‘filter’ procedures discussed above really prepare the

quantum states we associate with them (like ↑z), it is not inconsistent with Unitarity that they

prepare a mixed state ρ, where ρ varies (non-uniformly) with ω0. And so, in light of these

observations, I conclude that Unitarity and Preparation are perfectly compatible.

Schrödinger’s theory does not face the same general problem for preparations as it does for

measurements. As Wessels ([1997]) writes:

No analogue of [the measurement problem] arises when quantum mechanics is

applied to preparations [...] The preparation problem is not a foundational

problem.

Of course, what I will argue next is that while Unitarity and Preparation are not

incompatible taken on their own, they are incompatible when taken in conjunction with

Determinate Input and Competent Measurement. This is the control problem.

Next we turn to the second question. One reason we might be interested (at least from a

foundational perspective) in whether we ‘really prepare’ ↑z is that we are interested in our

control over quantum states themselves, not just our control over which patterns of outcomes

will likely obtain when we make certain measurements. That being said, there may be a worry

in the vicinity of this question: assuming we can reject Preparation without contradicting our

empirical predictions (about the post-preparation statistics we observe), is the control

problem, which pits Preparation against some other assumptions, really a ‘problem’?

In response to this worry, note that we can reject Completeness without contradicting our

empirical predictions about measurement statistics. Yet, we do not say that the standard

measurement problem is not really a problem. Indeed, just as rejecting Completeness requires

a systematic account of what the quantum state is missing, and how to make sense of our usual

talk of the quantum state as complete, rejecting Preparation requires a systematic account of

our control over quantum states, and how to recover or translate our usual talk of preparing

states. (We will see, for instance, that Bohmian mechanics accomplishes this using the notion

of a conditional quantum state.) At least from the viewpoint of a theorist who is starting out
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with the naïve Schrödinger account, these are not trivial tasks.

4 The Control Problem

4.1 Set-up

Zarna has installed an additional room in her laboratory, as shown in Figure 3. The room

contains two preparation devices, D and D′, as well as a large collection of subsystems. The

devices are designed to take these subsystems as input. We assume that the devices are

distinct, that is, tend to prepare non-negligibly different quantum states, and can be used

repeatedly, that is, can be fed many inputs if desired. Some examples of such devices are

provided below. (Later on, it will be clear how ‘non-negligibly different’ and ‘many’ can be

precisified in each example.)

Figure 3: The new set-up of Zarna’s laboratory.

Example 1

The subsystems to-be-prepared are also electrons. D is a filtration which prepares about half

of its inputs in the ↑z spin state. D′ is a distinct filtration which prepares about half of its inputs

in ↑x. As we discussed in Section 3.1, it is not obvious how to implement these filtrations

under Unitarity. But we include the example, since D and D′ do satisfy our criteria of being

sufficiently distinct and reusable or repeatable.
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Example 2

The subsystems to-be-prepared are crystals. D is an array of vacuums each enclosed in an

absorbing wall and cooled as much as possible. They prepare their inputs in a ground energy

state ψ or something near to ψ. D′ is an array of containers which are heated to prepare their

inputs in much more energetic states, so that many or most of their final states ψ′ are different

from ψ. Here ψ′ may vary as long as it is usually distinct from ψ.

Example 3

The subsystems are electrons. D is a Stern-Gerlach apparatus oriented in the z direction and

D′ is a Stern-Gerlach apparatus oriented in the x direction. As discussed in Section 3.1, this

may not be equivalent to Example 1 under Unitarity, even if Zarna blocks both the lower

paths. Nevertheless, D and D′ satisfy our criteria. If an electron is fed into D, it will usually

end up in a spin state ρ very different from the ρ′ that would have resulted if it were fed into

D′.7 Also, the devices can be used repeatedly. (An important aspect of this repeatability

assumption, which I have not made explicit, is that the repetition does not introduce unwanted

entanglement between the prepared systems. This holds automatically if the prepared state is

pure as in Examples 1 and 2, and is taken for granted as a property of any good ensemble

preparation.8 However, given the complications of Section 3.1, it is worth flagging.9)

4.2 Incompatibility argument

Suppose for reductio that all four assumptions (B1)–(B4) are true. Note that, given the above

set-up, it should be physically possible for Zarna to implement the following protocol:

7Continuing footnote 3, the z-oriented apparatus outputs ρ ≈ |α|2 |↑z〉 〈↑z| + |β|
2 |↓z〉 〈↓z| while the x-oriented

apparatus outputs ρ′ ≈ (1/2)(|α + β|2) |↑x〉 〈↑x| + (1/2)(|α − β|2) |↓x〉 〈↓x|.
8Since, usually, the purpose of preparing many systems is so that they provide the basis for multiple indepen-

dent trials or experiments. Quantum state tomography, for instance, would break down without this assumption
(Paris and Rehacek [2004]).

9 Some remarks: First, we only require that the prepared subsystems are unentangled with each other; entan-
glement with the environment or the preparation device is allowed. Second, this unentanglement need only be in
the degree of freedom being prepared, so for example if spin is being prepared, then entanglement in the spatial
wave function is okay. And third, the prepared systems need only be approximately in a product state; perfect
unentanglement is not required. (For the subsequent argument, we only require that having more members of the
prepared ensemble makes its state more distinguishable. This is true even when the members are not perfectly
unentangled.)
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Zarna’s protocol: I will feed an electron from my collection into my measuring

device. If I observe ‘UP’,10 I will walk into the other room (the room containing

the preparation devices D and D′), take all the subsystems, and feed them into D.

Otherwise, if I do not observe ‘UP’, I will walk into the other room, take all the

subsystems, and feed them into D′ instead.

Suppose that, as a matter of fact, Zarna measures an electron which is in the ↑z spin state.

We ask how the quantum state of her lab will evolve from this initial time. By Competent

Measurement, Zarna will observe ‘UP’. So, by the protocol, she will end up feeding all the

subsystems into D. By Preparation, many of these systems will end up, at the final time, in

quantum states in the range associated with D. Let us call quantum states which fall within this

specified range ‘D-states’. Then the evolution of the quantum state of the lab will look like,

↑z ⊗ initial −→ many systems in D-states, (5)

where ‘initial’ is the initial quantum state of the rest of the lab in this particular instance.

Next, we ask how the quantum state of the lab would have evolved if the electron were ↓z.

By Competent Measurement, Zarna would not observe ‘UP’. So, by the protocol, she would

feed all her subsystems into D′ instead of D. Again applying Preparation, we have:

↓z ⊗ initial −→ many systems in D′-states. (6)

(It is crucial that the right-hand sides of (5) and (6) are not misread as specifying some

property of the preparation devices D or D′; they are simply specifying the final quantum

states of Zarna’s subsystems. Importantly, there is no illicit reliance on Completeness here.)

Finally, we ask how the quantum state of the lab would have evolved if the electron were in

the ↑x spin state instead. By Unitarity, this question,

↑x ⊗ initial −→ ? , (7)

10There is (Competent Measurement) always, from a first-person view, an experienced observed outcome of
a measurement, even if, from a third-person view, there is no unique determinate outcome.
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is well-defined and must have a single definite answer (since −→ is deterministic, that is, a

function from states to states, and ‘↑x ⊗ initial’ is a possible state). Notice that this answer

must take one of the following two forms:

many systems in D-states , (a)

or

many systems in D′-states . (b)

To see why, consider any possibility in which Zarna follows her protocol, and suppose toward

contradiction that the final quantum state of the lab takes neither of these forms in that

possibility. By Determinate Input, it cannot be indeterminate whether Zarna feeds her

subsystems into a given preparation device at the end of her measurement. Now, if she did not

feed the subsystems into either D or D′, then she did not follow the protocol, contrary to our

assumption (the protocol always ends with her using one of D or D′). If she fed the

subsystems into D, then by Preparation the final quantum state of the lab should indeed have

form (a), contrary to our assumption. And if she fed the subsystems into D′, then by

Preparation the final quantum state of the lab should indeed have form (b), contrary to our

assumption. In all cases we reach a contradiction, as claimed.11

Now suppose, on the one hand, that the answer is of form (a). Substituting (a) into (7), and

putting it side by side with (6), we have:

↓z ⊗ initial −→ many systems in D′-states, (6)

↑x ⊗ initial −→ many systems in D-states. (7a)

Suppose, on the other hand, that the answer is of form (b). Substituting (b) into (7), and

11Since we do not assume Completeness, we do not assume a general one-to-one correspondence between
determinate states of affairs of the lab (this or that device being used) and its quantum state. However, we do
assume that if two states of affairs involve the determinate use of distinct preparation devices, then they have
different final quantum states; precisely what distinct preparations do is prepare subsystems in distinct quantum
states.
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putting it side by side with (5), we have:

↑z ⊗ initial −→ many systems in D-states, (5)

↑x ⊗ initial −→ many systems in D′-states. (7b)

The problem is that both answers lead to a violation of Unitarity. I give the argument for (5)

and (7b); the reasoning for (6) and (7a) is the same.

According to Unitarity, the inner product of the left-hand sides of (5) and (7b) must equal

the inner product of the right-hand sides. The basic observation is that since many D and

D′-states were prepared, and many of those states are very different, the right-hand sides will

actually be more orthogonal (i.e. more easily distinguishable, i.e. inner product closer to 0)

than the left-hand sides. We illustrate this observation using our earlier examples.

Example 1 (cont.)

Recall that D prepares about half of the input electrons in ↑z and D′ prepares about half of the

input electrons in ↑x. Plausibly, there will be some subset of M electrons that were

successfully prepared in both cases, allowing us to rewrite (5) and (7b) as follows:

↑z ⊗ initial −→ final ⊗
M times︷               ︸︸               ︷

↑z ⊗ ↑z ⊗ . . . ⊗ ↑z, (5-1)

↑x ⊗ initial −→ final′ ⊗ ↑x ⊗ ↑x ⊗ . . . ⊗ ↑x, (7b-1)

where ‘final’ and ‘final′’ denote the final quantum state of everything in the lab except the

(spin of the) successfully prepared electrons. Unitarity implies,

|(↑z, ↑x)|2 · |(initial, initial)|2 = |(final,final’)|2 · |(↑z, ↑x)|2·M, (8)

which, since |(initial, initial)|2 = 1 and |(final,final’)|2 ≤ 1, implies,

|(↑z, ↑x)|2 ≤ |(↑z, ↑x)|2·M. (9)

However, this clearly fails for any M > 1, since |(↑z, ↑x)|2 = 1/2 and 1/2 > (1/2)M for all
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M > 1. (If we suppose ↑z and ↑x are only approximately prepared, a modified argument still

applies.12) Recall there was nothing to stop us from stipulating Zarna’s collection of electrons

to-be-prepared to be as large as we want, suggesting there are no principled limits on M.

Readers may recognize this derivation as a variant of the ‘no-cloning theorem’ (Wootters and

Zurek [1982]). For a review of the theorem and a general statement of this variant, see

Theorems 1 and 2(i)–(ii) of the Appendix.

Example 2 (cont.)

Similar reasoning applies. There will be some subset of M crystals which were successfully

prepared in both cases:

↑z ⊗ initial −→ final ⊗ ψ1 ⊗ ψ2 ⊗ . . . ⊗ ψM, (5-2)

↑x ⊗ initial −→ final′ ⊗ ψ′1 ⊗ ψ
′
2 ⊗ . . . ⊗ ψ

′
M, (7b-2)

where we add subscripts to allow for variation from case to case, the requirement just being

that ψi and ψ′i are distinct so that |(ψi, ψ
′
i)|

2 < 1 for all i. For instance if ψ1 is the ground energy

eigenstate and ψ′1 is some other energy eigenstate then |(ψ1, ψ
′
1)|2 ≈ 0 which is already enough

to violate Unitarity, since again it follows from Unitarity that we must have

|(↑z, ↑x)|2 ≤ |(ψ1, ψ
′
1)|2 · |(ψ2, ψ

′
2)|2 · . . . · |(ψM, ψ

′
M)|2. (10)

Otherwise we can always stipulate that Zarna started out with more systems, so that M is

plausibly high enough to violate (10). For the variant of the no-cloning theorem that abstracts

this result, see Theorem 2(iii) of the Appendix.

Example 3 (cont.)

To model Example 3 we need the formal apparatus of density matrices. Since the upshot is the

same, I relegate this more technical discussion to the Appendix, in particular to Theorem 3,

12As long as |(↑̃z, ↑̃x)|2 is less than 1, there will be some M above which the inequality is broken. For example,
suppose we define an error term ε such that |(↑̃z, ↑̃x)|2 = 0.5 ± ε. Fix ε < 0.3. Then for any M > 25, |(↑̃z, ↑̃x)|2·M

will be at least two degrees of magnitude smaller than |(↑z, ↑x)|2. (Note that if ↑̃z and ↑̃x are mixed states we
rewrite these expressions in terms of the fidelity measure; see the Appendix. We assume the M systems are still
approximately a product; see footnote 9.)
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which generalizes the above variants of the no-cloning theorem to mixed states.

Does the incompatibility still hold if we replace Unitarity by Linearity? The natural

strategy is to argue that the answer to (7),

1
√

2
(many systems in D-states) +

1
√

2
(many systems in D′-states) , (c)

takes neither form (a) nor (b), contrary to Determinate Input & Preparation. However this

reasoning may fail if the preparation devices are not assumed to work perfectly.13 Of course,

this isn’t to say that Linearity is not in tension with the other assumptions—just that the

problem is more forceful when formulated in terms of the other major feature of the

Schrödinger dynamics, namely its inner product-preserving property.

4.3 Other measurement problems

As I foreshadowed, the control problem crucially involves a measurement-type interaction,

and so in this basic sense is a type of measurement problem. It is worth investigating,

however, whether it shares any deeper similarities (or differences) with other existing versions

of the measurement problem.

As one might expect, there are many versions of the measurement problem. In fact,

immediately after presenting the standard measurement problem, Maudlin ([1995]) presents

two others. The first, the problem of statistics, replaces (A2) and (A3) with:

(A2-S) the quantum state of an isolated system evolves deterministically;

(A3-S) two measurement situations which begin with the same initial quantum state can

sometimes have different (unique) outcomes (where the probability of an outcome is

given approximately by Born’s rule).

This time (A4) is not needed; the Completeness assumption, (A1), does the rest of the work,

since it rules out the strategy of distinguishing the two measurement situations using a ‘hidden
13Consider Example 1. Suppose that whenever D fails to prepare ↑z (about 50% of the time), it outputs ↑x

instead. Then (c) could actually be rewritten in form (b), since we could factor out many ↑x states from both
terms. While Unitarity would still be violated in this case (since there would still be many electrons which D
prepares in ↑z but D′ prepares in ↑x), Linearity would not.
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variable’ detector state. Here the contrast with the control problem is arguably more stark than

before. (A3-S) and (B3) are less similar, and it’s not clear there is any analogous

reformulation (B3-S) which would bring the assumptions in parallel.14 And, most importantly,

there remains the central difference between (A1) and (B1).

The other problem Maudlin presents, the problem of effect, has a deeper connection to the

control problem ([1995], 13):

If the result of the first measurement [in spin-z of an ↑x particle] is ‘UP’, a second

measurement will certainly yield another ‘UP’, and similarly for ‘DOWN’. The

result of a measurement therefore has predictive power for the future [...] Any

theory which seeks to replicate the empirical content of the traditional theory

should have this feature. Let us call this the problem of effect [...].

To solve the problem of effect, a theory must explain why measurement results are repeatable.

Strictly speaking, this problem is not about state preparation, since what is being discussed is

the determinate record (‘UP’, ‘UP’, ...) associated with a measuring device (a record which,

without Completeness, might not be encoded in any quantum state). However, it is tempting

to infer from the record a claim about quantum state preparation, namely that the measuring

device has genuinely prepared ↑z. And then one quickly runs into trouble, since this claim

contradicts Unitarity.15 In fact we have just circled back to the preparation problem, that

certain ‘filter’ procedures do not really prepare their associated states under Unitarity, even

though they seem (judging by the subsequent measurement statistics) to have succeeded. For

discussion of the preparation problem, see Section 3.1.

Finally we consider a more recent formulation of the measurement problem, due to Gao

([2019]). Like some other presentations (Albert [1992], pp. 77-79; Barrett [1999], §9), this

‘mentalistic’ reformulation emphasizes the tension between Linearity and the claim that

observers have unique, determinate experiences. It gets off the ground by reformulating (1)

14There is, though, a variant of the preparation problem which pits determinism (A2-S) directly against the
following analogue of (AS-3): some of our ‘filter’ preparations for ↑z begin with the same initial quantum state
and yet, depending on the trial, do or do not prepare ↑z.

15If this claim is true, then we have ‘↑x ⊗ initial −→ ↑z ⊗ final,’ where initial and final are the initial and
final quantum states of everything in the lab except the measured electron. But then by the same reasoning
‘↓z ⊗ initial −→ ↓z ⊗ final′’. The pair then contradicts Unitarity.
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and (2) as follows,

↑z ⊗ initial −→ Zarna experiences ‘UP’, (1-M)

↓z ⊗ initial −→ Zarna experiences ‘DOWN’. (2-M)

Notice that the reformulation assumes that the final quantum state of the lab specifies Zarna’s

mental state. If we endorse the thesis that mental states supervene on physical states, then this

claim follows automatically from (A1), since Completeness says the quantum state is the

complete physical state. However if we reject physicalism then the two assumptions may

come apart. Thus in a careful reformulation we must replace (A1) by:

(A1-M) Our mental states supervene on our quantum states.

The incompatibility is then with (Gao [2019], p. 302):

(A2-M) Same as (A2); the quantum state evolves linearly.

(A3-M) A measurement does not branch mental states; it yields a single mental state

representing a single outcome.

(A4-M) Assuming no past mental state branching, implementing a spin-z measurement of an

electron in the ↑z quantum state will lead to one experiencing ‘UP’ as the outcome, and

similarly for ↓z and ‘DOWN’.

This formulation is most illuminating when applied to non-physicalist interpretations like

the Single Mind Interpretation (Albert and Loewer [1988]). This theory endorses (A1) but

rejects (A1-M) by positing that an observer’s mental state collapses into a particular branch of

the wave function even while the physical state continues to evolve according to the

Schrödinger equation. The theory thus manages to hold on to (A3-M) even while giving up on

(A3).

What would a mentalistic formulation of the control problem look like? The answer reveals

a deeper difference between the problems:16

16The incompatibility of (B1-M)–(B4-M) follows from an analogous argument, in which Zarna uses the same
protocol. Note (B3-M) entails the antecedent to (B1-M) is satisfied in the scenario.
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(B1-M) Assuming no past mental state branching, implementing a preparation leads to some

of the systems being in the specified quantum states.

(B2-M) Same as (B2); the quantum state evolves unitarily.

(B3-M) Same as (A3-M); no mental state branching (even if there is physical branching).

(B4-M) Same as (A4-M); measurements are at least somewhat reliable and informative.

Note that while the assumption that the mental supervenes on the physical is needed for the

mentalistic formulation of the traditional measurement problem, it is not needed for the

mentalistic formulation of the control problem. What is needed instead is the assumption that

our actions can affect the physical (specifically, the quantum state), and that different mental

states (observing ‘UP’, observing ‘DOWN’) can be correlated with different actions (prepare

with D, prepare with D′). This latter assumption is much less philosophically controversial,

and shows that theories like the Single Mind Interpretation (since they endorse

(B2-M)–(B4-M)) don’t get off so easy; in addition to rejecting physicalism, they must reject a

certain degree of our control over the physical.

5 Relation to Interpretations

I now briefly classify the three ‘canonical’ quantum theories—Everettian mechanics, Bohmian

mechanics, and GRW theory—according to which assumptions (B1)–(B4) they reject. I also

discuss some other theories of interest. The main goal here is to begin looking at these

theories through the lens of the control problem. The goal is not, however, to settle the

question of whether they ultimately solve the problem in a satisfactory way; such a full

treatment lies beyond the scope of this paper.

5.1 Everettian mechanics

Everettian mechanics rejects (B3), Determinate Input. According to this theory, when Zarna

measures the spin of the electron, her lab branches into two ‘worlds’, one in which she

observes ‘UP’ and then uses device D, and the other in which she observes ‘DOWN’ and then
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uses D′. At the final time, the quantum state of the lab is of neither form (a) ‘many systems in

D-states’ nor (b) ‘many systems in D′-states’. But crucially, there is no contradiction with

Preparation here, since D was not determinately fed the input systems and neither was D′.

(Intuitively, since there was not a determinate input, we should not expect the desired output.)

Taken in conjunction with the observation (Section 3.1) that a variety of preparations are

not measurements (and so need not cause branching), this suggests that Everettian mechanics

does not reject (B1), Preparation. There are devices which, as long as they are determinately

used, will from a ‘God’s eye view’ prepare the desired quantum state. Other devices, like spin

measuring devices, are such that even when determinately used, they only prepare the desired

state relative to certain (decohered) branches, in other words only prepare desired ‘relative

states’ as opposed to states simpliciter (Wallace [2012], §10).

Of course, if Everettian mechanics is true then realistically the universe has already

branched such that most of our uses of preparation devices are not, from a God’s eye view,

determinate; as a result, we are usually only preparing relative states in the lab, in any case.

Since other than cases of branch re-combining, we only interact (from a first-person view)

with ‘our’ world and its future sub-branches, the preparation of relative states is usually all

that matters for practical purposes on this theory.

5.2 Bohmian mechanics

In Bohmian mechanics, by contrast, there is a determinate fact of the matter as to whether

Zarna fed her systems into the device D or the device D′; Determinate Input, (B3), is true.

Nevertheless this device did not prepare her subsystems in the specified quantum state;

Preparation, (B1), is false. To see why, consider the evolution of the wave function of

Zarna’s lab, as predicted by Unitarity when the electron starts in ↑x. There will be a

component which leads to D-states and a component which leads to D′-states, and its final

superposed form will be neither (a) ‘many systems in D-states’ nor (b) ‘many systems in

D′-states’, even though Zarna determinately fed the subsystems into one of D or D′.

That being said, suppose one ‘conditions’ the quantum state of these subsystems (see the

next paragraph) on the reality of which preparation device was used, that is, on a particular
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configuration of Bohmian positions. Then one does get a ‘conditional’ or ‘effective’ state that

takes one of these forms (a) or (b). In this sense, Zarna has indeed prepared.

Here the control problem highlights an aspect of Bohmian mechanics that the traditional

measurement problems do not. Bohmian mechanics solves the standard measurement problem

with its postulation of hidden variables; it solves the problem of effect with its account of the

dynamics of those hidden variables; and it solves, or at least addresses, the problem of

statistics with its statistical postulate (Albert [1992], 140). But in addition to these features,

the theory offers up a new notion of ‘the quantum state of a subsystem’. This new notion is

that of the conditional or effective state. Roughly speaking, it is the analogue of relative state

from Everettian mechanics, obtained by conditioning the reduced state of the subsystem (what

I have simply been calling its quantum state) on the hidden variable configuration of its

environment (Dürr et al. [1992]; Norsen [2016]). In this theory, the conditional or effective

state, not the reduced state, determines the measurement statistics we will (likely) observe.17

Note that while rejecting Completeness gives Bohmian mechanics the resources to define this

new notion of a quantum state, it does not fall out automatically from the mere introduction of

hidden variables; it takes further work to be motivated and developed. (See for instance (Dürr

et al. [2005]) for an extension of the notion to density matrices.)

The development of this notion is not obviously needed to solve the above measurement

problems. It is crucial, however, for addressing the control problem. Any theory which rejects

Preparation must give a convincing story of how to recover talk of ‘preparation’, for instance

by providing a sense in which our usual claims about preparation of quantum states are true.

By motivating this revised notion, Bohmian mechanics makes the rejection of Preparation

less a full-blown rejection of our ability to prepare, and more a rejection of the assumption

that the ‘quantum state of a subsystem’ must be its reduced state or, more generally, must

supervene only on the wave function or density matrix of the parent system. In this way,

Bohmian mechanics successfully replaces Preparation with Conditional Preparation.

17In some situations, the conditional and reduced states align, namely when the subsystem is appropriately
isolated from its environment (so that conditioning on the configuration of the environment does not make a dif-
ference). This happens for instance when the reduced state is pure, as in the scenario described by Competent
Measurement. In this scenario, the initial reduced spin state of the electron is ↑z, implying that the initial condi-
tional spin state is also ↑z. Thus Bohmian mechanics still predicts we always observe ‘UP’ in this scenario, as the
Competent Measurement assumption requires.
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5.3 GRW theory

GRW theory (Ghirardi et al. [1986]) rejects (B2), Unitarity. According to this theory, upon

Zarna’s initial measurement the quantum state of the lab very likely spontaneously collapses

into either a state in which the device reads ‘UP’ or a state in which it reads ‘DOWN’. (GRW

endorses Completeness, so the quantum state must specify these facts.) Zarna then goes on to

prepare using D or D′, respectively, and since the quantum state specifies exactly one of these

situations, and the quantum state is complete, Determinate Input holds.18 The devices then

genuinely prepare according to Preparation. Depending on how they operate, they may or

may not induce more spontaneous collapses as part of their preparation process.

So far so good. But while GRW avoids the incompatibility by denying (B2), its approach

raises another challenge. GRW permits non-unitary evolutions, yet we do not usually say that

if GRW theory is true, then cloning is possible. So what is the sense in which GRW forbids

the construction of cloning machines? The answer must be substantive, but it cannot rule out

Zarna’s measure-then-prepare schemes, since we know these are possible.

The needle is not trivial to thread. According to this theory (and other collapse theories),

such schemes really do end with preparing many copies of the desired state, making them look

like a kind of cloning process. To press the point, suppose we configure Zarna’s set-up so that

the lab itself has inputs and outputs like a machine, as shown in Figure 4. Then we can pick a

scheme such that the machine behaves as follows:

The user feeds the machine an electron in either one of the non-orthogonal states

↑z or ↑x as input (top left arrow of Figure 4). With about 71% probability, the

machine outputs nothing. But with about 29% probability, the machine outputs

many (can be set to any desired finite number) electrons from one of its exits

(bottom right arrows). Assuming GRW, these outputs are guaranteed to be

genuine copies of the input, that is, to have the same spin state.

In some sense, this machine clones. But it is perfectly possible to build.19

18Here I ignore complications related to the tail problem (Albert and Loewer [1990]).
19Zarna carries out the unambiguous state discrimination in (Nielsen and Chuang [2002], p. 92); if she obtains

the POVM result corresponding to ↑z, she feeds the much larger collection of electrons (we can set this as arbi-
trarily large as we want) into the prepare-z-up device shown, and similarly for ↑x. If she obtains the ‘inconclusive’
result (probability 1/

√
2), she does nothing.
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Figure 4: Cloning non-orthogonal spin states with Zarna’s laboratory.

A promising response to these cases is to suggest that GRW only forbids the construction of

machines which ‘unitarily clone’ quantum states. The basic idea is that we should allow for

cloning by means of probabilistic collapse, but forbid cloning by means of a unitary process.

After all, it is really the latter type of cloning which the no-cloning theorem deems

problematic.20

Although this response is on the right track, there is an initial complication regarding what

to say about intermediate cases, like machines which clone spin states by means of an

‘approximately unitary’ process. Since the spatial wave function evolves indeterministically in

GRW (regardless of whether a measurement is being made), small entanglements between the

spatial and spin wave functions can make it so that the spin state dynamics is also

indeterministic and hence non-unitary, but still approximately unitary, in the sense that the

chance of a spin state collapse is still very small. Intuitively, although there is no unitary

process here, the cloning of spin states should still be forbidden to some extent. To address

this complication, a relevant starting place may be the literature on ‘approximate cloning’ and

its limits (Werner [1998]; Scarani et al. [2005]), as well as the literature on ‘probabilistic

cloning’ and its limits (Duan and Guo [1998a, 1998b]; Pati [2000]; Chen et al. [2011]).21

20I thank an anonymous referee for suggesting a response along these lines, and for their helpful comments on
this part of the discussion.

21The approximate cloning literature considers imperfections in the cloning process, but a drawback (for current
purposes) is that it still assumes the process is deterministic. The probabilistic cloning literature argues that it is
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5.4 Other quantum theories

One of the interesting differences between the control problem and the standard measurement

problem is that the control problem makes no assumption about what quantum states specify

or represent. Thus, we should expect the problem to be particularly revealing when applied to

quantum theories of a more subjectivist, pragmatist or instrumentalist flavour, which deny that

quantum states directly represent physical properties, but maintain that we measure and

prepare them.

There are several factors which complicate the discussion of these theories. One is whether

they accept Unitarity as formulated. Another is whether they accept a premise presupposed in

the arguments above:

(A5, B5) All physical systems—including, for instance, Zarna’s lab—have a unique,

determinate quantum state (wave function or density matrix) at a given time

[Determinate State].

Quantum Bayesianism (Caves et al. [2002]), for instance, rejects this assumption. Of

course, in Quantum Bayesianism we can still attribute quantum states to systems as long as we

also specify a third parameter: the epistemic perspective of a particular agent. Thus it is still

possible to re-run the argument on this theory, by relativizing all the states to the perspective

of a ‘friend’ outside the lab. (For hints of how a Quantum Bayesian solution to this revised

problem might go, see the Quantum Bayesian analysis of how to translate talk of ‘not knowing

which quantum state was prepared’ in tomography scenarios (Fuchs and Schack [2004]).) In

any case, the point is that this is a complication which must be kept in mind.

Another theory of interest is Healey’s ([2017]) pragmatist interpretation, according to which

quantum states prescribe rational degrees of belief but need not specify physical properties

(Completeness is not assumed). Two agents may rationally assign different quantum states to

the same system (Determinate State is false), but only if they are in different physical

situations. In a Wigner’s friend scenario, the quantum state relative to the friend outside the

possible to clone non-orthogonal quantum states as long as the cloning is probabilistic in nature, and then derives
several limitations on this kind of process, including maximum probabilities for success and maximum cloning
efficiencies. None of these results are formulated in the GRW framework, and so they do not take into account the
subtleties of the spontaneous collapse theory. But they provide a possible starting point. (It should be noted that,
incidentally, Ghirardi himself was one of the early discoverers of the no-cloning theorem (Peres [2003]).)
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lab satisfies Unitarity (Healey [2017], §11). Thus there is a question of how to cash out

Preparation so that, when applied to Zarna’s lab, there is no inconsistency with unitarity, yet

we still recover a sense in which (even according to her friend) Zarna successfully prepares.

Of course, there are many other theories of interest, including Bub’s information-theoretic

interpretation (Bub [2005]), Rovelli’s relational interpretation (Rovelli [1996]), and Peres’s

operationalist view (Peres [2006]). I do not purport to adequately treat these frameworks here.

I leave it as an open question how they solve, or dissolve, the control problem.

6 Relation to Foundations and the No-Cloning Theorem

Let us now switch gears from interpretations to another topic in quantum foundations. It is

customary, upon introducing the no-cloning theorem (Wootters and Zurek [1982]; Scarani

et al. [2005]), to make the following remark: If the cloning of quantum states were possible,

then it would be possible to reliably determine the initial, previously unknown quantum state

of a single system. One would simply create many copies of the state, measure the copies

along various bases, and then use the statistics to reliably reconstruct the state.

It is also common to encounter a remark in the converse direction (D’Ariano and Yuen

[1996]; Vaidman [2015]): if it were possible to reliably determine the initial, previously

unknown quantum state of a single system (with no other copies available), then it would be

possible to clone in the sense forbidden by the original no-cloning theorem. Contrapositively:

the no-cloning theorem rules out the possibility of individual state determination.

If both of these claims were true, the biconditional would suggest an attractively

straightforward interpretation of the physical significance of the no-cloning theorem.

According to this interpretation, the theorem gains physical significance, at least in part,

because of its implications for the epistemology of ‘individual’ or ‘single’ quantum states.

In this section, I argue that the converse claim is mistaken; at the very least, the standard

argument offered for this claim is unsound. Drawing on a variant of the control problem, I

suggest a revised view of the connection between the no-cloning theorem and state

determination. On my revision, the connection is not specific to the case of ‘individual’ or

‘single’ quantum states.
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6.1 Individual state determination

Vaidman ([2015], p. 18) invokes the standard argument for this converse claim in his

discussion of protective measurement:

If we are given a single quantum system in an unknown quantum state, there is no

way to find out what this state is. It would contradict the no-cloning theorem: if

we can find out what the state is, we can prepare many other systems in this state.

The argument traces back at least to D’Ariano and Yuen, who spell out the reasoning in more

detail ([1996], pp. 2832-3):

In this Letter, we will show the impossibility of any measurement scheme for

determining the wave function from a single copy of the system [...] A quantum

cloning machine [...] has to be represented by a state transformation of the general

form,

ν ⊗ ψ ⊗ ω1 ⊗ ... ⊗ ωM−1︸             ︷︷             ︸
M>1

−→ ν′(ψ) ⊗ ψ ⊗ ... ⊗ ψ︸      ︷︷      ︸
M times

,

where both the transformation and the state preparation must be independent of

ψ—which a priori is unknown [...] [By the no-cloning theorem,] one cannot clone

the state of a system known to be in any one of two nonorthogonal states, say, ψ

and ϕ, using a single state-independent unitary transformation. Let us now

suppose that there is a device that is capable of determining (by a unitary process)

in which of these two states the system is. Then, once the state is known, one can

easily choose unitary transformations that generate an M clone of ψ or ϕ,

depending on the two possible results of this device. Hence, such a ‘state

detector’ would lead to a realization of the cloning machine.

Upon first inspection, the reasoning looks compelling. However, what the authors do not

point out is that state transformations of the form,

ν ⊗

N times︷      ︸︸      ︷
ψ ⊗ ... ⊗ ψ ⊗ ω1 ⊗ ... ⊗ ωM−N︸             ︷︷             ︸

M>N

−→ ν′(ψ) ⊗ ψ ⊗ ψ ⊗ ... ⊗ ψ︸            ︷︷            ︸
M>N times

, (11)

28



Alexander Meehan A New Problem for Quantum Mechanics

are also in violation of unitarity (see Theorem 2(ii) of the Appendix). This time the ensemble

size N can be any finite number, so the result is not restricted to single systems. Indeed it was

perhaps misleading to frame the no-cloning theorem as the result that ‘a single quantum

cannot be cloned’ (Wootters and Zurek [1982]), given that a finite ensemble of identical

quanta also cannot be cloned.

This is bad news for the argument. For if the argument were sound as stated, then it would

also demonstrate the impossibility of ‘any measurement scheme for determining the wave

function’, not just ‘from a single copy of the system’, but also from any finite number N copies

of the system. (Recall there were no a priori restrictions on the number of prepared systems

M.) But unless ‘determining’ is read in an overly stringent way, this result is absurd. When N

is large, we can reliably determine the initial wave function. So something has gone wrong.

One line of response to this difficulty is to try to develop a different argument for the

impossibility of individual state determination—in particular, one which is also based on

cloning concepts, but does not overgeneralize to large N. (Alternative arguments for this

conclusion in the literature, for instance those based on state disturbance (Fuchs [1998]) and

superluminal signalling (Busch [1997]), do not overgeneralize.) However, while there exist

promising strategies for pursuing this response, they involve going significantly beyond the

scope of the no-cloning theorem, for instance by dropping the assumption that −→ is a

deterministic map from states to states, or by dropping the assumption that the cloned states

are a separable ensemble.22 And so this line of response leaves unanswered the question of

how to understand the physical significance of the original theorem and its close variants,

whose proof and formulation crucially rely on these features.

Another line of response is to insist that the basic argument is valid, but that rather than

ruling out the possibility of individual state determination, it simply rules out the possibility of

deterministic, perfectly reliable state determination for N = 1 and more generally N < ∞.

While this response appears to avoid the slippery slope worry I raised above, I suggest that

22One strategy is to use the limits of ‘probabilistic cloning’ (Duan and Guo [1998a]) to derive limits on reliable
(yet fallible) state determination as a function of N. Another strategy is to use the limits of ‘approximate’ or
‘imperfect’ cloning (Werner [1998]) to do the same thing. The latter has essentially been carried out, by Bae and
Acín ([2006]). As they note, one must allow a high degree of entanglement between the outputs, which is not the
case in preparation; on this issue, see also footnote 9.
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this revised argument still misses the mark. The reason is that its preparation-related premises

are still going to be in tension, not just with individual or perfect state determination, but with

unproblematic, run-of-the-mill state determination. Indeed, the argument appears to take

(B1)–(B3) for granted. There is the assumption that −→ is unitary, (B2). And there is the

assumption that we can determinately prepare distinct non-orthogonal states as a function of

what state determination result we obtain, which amounts to the conjunction of (B1) & (B3).

But these assumptions, though individually innocent, are together incompatible with:23

(B4’) if we have a sufficiently large (finite) ensemble of subsystems which we know to be in a

product of the same initial wave function, then we can come to know, with reasonable

reliability and to a good approximation, what that initial wave function is [Competent

State Determination].

(Note that (B4’), like (B4), would be disastrous to deny. All interpretations, including

Bohmian and Everettian mechanics, endorse it.24 What these unitary theories may deny,

though, is that the antecedent of (B4’) is ever realistically satisfied. On these theories, we are

typically only ever going to know that an ensemble is in a product of the same effective wave

function or relative quantum state, respectively.25)

Drawing on this observation, I suggest an alternate view of the connection between the

no-cloning theorem and state determination. Note that the source of the incompatibility with

23The derivation proceeds much the same as in Section 4, except for the final step, which invokes the reliability
condition in (B4’). Consider the set-up of Section 4.1, except Zarna is given state determination equipment, and
informed that her collection of electrons is an N-product of some ‘source state’; some wave function. Her protocol:
‘If I end up confident that the source state is approximately ↑z, I will feed all my many (>> N) subsystems from
the other room into D. Otherwise, I will feed them into D′.’ Suppose the source state is ↑z. We have (B1, B2,
B4’): ‘↑z

⊗N ⊗ initial −→ many systems in D-states’. But now we ask how the quantum state of the lab would
have evolved if the source state were ψ where ψ is non-orthogonal to ↑z and non-negligibly different from it:
‘ψ⊗N ⊗ initial −→ ? ’. The answer ‘many systems in D′-states’ is forbidden by (B2) for the same no-
cloning reasons as before. But (B1, B3) entail that the answer is not of this form only if Zarna did not feed her
subsystems into D′, which by the protocol means she is confident the source state was ↑z. So if the source state
were ψ, Zarna would still be confident it is ↑z. And this violates the reliability clause in (B4’).

24It is important, for the claim to be plausible, that the systems do not start out unduly entangled with their
environments, especially with the relevant measuring devices. I have bypassed these complications by restricting
attention to pure states (wave functions). A more general formulation with density matrices should make sure to
rule out cases where the systems have the same reduced state, but (thanks to environment entanglement) different
Bohmian conditional states or Everettian relative states. For another place in the paper where this complication is
relevant, see footnote 17.

25See Sections 5.1 and 5.2. Regarding Bohmian mechanics, note that this claim—that we rarely know the
quantum state simpliciter of a subsystem, but we do often know its effective wave function—is the counterpart to
the claim that Preparation is false but Conditional Preparation is true.
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(B4’) is, as in our previous incompatibility result, the no-cloning theorem. In this way, the

no-cloning theorem does have implications for state determination. On the one hand, if the

kind of cloning described by the no-cloning theorem were possible, then in principle there

would be no bounds on our state determination or preparation abilities. On the other hand,

since the kind of cloning described by the no-cloning theorem is impossible, there is

(assuming Unitarity) a tension between these abilities. This tension, put in more general

terms below, is what I have been attempting to highlight throughout the paper, in the form of

the control problem.

7 Conclusion

In this article I have argued that there is another problem for quantum mechanics, namely the

control problem. Fortunately, the control problem does not straightforwardly rule out any

major existing interpretations of quantum mechanics. However, it brings to the foreground a

number of issues requiring attention, the most central being quantum state preparation. As we

have seen, the control problem puts pressure on our current theories to spell out more

carefully the limits of quantum state preparation. Thanks to the incompatibility (B1)–(B4),

any interpretive proposal which neglects state preparation, or simply subsumes it under

measurement, cannot be complete.

The problem also places a constraint on our future theorizing. Whereas Completeness is a

claim about what quantum states are or what quantum states represent, Preparation is a claim

about what we can do with quantum states. As I have remarked, these two issues can come

apart. Thus a candidate future theory might successfully avoid the traditional measurement

problem, but end up being ruled out by the control problem.

I conclude with one more gloss of the control problem, which I find illuminating. Suppose

we hold fixed Unitarity and Determinate Input as background assumptions. From this point

of view, what the control problem shows is that there is a tension between two of our alleged

abilities as agents. First, our ability to gain any sort of reliable information about quantum

states. Second, our ability to systematically control quantum states. This tension (precisified

as the incompatibility between Competent Measurement or Competent State
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Determination, on the one hand, and Preparation, on the other) exists regardless of whether

we posit hidden variables in addition to quantum states (regardless of Completeness). Given

our two background assumptions, it is a fundamental aspect of our epistemic relationship to

quantum states; an aspect which is captured formally by the no-cloning theorem.

Appendix

We begin by recalling the original no-cloning theorem.

Definition 1

A linear map U : H → H is unitary if it has an inverse and (Uψ,Uϕ) = (ψ, ϕ) for any vectors

ψ and ϕ.

Theorem 1 (Original No-Cloning)

LetH = H1 ⊗H2 and let U be a map fromH to itself. Fix any ψ, ϕ non-orthogonal and

distinct. Suppose

U(ψ ⊗ ν) = ψ ⊗ ψ

U(ϕ ⊗ ν) = ϕ ⊗ ϕ

for some ν. Then U is not unitary (or linear).

Next we prove some close variants of the no-cloning theorem. We focus first on pure vector

states, then generalize to mixed states.

Theorem 2 (Some Relevant Variants)

LetH = ⊗i∈IHi and let U be a map fromH to itself. Fix any ψ, ϕ non-orthogonal and distinct.

Then U is not unitary if:

32



Alexander Meehan A New Problem for Quantum Mechanics

(i) for some ν,26

U(ψ ⊗ ν) = f (ψ) ⊗ ψ ⊗ ψ ⊗ . . .

U(ϕ ⊗ ν) = f (ϕ) ⊗ ϕ ⊗ ϕ ⊗ . . . ,

(ii) or more generally, for some ν and M > N,

U(
N times︷       ︸︸       ︷

ψ ⊗ . . . ⊗ ψ ⊗ ν) = f (ψ) ⊗
M times︷       ︸︸       ︷

ψ ⊗ . . . ⊗ ψ ⊗ . . .

U(ϕ ⊗ . . . ⊗ ϕ ⊗ ν) = f (ϕ) ⊗ ϕ ⊗ . . . ⊗ ϕ ⊗ . . . ,

(iii) or, more generally, there are pairs {χ j, χ
′
j : j = 1, 2, ...,M} such that χ j , χ

′
j for each j and,

for some ν,

U(
N times︷       ︸︸       ︷

ψ ⊗ . . . ⊗ ψ ⊗ ν) = f (ψ) ⊗ χ1 ⊗ . . . ⊗ χM ⊗ . . .

U(ϕ ⊗ . . . ⊗ ϕ ⊗ ν) = f (ϕ) ⊗ χ′1 ⊗ . . . ⊗ χ
′
M ⊗ . . . ,

where M exceeds the finite bound N · log
[
|(ψ, ϕ)|2

]
/ log

[
max j |(χ j, χ

′
j)|

2
]
.

Proof

All of (i)–(iii) follow as corollaries to the next theorem, in particular the case ρ = |ψ〉 〈ψ|,

σ = |ϕ〉 〈ϕ|. (Note in this case F(ρ, σ) = |(ψ, ϕ)|2.) �

To generalize to mixed states,27 we need some more technical apparatus. Though

generalizations to mixed states have been made (Barnum et al. [1996]), I am not aware of

presentations of these particular variants. (Below we also relax from unitary maps to quantum

channels. Physically this suggests we can relax the premise that Zarna’s lab is isolated, since

many open systems obey a reduced dynamics of this more general form (Rivas and Huelga

[2012]).)

Definition 2
26Throughout we just require ν ∈ ⊗i≥2H2 and f (ψ), f (ϕ) ∈ ⊗i∈SHi for some S ⊂ I ⊆ N.
27I restrict myself to an ordinary QM setting in which all mixed states are represented by density operators; for

settings where this can break down, see (Ruetsche [2004]).
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LetD(H) denote the convex set of density operators onH . A map E : D(H)→ D(H) is a

quantum channel if it is convex-linear and completely positive; see (Nielsen and Chuang

[2002], §8) for details. Two density operators ρ, σ ∈ D(H) are non-orthogonal if it’s not the

case that supp(ρ) ⊥ supp(σ) (here supp(ρ) ≡ (ker(ρ))⊥). The fidelity, or closeness, between

two density matrices is F(ρ, σ) ≡ (Tr
√
ρ1/2σρ1/2)2.

Definition 3

FixH = ⊗i∈IHi and ρ ∈ D(H). Given some subsystem S ⊂ I, let RS (ρ) denote its reduced

state, defined as the partial trace TrS̄ (ρ) of the parent state ρ over all elements i ∈ I not in S

(Nielsen and Chuang [2002], §2.4).

Theorem 3 (Generalization)

LetH = ⊗i∈IHi and let E be a map fromD(H) to itself. Fix any ρ, σ non-orthogonal. Then E

is not a quantum channel if:

(i) there is a subsystem S ⊂ I such that, for some µ,28

RS
[
E(ρ ⊗ µ)

]
= ρ ⊗ ρ, RS

[
E(σ ⊗ µ)

]
= σ ⊗ σ,

(ii) or, more generally, there is S ⊂ I such that, for some µ and M > N,

RS [E(ρ⊗N ⊗ µ)] = ρ⊗M, RS [E(σ⊗N ⊗ µ)] = σ⊗M,

(iii) or, more generally, there is a set of pairs {π j, π
′
j : j = 1, 2, ...,M} with π j , π

′
j for each j,

and a subsystem S ⊂ I such that, for some µ,

RS [E(ρ⊗N ⊗ µ)] = π1 ⊗ . . . ⊗ πM, RS [E(σ⊗N ⊗ µ)] = π′1 ⊗ . . . ⊗ π
′
M,

where M exceeds the finite bound N · log
[
F(ρ, σ)

]
/ log[max j F(π j, π

′
j)].

Proof

To see the general strategy we prove (i) first. Then we prove (iii), which immediately entails

28Here we have µ ∈ D(⊗i≥2Hi).
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(ii).29 For (i), suppose toward contradiction that E is a quantum channel. First we invoke the

fact that fidelity is monotonic under quantum channels (Nielsen and Chuang [2002], Theorem

9.6), that is

F(ρ ⊗ µ, σ ⊗ µ) ≤ F(E(ρ ⊗ µ),E(σ ⊗ µ)). (12)

Since fidelity is also monotonic under partial trace (indeed, partial trace can itself be viewed

as a quantum channel or operation, and so this follows from the fact above (Nielsen and

Chuang [2002], §8.3.1)), we also have

F(E(ρ ⊗ µ),E(σ ⊗ µ)) ≤ F(RS
[
E(ρ ⊗ µ)

]
,RS

[
E(σ ⊗ µ)

]
), (13)

which under our assumptions imply

F(ρ ⊗ µ, σ ⊗ µ) ≤ F(ρ ⊗ ρ, σ ⊗ σ). (14)

But since fidelity distributes over products (Miszczak et al. [2009], §2), this implies

F(ρ, σ) · F(µ, µ) ≤ F(ρ, σ) · F(ρ, σ). (15)

And now we reach a contradiction. The fact that ρ and σ are non-orthogonal implies

0 < F(ρ, σ) (Miszczak et al. [2009], §2), and since ρ and σ are distinct, we have F(ρ, σ) < 1.

But then it follows that F(ρ, σ)2 < F(ρ, σ) which, since F(µ, µ) = 1, contradicts the above.

For (iii), we use the same reasoning to obtain the inequality

F(ρ⊗N , σ⊗N) · F(µ, µ) ≤ F(π1, π
′
1) · . . . · F(πM, π

′
M). (16)

Since the left-hand simplifies to F(ρ, σ)N and since each term in the right-hand is less than

max j F(π j, π
′
j), we obtain

F(ρ, σ)N ≤ (max
j

F(π j, π
′
j))

M (17)

which implies M ≤ N · log(F(ρ, σ))/log(max j F(π j, π
′
j)). Since π j is distinct from π′j for all i,

29Since then N · log
[
F(ρ, σ)

]
/ log[max j F(π j, π

′
j)] = N · log

[
F(ρ, σ)

]
/ log[F(ρ, σ)] = N.
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we have 0 ≤ max j F(π j, π
′
j) < 1, and thus the bound is finite, where we use the fact that N is

finite and ρ and σ are non-orthogonal, so F(ρ, σ) < 1 (Miszczak et al. [2009], §2). (Note that

if max j F(π j, π
′
j) = 0 the denominator diverges; in this case we must have M = 0.) �
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