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Abstract: The paper has three main aims: first, to make the asymptotic safety-

based approach to quantum gravity better known to the community of researchers

in the history and philosophy of modern physics by outlining its motivation, core

tenets, and achievements so far; second, to preliminarily elucidate the finding that,

according to the asymptotic safety scenario, space-time has fractal dimension 2 at

short length scales; and, third, to provide the basis for a methodological appraisal

of the asymptotic safety-based approach to quantum gravity in the light of the

Kuhnian criteria of theory choice.

1 Introduction

The correct quantum theory of gravity remains undiscovered and is widely
regarded as among the holy grails of fundamental physics. With respect to
the philosophical foundations of space-time, quantum gravitational effects
are a significant unknown factor with potentially drastic impacts on space-
time ontology. With respect to scientific methodology, the ongoing search
for a convincing quantum theory of gravity provides illuminating case study
material because underdetermination of theory by data is an acute problem
in this area and not merely an artificially constructed theoretical possibility.

Our best theories of fundamental constituents of matter are quantum
field theories, but our best theory of gravity—Einstein’s general theory of
relativity—is entirely non-quantum (“classical”, for the rest of this paper).
And while it is possible to regard general relativity as an effective field theory
and compute the leading quantum corrections to it (Donoghue [1994]), con-
structing a full theory of quantum gravity that applies to phenomena associ-
ated with the Planck scale MP ∼ 1019 GeV and beyond is widely regarded as
an enormous challenge. With respect to such high energy scales there seems
to be a profound conceptual incompatibility between quantum field theories
on the one hand and general relativity on the other—an incompatibility that
manifests itself in the so-called non-renormalizability of general relativity—
which is widely believed to necessitate radically novel conceptual moves.
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The asymptotic safety scenario, originating from a suggestion due to Steven
Weinberg (Weinberg [1979]) and first concretely worked-out by Martin Re-
uter (Reuter [1998]), is based on the idea that, contrary to this widespread
belief, non-perturbative renormalization techniques may actually reveal that
there exists, after all, a straightforward quantum field theory of gravity that
is mathematically well-defined and predictive up to arbitrarily high energies

The present paper provides a comprehensive introduction to the asymp-
totic safety scenario to make it better known in the foundations of physics
community. Moreover, it explores the asymptotic safety scenario’s ramifica-
tions for space-time foundations by focusing on its consequence that space-
time at very short length scales has fractal-like properties. Finally, the paper
provides a methodological appraisal of the asymptotic safety scenario in the
light of Kuhn’s celebrated five criteria of theory choice, highlighting various
of its most interesting empirical repercussions on the way.

2 Outline of the asymptotic safety scenario for
quantum gravity

2.1 General relativity is not perturbatively renormalizable

A core part of the standard procedure for turning classical field theories
described in terms of an action S into quantum theories is “perturbative
renormalization”. Starting from the classical action S, a quantum theory
can be defined by the functional integral

Z[J ] =

∫
Dφ exp

(
iS +

∫
φ(x)J(x)d4x

)
, (1)

where J and φ are field variables and the integral over φ ranges over all
field configurations with appropriately defined boundary conditions. (The
variable “φ” is typically used for scalar fields, but Eq. (1)) can be generalized
to apply to spinor, vector, and tensor fields.) It is useful to consider not only
Z[J ] but also the related functional W [J ], defined by

Z[J ] = Z[J = 0] exp (iW [J ]) , (2)

The expectation values of all observables can be obtained from W [J ] by
taking apropriate derivatives with respect to J and evaluating for suitable
field configurations. In that sense, it contains all the information about the
quantum theory obtained from quantizing the classical action S.

Perturbative renormalization is the standard procedure to solve the prob-
lem that some contributions to W [J ] typically turn out to diverge if one tries
to compute W [J ] using a perturbative expansion in terms of some coupling
constant λ. In perturbative renormalization, these divergent contributions
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are in a first step regularized, i.e. kept finite, e.g. by restricting any in-
tegrals in momentum-space to momenta with absolute values below some
cut-off scale Λ. In a second step, these finite contributions are absorbed into
the definitions of so-called physical parameters, differing from the bare para-
meters in terms of which S is formulated. Only the physical, not the bare,
parameters are accessible through experiments. A theory is called “per-
turbatively renormalizable” if only finitely many parameters must be fixed
through empirical input in order to complete the regularization procedure.
The theories combined in the Standard Model of elementary particle physics
are perturbatively renormalizable.

Notoriously, perturbative renormalization cannot successfully be applied
to our best classical theory of gravity: Einstein’s general theory of relativity,
defined by the Einstein-Hilbert action

SEH =
1

16πG

∫
ddx
√
−g (R(g) + 2Λ) , (3)

In this case, Newton’s constant G is a prima facie natural candidate coup-
ling constant in terms of which W [J ] might be expanded. But, as it turns
out, it is not possible to absorb the appearing infinities into finitely many
parameters derived from experiment, so the resulting theory is not perturb-
atively renormalizable. The theory obtained by means of this procedure
can at best be used as an effective, semi-classical theory, with a limited
range of validity confined to energies significantly below the Planck scale
MP ≡ (1/G)1/2 ∼ 1019 GeV .

2.2 Non-perturbative renormalization

The lesson that is most widely drawn from the failure of perturbative renor-
malization as applied to general relativity is that any quantum theory of
gravity supposed to be valid at the Planck scale or even beyond will be
based on (the quantization of) new degrees of freedom and/or will abandon
the framework of quantum field theory altogether.

The most famous research programmes in quantum gravity are based on
this diagnosis, notably, string theory and loop quantum gravity. A more
conservative response is to revisit the problem of turning general relativity
into a quantum theory and consider whether this might be accomplished
through some other means than perturbative renormalization. The asymp-
totic safety-based approach to quantum gravity rests on this idea. Reuter’s
pioneering work on this approach, starting with his Reuter [1998], relies on
the so-called functional renormalization group scheme for the effective aver-
age action, which has so far remained the tool of choice for this approach.

The functional renormalization group scheme is an alternative formula-
tion of the relation Eq. (1) between some classical action S and quantitities
such as Z[J ] and W [J ] which define a quantum theory in terms of S. It is
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most conveniently formulated in terms of the so-called effective action Γ[φ],
defined as the Legendre transform of W [J ] through the equation

Γ[φ] = W [J ]−
∫
J(x)φ(x)d4x , (4)

where J carries an implicit dependence on φ in that φ is defined as the
solution to the equation

φ(x) =
δW [J ]

δJ(x)
. (5)

From the effective action Γ[φ] the same physical information can be derived
as from W [J ], its Legendre transform. (Technically, Γ[φ] is the generating
functional of one-particle irreducible vertex functions, from which all expect-
ation values of physical quantities can be derived.) An advantage of using
Γ[φ] rather than W [J ] is that it relates to the classical action S[φ] in a par-
ticularly simple way in that there is an in principle calculable trajectory of
functionals Γk[φ] which interpolate between

S = Γk
∣∣
k 7→∞ (6)

and

Γ = Γk
∣∣
k=0

. (7)

This trajectory of functionals Γk[φ] is governed by the Wetterich exact renor-
malization group equation (Wetterich [1993], Morris [1994])

∂kΓk[φ] =
1

2
Tr
[ (

Γ
(2)
k [φ] +Rk

)−1
∂kRk

]
. (8)

In this equation, “Tr” denotes the trace operation performed over an arbit-
rary chosen complete set of quantum numbers (with an additional minus-

sign for fermionic fields), Γ
(2)
k [φ] is the second functional derivative of Γk[φ]

with respect to the field(s) φ, and Rk is a matrix-valued regulator function.
Unlike the cut-off Λ considered in perturbative renormalization, which is
an ultraviolet cut-off, it functions as an infrared cut-off, i.e. it suppresses
contributions that are associated with momenta p whose absolute value |p|
is smaller than the renormalization scale k.

The regulator function Rk can be chosen freely, provided that it function
as an infrared cutoff. For example, it can be chosen such that it endows
contributions associated with momenta |p| < k with a large artificial mass
term, such that they are suppressed when performing the trace, leaving
modes with |p| � k entirely unaffected. As a consequence, by following
the trajectory of Γk from ∞ to 0, i.e. from the classical action S to the
quantum effective action Γ, one successively takes into account contributions

4



associated with lower and lower momenta until one obtains the full quantum
theory as encoded in the effective action Γ.1

Following the renormalization flow of Γk from S = Γk
∣∣
k 7→∞ to Γ = Γk

∣∣
k=0

can be seen as an alternative strategy of quantizing the classical theory
defined through S. Scale-dependent coupling constants gα(k) can be ob-
tained from Γk as appropriate derivatives with respect to the field(s) φ.
Typically, however, Eq. (8) cannot be solved exactly. Luckily, various ap-
proximation schemes have been developed—based on so-called truncations
for the scale-dependent effective action Γk—in which Eq. (8) turns out to
be (approximately) solvable for physical theories of interest. Computations
based on such truncations have served to explore topics as different as the
electroweak phase transition, the phase diagram of QCD, and the coexist-
ence of magnetic and superconducting order in models of high-temperature
superconductivity (see Berges et al. [2002], Metzner et al. [2012] for useful
overviews). Computations based on Eq. (8) are able to go beyond effects
detectable in perturbation theory, and, so, re-open the question of the renor-
malizability of general relativity.

2.3 The idea of asymptotic safety

One would perhaps initially think that subjecting general relativity to the
quantization procedure based on the effective average action just outlined
means identifying the Einstein-Hilbert action SEH (Eq. (3)) of general re-
lativity with the effective average action Γk

∣∣
k 7→∞ at infinite k, following

the flow of k from ∞ to 0, and obtaining Γ = Γk
∣∣
k=0

as the full quantum
effective action. However, the regime for which general relativity is em-
pirically confirmed is that of large length scales corresponding to very low
energies. Thus, what is really needed for obtaining a quantum version of
general relativity is in fact a trajectory of effective average actions Γk which
are well-defined at all renormalization scales k and which reproduces the
empirical content of general relativity in some regime of coupling constants
for very low, not very high, values of k.

1The idea that underlies this approach goes back to Wilson’s approach to renormal-
ization (Wilson and Kogut [1974], Polchinski [1984]). Many similarities notwithstanding,
both approaches differ, however, in that the scale-dependent effective action SWΛ that is
used in Wilson’s approach corresponds to one and the same physical model for all Λ (the
correlation functions for observables are the same for all Λ). The effective average ac-
tion Γk, in contrast, corresponds to different correlation functions for the different energy
scales k. Moreover, for contributions with large momenta |p| � k, the effective aver-
age action Γk at any given k is already almost identical with the full effective action Γ,
such that the properties of Γ at large momenta can be read off from Γk. This makes
the effective action-based approach particularly suitable to study the high-energy prop-
erties of quantum gravity. See the review article (Berges et al. [2002]) for more detailed
comparisons between the Wilsonian approach and the one based on the effective average
action.
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In general, the effective average action Γk can be expanded in terms of
some basis

{
Pα[ · ]

}
of the space of functionals compatible with the sym-

metries imposed on the theory at issue. Using scale-dependent generalized
couplings gα(k) as expansion coefficients it can thus be written as

Γk[φ] =
∞∑
α=1

gα(k)Pα[φ] . (9)

Flow equations for the couplings g can be obtained from the Wetterich
equation Eq. (8) by taking appropriate field derivatives on both sides of it.
Couplings gα(k 7→ ∞) correspond to the “bare” couplings in conventional
quantization treatments and couplings gα(k = 0) to the “physical” ones.

The couplings gα(k) are in general dimensionful with canonical mass
dimensions dα. Dimensionless couplings are defined as

gα ≡ k−dαgα. (10)

For the theory to be well-defined at all scales k between ∞ and 0, these
dimensionless couplings gα(k) must remain finite at all k. In particular, they
must be finite in the ultraviolet (UV) limit k 7→ ∞. For this to happen, the
renormalization flow of Γk must converge for k 7→ ∞ to some fixed point
Γk
∣∣
k 7→∞ where all the dimensionless couplings gα(k) approach finite values.
The idea of perturbative renormalization, as sketched in the previous

section, is based on the assumption that a UV fixed point not only exists
but actually coincides with the origin of coupling space where all dimension-
less couplings gα are zero. A theory for which gα(k)

∣∣
k 7→∞ = 0 for all α is

called asymptotically free, and the point gα(k 7→ ∞) = 0 of parameter space
is in this case referred to as a Gaussian fixed point. There is one empirically
well-established quantum field theory that is known to be asymptotically
free, namely, quantum chromodynamics (QCD), the theory of quarks and
gluons which describes the strong nuclear force. QCDs asymptotic free free-
dom means that the particles described by it are effectively non-interacting
(“free”) at very high energies because gα(k)

∣∣
k 7→∞ = 0 for all coupling con-

stants.
Being asymptotically free is not the only manner in which a quantum

field theory can be well-defined at arbitrarily high energy scales. There is
no reason as to why the UV fixed point would have to correspond to the
point of no interactions, i.e. gα(k 7→ ∞) = 0 for all α. If some theory has a
fixed point where all the dimensionless couplings gα(k) converge to non-zero
finite values as k 7→ ∞, it is referred to as a non-Gaussian UV fixed point.
The asymptotic safety scenario for quantum gravity is based on the idea
that general relativity is a low-energy limit of some quantum theory that
exhibits a non-Gaussian UV fixed point.

If some theory has a (Gaussian or non-Gaussian) fixed point, one may
consider the trajectories in the (infinite-dimensional) space of the couplings
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gα(k) that emanate from it. These trajectories correspond to the distinct
possibilities for the theory to be valid. They approximately agree on its high-
energy behaviour for energies corresponding to scales k where the couplings
gα(k) are close to their UV limits, but they differ on the low-energy beha-
viour. For the overall theory to have predictive force, it is important that it
not be compatible with arbitrary low-energy behaviour, which means that
the UV-critical surface, consisting of the physically acceptable renormaliz-
ation trajectories, should be finite-dimensional. If the UV-critical surface
is d-dimensional for some finite d, we have to determine d couplings gα(k)
experimentally for some given energy scale k to pick out some specific UV-
finite renormalization trajectory as the physically realized one. At least in
principle, all the other couplings gα(k) could then be derived from the theory
thus obtained and be treated as its genuine empirical predictions.

2.4 An asymptotically safe theory of quantum gravity?

The possibility that there might be an asmpytotically safe quantum field the-
ory which contains general relativity as a special case in some specific low
energy regime was pointed out by Steven Weinberg already in 1979 (Wein-
berg [1979]). In subsequent years, relatively little work was done to follow
up on Weinberg’s suggestion (but see Smolin [1982], Kawai and Ninomiya
[1990] for notable exceptions). Even the advent of the exact renormaliz-
ation group formalism based on the Wetterich flow equation Eq. (8) did
not immediately change this because its application to quantum gravity is
not straightforward. Difficulties result from the fact that the chosen ansatz
for the effective average action Γk may not depend on any specific prior as-
sumption concerning the space-time metric gµν , i.e. it should be background-
independent. This raises a challenge because performing the trace in Eq. (8)
requires integration over all spatio-temporal degrees of freedom and thus
seems to presuppose operating with a fixed space-time metric. A further
difficulty is that, in virtue of diffeomorphism invariance, gµν has unphysical
gauge degrees of freedom, which means that established manners of eval-
uating Eq. (8) for field theories where all degrees of freedom are physical
cannot be applied to it. A solution to these problems was developed by Re-
uter and Wetterich by adapting the so-called background field formalism to
the exact renormalization group framework (Reuter and Wetterich [1994]).
In this formalism, a second metric gµν is introduced with respect to which all
space-time integrals are performed, while it is kept arbitrary throughout the
renormalization flow. The application of this formalism to quantum gravity
was first undertaken by Martin Reuter in a paper published online in 1996
(Reuter [1998]). In the years following the release of this work, numerical
results according to which there indeed seems to exist a non-trivial UV-fixed
point for quantum gravity began to accumulate.

The simplest truncation (i.e. approximation for the effective average
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action Γk) in which numerical hints for such a fixed point where established
is the so-called Einstein-Hilbert truncation, modelled on the Einstein-Hilbert
classical action Eq. (3) for general relativity. In space-time with Euclidean
signature (++++), which is typically used in this approach for the sake of
computational convenience—and bracketing contributions from gauge-fixing
terms as well as those from unphysical “ghost” fields which are needed to
solve the problem of unphysical gauge degrees of freedom—it is given by

Γk(g) =
1

16πGk

∫
ddx
√
g (−R(g) + 2Λk) . (11)

Based on this ansatz for the effective average action, a flow diagram for the
flowing dimensionless Newton’s constant gk and dimensionless cosmological
constant λk was derived which exhibits a UV-fixed point at positive values of
these parameters (Fig. 1). The details of the flow diagrams change once the
truncation is extended and more flowing couplings are taken into account,
but so far the picture, including the existence of a non-Gaussian fixed point,
holds up in its essential features (see (Reuter and Saueressig [2012]), Sect.
5 for a survey). Almost all of the couplings taken into account in more
extensive truncations seem to not correspond to UV-attractive directions,
so the results obtained so far are consistent with the hope that the UV-
critical surface may indeed be finite-dimensional (see Sect. 4.2 for some
more details).

Thus, according to the best currently available numerical evidence, there
are strong hints that the asymptotic safety scenario is a coherent theoretical
possibility. In what follows I will outline what it would mean for space-time
at very short length scales and high energies if the asymptotic safety scenario
were indeed realized.

3 Emergent two-dimensional space-time at high
energies?

The most intriguing empirical consequence of the asymptotic safety scenario
is that it attributes fractal-like properties to space-time. Notably, for pro-
cesses associated with length scales shorter than the Planck length and/or
energies above the Planck scale, space-time according to the asymptotic
safety scenario behaves in some respects as if it were two-dimensional. The
present section discusses the meaning and interpretation of this finding,
notably with respect to the question of whether aspects of space-time are
“emergent” in asymptotic safety.

3.1 Fractal-like space-time structure

In the exact renormalization group framework outlined in Section 2.2, one
can define an effective metric with respect to the energy scale k as the
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Figure 1: Diagram of the flow of the dimensionless Newton’s constant gk
and dimensionless cosmological constant λk based on the Einstein-Hilbert
truncation (Reuter and Saueressig [2002]). Arrows follow the direction of the
renormalization flow from high k to low k, i.e. from the UV to the infrared
(IR). The origin corresponds to an infared-attractive Gaussian fixed point.
The non-Gaussian fixed point sits in the centre of the spiralling arrows.
The green trajectory connects both fixed points and separates regions with
positive and negative cosmological constant λk at low energy scales from
each other. The candidate trajectory to be realized in nature is extremely
close to the right of the green trajectory. (Image by Andreas Nink, own
work [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via
Wikimedia Commons)
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solution 〈gµν〉k to the equation

δΓk[〈gµν〉k]
δgµν(x)

= 0 . (12)

Intuitively, 〈gµν〉k corresponds to an average of gµ over an Euclidean space-
time volume with side-length l = 1/k. Put differently, to an observer who
has a characteristic length scale of l = 1/k the universe will effectively
appear as a Riemannian manifold with metric 〈gµν〉k. For any specific scale
k, the-so-defined 〈gµν〉k is a smooth classical metric. However, since Eq.
(12) holds separately at all scales k, the entire collection of metrics 〈gµν〉k
can exhibit highly non-classical, notably fractal-like, features. This indeed
does appear to be the case in the asymptotic safety scenario.

For each coupling gα, the dimensionful and dimensionless couplings (i.e.
gα and γα) are related by specific powers of the renormalization scale k,
see Eq. (10). For example, for the cosmological constant, the dimensionful
quantity Λk and the dimensionless quantity λk are related by

Λk = λk · k2. (13)

At the non-Gaussian fixed point, in virtue of its being a fixed point, the
dimensionless couplings do not change with the renormalization scale k. It
follows that the k-dependence of the dimensionful couplings is completely
determined by their dimensionality, i.e. by the power with which k appears
in equations that link the dimensionless and the dimensionful couplings, e.g.
the power 2 in Eq. (13:

Λk 7→∞ = λ∗k2 . (14)

Using this approximation-independent result one can derive that, for scales
k where the renormalization trajectories are very close to the fixed point,
the typical radius of curvature rc(l) associated with some length scale l is
proportional to that length scale itself (see Eq. (6.8) in Reuter and Saueressig
[2012]):

rc(l) ∝ l. (15)

This equation indicates that space-time exhibits a conformal structure for
high scales k, i.e. one where it has no characteristic length (or energy)
scale. Put differently, if we increase the resolution through which we study
properties of space-time at very high energies beyond the Planck scale, the
characteristic curvature of what we study increases simultaneously. At lower
scales, in contrast, notably at values of k below the Planck scale, the dimen-
sionful Newton’s constant and the dimensionful cosmological constant no
longer run. In these regimes, the effective metric 〈gµν〉k is independent of k
and the same holds for the characteristic radius of curvature rc.
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The self-similarity of the effective metric 〈gµν〉k at high energy scales
manifests itself in the dynamical properties of gravitons. Notably, for very
high energies the graviton propagator (a correlation function which, for any
two space-time positions x and y, specifies the joint probability of the grav-
iton to appear at x and y) takes a form that is otherwise characteristic
of particles confined to two space-time dimensions (Reuter and Saueressig
[2012], Eq. (6.12)).

Another way to illuminate the dynamical aspects of space-time structure
is in terms of the diffusion processes that it supports. A useful quantity for
characterizing these processes is the so-called spectral dimension. It specifies
how the return probability Pg of a particle in a random walk depends on
the duration T of the walk:

ds ≡ 2
d lnPg(T )

d lnT

∣∣∣
T=0

. (16)

The sign, the pre-factor and the logarithms in this definition are chosen such
that, on smooth classical manifolds, the spectral dimension coincides with
the topological dimension d.

Lauscher and Reuter suggest a way of evaluating Eq. (16) for the asymp-
totic safety scenario in four (topological) space-time dimensions according
to which the spectral dimension is ds = 2 for very high energy scales k sig-
nificantly above the Planck scale (Lauscher and Reuter [2005]). (Lauscher
and Reuter derive this result independently of any truncation scheme.) For
energy scales k significantly below the Planck scale, in contrast, the spec-
tral dimension has its familiar classical value 4, which coincides with the
topological dimension.

An important point to stress about the fractal-like features of space-time
at very high energy scales k according to the asymptotic safety scenario is
that they are defined with respect to particle motion and thus dynamical
by definition. As Reuter and Saueressig point out, referring to the theory
of quantum gravity to which the asymptotic safety scenario gives rise as
“Quantum Einstein Gravity” (QEG):

The smooth manifold underlying QEG has per se no fractal prop-
erties whatsoever.

[...]

We emphasize that the effective QEG space-times should not
be visualized as a kind of sponge. Their fractal-like properties
have no simple geometric interpretation; they are not due to a
“removing” of space-time points. Rather they are of an entirely
dynamical nature, reflecting certain properties of the quantum
states the system “space-time metric” can be in. (Reuter and
Saueressig [2012], p. 41)
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The purely dynamical character of the fractal-like properties of space-time
according to the asymptotic safety scenario is reflected in the fact that the
Hausdorff dimension dH = limr 7→0

lnV (r)
ln r ., which is not dynamically defined,

does not vary with k and coincides with the topological dimension (4, in an
ordinary four-dimensional space-time setting) at all scales.

3.2 Fractal-like space-time structure and emergence

The fact that, according to the asymptotic safety scenario, space-time has
a fractal-like structure and, according to Lauscher and Reuter, a reduced
spectral dimension for very high energy scales k has been characterized by
Rickles as ”ripe for philosophical pickings” (Rickles [2008], p. 349). A nat-
ural question in response to this finding is whether fractal-like character and
reduced spectral dimensionality at high energies should be seen as “emer-
gent” features. Assessing this question requires adopting a workable charac-
terization of emergence of which their are several in the literature—not all
of them mutually compatible.

Jeremy Butterfield has recently proposed a richly illustrated characteriz-
ation of physical behaviour as emergent if it is “novel and robust relative to
some comparison class” (Butterfield [2011a], p. 920). Among the examples
that Butterfield uses to highlight which interpretation of this characteriza-
tion he regards as appropriate is the ascription of fractal dimensions to the
geometry of physical objects such as coast lines. The upshot of Butterfield’s
discussion is that fractal dimensions are indeed both “novel” and “robust”
in the relevant sense (Butterfield [2011b], Sect. 5) and, so, qualify as emer-
gent. The factor that most complicates his conclusion is that the ascription
of fractal dimensions to the geometry of actual physical objects typically
rests on an idealization. For example, when one chooses a sufficiently fine
resolution at the molecular or even atomic level, the geometry of a coast line
will presumably cease to be fractal. (See (Butterfield [2011b], Sect. 5.3) for
how Butterfield handles this complication).

Fortunately, for our present purposes, this complication does not arise
when we try to assess whether fractal-like structure in the asymptotic safety
scenario qualifies as “emergent” in Butterfield’s sense. As outlined in the
previous section, the ascription of fractal-like properties to space-time ac-
cording to the asymptotic safety scenario at very high energy scales does
not involve any idealization, and in that sense fractal-like properties seem
to be literally realized if the scenario holds.

Are fractal-like structure and reduced dimensionality at high energy
scales k “novel” with respect to some suitable comparison class? Plausibly
yes, if we accept the physical behaviour of objects in space-times described
by general relativity as our comparison class. Multi-fractality and reduced
spectral dimensionality are features of space-time that are absent from gen-
eral relativistic space-times and, as it seems, not yet somehow suggested by
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them.
Similarly, fractal-like character and reduced spectral dimensionality are

“robust” inasmuch as they are an approximation-independent consequences
of the asymptotic scenario. They are also “robust” in that both the graviton
propagator and the spectral dimension independently suggest that dynam-
ical processes associated with very high energy scales k are characterized
by an effective dimensionality of 2. To conclude, at least by the standards
of Butterfield’s characterization of emergence, fractal-like character and re-
duced spectral dimensionality at high energy scales in the asymptotic safety
scenario qualify as “emergent.”

Going beyond Butterfield’s characterization of emergence, one may argue
that, for physical behaviour to genuinely qualify as “emergent”, it must not
only be novel and robust with respect to behaviour in some reference class
but also occur at a level that is in some relevant sense “less fundamental”
than the level with which the reference class behaviour is associated. It
seems clear that the short space-time scale, high-energy regime with fractal-
like structure and reduced spectral dimensionality is not relevantly “less
fundamental” than the long space-time scale, low-energy regime where gen-
eral relativity is empirically adequate. If anything, the opposite seems to be
the case since the procedure of lowering k in the renormalization flow can
be seen as a form of coarse graining, in which the fractal-like sub-Planckian
regime precedes the regime where general relativity is empirically adequate.
Inasmuch as general relativity appears robust and novel with respect to
the fractal-like regime at high scales, it indeed qualifies as emergent in the
asymptotic safety scenario.

Space-time itself, in contrast, does not seem to appear as emergent in the
asymptotic safety scenario. The scenario is set up in terms of the space-time
metric gµν from the start and is thus formulated using spatio-temporal cat-
egories from the outset. In this respect, the asymptotic safety scenario differs
notably from candidate theories of quantum gravity that attempt to recover
space-time itself must notoriously be recovered as emergent. While those
theories are confronted with the potentially serious challenge of accounting
for how they can possibly be about a world that lends itself to a description
in terms of spatio-temporal categories at macroscopic length scales (Lam
and Esfeld [2013], Oriti [2014]), the asymptotic safety programme does not
face any such difficulty. Conversely, if one regards it as a desideratum for
a theory of quantum gravity that it be formulated in more primitive, non-
spatio-temporal, terms and recover space-time as emergence, one may find
the asymptotic safety scenario disappointing.
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4 Methodological appraisal

The present section undertakes a methodological appraisal of the asymp-
totic safety approach to quantum gravity in the light of Kuhn’s famous five
criteria of theory choice: empirical accuracy, consistency, simplicity, fruit-
fulness, and breadth of scope (Kuhn [1977]). The aim of this appraisal is the
modest one of assembling features and consequences of the asymptotic safety
scenario which the reader may find relevant to assessing whether it deserves
to be regarded as a serious contender in the quest for the correct quantum
theory of gravity. The appeal to Kuhn’s criteria is purely pragmatic in that
they provide a convenient way of structuring the appraisal. Their use here
should not be regarded as endorsing them as in any way privileged or even
sacrosanct.

4.1 Empirical accuracy

To be empirically accurate, a minimal requirement for any theory of quantum
gravity is that it be able to reproduce general relativity’s predictions in some
suitable low-energy regime. A necessary requirement for the asymptotic
safety scenario to fulfil this desideratum is that the specific renormalization
trajectory which is realized in nature must exhibit a “classical” stage, where
the dependence of the dimensionful constants on the scale k is only very
weak.

Fortunately for the asymptotic safety scenario, the results obtained using
the Einstein-Hilbert truncation indicate that there is a candidate renormal-
ization trajectory (to the right of and extremely close to the green line in
(Fig. (2.4)) which fulfils this criterion and exhibits the measured values of
the cosmological constant and Newton’s constant in the suitable regime.
This trajectory is very close to the origin of λ− g-space at values of k of the
order meV and then turns to the right as k becomes even smaller, exhibiting
only a very weak scale dependence in this regime, as required for it to be
“classical.”

Empirically discriminating between theories of quantum gravity which
do reproduce the predictions of general relativity in some suitable regime is
notoriously difficult because energy scales close to the Planck scale cannot
be probed using laboratory experiments. While processes associated with
extremely high energies cannot be studied using laboratory experiments,
their remote effects can possibly be studied in virtue of the traces they
have left in the very early universe, which was characterized by very high
energies. As remarked in Section 3.1, close to the UV fixed point the flow
of the dimensionful Newton’s constant and the dimensionful cosmological
constant is determined by the fact that the dimensionless constants do not
flow.

According to Eq. (14), the dimensionful cosmological constant diverges
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as the energy scale k grows indefinitely. Since the cosmological constant
describes the repulsive side of gravity, this has the physical consequence
that, according to the asymptotic safety scenario, when characteristic ener-
gies were very high in the very early universe, it must have been in rapid
and constantly accelerated expansion. As pointed out by Bonanno and Reu-
ter (Bonanno and Reuter [2007]), this finding indicates that the asymptotic
safety scenario includes a mechanism for cosmic inflation (Guth [1981]). This
is interesting because inflation is widely believed to have occurred on inde-
pendent grounds, notably because assuming that inflation occurred removes
various otherwise puzzling coincidence problems.2 One attractive feature of
this mechanism for inflation is that it naturally accounts for why inflation
came to an end at a certain point, as it obviously did—namely, as soon
as, with decreasing cosmic energy density, Λk dropped below a certain crit-
ical scale, where its size was no longer sufficient to sustain an accelerated
expansion.

There is one prediction derived on the basis the asymptotic safety scen-
ario that was indeed vindicated by an empirical discovery, namely, the pre-
diction by Shaposchnikov and Wetterich, in 2010, that the value of the Higgs
boson mass would be mh = 126GeV , with only a few GeV uncertainty
(Shaposhnikov and Wetterich [2010]). Within the boundaries of prediction
and measurement accuracy, this prediction was confirmed by the actual dis-
covery, in 2012, of a Higgs boson with a mass of around 125GeV . The
prediction by Shaposhnikov and Wetterich does not directly follow from the
asymptotic safety scenario, however. It is based on the additional assump-
tion that there are no particles (other than gravitons) beyond those describe
by the Standard Model. Furthermore, they depend on a particular scenario
concerning the UV behaviour of the Higgs self-coupling (namely, that it is
“UV-irrelevant”) that is widely regarded as plausible, though not rigorously
established.

4.2 Consistency

The existence of a non-Gaussian UV fixed point is required for the math-
ematical consistency of the asymptotic safety scenario. Numerical results
obtained in ever more extended truncations so far suggest the existence of
such a fixed point, see (Reuter and Saueressig [2012], Sect. 5) for a review
of studies that go beyond the Einstein-Hilbert truncation. There had been
scepticism about whether the non-Gaussian UV fixed point found in the
Einstein-Hilbert truncation would persist in truncations that include a per-
turbative counterterm, but a positive answer to this question has recently

2Earlier work by Bonanno and Reuter suggests an alternative solution to those prob-
lems that does not rely on inflation (Bonanno and Reuter [2002]). For philosophers’
considerations on whether the supposed coincidence problems are genuine and whether
inflation really solves them, see Earman and Mosteŕın [1999], McCoy [2015].
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been established for the so-called Goroff-Sagnotti counterterm (Gies et al.
[2016]). The hope for a truncation-independent, mathematically rigorous
proof of the existence of a non-Gaussian UV fixed point, however, does not
seem realistic for the foreseeable future.

As mentioned above, the numerical results obtained so far are consistent
with the possibility that the UV-critical surface may be finite-dimensional,
which is required for the theory to be predictive. Beside the directions asso-
ciated with Newton’s constant and the cosmological constant there appears
to be (at least) one further UV-relevant direction, possibly associated with
the coupling constant in an R2-term in the effective action (Lauscher and
Reuter [2002], Benedetti et al. [2009]). Thus, according to the current nu-
merical state-of-the-art, the dimensionality of the UV-critical surface may
be as low as 3.

Shomer [2007], based on earlier work by Aharony and Banks [1999],
voices a worry concerning the consistency of the asymptotic safety scen-
ario with the widely acknowledged Bekenstein-Hawking formula for black
hole entropy. Falls and Litim [2014] object against this worry, arguing that
the Bekenstein-Harwking result relies on a semi-classical approximation for
black hole entropy that one should not expect to be valid in the limit of
high k in the first place (see Doboszewski and Linnemann [unpublished]
for further considerations). Another worry concerning the consistency (or
at least coherence) of the asymptotic safety scenario found in the literat-
ure is that there are problems related to the very definitions of a scale-
dependent Newton’s constant (Anber and Donoghue [2012]). Finally, since
almost all calculations done so far use the Euclidean space-time signature
(+,+,+,+) for computational convenience, there remains the challenge to
ascertain that the results actually carry over to the Lorentzian setting with
signature (+,−,−,−) (or, equivalently, (−,+,+,+)). So far, this challenge
has been met only for one specific truncation (Manrique et al. [2011]).

Finally, one may worry about the consistency (or conceptual coherence)
of any quantum theory that aims at being fundamental without at the same
time suggesting a clean solution to the measurement problem. The asymp-
totic safety approach to quantum gravity does not come with any such solu-
tion and, so, is committed to the assumption that the measurement problem
can be solved independently.

4.3 Simplicity

The asymptotic safety approach seems to be “simple” in at least two very dif-
ferent ways: first, by being ontologically parsimonious in that, unlike other
suggested theories of quantum gravity, it does not posit any hypothetical
physical objects like strings or branes for which there is no independent em-
pirical evidence; and, second, by being methodologically conservative in that
it does not rely on any concepts and techniques that go beyond those used

16



in our best currently well-established physical theories: just as the theories
of particle physics that are combined in the Standard Model, the asymp-
totic safety scenario assumes that gravity can be described by a field theory;
and exact renormalization group that it uses to study the non-perturbative
features of the scale-dependent coupling constants has been reliably used
for calculations beyond particle physics and cosmology (see Sect. 2.2 for
references).

As noted in Section 3.2, the asymptotic safety scenario is formulated
in spatio-temporal terms from the outset, i.e. space-time is not recovered
as in some sense “emergent” from it. If one regards a theory of quantum
gravity as sufficiently conceptually basic (and in that sense “simple”) only
if it accounts for space-time in terms of more fundamental structure, one
will regard that as a shortcoming of the asymptotic safety scenario as far as
simplicity is concerned.

4.4 Fruitfulness

According to Kuhn, for a theory to be fruitful it must either have led to the
discovery of hitherto unknown empirical phenomena or at least to the dis-
covery of hitherto unknown relations between known phenomena. So far, the
asymptotic safety approach has not led to the discovery of hitherto unknown
empirical phenomena. It does, however, suggest previously unidentified re-
lations between empirical phenomena. One would presently hesitate to call
these suggestions “discoveries” for the simple reason that the asymptotic
safety scenario is presently too speculative and controversial for its empir-
ical ramifications to be looked at as discoveries.

One relation between known phenomena that the asymptotic safety scen-
ario suggests is between the so-called cosmological constant problem—the
question of why the cosmological constant is so much smaller than the Planck
scale—and the apparently unrelated question of why there is an approxim-
ately “classical” regime with approximately scale-independent constants in
the first place (see Sect. 4.1). As it turns out, the only “classical” regime
exhibited by the flow diagram Fig. 2.4 is one where the dimensionful cosmo-
logical constant is dramatically smaller than the Planck mass (Reuter and
Weyer [2004], Sect. 3.3). As a consequence, given the asymptotic safety scen-
ario, if observers find themselves in a world with an approximately “classical”
macroscopic regime, they will unavoidably find a cosmological constant in
that regime which is dramatically smaller than the Planck scale. Thus the
asymptotic safety scenario transforms the question of why the cosmological
constant is so small as we find it into the broader question of why there is
a long (in renormalization flow terms) classical regime at all.

A way in which the asymptotic safety programme has at least the po-
tential to become fruitful is by permitting us to derive, or at least establish
relations between, the measured values of various fundamental constants. In
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the Standard Model of elementary particle physics the values of the constants
(particle masses, couplings) at some specified scale are taken as unrelated
primitives. Their scale dependence may, however, be affected if they are
coupled to gravity, and it may then become possible to derive dependencies
between them. As explained in Section 2.3, the number of dimensions of
the UV-critical surface determines the number of independent parameters
necessary to identify a physically possible renormalization trajectory. The
smaller this number turns out to be, the more the range of possible trajector-
ies is restricted and the more couplings become predictable at energies that
can be accessed experimentally. Harst and Reuter carried out the suitable
calculations for gravity coupled to quantum electrodynamics (QED), and
they found that there is indeed a solution to the flow equations according
to which the fine-structure constant α has a non-zero value at experiment-
ally accessible scales that can in principle be predicted (Harst and Reuter
[2011]). (The value they derive is of the same order of magnitude as the
physically realized one, but, according to them, the approximations used
are not sufficient to permit a numerically precise comparison with observa-
tion.) A similar result has been obtained by Eichhorn et al. [2016] for a
Higgs-Yukawa model.

Yet another way in which the asymptotic safety programme—or, more
generally, the non-perturbative approach to quantum gravity—has at one
point been suggested to be potentially empirically fruitful is with respect
to the astronomical observations that are widely regarded as indicating the
existence of dark matter. There is a regime of the renormalization flow as-
sociated with very small energy scales k close to zero, i.e. even below the
regime where general relativity is effectively valid, which is potentially rel-
evant here (Reuter and Weyer [2004]). For the renormalization trajectory
realized in nature, the dimensionful Newton’s constant Gk seems to strongly
grow in this regime with decreasing energy scales k. In the Einstein-Hilbert
truncation it diverges before k = 0, indicating the breakdown of the trun-
cation at this point. But the growth of Gk with decreasing k may be a
correct feature of the Einstein-Hilbert truncation. If it is, this would mean
that the strength of gravity increases with decreasing energy scales k, i.e.
very (astronomically) large length scales. From this perspective, the appar-
ent need to invoke dark matter might be the result of unduly neglecting the
scale-independent Newton’s constant at very low k. However, there does not
seem to have been any further research activity directed at this possibility
since the work of Reuter and Weyer [2004], which may indicate that this
idea is no longer regarded as promising.

4.5 Breadth of scope

The discussion in the previous subsections has highlighted various areas of
high energy physics and cosmology with respect to which the asymptotic
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safety scenario potentially has repercussions. Examples include: the struc-
ture of space-time at very high energies and very short length scales; the
evolution of the very early universe, including a candidate mechanism for
inflation (see, moreover, Kofinas and Zarikas [2016] for an application of
the asymptotic safety scenario to the big bang itself and alternatives to
it); black hole physics; possible deviations of gravity’s strength from the
Newtonian law at astronomical length scales; and the derivation of values
of fundamental parameters like the fine-structure constant and the Higgs
mass.

5 Conclusion

In the light of the methodological appraisal of the asymptotic safety pro-
gramme given in the previous section, should we regard the approach as a
serious contender in the quest for the correct theory of quantum gravity?
One’s answer to this question will depend not only on how impressed or un-
impressed one is by the points mentioned in the previous section but also on
what one regards as the most salient strengths and weaknesses of the other
contenders in the quest. It is worth pointing out that identifying the “space
of contenders” in this quest may be more complicated than it initially seems,
and not only because there may be so far unconceived candidate theories of
quantum gravity on which physicists’ imagination so far simply has not hit.
A possibility which must be kept in mind is that some of the competitors
that are currently on the scene may turn out to be alternative formulations
of one and the same, or at least some closely related, theory. (One may
think of how Schrödinger’s wave mechanics and Göttingen matrix mechan-
ics turned out to be alternative formulations of one and the same “quantum”
theory.) An approach with respect to which the asymptotic safety approach
is suspected to be similarly “complementary” is the so-called Causal Dynam-
ical Triangulation approach. Promisingly, this approach has also produced
computational results according to which space-time structure is fractal-like
with respect to high energy scales (Ambjørn et al. [2005]).3

The last word, as far as the present appraisal is concerned, goes to Sabine
Hossenfelder, who may have produced the most poignant assessment of the
asymptotic safety scenario yet, whether one agrees with it or not:

[T]his approach towards quantum gravity has its problems, its
friends and its foes, as has every other approach towards quantum
gravity. But it is a strong competitor. What makes this approach
so appealing is its minimalism: Maybe quantum gravity makes
sense as a quantum field theory after all! Depending on your

3See (Reuter and Saueressig [2012], Sect. 7) for a nuanced comparison between the
results obtained from the two approaches, which also highlights and addresses apparent
incompatibilities.
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attitude though you might find exactly this minimalism unap-
pealing. It’s like at the end of a crime novel [where] the murder
victim comes back from vacation and everybody feels stupid for
their conspiracy theories. (Hossenfelder [2014])
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