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Abstract. In this paper, I advance an original view of the structure of space

called Infinitesimal Gunk. This view says that every region of space can be further

divided and some regions have infinitesimal size, where infinitesimals are understood

in the framework of Robinson’s (1966) nonstandard analysis. This view, I argue,

provides a novel reply to the inconsistency arguments proposed by Arntzenius (2008)

and Russell (2008), which have troubled a more familiar gunky approach. Moreover, it

has important advantages over the alternative views these authors suggested. Unlike

Arntzenius’s proposal, it does not introduce regions with no interior. It also has a

much richer measure theory than Russell’s proposal and does not retreat to mere

finite additivity.

1 Is Space Pointy?

Consider the space you occupy. Does it have ultimate parts? According to the

standard view, the answer is yes: space is composed of uncountably many unextended

∗I thank Jeffrey Russell for his very valuable input to multiple drafts of the paper. I thank Philip
Bricker for his helpful feedback on early drafts of the paper. Thanks to Cian Dorr for his encouraging
comments. Thanks to Tobias Fritz for helpful discussions. Special thanks to two anonymous referees
of Journal of Philosophical Logic for their scrupulous read, very helpful comments, and for pressing
me on important details.
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points.1 Although standard, this view leads to many counterintuitive results. For

example, intuitively, the size of a region should be the sum of the sizes of its disjoint

parts.2 But according to the standard view, the points have zero size. Thus they

cannot add up to a finite size, because zeros always add up to zero.

For another example, according to the standard view, every region of space (ex-

cept the whole space) has a boundary, and a closed region includes its boundary.

Now, suppose that two rigid bodies which occupy closed regions come into perfect

contact: there is no gap between them. Under the standard view, we cannot put two

closed regions side by side without overlapping and without leaving a gap between

them. Thus, to be in perfect contact, the two closed regions must overlap on their

boundaries. But the bodies are rigid and impenetrable, so they should not occupy

overlapping regions. Therefore, if the standard view is true, two rigid bodies that

occupy closed regions cannot come into perfect contact. But perfect contact is intu-

itively possible. This is called “the contact puzzle.”(See Zimmerman 1996, Artnzenius

2008 and Russell 2008)

Due to these problems, a gunky conception of space has been proposed, according

to which space cannot be broken down into ultimate parts. That is, every part of

space can be further divided, and extensionless points do not exist. Such a conception

can be traced back to the ancient Greeks, such as Anaxagoras.3 Its contemporary

development is often associated with A. N. Whitehead (1919, 1920, 1929). Under

Whitehead’s theory, all regions have at least a finite size. So, it avoids the counterin-

tuitive result that an extended region is composed of unextended points. Moreover,

the contact puzzle can be avoided by denying the existence of boundaries. Call this

approach the finite gunky view (“finite” as opposed to the infinitesimal approach

1“Space” can be understood as physical space or (mathematical) geometric space: the discussions
in this paper do not turn on the differences between them. Many considerations also apply to time
or spacetime.

2This is one of the intuitions behind Zeno’s paradox of measure. See Skyrms (1983) and Butter-
field (2006).

3“Nor of the small is there a smallest, but always a smaller...”(Curd 2007, B3)
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that I shall soon introduce). However, both F. Arntzenius (2008) and J. Russell

(2008) pointed out that the finite gunky view, in conjunction with other plausible as-

sumptions, is inconsistent with countable additivity, an attractive measure-theoretic

principle. These authors proposed their own solutions, but at the expense of some

attractive features of the original view. Arntzenius suggests readmitting boundaries

with nonzero measures, even though they are scattered points with no interiors. Find-

ing this proposal unattractive, Russell suggests rejecting countable additivity instead

and having merely finite additivity. But the resulting measure theory is impoverished.

However, the finite gunky view is not the only approach to the gunky conception

of space: a different approach is to claim that space also has parts of infinitesimal

sizes, which can be further divided. It has been argued that such a notion of divisible

infinitesimals appeared in the Chrysippean doctrine of space, time and motion (White

1992). Although it has an ancient origin, such a doctrine was never developed further,

due to the alleged obscurity of an infinitesimal size. But the situation has changed

since the development of nonstandard analysis by Abraham Robinson (1966), which

gives infinitesimals a rigorous foundation.4 In this paper, I will develop a gunky view

of space, Infinitesimal Gunk, in the framework of nonstandard analysis. Like the

finite gunky view, this view implies that every part of space can be further divided,

and there are no boundaries. But unlike the finite gunky view, it implies that some

parts have infinitesimal sizes. Developing such a view is not straightforward, for novel

technical difficulties arise as we turn to nonstandard analysis. Thus part of my goal

is to solve these difficulties and present a rigorous and most plausible gunky view

in the framework of nonstandard analysis. In addition, I will advance Infinitesimal

Gunk as a novel reply to the inconsistency arguments of Arntzenius and Russell.

I will argue that Infinitesimal Gunk has distinctive advantages over the solutions

4This is not the only foundation for infinitesimals. I explore alternative theories, such as smooth
infinitesimal analysis, in other work (Chen, manuscript). For my work on atomistic space in the
framework of nonstandard analysis, see Chen (2019).
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proposed by these authors. Unlike Arntzenius’s proposal, it does not need to admit

regions without interiors. It also has a much richer measure theory than Russell’s

proposal. Infinitesimal Gunk also violates countable additivity, but it has attractive

measure-theoretic compensations unavailable to Russell’s proposal.

2 Trouble for the Finite Gunky View

Before I present the finite gunky view, I shall first lay out the main ideas of a gunky

space without assuming that every region of space has at least a finite size. The

intuitive ideas of a gunky space can be put into the following:

Gunky Space.5 (Mereology) Every region has a proper part. (Topology)

There are no boundary regions. (Measure theory) Every region has a

subregion of a strictly smaller size.

The mereological aspect can be considered the starting point or the core claim of

any gunky view of space. Since extensionless points have no proper parts, it follows

that there are no points in space. The topological aspect needs some explanation. A

boundary of a region is generally lower-dimensional than the region itself: it’s like

the skin of an apple if we idealize by imagining the skin to have no thickness at all.6

The requirement that there are no boundaries thus reflects the “gunky” intuition

that space has no lower-dimensional parts. This intuition is in a similar spirit to the

mereological aspect: just as there are no indivisible points, there are no lines or sur-

faces in a higher-dimensional space because they cannot be divided along a particular

dimension.7 Finally, the measure-theoretical aspect is also closely associated with the

mereological aspect. It follows from the measure-theoretic principle that every region

5While the notion of gunky space is usually asssociated with only the mereological aspect, I am
anticipating a more developed theory.

6The precise definition of “boundary” in gunky space will be given later.
7This reason does not apply to boundaries in general, since boundaries such as the fusion of two

points in a one-dimensional space can be divided into two points.
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has a positive measure together with the mereological aspect and some plausible as-

sumptions.8 The principle that every region has a positive measure is motivated by

the consideration that no extended region is entirely composed of unextended ones.

Before getting to the finite gunky view, we need to know a few topological terms.

In standard topology, openness is the only primitive topological notion: a topological

space is a set together with some choice of its open subsets (satisfying certain con-

straints). A closed set is the complement of an open one. The interior of a set is the

union of its open subsets—like the flesh of an apple inside its ideally thin skin. The

closure of a set is the intersection of the closed sets including it—like a whole apple

to its flesh. Further, a set that is identical to the closure of its interior is called reg-

ular closed. For instance, consider the real line R (with its standard topology). The

singleton of a point is not regular closed, because the closure of its interior is empty.

Similarly, a set that includes an isolated point is not regular closed (e.g. [0, 1]∪ {2}).

Now, every equivalence class of sets of real numbers that differ at most on their

boundaries includes exactly one regular closed set. For the finite gunky view, the

intuitive idea is that, since boundaries do not exist, every region should correspond

to exactly one such equivalence class (except that of the empty set). In that case,

every region can be represented by the regular closed set in its corresponding equiva-

lence class. For simplicity, I will henceforth pretend that our space is one-dimensional

(most discussion can be carried over to higher-dimensional cases straightforwardly).

In the finite gunky view, we postulate the following principle for gunky space, which

will be further strengthened later.

Real Representation. There is a one-to-one correspondence between

all regions of space and all non-empty regular closed sets of real numbers

such that a region X is a part of a region Y iff X’s corresponding set is a

8More explicitly, we need the following assumptions: (1) Weak Supplementation: if a region x
has a proper part y, then x also has a proper part z that is disjoint from y; (2) Finite Additivity:
for finitely many regions, the size of their fusion is the sum of the sizes of those regions.
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subset of Y ’s corresponding set.9

As in standard mereology, other mereological notions can be defined in terms of

parthood. For example, two regions overlap iff they share a common part. Two

regions are disjoint iff they do not overlap. A region X is a fusion of regions Y s

iff each Y is a part of X and every region that overlaps X also overlaps one of Y s.

For any collection of regions, their mereological fusion corresponds to the closure of

the union of their corresponding sets because the union of regular closed sets may

not be regular closed and the closure of the union is the smallest regular closed set

that includes those sets. For example, the fusion of the gunky regions represented by

[0, 1/2], [0, 3/4], [0, 7/8]... is not represented by the union of those intervals, namely

[0, 1), which is not regular closed, but by its closure [0, 1]. Since every nonempty

regular closed set includes a non-empty regular closed set as a proper subset, every

region has a proper part—the mereological aspect of gunky space is confirmed. (For

brevity, I will henceforth refer to nonempty sets by default unless otherwise specified.)

We can also specify the topology of gunky space. In the standard topological

framework, we have “openness” as the primitive notion. However, this framework

is inadequate in the case of gunky space. Since we want there to be no boundaries,

there should be no distinction between “open” and “closed” regions that differ at

most on their boundaries. As Roeper (1997) and other authors suggest, instead of

“openness,” we can use the binary relation connectedness as a primitive notion. To

postulate the topology of gunky space, we strengthen Real Representation by

the following clause:

A region X is connected to a region Y iff X’s corresponding set intersects

Y ’s corresponding set.

9Note that this principle (along with the measure specified later) implies that there are infinite
regions of space. Although whether physical space is infinite or not need not to be settled by a
gunky view, we postulate infinite regions for convenience. If one wish to have a gunky view of space
with only finite regions, one can modify Real Representation easily.

6



For example, [0, 1] and [1, 2] represent two connected regions since they intersect

at 1. Following Russell (2008), other topological terms can be defined in terms of

connectedness. For example, a region X is a boundary of a region Y iff every part of

X is connected to both Y and some region disjoint from Y . Intuitively, an apple’s

(ideally thin) skin is the boundary of the apple because every part of the skin is in

contact with both the apple and its surrounding air. It follows that no region is a

boundary of any region—thus the topological aspect of gunky space is met (Russell

2008, 7). Then we can define “openness”: a region is open iff it does not overlap any of

its boundaries. It follows that every region is open. I will henceforth call topologically

strengthened Real Representation together with the measure-theoretic principle

that every region has a strictly smaller subregion the finite gunky view.

How should we measure regions? In standard analysis, the Lebesgue measure,

which takes value in nonnegative extended real numbers [0,+∞], is the standard way

of assigning length, area, volume, and so on to subsets of a real coordinate space.

Given Real Representation, it is natural to assign to a region the Lebesgue mea-

sure of its corresponding set. More precisely, we strengthen Real Representation

by the following clause:

Lebesgue Gunky Measure. The measure of any region is equal to the

Lebesgue measure of its corresponding set.

We can check that every region indeed has a subregion of a strictly smaller size.

However, Arntzenius (2008) shows that this measure is not countably additive.

Countable Additivity. For any countably many disjoint regions, their

fusion has a measure, which is the sum of the measures of those regions.10

The inconsistency argument runs as follows. Consider a unit closed interval of real

numbers. Take the middle closed interval of length 1/4. Then take the middle

10Standard measure theory satisfies Countable Additivity. In particular, the fusion of count-
ably infinitely many disjoint regions with positive measures has a measure of +∞.
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intervals of length 1/16 from both of the remaining intervals. Repeat the same process

ad infinitum. In the i-th step, each middle interval we take is 1/4i-inch long. Label

those intervals A1, B1, B2, C1, ... such that the same letters refer to intervals of the

same lengths. The intervals taken in the first three steps are illustrated below :

Call the intervals the Cantor intervals and their union the Cantor union. A point is

a limit point of a set iff any open set including that point intersects that set. The

closure of a set is the union of this set and all its limit points. We have that every

point in the unit interval either belongs to the Cantor union or is a limit point of it.

Thus, the closure of the Cantor union is the whole unit interval. Now, each Cantor

interval represents a gunky region. Call those regions the Cantor regions. It follows

from Real Representation that the fusion of the Cantor regions is represented by

the closure of the Cantor union, which is the whole unit interval. Thus, the Lebesgue

gunky measure of the fusion is one. However, the Cantor regions that compose the

fusion respectively measure 1/4, 1/16 · 2, 1/64 · 4,..., which sum up to 1/2. Suppose

the measure theory is countably additive. Then the measure of the fusion is 1/2. It

follows that the measure of the fusion of the Cantor regions is both 1 and 1/2. So,

Lebesgue Gunky Measure is not countably additive.

What’s worse, Russell (2008) pointed out that Lebesgue Gunky Measure is

even inconsistent with finite additivity. Let Big Fusion be the fusion of the Cantor

regions represented by Big Intervals A1, C1, C2, C3, C4, ..., and let Small Fusion be

the fusion of the Cantor regions represented by Small Intervals B1, B2, D1, D2, ...
11 It

11The symbols are used as before: those with the same letter refer to intervals of the same length.
Each of the Bs is one-fourth the length of A1, and each of the Cs is one-fourth the length of each of
the Bs, etc.
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turns out that every point on the unit interval is either a point in the Cantor union

or a limit point of both the union of Big Intervals and the union of Small Intervals.

Then, the Lebesgue gunky measure of Big Fusion is the Lebesgue measure of the

closure of the union of Big Intervals, which is 5/6. The measure of Small Fusion is

the Lebesgue measure of the closure of the union of Small Intervals, which is 2/3. But

the fusion of Big Fusion and Small Fusion is represented by the whole unit interval

which measures one. Since Big Fusion and Small Fusion are disjoint regions, and

5/6 + 2/3 6= 1, finite additivity fails!

Russell gave a more general argument for the inconsistency between the finite

gunky view, Countable Additivity, and other plausible assumptions, which does

not rely on Lebesgue Gunky Measure or any other specific measure. Instead, he

appealed to an additional topological feature. In both standard topology and gunky

topology, a basis for a topological space is a set of basis elements which generate all

the open regions of the space by taking unions. A topological space can have many

different bases. For instance, the set of all open cubes is a basis for the standard

topology of three-dimensional real space R3. This implies that, for example, an

apple-shaped open set in R3 is the union of many cubes. In standard topology, a

topological space typically has a countable basis, that is, a basis with only countably

many basis elements. For instance, one basis for the standard topology of the real

line is the set of all open intervals with rational numbers as endpoints, which are

countably many. Russell argued that, like a real coordinate space, our space has a

countable basis.

Countable Basis. The topology of space has a countable basis.

Russell has shown that the finite gunky view, if it satisfies Countable Basis and

some standard mereological assumptions, is inconsistent with Countable Additiv-

ity (Russell 2008, 9).12

12The main mereological assumption is Remainder Closure, the principle that unless a region
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In the face of the two inconsistency arguments, various solutions have been pro-

posed. Arntzenius suggested denying that there are no boundary regions. Instead of

Real Representation, Arntzenius suggested that a region should be represented

by an equivalence class of Borel sets (formed from open sets through countable union,

countable intersection and complement) that differ up to Lebesgue measure zero. Un-

der his proposal, the fusion of the Cantor regions is distinct and smaller than the unit

line segment, and there exists a boundary region that makes up the difference between

the two regions. This region is represented by the equivalence class of the comple-

ment of the Cantor union and has no interior. Since this feature seems undesirable,

we should check if there is a better alternative.13 Russell suggested that we should

deny Countable Additivity and retreat to merely finitely additive measure. Un-

der this suggestion, the measure of any region is equal to the Jordan measure of its

corresponding set (a restriction of the Lebesgue measure that is merely finitely ad-

ditive). But the resulting measure theory is rather impoverished (which I discuss in

Section 5). Is there another way out? Infinitesimal Gunk, the non-standard theory of

space that I shall develop in Section 3, will provide a novel reply to the inconsistency

arguments. In particular, Countable Basis fails, but without the costs that Russell

assumed (Section 4). Although this theory also violates Countable Additivity,

it satisfies a weaker version of it and has a much richer measure theory than Rus-

sell’s proposal (Section 5). The theory is also immune to the variants of Arntzenius’s

argument (Section 6).

X is proper part of a region Y , X has a part that is the remainder of Y in X (or the mereological
difference X − Y ). (Russell 2008, 4)

13In this paper, I do not discuss why this feature of Arntzenius’s theory is undesirable. I simply
assume that it is intuitively attractive for a gunky space to have no boundaries (see Russell 2008).
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3 Infinitesimal Gunk

The core idea of Infinitesimal Gunk is that, instead of representing a gunky region by

a set of real numbers, we represent a region by an extended set of numbers provided by

nonstandard analysis (NSA). In NSA, we can extend the real line R to the hyperreal

line ∗R, which includes infinitesimals and infinite numbers, along with the familiar

real numbers.14 A number is infinitesimal iff its absolute value is smaller than any

positive real number. A number is infinite iff its absolute value is larger than any

positive real number. On the hyperreal line, each real number is surrounded by

a “cloud” of hyperreal numbers that are infinitesimally close to it, called its monad.

The monads of different real numbers do not overlap. Moreover, we can do arithmetic

on the hyperreal numbers just like on the standard real numbers. For example, for

any positive infinitesimal δ and any infinite number N , we have
√
δ, 1

δ
, δ2, δ+N , δ

N
,

etc. In general, the hyperreal numbers satisfy all the first-order truths about the real

numbers in standard analysis.

As in the finite gunky view, I would like to represent gunky regions by regular

closed sets. But unlike in the finite gunky view, I will appeal to sets of hyperreal

numbers rather than just sets of real numbers. Before presenting the view, I shall first

introduce the interval topology of the hyperreal line. (For a comparison of different

topologies on the hyperreal line, see Goldblatt 1998, 120-1, 143-5.) According to

the interval topology, a hyperreal set is open iff it is the union of hyperreal intervals

(a, b) (i.e., the set of hyperreal numbers strictly between hyperreal numbers a and b).

For example, the set of all infinitesimals is open, because it is the union of all open

intervals with infinitesimals as endpoints. Also, the set of all non-infinitesimals is also

open, because it is the union of all open intervals of the form (−N,−r) or (r,N), with

14The hyperreal system I refer to in this paper is obtained through the ultrapower construction of
real number sequences (see Goldblatt 1998). It’s unique up to isomorphism under the assumption of
continuum hypothesis (thanks to a referee for pointing this out). There are other non-isomorphic hy-
perreal systems. For example, the surreal number system introduced by Conway (1976) is considered
the largest hyperreal system.
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r a positive real number and N a positive infinite number. Since the complement of

an open set is closed, the set of all infinitesimals is both open and closed, and so is

the set of all non-infinitesimals. Furthermore, both sets are regular, since they are

identical to the closure of their interiors.

Now, for Infinitesimal Gunk, I propose that regions are represented by regular

closed sets of hyperreal numbers under the interval topology.

Hyperreal Representation. There is a one-to-one correspondence

between all regions of space and all non-empty regular closed sets of hy-

perreal numbers such that a region X is a part of a region Y iff X’s

corresponding set is a subset of Y ’s corresponding set.15

As a basic example, the hyperreal interval [0, 1] is regular closed and thus represents

a region. The set of all infinitesimals—and in general each monad—is regular closed,

and thus represents a region. Furthermore, the countable union of [1/2, 1], [1/4, 1], ...,

[1/2n, 1], ... is also regular closed and represents a region.

We need to define a topology for gunky space so that there are indeed no boundary

regions. Like in the finite gunky view, I will follow Roeper (1997) in using connect-

edness as the primitive notion. But the difficulty here is that we cannot postulate

the connectedness relation between gunky regions in Infinitesimal Gunk in the same

way as in the case of the finite gunky view. Recall that, in the finite gunky view,

we postulate that two regions are connected iff their representative sets have a non-

empty intersection. But this will not do the trick in Infinitesimal Gunk, because

every monad represents a region, and distinct monads have no elements in common.

If we postulate connectedness in the same way, then every region represented by a

monad would be disconnected from the region represented by its complement on the

15As in the finite gunky view, the set of all gunky regions forms a boolean algebra without the
bottom element.
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hyperreal line.16 This feature would be bad for our theory—for we want to describe

a continuous space, which is composed of regions connected with each other.

To solve this “disconnection” problem, I propose an alternative to Roeper’s postu-

lation of connectedness between gunky regions. The intuitive idea is that two regions

are connected iff they each contain a part such that there is no “gap” between them.

For any two sets A,B, let “A ≤ B” mean that for any x ∈ A and any y ∈ B, we

have x ≤ y. Similarly, for any set A and any point z, let “A ≤ z,” for example, mean

that for any x ∈ A we have x ≤ z. Then, the relation of connectedness satisfies the

following principle:

Connectedness. Two regions represented by sets A andB are connected

iff there is a subset A′ of A and a subset B′ of B such that either (1)

A′ ≤ B′, and there is no point z with A′ < z < B′, or (2) B′ ≤ A′, and

there is no point z with B′ < z < A′.17 (Call such a z a separating point.)

It immediately follows from this definition that a region represented by a monad is

indeed connected with the region represented by the complement of the monad on

the hyperreal line. Under this definition, connectedness is reflexive, symmetric, and

monotonic—the three features that constitute what Russel calls “core topology” (Rus-

sell 2016, 262). In addition, connectedness is distributive. Together, these features

are essentially what Roeper took to be the “central characteristics” of connectedness

(Roeper 1997, 255).18 Let X, Y, Z range over all regions:

16Indeed, the interval topology itself has this problem: under the definition of connectedness in
standard topology, every monad is disconnected from the rest of the hyperreal line.

17In higher-dimensional space—informally speaking—two regions are connected iff they each con-
tain a part such that there is no hyperreal hypersurface between their corresponding sets.

18A small complication is that Roeper’s core axioms for connectedness assume the existence of
the null region, while I assume there is no null region, which would require some small changes in
the formalism.

It is worth noting that my stipulation of connectedness does not satisfy all of Roeper’s axioms
beyond the core axioms. In particular, with any reasonable definition of another primitive notion
limitedness in Roeper’s axioms, Infinitesimal Gunk would violate the following axiom (a region X
is well inside a region Y iff X is not connected to Y ’s complement):
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Reflexivity. X is connected to itself.

Symmetry. If X is connected to Y , then Y is connected to X.

Monotonicity. If X is connected to Y , and Y is a part of Z, then X

is connected to Z.

Distributivity. If X is connected to the fusion of Y and Z, then X is

either connected to Y or to Z.

I shall explain why Distributivity holds, since it’s relatively less obvious. Take

two arbitrary regions represented by sets B and C. First, we note that the union of

any two regular closed sets is still regular closed. Thus, the fusion of the two regions

is represented by the union of B and C. Suppose a region represented by set A is

connected to the fusion of those two regions. According to Connectedness, there

are subsets A′ ⊆ A,B′ ⊆ B and C ′ ⊆ C with A′ ≤ B′ ∪ C ′ or B′ ∪ C ′ ≤ A′ such

that there are no separating points between A′ and B′ ∪ C ′.19 It follows that either

there are no separating points between A′ and B′ or there are no separating points

A10. If A is a limited region, B is not the null region, and A is well inside B, then
there is a limited region C such that A is well inside C and C is well inside B. (Roeper
1997, 256)

In whatever way we define limitedness, it is reasonable to assume that at least the hyperreal interval
[0, 1] is limited. In the following sketch of a counterexample to A10, I will use Roeper’s axiom
that every part of a limited region is limited. A10 can fail for some infinite fusion of infinitesimal
intervals. Let ε be an infinitesimal. Let A be represented by the union of all intervals [4nε, (4n+1)ε]
for all hypernatural n such that nε is an infinitesimal. Let B be represented by the union of
slightly larger intervals [(4n − 1)ε, (4n + 2)ε] (with the same restriction on n) together with the
set of all non-infinitesimal numbers. Note that A is entirely contained in the monad of zero and
thus limited, and it is well inside B. But there is no region C that satisfies A10. Call a region
snuggly iff its representing set contains arbitrarily small positive non-infinitesimal numbers. It can
be straightforwardly checked that, for any region C, if A is well inside C, then C is snuggly. But if
C is snuggly, then C is connected with B’s complement. So A10 must be violated.

One main role of Roeper’s axioms is to ensure that there is a one-to-one correspondence between
gunky topologies (or “region-based topologies” in Roeper’s term) and locally compact Hausdorff
spaces under standard point-set topology. As a result of the violation of A10, we cannot recover
a locally compact Hausdorff space from Infinitesimal Gunk through Roeper’s correspondence (see
Roeper 1997, 276, 278-9). This is not terribly surprising because the interval topology of the hyper-
real line is not locally compact.

19Note that B′ or C ′ in question could be empty, though they can’t both be—every point separates
the empty set from other sets.
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between A′ and C ′, for otherwise at least one of them would separate A′ and B′ ∪C ′.

For example, if A′ ≤ B′ ∪ C ′, then whichever of a separating point between A′ and

B′ and one between A′ and C ′ is smaller, it would separate A′ and B′ ∪ C ′. So A is

either connected to B or to C.

As in the finite gunky view, other topological terms are defined in terms of con-

nectedness. It follows from Connectedness that no region is a boundary of any

region. Recall that a region X is a boundary of a region Y iff every part of X is con-

nected to both Y and some region disjoint from Y . Suppose there is such a boundary

region. Then it is represented by some regular closed set. The intuitive idea is that a

regular closed set is “fat” enough that we can always find a regular closed set strictly

inside it. This smaller regular closed set represents a region that is disconnected

from any region disjoint from the boundary region. This contradicts the definition of

boundary, so there are no boundaries. It follows that the condition for openness is

trivially satisfied, which means that every region is open. Also, every region is closed

because every region has a complement (which is open). The closure of a region is

always itself.

Next, I shall postulate a measure over regions. Like in Lebesgue Gunky Mea-

sure, I will equate the measure of a region to the measure of its representing set.

But first of all I shall propose a measure on the hyperreal line. The measure will be

non-standard in the following senses. Instead of assigning nonnegative extended real

numbers to subsets of a space, it assigns nonnegative hyperreal measures to certain

hyperreal sets. Also, unlike standard measure theory, the measurable sets are not

closed under countable union, which I will discuss more in Section 5.20

Similar to the construction of the Lebesgue measure on the real line, we first define

the measure of a hyperreal interval:

20The measure I introduce here is similar to the “proto-measure” introduced in Goldblatt (1998,
207). However, Goldblatt did not consider it a measure precisely because the measurable sets are
not closed under countable union. He instead used it to define an extended-real-valued measure Loeb
measure which satisfies this requirement.
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Interval Length. For a hyperreal interval with end points a, b, its

measure is |b− a|.

Notice that the measure of an interval can be infinitesimal.

Next, we define the length of the hyperreal set that is a union of such intervals.

But before that, I shall first explain the notion of hyperfinite sum in NSA. First,

notice the following fact: for any countably infinitely many items, even if they have

an infinite sum (i.e., the limit of partial sums) in standard analysis, they generally

do not have an infinite sum in NSA, because the partial sums do not converge to a

unique hyperreal number. For instance, the partial sums 1/2 + 1/4 + ... + 1/2n do

not converge to any unique hyperreal number.21 In general, unlike the real line, the

hyperreal line does not have the least upper bound property: the set of all the partial

sums 1/2+1/4+ ...+1/2n does not have a least upper bound. For every infinitesimal

ε, 1− ε is an upper bound of the set, and there is no largest infinitesimal.

However, there is a special kind of infinite “cardinality,” and accordingly a spe-

cial kind of infinite sum in NSA. Recall that the set of all hyperreal numbers is an

extension of the set of all real numbers. In the same sense, the set of all natural

numbers can be extended to the set of hypernatural numbers, which obey the same

first-order truths of standard analysis as the natural numbers. Just as any real num-

ber is smaller than some natural number, any hyperreal number is smaller than some

hypernatural number. Since there are infinite hyperreal numbers, it follows that there

are also infinite hypernatural numbers. Let N be a hypernatural number. In NSA,

there is a distinct notion of “cardinality”—call it hyperfinite cardinality—that assigns

N to {1, 2, ..., N}, just as the finite set {1, 2, ..., n}(n ∈ N) has a cardinality of n. A

21There are two ways of defining “converge” here. First, we can say that the partial sums 1/2 +
1/4 + ... + 1/2n converge to a hyperreal number h, if their difference can be made smaller than
any particular real number by making n sufficiently large. Second, we can define “converge” in a
non-standard way: the partial sums 1/2 + 1/4 + ... + 1/2n converge to a hyperreal number h, if
their difference can be made smaller than any particular hyperreal number by making n sufficiently
large. Under the first definition, the partial sums in question converge to many different hyperreal
numbers. Under the second definition, the partial sums in question do not converge to any hyperreal
number. Either way, there is no unique hyperreal number that the partial sums converge to.
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hyperfinite set is either finite or else continuum-sized. Furthermore, just as in stan-

dard analysis the sum of a finite sequence of real numbers is well-defined, in NSA,

the sum of a hyperfinite sequence of hyperreal numbers is well-defined. This is called

the hyperfinite sum. Note though, hyperfiniteness is different from finiteness when

it comes to higher-order claims: for example, a subset of a hyperfinite set need not

be hyperfinite.22 (For more on “hyperfinite cardinality” and “hyperfinite sum,” see

Goldblatt 1998, 178-81.)

For any hyperreal set, if we can list the disjoint intervals it includes in a hyperfinite

sequence, then its measure is the hyperfinite sum of the measures of those intervals.23

Hyperreal Measure. For any hyperreal set, if it is a union of hyper-

finitely many disjoint hyperreal intervals, then its measure is the sum of

the measures of those intervals. Otherwise, its measure is undefined.

Such a measure is well-defined because, like in the finite case, different decompositions

of a hyperreal set into hyperfinitely many disjoint intervals (if possible) lead to the

same measure.24 Since every measurable set is a union of hyperfinitely many disjoint

intervals, and because hyperfinite summation is associative like in the finite case,

it follows that for hyperfinitely many disjoint measurable sets, the measure of their

union is the sum of the measures of those sets.

Hyperfinite Additivity (set). For hyperfinitely many disjoint mea-

surable sets, the measure of their union is the sum of the measures of

those sets.
22A subset of a hyperfinite set can be countably infinite, but no countably infinite set is hyperfinite.
23A hyperfinite sequence is an internal bijection from {1, 2, ..., N}, for some hypernatural N . An

internal function is a function that is expressible in the language of standard analysis. (Appendix
A; see also Goldblatt 1998, 172-5 for more detail.)

24That is, like in the finite case, it is true in nonstandard analysis that for any hyperfinitely many
disjoint hyperreal intervals B1, B2, ..., BN and C1, C2, ..., CM (N,M are hypernaturals), if the union
of all Bi is the same as the union of all Cj , then the hyperfinite sum of the measures of all Bi is
equal to the hyperfinite sum of the measures of all Cj . Note that the language of standard analysis
quantifies over sets as well as numbers, and these quantifiers also receive nonstandard internal
interpretation in the hyperreal system (Goldblatt 1998, 168-170).
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The hyperreal measure approximates the Lebesgue measure over the real line in

the following sense. Recall that any finite hyperreal number is infinitely close to

exactly one real number. The real number is called the shadow of the hyperreal

number. Let the shadow of any infinite positive hyperreal number be the extended

real number +∞. Let the shadow of a set be the set of the shadows of its members.

Then, we have the following theorem:

Lebesgue Approximation. For any measurable hyperreal set, the

shadow of its measure is the Lebesgue measure of its shadow (Goldblatt

1998, 215-7).

In other words, the measure of a hyperreal set, if well-defined, is infinitesimally close

to the Lebesgue measure of its shadow on the real line.

Notice that some hyperreal sets, including some regular closed ones, are not mea-

surable. For example, consider the set of all infinitesimals, which is regular closed.

Intuitively, what should be the measure of such a set? The measure should be smaller

than any real number. But it can’t be an infinitesimal number because, for any

positive infinitesimal number δ, the set is larger than (−δ, δ). Thus, the set of all

infinitesimals has no measure. It’s worth noting that some non-measurable hyperreal

sets do have a Lebesgue-measurable shadow. For instance, the shadow of the set of

all infinitesimals is {0} and therefore has Lebesgue measure zero.

Finally, we can postulate the measure over a gunky line based on the measure

over the hyperreal line and Hyperreal Representation:

Hyperreal Gunky Measure. The measure of a gunky region is the

measure of its representing regular closed hyperreal set.

For the reason I have just discussed, it follows that some gunky regions are not

measurable.
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I have completed the basic picture of Infinitesimal Gunk, according to which

every region is further dividable and some regions have infinitesimal sizes. Now, I

shall evaluate this view in light of the inconsistency arguments and compare it with

other solutions.

4 No Countable Basis

Recall that Russell’s inconsistency argument appeals to Countable Basis, the as-

sumption that space has a countable basis. However, this does not hold for Infinitesi-

mal Gunk. Informally speaking, infinitesimals are really small—in fact, for any merely

countable set of positive sizes, there are infinitesimal sizes which are even smaller than

all of those. But that means that no countable collection of regions is “fine-grained”

enough to build up all the regions. (See Appendix A.3 for my proof, which draws on

a standard feature of the hyperreal system called countable saturation.)

When defending Countable Basis, Russell wrote,

There are topological spaces that do not have countable bases, but gen-

erally speaking, they are exotic infinite dimensional affairs. Such space

would be shaped nothing like Euclidean space or any other ordinary man-

ifold. (Russell 2008, 11)

These claims are not quite justified in light of nonstandard analysis. The hyperreal

line is indeed “infinite dimensional” according to the standard definition of “dimen-

sion”: there is a homeomorphism from the hyperreal line to a Euclidean space of

infinite dimensions.25 But this definition is just inadequate to capture the geometric

nature of the hyperreal line, namely that it’s a one-dimensional line—one hyperreal

dimension.

25A hyperreal number can be considered as an equivalence class of infinite sequences of real
numbers that agree on “almost” every position (which is defined through an ultrafilter). (Goldblatt,
1998)
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Denying Countable Basis in standard topology may result in “exotic,” ill-

behaved spaces because it is associated with other desirable topological features of a

space. For example, it is typically associated with metrizability. A topological space

is metrizable iff we can define a real-valued distance between any two points such that

the set of open balls with any radius are a basis for the topology. A metric space,

which is of special interest in physics and mathematics, is a metrizable space together

with a specific distance function. Every space with a countable basis is metrizable.

Although the converse is not true in general, many commonly studied metrizable

spaces have a countable basis.26 So we typically require a space to have a countable

basis to ensure that it is metrizable.

What hyperreal space shows is that it’s not obvious that our physical space is

metrizable, for it is completely natural to have a hyperreal-valued distance function,

rather than a real-valued one. Let’s call the corresponding notion hypermetrizability.

Unlike metrizable spaces, it is not typical for a hypermetrizable space to have a

countable basis—after all, a hyperreal space with the interval topology does not have

a countable basis but is nevertheless hypermetrizable. For any two points on the

hyperreal line a, b, we can define the distance between them to be |b − a|, which is

the same as the length of the interval (a, b). These open intervals constitute a basis

for the interval topology of the hyperreal line.27

26Some rather unusual metric spaces do not have a countable basis. For example, consider any
uncountable set. Let the distance between any two distinct elements be one. Then it generates a
topology that does not have a countable basis (because for each element, its singleton is open). But
such a distance function is not very interesting.

27Higher-dimensional cases are similar. For any two points in a hyperreal coordinate space
p = (p1, p2, ...), q = (q1, q2, ...), we can define the Euclidean distance between them, i.e., d(p, q) =√

(p1 − q1)2 + (p2 − q2)2 + ... Then, all open balls constitute a basis for the interval topology of
that hyperreal space.
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5 More Than Finite Additivity

I will now illustrate some desirable features of the measure in Infinitesimal Gunk by

comparing it with the measure in Russell’s solution. To avoid the inconsistency, Rus-

sell suggested rejecting Countable Additivity and using a merely finitely additive

measure, such as the Jordan measure. Recall that in Arntzenius’s inconsistency ar-

gument, Countable Additivity entails that the fusion of the Cantor regions has

a measure of 1/2, but this fusion is represented by the unit interval, which has mea-

sure one. By rejecting Countable Additivity, Russell was able to claim that the

fusion simply has measure one. To motivate this strategy, Russell argued that while

finite additivity is necessary for understanding what a measure is, Countable Ad-

ditivity need not be built into the nature of a measure. However, adopting a merely

finitely additive measure has many drawbacks.

To start with, it violates an attractive principle of supervenience: for countably

many disjoint measurable regions, the measure of their fusion (or whether there is one)

is completely determined by the measures of those regions. That is, for any countably

many disjoint measurable regions, no rearrangement will change the measure of their

fusion (or whether their fusion has a measure). To put it more precisely:

Countable Supervenience. For any two countable sets A,B of dis-

joint measurable regions, if there is a measure-preserving bijection from A

to B, then if the fusion of A is measurable, the fusion of B is measurable

and has the same measure as the fusion of A.

Russell’s solution violates this principle. For instance, if you first walked 1/4 mile,

and then 1/16 mile twice, and then 1/64 mile four times, and so on, in a straight line,

then the total distance you walked is a half-mile. But when regions of these same

sizes happen to be arranged like the Cantor intervals, the total distance becomes one

mile. Thus, the measure of the fusion of countably many disjoint regions is not deter-

21



mined by the measures of those regions. This seems magical. Now, many people have

argued that this violation is no more magical than the violation of supervenience in

the uncountable case in the standard view, according to which the length of a line

segment does not supervene on the length of its constituent points (for example, see

Hawthorne and Weatherson 2004). Thus, although the violation of Countable Su-

pervenience may be technically inconvenient, it is philosophically no worse than

the violation of uncountable supervenience, or the failure of arbitrary supervenience.

But it is not obvious whether all motivations behind Countable Supervenience

will generalize to all cases.28 In standard mathematics, the countable case is usually

more well-behaved than the uncountable case, so the countable case may be of special

interest. In general, I will take it as an advantage to satisfy Countable Super-

venience (which Infinitesimal Gunk does, as I shall argue soon), but I will leave it

open whether this advantage is significant.

There is also the question what determines the measures of countable fusions. In

many cases, no non-arbitrary answer can be given. Recall that Big Fusion, the fusion

of the regions represented by A1, C1, C2, ..., and Small Fusion, the fusion of the regions

represented by B1, B2, D1, ..., compose a region represented by the unit interval (see

Section 2). But the Lebesgue gunky measures of Big Fusion and Small Fusion are

respectively 5/6 and 2/3. Since the resulting measure is not even finitely additive, Big

Fusion and Small Fusion could not have these measures. What are their measures

then? Russell suggested that we either consider them to be unmeasurable, or we

assume brute facts about their measures that are compatible with finite additivity.

We can assign to Big Fusion any value between its inner measure of 1/3 and its outer

measure of 5/6, and to Small fusion any value between its inner measure of 1/6 and

its outer measure of 2/3, as long as the sum of the two values add up to one (Russell

28In probability theory, for example, Easwaran (2013) argued that some motivations behind count-
able additivity do not motivate uncountable additivity. So it is in principle possible to have consid-
erations in favor of Countable Supervenience that does not generalize.
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2008, 20-1). But these suggestions have clear drawbacks. If we consider those regions

to be unmeasurable (without anything more to say), then the measure theory would

be very restricted. But if those regions have measures, then the measure theory would

involve many brute facts that are wildly different from their equally good alternatives.

The situation for Infinitesimal Gunk is subtle. On the one hand, like Russell’s

solution, Infinitesimal Gunk also violates Countable Additivity. For example,

suppose you are walking a straight line, and you first walked 1/2 mile, then 1/4

mile, then 1/8 mile, and so on for all natural numbers. How many miles have you

walked in total? It’s not one mile because the monad at the end of the one mile is

not included in your journey. Indeed it’s unmeasurable because the monad is not

measurable. In fact, we can prove that for any countably infinitely many disjoint

measurable regions, their fusion is unmeasurable. It takes two steps to prove this

claim. First, for any countably infinitely many disjoint measurable hyperreal sets,

their union is unmeasurable (see Appendix A.5 for my proof based on countable

saturation). Second, for any countably many disjoint regular closed sets, their union

is regular closed (which, as I show in Appendix A.6, also follows from countable

saturation). Since measurable regions are represented by measurable regular closed

sets, it follows that for any countably infinitely many disjoint measurable regions,

their fusion is always unmeasurable.

On the other hand, this very result entails that Infinitesimal Gunk satisfies Count-

able Supervenience, since the fusion of countably infinitely many disjoint mea-

surable regions is always unmeasurable no matter how those regions are arranged.

Thus, unlike in Russell’s proposal, for countably many disjoint regions, the magic of

changing the measure of their fusion (or whether there is a measure) through mere

rearrangements of those regions does not occur.29

29Note that, like Russell’s account or the standard measure theory, Infinitesimal Gunk does not
satisfy arbitrary supervenience (or the restricted version of arbitrary supervenience that only involves
internal bijections) for reasons that will become apparent in the next section.
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However, one may argue that, even though Countable Supervenience is sat-

isfied, the mere fact that no fusion of countably infinitely many disjoint measurable

regions has a measure is a serious cost to the theory. This may be true. However,

what makes the measure theory of Infinitesimal Gunk attractive is that it has im-

portant compensations unavailable to Russell’s proposal: the measure theory satisfies

Hyperfinite Additivity, and we can define an extended-real-valued approximate

measure that satisfies Countable Additivity. I will explain them in turn.

First, unlike Russell’s solution, the measure theory does not retreat to mere finite

additivity. Rather, it has hyperfinite additivity as a compensation.

Hyperfinite Additivity. For hyperfinitely many disjoint measurable

regions, their fusion has a measure, which is the (hyperfinite) sum of the

measures of those regions.

This follows from Hyperfinite Additivity (Set) in Section 3.30 As a result,

Infinitesimal Gunk has a much richer measure than Russell’s solution.

To make this richness more vivid, consider *Big Fusion, defined as the hyperreal

extension of Big Fusion (that is, the fusion of the regions represented by the hyperreal

extensions of A1, C1, C2, ...).
31 What is the measure of *Big Fusion? Infinitesimal

Gunk implies that it is unmeasurable. But this is not all it says. The hyperreal

measure satisfies the following theorem:

Measure Approximation. For any “proper” hyperreal set A, if it has

a Lebesgue measurable shadow, then there are measurable sets B and C

30The principle can be reduced to Hyperfinite Additivity (Set) except for the caveat that two
disjoint regions may be represented by two regular closed sets that overlap on their boundaries. But
because every measurable set is the union of hyperfinitely many disjoint intervals, its boundary at
most includes hyperfinitely many points. Since a point measures zero, and hyperfinitely many zeros
add up to zero, the potential double counting of those boundary points in the case of overlapping
boundaries does not affect the final measure.

31The hyperreal extension of A1, for example, is the set of hyperreal numbers between the end-
points of A1.
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such that B ⊆ A ⊆ C and the measures of B and C differ by at most an

infinitesimal.32 (Goldblatt 1998, 212-4)

Call a hyperreal set C a Lebesgue completion of a (proper) hyperreal set A iff A

includes or is included in C and C’s measure is equal to the Lebesgue measure of

A’s shadow. Then, it follows that every (proper) unmeasurable set whose shadow

is Lebesgue measurable has a Lebesgue completion. Indeed, we can say that the

hyperreal measure is richer than the Lebesgue measure in the following sense: there is

an injective but not surjective function from Lebesgue-measurable sets on the real line

to hyperreal-measurable sets on the hyperreal line that preserves their measures and

mereological relations. In particular, if a Lebesgue-measurable set of real numbers

is the shadow of an unmeasurable set, then this function takes the set of the real

numbers to a Lebesgue completion of that unmeasurable set. In contrast, the Jordan

measure is poorer than the Lebesgue measure in the same sense.

Moreover, a natural notion of approximate measure can be defined based on Mea-

sure Approximation:

Approximate Measure. For any region, if its corresponding set has a

Lebesgue completion, then it has an approximate measure, which is equal

to the measure of that completion.

Since *Big Fusion has a shadow that has a Lebesgue measure of 1/3, it has a Lebesgue

completion that measures 1/3. This means that, even though *Big Fusion is unmea-

surable, it has an approximate measure of 1/3. These approximate measures have

nice properties. Notably, they satisfy Countable Additivity.

32The qualification of being “proper” and having a Lebesgue measurable shadow corresponds
to Loeb-measurablity (see Goldblatt 1998, 215-7). Then Measure Approximation follows from
Goldblatt (1998, 212-4). Roughly, the set of Loeb-measurable sets is like the set of hyperreal-
measurable sets except that it has more members so that it is closed under countable unions. The
claims to follow in the main text hold under this qualification. In particular, the set representing
*Big Fusion is Loeb-measurable.
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Approximate Countable Additivity. For any countably many dis-

joint regions that have approximate measures, their fusion also has an

approximate measure, which is equal to the sum of the approximate mea-

sures of those regions.33 (Goldblatt 1998, 206-8, 212-4)

In comparison, in Russell’s solution, no such attractive approximate measure can be

systematically assigned. It is reasonable to assume that, under Russell’s proposal, the

approximate measure of a Jordan-measurable region is just its Jordan measure. Then,

assuming Approximate Countable Additivity, the approximate measure of Big

Fusion would again equal its inner measure 1/3. Similarly, Small Fusion would have

an approximate measure of 1/6. But this would again violate even finite additivity,

since Big Fusion and Small Fusion are disjoint regions, but their fusion has a measure

of one.

We began by looking for a theory of space that escaped Russell’s theorem by

giving up Countable Basis. What we have ended up with is a theory that gives

up both Countable Basis and Countable Additivity. A point worth clearing

up is whether this was inevitable. Is there a reasonable theory of space that gives up

Countable Basis without also giving up Countable Additivity? Given some

reasonable assumptions, the answer is no: there is no such theory.34 Here’s a brief

sketch as for why. If space does not have a countable basis, it would follow (under

some reasonable assumptions) that there exist some very small regions that do not

have any rational interval as a part. Moreover, assuming measure is translation-

33The notion of approximate measure amounts to the Loeb measure, which is countably additive
(Goldblatt 1998, 206-8; see also Footnote 32). Given that the Loeb measure is countably additive,
it is natural to wonder why we do not use the Loeb measure instead of the hyperreal measure that I
define in the paper. The main reason is that under the Loeb measure, all infinitesimal regions have
zero measure. This violates the principle that every region has a strictly smaller subregion, which
is one of the main intuitions behind the gunky approach to space.

34Without any constraint, it is possible to violate Countable Basis without violating Count-
able Additivity, but this requires topological spaces that are too exotic to be a candidate for
our actual physical space. A typical example is the product space [0, 1]I with product topology,
where I is a cardinality larger than continuumly many. It does not have a countable basis, but has
a countably additive measure.
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invariant, we can find countably infinitely many disjoint such regions with the same

size within a unit interval. Those regions cannot all have positive finite measures.

If they have infinitesimal measures (measures smaller than any finite number), then

Countable Additivity would be violated. But if they all have measure zero, then

the attractive measure-theoretic principle that all regions have smaller subregions

would be violated. Therefore, if we assume (among other things) that measure is

translation-invariant and every region has a smaller subregion, it is impossible to give

up Countable Basis without also giving up Countable Additivity.35

6 Variants of Arntzenius’s Argument

Now let’s examine how Infinitesimal Gunk avoids the specific difficulties raised by

Arntzenius’s Cantorian constructions as well as some variants. Arntzenius’s original

argument is based on Real Representation. Thus, it does not directly apply

35I will demonstrate that it is impossible to violate Countable Basis without violating Count-
able Additivity under certain reasonable assumptions including that every region has a smaller
subregion and measure is translation-invariant. As usual, I will pretend our space is “one-
dimensional” in any suitable sense. The additional assumptions that the proof replies on are labeled
in parentheses.

Proof. Suppose space does not have a countable basis, and furthermore, the set of all measurable
regions does not have a countable basis (although this supposition is stronger than the violation of
Countable Basis, Russell’s inconsistency proof effectively only involves the thesis that the set of
all measurable regions has a countable basis). Also, suppose space is one-dimensional in the sense
that its topology can be generated by some intervals (Assumption-1). In particular, we assume that
every interval can be characterized by two endpoints, and that all endpoints are abstract entities
that constitute a totally ordered Abelian group, to which rational numbers can be embedded. The
set of all intervals with rational endpoints (or “rational intervals” for short) cannot be a basis since
they are only countably many. As one can check, it follows that there is an interval (ε, δ) that do
not have any rational interval as a part and therefore δ − ε is smaller than any rational number.
Suppose measure is translation-invariant (Assumption-2). Then we can find countably infinitely
many disjoint regions with the same measure as (ε, δ) within the interval (0, 1). For example, let
∆ = δ − ε, and let In = ( 1

n −∆, 1
n ) for all n ∈ N. Assuming Countable Additivity, the measure

of the fusion of In for all n ∈ N is well-defined—call this fusion “Big.” Now, consider the fusion of
In for all n ≥ 2, and call this fusion “Small.” Then, given Countable Supervenience (which is
entailed by Countable Additivity), Small has the same measure as Big. We further assume that
for any two bounded regions, their measures have a well-defined subtraction (Assumption-3). Since
Big is the fusion of the two disjoint regions I1 and Small, it follows from finite additivity that I1 has
a measure of zero. This contradicts the principle that every region has a strictly smaller subregion
(Assumption-4), which captures the measure-theoretic aspect of gunky space. Therefore, given
the listed assumptions, it is impossible to violate Countable Basis without violating Countable
Additivity. QED
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to Infinitesimal Gunk, since the regions are now no longer represented by regular

closed sets of real numbers but of hyperreal numbers. So, let’s consider the analogous

argument on the hyperreal line. Take a unit hyperreal interval. Then similarly we

cut out a 1/4-long hyperreal interval, two 1/16-long hyperreal intervals, four 1/64-

long hyperreal intervals, and so on for all natural numbers—call them the *Cantor

intervals and their union simply *Cantor. These intervals each represent a gunky

region—call them the *Cantor regions.

Recall that Arntzenius’s inconsistency argument relies on the following fact:

Cantor Closure. The closure of the Cantor union is the unit real

interval.

In the case of the hyperreal line, the analogous claim would be:

*Cantor Closure. The closure of *Cantor is the unit hyperreal inter-

val.

But this claim is false: the closure of *Cantor is not the whole unit line segment but

rather *Cantor itself. Why? Consider a point in the unit interval that is not in any

of the *Cantor intervals. One such point would be one that is infinitely close to the

left endpoint of the unit interval. Let δ be an infinitesimal. δ is not in *Cantor since

it is smaller than all the left endpoints of the *Cantor intervals. Furthermore, δ is not

a limit point of *Cantor because there is an open set that includes δ, but does not

include any point in *Cantor. One example is (0, δ + ε), where ε is any infinitesimal.

Therefore, δ does not belong to the closure of *Cantor. In general, for any point x

outside *Cantor, (x − ε, x + ε) is an open set that includes x but does not overlap

*Cantor. More vividly, each point outside *Cantor has an infinitesimal “cushion”

that “protects” it from *Cantor. So, the closure of *Cantor on the hyperreal line is

just itself.
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Can we come up with a different construction from *Cantor that gives rise to

similar problems as in Arntzenius’s argument? One observation is that there is no

analogous claim to *Cantor Closure as long as such a construction is composed

of countably many intervals.

Countable Union. The union of countably many disjoint closed inter-

vals is regular closed.

Again, the idea is that infinitesimals are so small that for any point outside the count-

ably many disjoint closed intervals, we can find an infinitesimally small neighborhood

of that point disjoint from the union of those intervals. As a result, any point outside

the union is not a limit point of it (Appendix A.6).

A perhaps cleverer revision of the argument is that, rather than cutting out count-

ably many hyperreal intervals from the line segment, we cut out a much larger set of

intervals. A countable set is in one-to-one correspondence with the set of all natural

numbers. Analogously, let a hypercountable set be in one-to-one (internal) correspon-

dence with the set of all hypernatural numbers. The idea then is to cut out hyper-

countably many hyperreal intervals from the line segment: R1, R2, ...RN , RN+1, ...,

with N being some infinite hypernatural. Call the union of these intervals Hyper-

cantor. In this case, every point outside Hypercantor is a limit point of it, because

for any such point, its neighborhood—even if infinitesimally small—always intersects

Hypercantor.36 Consequently, the closure of Hypercantor is the whole line segment!

36The reason for this is analogous to the reason why every point outside the Cantor union is a
limit of the Cantor union. In the case of the Cantor union, for any point x in the unit interval,
for any positive real number ε, we can find a point y in the Cantor union such that |y − x| < ε.
Now, Hypercantor is constructed in the same way as the Cantor union, except that the cutting
process does not stop with countably many intervals but continues for hypercountably many more.
In particular, the Hypercantor intervals can be expressed in terms of when they are cut out in the
same way as the Cantor intervals. For example, the leftmost point of the Hypercantor intervals cut
out at stage N is 1/2N+1 + 1/22N+1, just like the leftmost point of the Cantor intervals cut out at
stage n is 1/2n+1 + 1/22n+1. Thus, for instance, 0 is a limit point of Hypercantor because for any
positive hyperreal δ, we can find a hypernatural N such that 1/2N+1 +1/22N+1 < δ. This reasoning
can be generalized to all the points on the unit hyperreal interval.

29



But this does not cause trouble for Infinitesimal Gunk, because Hypercantor is

not a union of hyperfinitely many hyperreal intervals.37 We can grant that the gunky

region represented by the unit hyperreal interval is the fusion of hypercountably

many gunky regions of lengths 1/4, 1/16, ..., 1/4N , .... This does not result in any

contradiction because we do not have “hypercountable additivity” in Infinitesimal

Gunk. (Notice that this reply has the same structure as Russell’s reply to Arntzenius’s

original argument. That is, in the “problematic” cases, both Russell and I rely on

some version of additivity failing to hold. But as I discussed in Section 5, although

hypercountable additivity fails, Infinitesimal Gunk still has several advantages over

Russell’s solution.)

More generally, we can prove that any union of disjoint regular closed measurable

sets that is not identical to its closure must be unmeasurable.

Hyperfinite Union. The union of hyperfinitely many disjoint measur-

able regular closed sets is regular closed.38

Moreover, any measurable regular closed set is the union of hyperfinitely many disjoint

measurable regular closed sets (in particular, closed hyperreal intervals). It follows

that any union of disjoint regular closed sets that is not regular closed is unmeasurable.

As a result, Infinitesimal Gunk is safe from any Arntzenius-style trouble, since a union

of regular closed sets that is not identical to their closures is unmeasurable and thus

does not cause trouble, just like what we saw in the case of Hypercantor.

7 Conclusion

Can space be divided into ultimate parts? Does space have parts with infinitesimal

sizes? These questions are more related to each other than they seem to be. In this

37There is no internal bijection between a hypercountable set and a hyperfinite set.
38This claim is an extension of the claim that the union of finitely many regular closed sets is

regular. See Appendix A.7 for my proof sketch.
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paper, I have shown that Infinitesimal Gunk, the view that any region of space can

be further divided and some regions are infinitesimally small, provides a novel re-

ply to the inconsistency arguments given by Arntzenius and Russell. Moreover, this

view has several important advantages over the solutions these authors suggested. It

has a richer measure theory than Russell’s proposal and satisfies attractive measure-

theoretic principles unavailable to the latter. Unlike Arntzenius’s proposal, it does

not need to admit boundaries. Thus I recommend this novel theory for serious con-

sideration.
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Appendix

A Countable Saturation

The language of standard analysis L that we focus on includes constant symbols for

all real numbers and set constructions from real numbers through the iterations of the

powerset operation and union. More precisely, let Un(X) = Un−1(X) ∪ P(Un−1(X))

and U(X) =
⋃∞
n=0 Un(X). The language includes constants for all members of U(R),

which have associated ranks according to the least Un(R) they belong. L-terms and

L-formulas are defined in the usual way (Goldblatt 1998, 166-7). We can show that all

the familiar functions and relations in standard analysis (such as addition, integration,

Lebesgue measure), considered as sets, are members of U(R) and therefore are referred

to by L-constants (Goldblatt 1998, 165-6). Note that these functions and relations

are not just defined over real numbers but can have a variety of ranks. The hyperreal

system under consideration (along with the set constructions) U ′ is an alternative

model for L that is an expansion of U(R). There is a unique transfer map from U(R)

to U ′ that preserves all the L-truths. Members of the image of the transfer map

are called standard. For example, the hyperreal line ∗R is the image of R under the

transfer map, and is therefore standard. An entity is internal iff it is a member of

a standard set (Goldblatt 1998, 172). Any hyperreal number is internal because it

is a member of ∗R. Any hyperreal interval is internal because it is a member of the

set {X | (∃a, b ∈ ∗R)(∀x ∈ X)(a ≤ x ≤ b)}, which is the image of the set of all real

intervals. A bijective internal function belongs to a set of functions characterized as

“bijective” in L in the usual way. It turns out that all sets in the form of {x | φ(x)},

where φ is a formula in the language L′ that extends L with constants for internal

entities, are internal sets (Goldblatt 1998, 177). For example, L′ has constants for

all hyperreal numbers. A hyperreal interval {x | a ≤ x ≤ b} (a, b ∈ ∗R) is therefore
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internal. On the other hand, we can prove that any infinite set of real numbers (e.g.,

R,N) is not internal (Goldblatt 1998, 176).

In the hyperreal models we are interested in, the internal sets satisfy the following

property:

Theorem A.1 (Countable Saturation) The intersection of a decreasing sequence of

nonempty internal sets X1 ⊇ X2 ⊇ ... is always nonempty (Goldblatt 1998, 138).

Countable Saturation implies this principle:

Corollary A.2 (Nested Intervals) For any countable nested sequence of intervals

I1 ⊇ I2 ⊇ ..., their intersection is non-empty and includes an (open) interval.

Proof. All hyperreal intervals are internal sets. Thus, according to Countable Satura-

tion, the countable nested sequence of intervals I1, I2, ... have non-empty intersection.

Moreover, the interiors of these intervals also have non-empty intersection. Let x be

a point in the intersection of their interiors. Then, the intersection of the parts of

the intervals to the right of x is non-empty. Let y be a point in this intersection.

Then, [x, y] is included in the intersection of I1, I2, .... (Clearly, the intersection also

contains the open interval (x, y).) QED.

With Nested Intervals, we can prove that Infinitesimal Gunk violates Countable

Basis:

Theorem A.3 Under Infinitesimal Gunk, the topology of space does not have a

countable basis.

Proof. In this proof, we will use this fact: if a set of regions B is a basis for a

gunky space, then every region in that space contains some region in B. Let C be

any countable set of regions. Take an arbitrary point x on the hyperreal line, and

consider the set of all elements in C that include x in their interiors. Call this set
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Cx. Since C is countable, Cx is also countable. It follows from Nested Intervals that

there exists an infinitesimal neighborhood ∆ of x that is included in all elements of

Cx. Take a closed infinitesimal interval that is strictly included in ∆. This interval

does not contain any element of C, so C is not a basis. Thus, a gunky space does not

have a countable basis. QED.

In Section 5 (p.23), I mentioned that the fusion of any countably infinitely many

disjoint measurable regions is not measurable. This claim can be derived from the

following corollaries of Countable Saturation:

Corollary A.4 If an internal set X is a countable union of internal sets X1, X2, ...,

then there is a natural number k such that X is the union of X1, ..., Xk (Goldblatt

1998, 139).

Proof. The proof is adpated from Goldblatt (1998, 139-40). Suppose that for all

k ∈ N, X −
⋃
n≤kXn is non-empty. Since X −

⋃
n≤kXn =

⋂
n≤k(X − Xn), we have

that
⋂
n≤k(X−Xn) is non-empty. Call this set Y k. Then 〈Y k〉 is a decreasing sequence

of non-empty internal sets. So, by Countable Saturation, there is a point belonging to

Y k for all k, and thus to X−Xk for all k. Therefore, X is not the union of X1, X2, ....

QED.

Corollary A.5 For any countably infinitely many disjoint measurable sets, their

union is unmeasurable.

Proof. Every measurable set is a union of hyperfinitely many disjoint intervals. This

in fact guarantees that it is an internal set. Let A1, A2, ... be countably infinitely

many disjoint measurable sets and let A be their union. Suppose A is measurable.

According to Corollary B.4, it follows that A is the union of finitely many Ai. But

since A1, A2, ... are infinitely many and disjoint, their union is not identical to the

union of any finitely many Ai. Thus, A is not measurable. QED.
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Corollary A.6 For any countably many disjoint regular closed sets, their union is

regular closed.

Proof. Let A1, A2, ... be countably many disjoint regular closed sets on the hyperreal

line. Let A be their union. I will show that A includes all its limit points and is

therefore closed. Take any point y outside A. For each regular closed set Aj, there is

an open interval that includes y and is disjoint from Aj. According to Nested Intervals,

the intersection of these open intervals includes an open interval which includes y and

is disjoint from A. Thus y is not a limit point of A. Since y is arbitrarily chosen, no

point outside A is a limit point. Therefore, A is closed. QED.

In Section 6 (p.30), we need to show that there are no “trouble-making” boundaries

when it comes to the union of hyperfinitely many regular closed sets.

Theorem A.7 For any hyperfinitely many measurable regular closed sets, their union

is regular closed.

Proof Sketch. In standard analysis, we have the following induction principle for the

natural numbers: an L-formula φ with one free variable is satisfied by every natural

number (taken as 1, 2, ...) if (1) φ is satisfied by n = 1; (2) if φ is satisfied by any

natural number n, then it is also satisfied by n+ 1. In nonstandard analysis, we have

an analogous induction principle for the hypernatural numbers: an L-formula ψ with

one free variable is satisfied by every hypernatural number if (1) ψ is satisfied by

N = 1; (2) if ψ is satisfied by any hypernatural number N , then it is also satisfied by

N+1. Since any set with a hyperfinite cardinality N can be ordered under an internal

bijection to {1, 2, ..., N}, we will pick any such ordering of the set of hyperfinitely

many measurable regular closed sets in question. Now, we can easily confirm the

following: (1) the union of the singleton set of a measurable regular closed set is

(trivially) regular closed; (2) if the union of the first N measurable regular closed sets

is regular closed, then the union of the first N + 1 measurable regular closed sets is
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also regular closed because the union of two regular closed sets is regular closed. Also,

these expressions can indeed be put into L-formulas. Then according to the induction

principle, for any hypernatural N , the union of the first N measurable regular closed

sets is regular closed, which is just what we want. QED.
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