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Introduction

For today’s readers of Hans Reichenbach’s The Philosophy of Space and Time (Reichenbach, 1958), it might come
as a surprise that the book is missing the translation of an Appendix entitled ‘Weyl’s Extension of Riemann’s
Concept of Space and the Geometrical Interpretation of Electromagnetism.’ A reference to a no-longer-existing
§46 on page 17 is the only clue of its existence. The Appendix covered some 50 pages of the German original, the
Philosophie der Raum-Zeit-Lehre (Reichenbach, 1928)-not few considering that Reichenbach dedicated only half a
score pages more to general relativity. The editors of the English translation, Maria Reichenbach and John Freund,
had prepared a typescript of the translation of the Appendix (HR, 041-2101) including the transcription of the
mathematical apparatus, which was considerably heavier than that in the rest of the book .1 However, they must
have decided not to include it into the published version eventually. By the end of the 1950s, Weyl’s geometrical
interpretation of electromagnetism was at most of antiquarian interest. The mathematical e�ort the readers were
asked to familiarize with the subject might have appeared not worth the modest philosophical gain. With the
important exception of a pathbreaking paper by Alberto Co�a (1979), the case of the missing Appendix did not
seem to have attracted attention in the theoretical and historical literature since then (see Giovanelli, 2016).

The context in which the Appendix was written is brie�y recounted by Reichenbach himself in an unpublished
autobiographical sketch (HR, 044-06-25). Reichenbach started to work on the Philosophie der Raum-Zeit-Lehre in
March 1925. The drafting of the manuscript was interrupted several times, but some of its core parts were �nished
at the turn of 1926, when Reichenbach was negotiating a chair for the philosophy of physics in Berlin (Hecht and
Ho�mann, 1982). “In March-April 1926, Weyl’s theory was dealt with, and the peculiar solution of §49 was found.
At that time, the entire Appendix was written. (correspondence with Einstein). Talk at the physics conference in
Stuttgart” (HR, 044-06-25). This short reconstruction is con�rmed by independent textual evidence (see Giovanelli,
2016). In March 1926, after making some critical remarks on Einstein’s newly published metric-a�ne theory
(Einstein, 1925b), Reichenbach sent Einstein a 10-page ‘note’ that would turn out to be an early draft of §49 of
the Appendix. The typescript of the note is still extant (HR, 025-05-10). Einstein’s objections and Reichenbach’s

1Henceforth, the English translations of Philosophie der Raum-Zeit-Lehre are taken from Reichenbach, 1958; translations of the Appendix
are taken from HR, 041-2101. In the latter case, page numbers are enclosed in square brackets.
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replies reveal that contrary to Co�a’s (1979) claim, Reichenbach’s defense of geometrical conventionalism against
Weyl’s geometrical realism (see Ryckman, 1995) was not the motivation behind Reichenbach’s note.

Reichenbach was concerned with the more general problem of the meaning of a ‘geometrization’ of a physical
�eld. At that time, it was a widespread opinion that after general relativity had successfully geometrized the
gravitational �eld, the next obvious step was to ‘geometrize’ the electromagnetic �eld (see, e.g., Eddington,
1921; Weyl, 1918a, 1921b). However, according to Reichenbach, this research program-the so called uni�ed �eld
theory-project (see Goenner, 2004; Sauer, 2014; Vizgin, 1994)-was based on a fundamental misunderstanding of
the nature of Einstein’s geometrical interpretation of the gravitational �eld. To prove his point, Reichenbach
put forward his own attempt of a geometrical interpretation of the electromagnetic �eld. Thus, he hoped to
demonstrate that such geometrization was not much more than a mathematical trickery that in itself does not
constitute a gain in physical knowledge. Einstein, in spite of having found some signi�cant technical mistakes
in Reichenbach’s theory, agreed, at least super�cially, with Reichenbach’s ‘philosophical’ message (Lehmkuhl,
2014). Against Einstein’s advice, Reichenbach presented this material in public at the Stuttgart meeting of the
German Physical Society (Reichenbach, 1926). Later, he included it in the manuscript of the book he was working
on as part of a longer Appendix. After some struggle in �nding a publisher, the manuscript of the Philosophie der
Raum-Zeit-Lehre was �nished in October 1927 and published the following year by De Gruyter (HR, 044-06-25).

The correspondence between Reichenbach and Einstein has been already discussed elsewhere (Giovanelli,
2016). In the present article, I aim to o�er an introduction to the Appendix itself. Besides the note that Reichenbach
sent to Einstein, which became §49, the Appendix entails over 40 pages of additional material, that are worth
further investigation. As the present paper will try to demonstrate, the philosophical message of the Appendix
should be considered an integral part of the line of argument of Philosophie der Raum-Zeit-Lehre and, in particular,
of its last chapter dedicated to general relativity. As Reicenbach pointed out, according to general relativity,
the universal e�ect of gravitation on all kinds of measuring instruments de�nes a single geometry, a, in general,
non-�at Riemannian geometry. “In this respect, we may say that gravitation is geometrized” (Reichenbach, 1928,
294; o.e.; tr. 256). We do not speak of deformation of our measuring instruments “produced by the gravitational
�eld”, but we regard “the measuring instruments as ‘free from deforming forces’ in spite of the gravitational
e�ects” (Reichenbach, 1928, 294; tr. 256). However, such a geometrical explanation is, according to Reichenbach,
not an explanation at all, but merely a codi�cation of a matter of fact. Reichenbach insisted that, also in general
relativity, it was still necessary to provide a dynamical explanation of the observed behavior of rods and clocks,
although a dynamical explanation of a new kind. Even if “we do not introduce a force to explain the deviation of a
measuring instrument from some normal geometry”, we must still invoke a force as a cause for the fact that “there
is a general correspondence [einheitliches Zusammenstimmen] of all measuring instruments” (Reichenbach, 1928,
294; o.e.; tr. 256), that all agree on a non-�at Riemannian geometry depending on the matter distribution.

Indeed, according to Einstein’s theory, general relativity teaches us that we may consider the “e�ect of
gravitational �elds on measuring instruments to be of the same type as all known e�ects of forces” (Reichenbach,
1928, 294; tr. 257). What is characteristic of gravitation respect to other �elds is the universal coupling of gravitation
and matter. Measuring instruments made of whatever �elds and particles can be used to explore the gravitational
�eld, and the result of such measurements is independent of the device. As a consequence, it becomes impossible to
separate the measuring instruments that measure the background geometry (rods and clocks, light rays, uncharged
test particles) from those that measure the dynamical �eld (charged test particles). The geometrical measuring
instruments have become indicators of the gravitational �eld. However, this does not imply that it is “the theory of
gravitation that becomes geometry”; on the contrary, it implies that “it is geometry that becomes an expression of the
gravitational �eld” (Reichenbach, 1928, 294; o.e.; tr. 256). For the reader of the English translation, Reichenbach’s
line of argument makes a short appearance at the end of the sections dedicated to general relativity and is then
interrupted abruptly. However, in the original German, Reichenbach’s line of argument, it is picked up again and
developed for further 50 pages in the Appendix. Thus, the latter is nothing but the second half of an argumentative
arch whose �rst half had been erected in the last chapter of the book.

This study demonstrates how in the Appendix, starting from the a�ne connection instead of that from the
metric, Reichenbach formulated a theory that seems to ‘geometrize’ both the gravitational and the electromagnetic
�elds. However, unlike general relativity, Reichenbach’s theory does not add any new physical knowledge that
was not already entailed in previous theories. Thus, the geometrization of a �eld is not in itself a physical
achievement. A comparison with a geometrization of Newtonian gravity suggested by Kurt Friedrichs (1928) at
around the same time, provides the simple reason why Reichenbach’s attempt was bound to fail.2 Nevertheless,
Reichenbach’s theory is revealing of the philosophical message that Philosophie der Raum-Zeit-Lehre was meant
to convey. Undoubtedly, general relativity has dressed the distinctive feature of gravitation (its universal coupling
with all other physical entities) in a shiny geometrical ‘cloak’ (a Riemannian geometry with variable curvature).
However, in Reichenbach’s preferred analogy, one should not mistake “the cloak [Gewand] for the body that it

2This geometrization is known as Newton-Cartan theory, since it was developed independently by Cartan, 1923, 1924; see Malament, 2012.
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covers” (Reichenbach, 1928, 354; tr. [493]). Contrary to widespread belief, general relativity was not the dawn of
the new era of ‘geometrization of physics’ that was supposed to dominate 20th-century research for a uni�ed
�eld theory; general relativity was the culmination of a historical process of ‘physicalization of geometry’ that
had begun in the 19th century.

1 The Appendix to the Philosophie der Raum-Zeit-Lehre. Overview and Structure

General relativity rests formally on Riemannian geometry. The latter is based on the ‘hypothesis’ that the squared
distance ds between two neighboring points; xν and xν + dxν is a homogeneous, second-order function of the
four coordinate di�erentials. In Einstein’s notation (where summation over repeated indices is implied), it reads
as follows:

ds2 = дµνdxµdxν . [1]

As is well-known, the coe�cients дµν = дν µ are at the same time (a) the components of the metric (‘measurement’)
�eld—a set of 10 numbers that serve to convert coordinate distances dxν between two closed by spacetime points
into real distances ds = ±1— and (b) components of the gravitational �eld. The numerical value of the ds has
a physical meaning, if it can be considered as the result of a measurements, which inevitably demand a unit in
which to measure. In relativity theory, rods and clocks at relative rest in a free-falling frame, perform orthogonal
measurements, clocks supply ds = −1, and rods ds = +1. “Why are these measuring instruments adequate for this
purpose?” (Reichenbach, 1928, 331; tr. [463]). The fundamental property that makes them suitable for measuring
the ds was outlined by Reichenbach in §4 of the Philosophie der Raum-Zeit-Lehre (Reichenbach, 1928, 26–27; tr. 17).
One can chose, say, n spacings between the atoms of a rock-salt crystal as a unit of length ds = 1. As it turns out,
two identical crystals that have the same length when lying next to each other are always found to be equally
long after having been transported along di�erent paths to a distant place. The same holds for unit clocks. One
can arbitrarily choose n1 wave crests of cadmium atom emitting the red line or n2 of a sodium atom emitting the
yellow line as a unit of time ds = −1. However, the ratio n1/n2 happens to be a natural constant.

General relativity, as a testable theory, stands or falls with this empirical fact (see Giovanelli, 2014). However, it
would be possible to think of a world in which rods and clocks does not have this peculiar ‘Riemannian’ behavior.
In this world, it would still be possible to formulate a de�nition of congruence, that is, a de�nition of the equality
of ds’s. However, such de�nition would not be unique. The units of length would have to be given for every space
point, and we could not simply rely on Paris standard meter. In a Riemannian world, if we know the length of a
room, we also know the number of unit rods that we can place along one of its walls (Reichenbach, 1928, 333; tr.
[464]). In a non-Riemannian world, such number would depend upon the path by which the rods were actually
brought into the room (Reichenbach, 1928, 333; tr. [464]). “Such conditions may seem very strange, but they are
certainly possible, and if they were real, we would surely have adapted ourselves to them” (Reichenbach, 1928,
333; tr. [464]). Obviously, setting randomly di�erent units of measure at every point would be of little use for the
people in such a world. Instead, they would search for a “geometrical method which would characterize the law of
change in length during transport; that is, they would search for ‘the law of displacement’ [Verschiebungsgesetz]”
(Reichenbach, 1928, 333; tr. [464]): how much lengths change when transported at in�nitely close points.

Thus, the geometrical problem of formulating such a ‘law of displacement’ arises. According to Reichenbach,
this problem was addressed and solved by Weyl (1918a, 1918c). Weyl’s “solution certainly constitutes a mathematical
achievement of extraordinary signi�cance regardless of its physical applicability” (Reichenbach, 1928, 333; tr. [464]).
One can think of dxν as the components of a vector Aτ . Weyl realized that there are two separate operations of
comparison of vectors Aτ . Using a somewhat idiosyncratic language, Reichenbach calls the metric the operation
of distant-geometrical comparison of lengths of vectors. At every point, once we know the numerical values of
the components of a vector Aµ in a certain coordinate system, the metric дµν allows one to calculate its length,
a single number l2 = дµνA

µAν . If a di�erent unit of measure is chosen (inches instead of cm), then one would
obtain a di�erent number l ′ = λl . However, the ratio λ is regarded as an absolute constant (see Weyl, 1919, 102).
Weyl realized that, on the contrary, in the general case, it is not possible to establish whether two vectors Aτ and
A′τ at di�erent places have the same direction by simply inspecting their components. Reichenbach typically calls
displacement the operation of near-geometrical comparison of the direction of vectors that takes into account
the intermediary steps needed to ‘displace’ or transfer a vector from one place to another. In Reichenbach’s
characterization, Weyl discovered a type of space more general than the Riemannian space, in which the near-
geometrical operation of displacement, rather than the distant-geometrical metrical comparison, represents the
most fundamental operation.

In particular, Weyl envisaged a geometrical setting “[t]he comparison of lengths by means of a metric is [. . .]
replaced by a comparison of lengths through displacement” Reichenbach, 1928, 336; tr. HR, 041-2101, 469. The ratio
of units is allowed to change from point to point, thus l ′ = λ(xν )l is an arbitrary function of the coordinates. Weyl
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found that in such a geometry, the change of length l of a vector transported to a nearby point is expressed by the
formula d(log l) = κσdxσ , where κσ is a vector �eld. The mathematical ‘discovery’ of the independence of the
operation of displacement and of the metric had important implications in spacetime physics. On the one hand, it
turns out to be advantageous to present general relativity as theory based not solely on the metric eq. [1] but
also on two separate geometrical structures and to impose as a compatibility condition that the length of equal
parallel vectors is the same. On the other hand, by weakening such a compatibility condition, one can open new
mathematical degrees of freedom that can be used to incorporate the electromagnetic �eld into the geometry
of spacetime. In particular, Weyl (1918a) identi�ed kσ with the electromagnetic four-potential (see, e.g., Scholz,
1994). Other strategies of ‘geometrizing’ the electromagnetic �eld were evaluated when Reichenbach was writing
the Appendix. One can keep Riemannian geometry but increase the number of dimensions (see, e.g., Einstein,
1927a,b) or abandon the restriction that ds is a quadratic form (Reichenbächer, 1925). However, Reichenbach did
not consider these theories and only discussed Weyl’s Ansatz and its further developments.

The goal of the Appendix to the Philosophie der Raum-Zeit-Lehre was to outline (1) a generalization of Weyl’s
mathematical approach based on the work of Eddington (1923) and Schouten (1922b). In particular, Reichenbach’s
terminology and notation is taken from the German translation (Eddington, 1925) of Eddington’s textbook on
relativity (Eddington, 1923). However, Reichenbach followed Schouten (1922b) in adopting a more general de�nition
of the operation of displacement. This mathematical treatment, in Reichenbach’s parlance, amounts to provide
(2) a conceptual de�nition of the operation of displacement, without asking about its physical realization or
interpretation. The second step (3) was to investigate the physical applicability of such a mathematical apparatus.
This means dealing with the empirical question whether or not there are objects in nature that behave according to
the operation of displacement. This second step amounts to provision of a coordinative de�nition of the operation
of displacement. After a coordinative de�nition has been chosen, Reichenbach (4) presented an example of physical
application of such a mathematical apparatus. Reichenbach demonstrated that, by resorting to a su�ciently
general de�nition of the operation of displacement with an appropriate physical interpretation, one could provide
a geometrical interpretation of the electromagnetic �eld that was ‘just as good’ as the geometrical interpretation
of the gravitational �eld provided by Einstein. (5) Finally, Reichenbach re�ected on the philosophical consequences
of his theory. By demonstrating that his geometrization of the electromagnetic �eld, although impeccable as
geometrical interpretation, did not lead to any new physical results, Reichenbach concluded that geometrization
in itself was not the reason why general relativity was a successful physical theory. Thus, after a brief introduction
of §46, the Appendix is roughly structured in this way:

1. The conceptual de�nition of the operation of displacement (§47)

2. The coordinative de�nition of the operation of displacement (§48)

3. An example of a physical application of this mathematical apparatus (§49)

4. The philosophical consequences (§50)

2 The Conceptual De�nition of the Operation of Displacement

2.1 Displacement Space and Metrical Space

Let us assume that a coordinate system is spread over an spacetime region, so that each point is identi�ed by a
set of four numbers xν (where ν = 1, 2, 3, 4). This coordinatization is of course completely arbitrary. A vector Aτ
placed at some point P with coordinates xν can be thought as an arrow or as the sum of its components Aµ , the
four numbers (A1, A2, A3, A4) that we associate with some point P . Given a vector with components Aµ in the
coordinate xν , the components A′µ of the vector in the coordinates x ′ν is A′µ = (∂x ′µ/∂xρ )Aµ . A collection of
four numbers Aµ that change according to this rule is de�ned as the contravariant components of a vector Aτ .
For example, the displacement vector, dν (the separation between two neighboring points), leading from xν to
xν + dxν is the prototype of a contravariant vector. In Euclidean geometry, it is always possible to introduce a
Cartesian coordinate system in which two vectors are equal and parallel when they have the same components:

A′τ −Aτ = 0 . [2]

One can move Aτ at P with coordinates xν to a neighboring point P ′ with the coordinates xν + dxν from P and
place a vector, A′τ , there. dxν might be called a ‘displacement’. If the vector does not change its components, then
it is the ‘same’ vector at a di�erent point P ′.

However, this simple relation does not hold if we introduce curvilinear coordinates, e.g., polar coordinates.
The components of the vector change according to Aµ = (∂x ′µ/∂xρ )Aρ . Since the partial derivatives vary from
point to point, we cannot compare two vectors, even not at neighboring points. Two vectors might have di�erent

4



components because they are not equal and parallel or because the components have changed in a di�erent way
at di�erent points. Thus, if one moves the vector to a neighboring point dxν , one does not know whether the
vector has remained the ‘same’ by simply looking at its components. In other words, we have lost the ‘connection’
(Zusammenhang) from a point to another. Since the a�ne geometry is the study of parallel lines, Weyl (1918a,
1918c) used to speak of the necessity of establishing a ‘a�ne connection’ (a�ner Zusammenhang). However, it is
relation of ‘sameness’ rather than parallelism that is relevant in this context. According to a nomenclature that
was also widespread at that time, Reichenbach typically referred to the operation of ‘displacement’ (Verschiebung)
as the small coordinate di�erence dxν along which the vector is transferred. Since the ‘displacement’ also indicates
the vector dxν , the expression ‘transfer’ (Übertragung) was preferred by other authors (see, e.g., Schouten, 1922b,
1923).

Displacement. To reinstate the ‘connection,’ one needs to establish a rule to compare vectors at in�nitesimally
separated points.

dAτ = A′τ −Aτ .

Given a vector Aτ at xν in any coordinate system, we need to determine the components vector A′τ at xν + dxν
that is to be considered the ‘same vector’ as the given vector Aτ , that is, dAτ = 0. We expect that the vector at
xν + dx

′
ν will depend linearly on the vector at xν ; further, the change in the components between the two points

will be proportional to the coordinate shifts dxν . Thus, we expect a rule that takes the form:

dAτ = ΓτµνA
µdxν . [3]

The quantity Γτµν has three indices, that is, entails τ possible combinations of µ × ν coe�cients, which can vary
arbitrarily from worldpoint to worldpoint. In other words, the Γτµν are arbitrary continuous functions of the xν .
Notice that Reichenbach, following Schouten (1922a), did not impose the symmetry of the µ,ν , so that in general
Γτµν , Γτν µ . Thus, in four-dimensions, one has 4 × 16 = 64 coe�cients, which reduce to 4 × 10 = 40, if Γτµν = Γτν µ .

Starting with a vector Aτ at a point P with coordinates xν , one may displace this vector along dxν to the
worldpoint P ′ with coordinates xν + dxν ; using eq. [3], one can compute the components vector A′τ at P ′ that is
equal and parallel to Aτ at P in any coordinate system. The Γτµν is not a tensor. Γτµν = 0 in a Cartesian coordinate
system, so that the components of a vector do not change under parallel transport. However, Γτµν , 0 in a di�erent
coordinate system, so that the components of a vector do change under parallel transport. Continuing this process
step after step from A′τ to A′′τ , to A′′′τ and so on, we obtain a broken-line curve. As the size of each displacement
goes to zero, this broken line becomes a continuous curve xν (s):

dAµ

ds
= ΓτµνA

µdxν . [4]

Let P and Q be two worldpoints connected by a curve. If a vector is given at P , then this vector may be moved
parallel to itself along the curve from P to Q ; for given initial values of Aτ , eq. [4] gives the unknown components
of the vector A′τ , which is being subjected to a continuous parallel displacement, in which step is labeled by the
parameter s . Thus, eq. [4] picks up the straightest among all possible curves between P and Q ; that is, the lines
whose direction along itself is parallel transported. At this stage, neither the notion distance nor angles between
vectors have been de�ned. Nevertheless, the operation of displacement is su�cient to compare the length of
parallel vectors, that is the length relative to other lengths along the same straightest line. We can compare the
lengths of any two sections of this curve, that is, determine the ratio of the ‘number of steps’ s (the so-called a�ne
parameter) involved in each of them.

Figure 1 – The nonexistence of in�nitesimal parallelograms (Reichen-
bach, 1928, 348)

The displacement is not assumed to be symmet-
ric Γτµν , Γτν µ . This implies that, if four neighboring
in�nitesimal vectors are parallel in pairs and equally
long in the sense of the displacement, they will not
form a quadrilateral. Thus, by transporting a vec-
tor parallel to itself starting from P , one will not ar-
rive at the same point P . In the general displace-
ment space, there are no in�nitesimal parallelograms
(dx)µ + (δx)µ − Γ

µ
να (δx)

α (dx)ν 3). If we require the
connection to be symmetric, the vectors will form a
quadrilateral, and we will arrive at the same point P

3The di�erence between a symmetric connection and a non-symmetric one Γτµν − Γ
τ
ν µ is a tensor of third rank Jµν ,τ = 1

2 Γ
τ
µν − Γ

τ
ν µ = 0.

This tensor is called an asymmetry tensor or torsion. However, Reichenbach did not introduce this notation (see below appendix A.
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(Reichenbach, 1928, 348–349; tr. [485–486]). However, the vector thus obtained will not be, in general, the same
vector as the one we have started from; that is, it will not be equal and parallel to it. The parallel transport of a
vector Aτ from A to B and from B to A is reversible (on transferring back along the same curve, you get back the
initial vector at P ); however, in general, parallel transport along a curve depends on the curve, not only on the
initial and �nal points. Thus, the components of A′τ at B depend on the path chosen:

A′τ −Aτ =

∫
s
ΓτµνA

µdxν

where the integral s depends on the path. Given a vector at one point P , using the Γτµν , one can determine which
is the ‘same’ vector at the neighboring point P ′. To determine which is the ‘same’ vector at a point Q that is a
�nite distance from P , then we will have to ‘transport’ the initial vector along a succession of in�nitesimal steps
to reach the �nal point Q . However, the vector thus obtained will generally depend on the path chosen between P
and Q . Thus, it is meaningless to speak of the ‘same vector’ at di�erent distant points. The di�erence between Aτ

and A′τ might vanish or not depending on the path of transportation. As a consequence, a vector Aτ transported
parallel around any closed curve might not return to the same vector. It is generally said that parallel transport is,
in the general case, non-integrable.

Thus, integrability occurs only in a particular class of spaces, in which it is allowable to speak of the same
vector at two di�erent distant points P and P ′. Such spaces are characterized by the fact that Γτµν can be made
vanish everywhere by a suitable choice of coordinates, that is, by introducing linear coordinates (such as Cartesian
coordinates). Given the 64 coe�cients of the connection Γτµν at every point, it would be di�cult to decide by
sheer inspection whether this is the case. One needs, therefore, to introduce a criterion of integrability. From the
connection alone, one can construct the following tensor:

Rτµνσ (Γ) =
∂Γτµν

∂xσ
−
∂Γτµσ

∂xν
+ Γταν Γ

α
µσ − Γ

τ
ασ Γ

α
µσ . [5]

Weyl called this four-index symbol ‘direction curvature,’ and it is always antisymmetrical in νσ , but possesses no
other symmetry properties. Thus, in general, it has 4 × 4 × 6 = 96 components. If the tensor Rτµνσ (Γ) vanishes,
one can introduce ‘linear’ coordinate systems, which are characterized by the fact that in them, the same vectors
have the same components at di�erent points of the systems. If it does not, it is impossible to introduce such a
‘linear’ coordinate system. Thus, from the operation of displacement alone, one can construct an analogon of the
Riemann tensor Rτµνσ (д) without any reference to the metric дµν .

Metric. If only the operation of displacement is de�ned, it does not make sense to say that a vector has a magnitude
and direction, since non-parallel vectors are not comparable. When vectors lie along di�erent straightest lines, we
need to specify an additional operation to compare their magnitudes and directions. The notions of length and
angles are de�ned by means of the dot product of two vectors. By the summation convention, the dot product
AµBµ stands for the sum of the four quantities A1B

1,A2B
2,A3B

3,A4B
4. The squared length of a vector is de�ned

as the dot product of the vector with itself l2 = AµA
µ . The angle θ of two unit vectors is AµBµ = cosθ . These

expressions use two di�erent kinds of vector components of the same vector, one with a subscript and one with
a superscript. The components Aµ change inversely to changes in scale of coordinates A′µ = (∂x ′µ/∂xρ )Aρ ;
consequently, they are called ‘contravariant’ components. Aµ change in the same way as the changes in the scale
of coordinates A′µ = (∂xρ/∂x ′µ )Aρ ; consequently, they are called ‘covariant’ components of a vector. Since one
change compensates the other, the length of a vector l2 = AµA

µ is the same in the new coordinate system. One
can write the same vector Aτ in terms of its covariant and contravariant components Aτ = eµA

µ = eµAµ . By
setting eµ · eν = дµν and eµ · eµ = дµν , the dot product of a vector with itself can be written:

l2 = дµνA
µAν = дµνAµAν = AµAµ . [6]

Theдµν is the so-called metric (i.e., measurement) tensor. Its primary role is to indicate how to compute an invariant
length l of a vector Aτ from its components Aµ , which are in general di�erent in di�erent coordinate systems;
its secondary role is to allow the conversion between contravariant and covariant components Aν = дµνAµ and
Aν = дµνAµ . The contravariant vector Aτ could be for the displacement vector dxν .4 Then, equation eq. [6] is
nothing but eq. [1] which extracts the distance between two neighboring points from their coordinates. If Aτ is
dxν /ds , (where ds is the timelike interval which is an element of the four-dimensional trajectory of a moving
point), then l is length of the four-velocity vector uν , d2xν /ds2 is the four-acceleration vector, and so on. What is
worth noting is that in Reichenbach’s parlance, the ‘metric’ дµν is so de�ned that allows the comparison of the

4As Reichenbach rightly noticed, “writing of a coordinate di�erential with a lower index is a mistake” (Reichenbach, 1928, 348; tr. [485;
fn. ]), since coordinate di�erentials are the prototype of contravariant vectors. However, it is standard in physical literature.
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length of two vectors l and l ′ not only at the same point in di�erent directions, but at distant points independently
of the path of transportation:

l ′ − l =
√
дµνAµAν −

√
д′µνA′µA′ν .

In other words, if two vectors are equal at P (that is l ′ − l = 0), they will be equal at P ′, whatever the path they
are transported. In Reichenbach’s parlance, for a manifold to be a metrical space, it is not su�cient that the dot
product is de�ned at every point (i.e., it is possible to compare the lengths of vectors at the same point in di�erent
directions); in addition, the dot product should not change under parallel transport.

Compatibility between the Metric and the Displacement. The two operations de�ned by Reichenbach, the dis-
placement and the metric, relate to di�erent subjects. The metric does not say anything about whether the two
vectors at di�erent points have the same direction, whereas, by contrast, the displacement does not supply a
number for vector lengths and, therefore, cannot be used for the comparison of unequal lengths. However, if
the purely a�ne notion of vectors is not enough to de�ne the length of a vector in general, it does allow for the
comparison of lengths of parallel vectors, i.e., relative to other lengths along the same straightest line. In this
case, the two operations, the displacement and the metric, refer to a common subject. Therefore, they might
contradict each other. Two vectors at di�erent points that are of equal lengths according to the metric l ′ − l , 0
might be of unequal lengths in the sense of the displacement A′τ − Aτ = 0. Thus, every time a comparison of
lengths is at stake, we would always have to specify which of the two operations of comparison one is referring
to. In Reichenbach’s view, although this situation is “logically permissible, it is geometrically unsatisfactory”
(Reichenbach, 1928, 339; tr. [473]). It seems reasonable to require that the two operations are so de�ned such
that the assertions they make in common are not contradictory. Vectors that are of equal lengths A′τ −Aτ = 0
according to the displacement should be of equal-length vector l ′ − l = 0 according to the metric see Reichenbach,
1929.

Reichenbach intended to demonstrate how it was possible to construct a class of ‘balanced spaces,’ that is,
spaces in which some degree of compatibility between the metric and the displacement is assured. Although none
of these possible geometries might turn out to be “applicable to reality, the problem still has purely geometrical
interest” (Reichenbach, 1928, 339; tr. [473]). In any case, the class of balanced spaces represents “an even more
general geometrical frame than Riemannian geometry for the description of reality” (Reichenbach, 1928, 339; tr.
[473]). How to construct a balanced space? According to Reichenbach, there are two possible ways to accomplish
this goal. (1) One may “limit the scope of the metric”; that is, one may weaken the full compatibility condition
between the metric and a�ne connection, “so that it will no longer refer to statements that result from the use of
the displacement” (Reichenbach, 1928, 339; tr. [474]). Only the ratio of the дµν is preserved by parallel transport,
and the length of vectors becomes path-dependent: the square of the length of equal and parallel vectors l2 is
only proportional. (2) One may “limit the displacement so that statements common to the displacement and
the metric no longer contradict one another” (Reichenbach, 1928, 339; tr. [474]); that is, one might impose the
full compatibility condition between the a�ne connection and the metric. The absolute values of the дµν are
preserved under parallel transport, and the length of vectors is path-independent: the square of the lengths of
equal and parallel vectors l2 are the same . Reichenbach called the type of space obtained by the �rst method a
displacement space because in it, the displacement is the dominant principle to which the metric will have to be
adapted. The type of space that results from the second approach is called a metrical space because in this case,
the metric dominates, and the displacement is subordinate to it.

Since the metric and the displacement are two independent geometrical operations, to de�ne a ‘balanced
space,’ Reichenbach needed to introduce a formal measure of their reciprocal compatibility. Following Eddington,
Reichenbach introduced a mathematical object that determines how much the length l of a vector changes d

(
l2)

under parallel transport:

d
(
l2) = (∂дµν

∂xσ
+ Γµσ ,ν + Γνσ ,µ{

→ Kµν ,σ = ∇дµν

)AµAνdxσ . [7]

The tensor Kµν ,σ 5 measures the degree compatibility of the metric and the connection, that is, the degree of
covariant constancy of the metric. A space in which Kµν ,σ is de�ned is a ‘balanced space.’

5The non-metricity tensor in modern parlance.
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2.2 ‘Balanced’ Spaces

Based on the tensor Kµν ,σ , Reichenbach introduced a formal classi�cation of balanced spaces (see below ap-
pendix A):

General Displacement Space. The contradiction between the metric and the displacement is avoided, by relaxing
the metric-compatibility condition:

Kµν ,σ = дµν · κσ d
(
l2) = l2κσdxσ .

The dot product of vectors is de�ned at one point (one can compare the length of two vectors at the same point in
di�erent directions). Still, it is not preserved under parallel transport, but it is only proportional.6 This means that
the angle between two parallel transported vectors, but not their lengths, is preserved. To compare the lengths of
vectors attached to di�erent points, such length has to be transported from one point to another, and, in general,
the result would depend on the path on transportation. In addition to the knowledge of the дµν , the determination
of the length l of a vector requires knowledge of four more quantities’ κσ . For two in�nitesimally close points,
change in length dl of a vector satisfy the relation dl/l = κ1dx + κ2dy + κ3dx + κ4dl = κσdxµ . If one further
imposes the condition Γτµν = Γτµν , one arrives, as a special case, at the geometry originally introduced by Weyl
(1918a), the Weyl space. In this geometry, the a�ne connection takes the form:

Γτµν = −

{
µν
τ

}{
Christo�el Symbols←

+
1
2
дτµκν +

1
2
дτνκµ −

1
2
дµνκ

τ{
→ terms depending on дµν and κσ

. [8]

As one can see, the metric дµν does not determine the components of Γτµν alone, but only together with four-vector
κσ . The straightest lines are de�ned as usual by the condition that vectors transported along them should always
remain parallel to them. However, such lines cannot be interpreted as the shortest lines since the concept of length
along di�erent curves is not meaningful. In this setting, starting from the Weyl connection, one can construct the
analogon of the Riemann tensor from the connection, in an usual way:

Bτµνσ =
∂Γτµν

∂xσ
−
∂Γτµσ

∂xν
+ Γταν Γ

α
µσ − Γ

τ
ασ Γ

α
µσ . [9]

Weyl demonstrated how the eq. [9] splits into two parts:

Bτµνσ = Rτµνσ −
1
2
дτµ fνσ

where Rτµνσ corresponds to the Riemann tensor, and fµν is an antisymmetric tensor of rank 2. Weyl realized
that in this geometry, there are two kinds of curvature, a direction curvature (Richtungskrümmung) Rτµνσ and a
length curvature (Streckenkrümmung) fµν . The tensor Rτµνσ vanishes when the parallel displacement of a vector
subjected to a change of direction is integrable. The tensor fµν vanishes when and only when the transfer of
lengths is integrable.

General Metrical Space. The alternative way to construct a ‘balanced space’ is to impose a more restrictive
condition on the displacement

d
(
l2) = 0 Kµν ,σ = 0 .

This implies that the dot product of two vectors is preserved under parallel transport; not only the angle between
two parallel transported vectors but also their lengths remain unchanged. As a consequence, one can compare
not only the length of vectors at one point in di�erent directions but also at distant points. Thus, the absolute
values of the дµν is de�ned, not only their ratios. Due to the existence of a metric, the shortest lines are de�ned.
However, in general, they are not identical with the straightest lines de�ned by the displacement. To make these

6For this reason, to avoid confusion, it is important to emphasize that in Reichenbach’s parlance, the general displacement space is not the
a�ne space. It is a semi-metric space.
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two special lines coincide, one needs to impose the additional restriction Γτµν = Γτν µ . With this imposition, one
obtains Riemann connection7:

Γτµν = −

{
µν
τ

}
=

1
2
дτ σ

(
∂xµσ

∂xv
+
∂дνσ
∂xµ

−
∂дµν

∂xσ

)
. [10]

This condition guarantees that the a�ne ‘straights’ are at the same time the lines of extremal ‘length.’ The
components of Γτµν have the same numerical values of the so-called Christo�el symbols of the second kind as
they are calculated from the metric дµν and its �rst derivatives. They measure the variability of дµν with respect
to the coordinates. Thus, the metric дµν and its derivatives uniquely determine the components of Γτµν . If one
starts with a symmetric metric дµν , the Christo�el symbols are indeed the only possible choice; thus, the full
compatibility of the metric and the connection is assured from the outset. By contrast, if one de�nes the operation
of displacement independently from the metric, the Riemannian connection eq. [10] appears only as a special
case that is achieved by introducing a series of arbitrary restrictions. There are, of course, di�erent Riemannian
connections of di�erent curvatures Rτµνσ (Γ). If one imposes the further condition that the direction curvature
(Richtungskrümmung) vanishes, one obtains the Euclidean space:

Rτµνσ (Γ) = 0 .

In the Euclidean space, not only the length but also the direction of vectors is comparable at a distance. Thus, it is
meaningful to speak of the same vector at di�erent points. Indeed, in Cartesian coordinates, two vectors with the
same components are equal and parallel.

3 The Coordinative De�nition of the Operation of Displacement

Reichenbach’s classi�cation of geometries (see appendix A)8 opened mathematical possibilities that, in principle,
could be used in physics. As one would expect from Reichenbach, to give physical meaning to the metric and
the displacement, one must provide a ‘coordinative de�nition’ of both operations. “Only after a coordinative
de�nition has been chosen, can we de�ne the judgments as ‘true’ or ‘false’” (Reichenbach, 1928, 357; o.e.; tr. [498]).
“The choice of the indicator is, of course, arbitrary, since no rule can tell us what entities we should use for the
realization of the process of the metric or displacement” (Reichenbach, 1928, 357; tr. [498]). However, a choice
is necessary. In Reichenbach’s view, unless the geometrical operations introduced into the foundations of the
theory can be directly identi�ed with real objects, the theory cannot be compared with experience. The success of
relativity theory lies in the fact that spacetime measurements carried out with real physical systems (rods and
clocks, light rays, free-falling particles, etc.) are more correctly described in that theory of previous theories.

In three-dimensional space, one can use rigid rods to measure lengths of three-dimensional vectors l ; in this
way, the metric acquires a physical meaning. Rigid rods (that do not change their lengths when transported) de�ne
a comparison of length, but no comparison of direction; thus, they are not suitable indicators of the operation of
parallel displacement. For this purpose, one might use the axis of a gyroscope, whose angular momentum vector
maintains its direction. By displacing the gyroscope step by step parallel to itself from P to P ′, one de�nes the
straightest lines between those two points. We can introduce a similar interpretation of the two operations in
four dimensions. The metric дµν is measured not only by rigid rods but also by ideal clocks, which give physical
meaning to the length of the four-dimensional vector l . Thus, дµν represents the chronogeometrical structure
of spacetime. A similar coordinative de�nition should be provided for the displacement Γτµν . A gyroscope only
is not su�cient, because we now have to maintain the direction of a four-dimensional vector. Reichenbach
suggested that one can tentatively adopt the velocity four-vector uτ as the physical realization of the operation of
displacement (Eddington, 1923, ). When the particle is not accelerating (that is, it moves inertially), the direction
of the velocity vector does not vary. Thus, the motion of force-free particles can be used to de�ne physically the
straightest line between two spacetime points. In this sense, the Γτµν is sometimes said to represent the inertial
structure of spacetime.

In the last chapter of the Philosophie der Raum-Zeit-Lehre, Reichenbach presented general relativity as a
theory based one primary geometrical structure, the metric дµν . In the Appendix the theory, general relativity
appears as a theory based on two di�erent geometrical structure, the a�ne connection Γτµν , the metric дµν and
their compatibility condition Kµν ,σ . Recognizing the autonomous role of the a�ne connection has an immediate
advantage. The latter allows one to pick out the straightest lines directly, without the detour via the metric дµν
and the shortest line. Indeed, a test particle in any given point on its trajectory does not ‘know’ about the integral
length of the timelike curve between the point where the particle is and some other point where the particle is

7The Levi-Civita connection.
8For a similar classi�cation, see also Infeld, 1928a,b.
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directed to. Thus, it is more suitable to claim that test particles follow the ‘straightest’ or auto-parallel line, that
is the line having the di�erential property of preserving the direction of the velocity vector uτ unaltered while
the vector is displaced by dxν . Given the velocity vector uτ at one point, the Γτµν allows one to determine the
components of the equal and parallel vector u ′τ at an in�nitesimally later point on its path. When an uncharged
particle moves freely, its velocity vector is carried along by parallel displacement; that is, the velocity does not
change. Thus, the particle does not accelerate and move along an auto-parallel curve xν (s). To appreciate the
power of this formalism is useful to consider as a warm-up exercise the ‘geometrized’ formulation of Newtonian
gravitation theory suggested by Kurt Friedrichs (1928) at around the same time Reichenbach was working on the
Appendix .

Let us introduce a �at Newtonian spacetime with independent, mutually orthogonal spatial and temporal
metrics hµν (h11 = h22 = h33 = −1 and = 0), дµν (д44 = 1 and the rest = 0). In a prototypical �eld theory (Maxwell
electrodynamics, Newton theory of gravitation, etc.), the �eld equations (Maxwell equations, Poisson equation,
etc.) relate the �eld variables to the source variables (four-current, matter density), and the latter are related to
the possible trajectories of our particle by equations of motion (Friedman, 1983, 193�.). The latter take the general
form:

µ
duτ

ds

→ four-acceleration

Γ̄τµν

�at a�ne connection←

uµuν = [�eld strengths] × [coupling factor]

→ force term

. [11]

In a world with the electroÂmagnetic force fµν but without gravity, objects that carry no electrical charge ρ move
on the straightest lines of the �at connection Γ̄τµν ; that is, the four-velocity vector is displaced parallel to itself,
and there is no change in velocity duτ /ds = 0. A connection is ‘�at’ if a coordinate system can be introduced
in which Γ̄τµν = 0 everywhere, i.e., Rτµνσ (Γ) = 0. Charged objects (objects subject to the forces) are pulled o�
their inertial motion by the electromagnetic �eld depending on their charge ρ f τν uν . Thus, the velocity vector of
charged particles is not transported parallel to itself along their path. The ratio of the inertial mass µ and the
coupling factor ρ is di�erent from particle to particle. Objects with the same mass and smaller electric charge
and objects with the same charge and greater mass are less susceptible to electromagnetic �elds. Thus, one is
able to approximate the straightest paths by using objects of progressively greater masses or smaller charges.
As a consequence, motions are divided into two classes: inertial, force-free motions represented by straightest
worldlines determined by Γ̄τµν and motions caused by the action of forces. One can apply the same approach to the
gravitational �eld. In this case, the �eld variable is the gravitational scalar potential Φ, and the coupling factor is
the gravitational charge µд , that is, the gravitational mass. Thus, the force term in the equation of motion would
include −µд∂Φ/∂xν .

However, there is a key di�erence between gravitation and electromagnetism. The ratio of the gravitational
‘charge’ density µд to the inertial mass µ is the same for all particles. Thus, the coupling factor on the left-hand
side of eq. [11] and the inertial mass on the right-hand side cancel out. All bodies move in the same way in a
gravitational �eld. As a consequence, one would not be able to approximate a force-free motion using objects of
progressively greater inertial mass or smaller gravitational charge. In these circumstances, it becomes natural
to change the standard of non-acceleration and incorporate the force term in eq. [11] into the suitably de�ned
connection Γτµν . The latter can be written as the sum of the �at connection Γ̄τµν and mixed symmetric tensor of the
third rank:

Γτµν = γ
τ
µν + φ

τ
µν .

γ τµν = Γ̄τµν φτµν = −дµνh
ρσ ∂Φ

∂xσ
[12]

The sum of an a�ne connection and a tensor of the this type is again a symmetric connection, so Γτµν is one.
Since the gravitational charge-to-mass ratio is equal for all particles, it can be set at = 1 and eliminated from
eq. [11]. The �eld variable Φ that appears in the force term in eq. [11] can be then absorbed into the de�nition of
the connection Γτµν eq. [12], which becomes, in general, non-�at and dependent on Φ. In this way, one can get rid
of the force term and transform eq. [11] into a geodesic equation of the form
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duτ

ds
Γτµν

→ non-�at a�ne connection

uµuν = 0 . [13]

Because the equation of motions of gravitational test charges can be written in the form of eq. [13], one can say
that the gravitational force has been ‘geometrized.’ The planet does not follow its curved path because it is acted
upon by the gravitational scalar �eld, but because the a�ne connection Γτµν “leaves it, so to speak, no alternative
path” (Reichenbach, 1928, 295; tr. 257). The theory still admits a standard of non-acceleration, the motion on
the straightest lines of Γτµν . However, the latter is not �xed once and for all, since the numerical values of its
components depend on the gravitational potential Φ. In Friedrichs’s (1928) theory, the Γτµν represent the inertial
�eld, and дµν and hµν represent the metric. The inertial �eld Γτµν is dynamical and curved and determined by the
distribution of matter, whereas the metrics дµν and hµν have �xed constant values. Thus, the metric does not
uniquely �x the connection Γτµν but allows just enough leeway to incorporate the scalar potential Φ (see Havas,
1964).

In this way, Friedrichs (1928) was able to demonstrate that, with some good will, it is possible to geometrize
even Newton’s scalar theory of gravity without changing its content. Indeed, in Newton’s non-relativistic theory,
the equivalence principle already suggests that gravitational phenomena are best incorporated into a non-�at a�ne
connection Γτµν subject to certain dynamical �eld equations involving Rτµνσ (Γ). In hindsight, general relativity
can be seen as the attempt to construct a theory of the same type, but compatible with the metric structure
of Minkowski spacetime. Instead of starting from the metric alone as Einstein historically did, one could have
obtained general relativity by starting with two separate structures, the operation of displacement Γτµν , the metric
дµν and their compatibility condition Kµν ,σ (Stachel, 2007). At this point, one would have had two options:

(a) One can decide to keep the �at Minkowski spacetime, in which дµν = д̄µν , with a suitable choice of
coordinates and drop the unique compatibility condition between дµν and the non-�at a�ne connection
Γτµν . This means using what Reichenbach called an unbalanced space. Free-falling particles, that is, particles
moving under the in�uence of the gravitational �eld alone, are indicators of the Γτµν , which is generally
non-�at, that is, Rτµνσ (Γ) , 0. However, free-falling rods and clocks do not reliably measure temporal
and spatial intervals; that is, they are distorted by the gravitational �eld. Thus, one can maintain a �at
Minkowski metric Rτµνσ (д) = 0.9

(b) One can require the full compatibility between the connection Γτµν and the metric дµν , that is, use a fully
balanced space Kµν ,σ = 0, and drop the requirement that Rτµνσ (д) = 0. Freely falling rods and clocks reliably
measure temporal and spatial intervals and determine the дµν of a geometry, which is generally non-�at
Rτµνσ (д) , 0. In a given coordinate system, the components of the Rτµνσ (Γ) as measured by free-falling
particles agree with those of Rτµνσ (д) as measured by rods and clocks. Since the Γτµν has becomes dynamic,
so must be the дµν . In analogy with an electric �eld that is the gradient of electric potentials, the дµν can
be said to provide the ‘gravitational potential �eld’ and the a�ne connection ‘gravitational gradient �eld’
(Reichenbach, 1928, 271f; tr. 236f).

Reichenbach’s famous ‘relativity of geometry’ can be reformulated as the choice between (a) and (b) (Reichenbach,
1928, 271f; tr. 236f). It is always possible to save Minkowski spacetime by introducing the universal distorting
e�ect of gravitation on all measuring instruments, but at the expense of using an unbalanced space, in which
the a�ne connection (gravitational �eld) determining the motion of free-falling particles and the metric (inertial
�eld) determining the rods and clocks and light rays contradict each other. A ‘distorted, but measurable’ geometry
measured by neutral test particles under the in�uence of the gravitational �eld would di�er from the ‘true but
hidden’ Minkowski geometry measured by ideal rods and clocks (Stachel, 2007). However, the e�ect of this
separation has no physically observable consequences. In Maxwell’s electrodynamics, it is always possible to
choose non-charged rods and clocks that are not accelerated by the electromagnetic �eld. However, in Einstein’s
theory, rods and clocks free-falling in a gravitational �eld are indistinguishable from rods and clocks at rest in an
inertial frame.

Thus, the choice (a) is not matter of ‘truth,’ but it is a matter of ‘simplicity’ see Reichenbach, 1924, §2. Free
falling particles, on the one hand, and free-falling rods and clocks, on the other hand, determine the same geometry.
In particular, free-falling clocks traveling along a geodesic path also measure the a�ne parameter s in eq. [13]
along the path. As a result, the straightest lines de�ned by the parallel displacement of uµ coincide with the lines
of extremal lengths as measured by a clock. Admitting the full compatibility of дµν and Γτµν implies that, in a
certain coordinate system, the components of Γτµν are numerically equal to the Christo�el symbols as in eq. [10].

9A theory of this type might look like the bimetric theory of Rosen, 1940a,b.
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The Riemann tensor would have two distinct interpretations, Weyl’s ‘direction curvature’ Rτµνσ (Γ) and Riemann’s
curvature tensor Rτµνσ (д) interpreted as a generalization of the ‘Gaussian’ curvature. As Reichenbach pointed
out, at �rst sight, it is natural to consider the choice of (b) a ‘geometrization’ of gravitation. Like in Friedrichs’s
(1928) theory, in Einstein’s theory, the a�ne connections and the Rτµνσ (Γ) can be determined experimentally by
observing the motion of free-falling particles. However, in Einstein’s theory, the a�ne connections Γτµν can be
expressed in terms of the metric дµν alone, and the Rτµνσ (д) can be measured using rods and clocks. In this sense,
free-falling particles measure the same numerical values of the components of Rτµνσ in a given coordinate system,
i.e., they agree on the same geometry. The gravitational �eld has become indistinguishable from the geometry of
spacetime.

However, as we have seen, Reichenbach wanted to resist this conclusion. In Reichenbach’s view, there is
no need to use rods and clocks for the representation of the gravitational �eld. In principle, it is su�cient to
recognize the gravitational �eld by the motion of free-falling particles, that is, by considering the operation of
displacement. The use of free-falling particles as indicators of the gravitational �eld also suggests a geometrical
interpretation, since the motion of free-falling particles can be represented as motion along geodesics. These are,
at the same time, the timelike worldlines of extremal lengths as measured by a clock free-falling with the particle.
Yet, Reichenbach claimed “this assertion goes beyond what is given by the motion of the mass points alone since
it puts this motion into a relation with the geometrical behavior of the measuring instruments (measurement of
length by ds2)” (Reichenbach, 1928, 353; tr. [492]). We are not compelled to think at the relation between straightest
and longest worldline at all times, and one can consider the inertial structure encoding in Γτµν without considering
its relations with the chronometrical structure encoded in the дµν . The geometrical interpretation of gravitation
is a ‘visualization’ (Veranschaulichung) of the full compatibility Kµν ,σ = 0 between дµν and Γτµν , but it is not a
necessary representation of the gravitational �eld:

The �eld of the force of gravitation a�ects the behavior of measuring instruments. Besides serving in their
customary capacity of determining the geometry of space and time, they also serve, therefore, as indicators of the
gravitational �eld. The geometrical interpretation of gravitation is consequently an expression of a real situation,
namely, of the actual e�ect of gravitation on measuring rods and clocks. [. . .] The geometrical interpretation of
gravitation is merely the visual cloak in which the factual assertion is dressed. It would be a mistake to confuse
the cloak with the body it covers; rather, we may infer the shape of the body from the shape of the cloak it wears.
After all, only the body is the object of interest in physics. [. . .] The new insight of Einstein consists merely
in recognizing the fact that the well-known complex of relations concerning the motions of mass points is
supplemented by their relations to the behavior of measuring instruments [rods and clocks ] (Reichenbach, 1928,
353–354; m.e.; tr. [491–492]).

The opposition between the body and the cloak that covers it is somewhat a more poetic formulation of the same
message that Reichenbach had announced in the last chapter of the Philosophie der Raum-Zeit-Lehre. According to
Reichenbach, one must attribute to the gravitational �eld a physical reality that is comparable to that of any other
physical �eld. The peculiarity of gravitation with respect to other �elds is that it is “the cause of geometry itself, not
as the cause of the disturbance of geometrical relations” (Reichenbach, 1928, 294; o.e.; tr. 256). Non-gravitational
�elds (as the electromagnetic �eld) are di�erential forces. One ‘de�nes’ the geometrical measuring instruments
(rods and clocks, light rays, force-free particles) as those that (up to a certain degree of approximation) can be
shielded from action of the �eld (non-charged objects), and the dynamical ones (charged test particles), which
react to the �eld depending on a coupling factor (charge). However, gravitation is a universal force: it cannot be
neutralized or shielded. Thus, one cannot sort out the geometrical measuring instruments from the dynamical
ones. Thus, it is more appropriate to decide to set universal forces equal to zero. The geometrical measuring
instruments become at once indicators of the gravitational �eld. Nevertheless, the e�ect of the gravitational �eld
on these instruments does not transform the gravitational �eld into geometry, but rather deprives geometry of its
independent status. The goal of the Appendix was to develop this intuition into a full-�edged argument. According
to Reichenbach, one needs to separate the geometrical cloak (which can be chosen with some arbitrariness) from
the physical body (the fundamental fact of universal coupling of gravitation with all other physical entities).

However, this was not conventional wisdom. “The great success, which Einstein had attained with his
geometrical interpretation of gravitation, led Weyl to believe that similar success might be obtained from a
geometrical interpretation of electricity” (Reichenbach, 1928, 352; tr. [491]). Just after general relativity was
accepted by the physics community, the search for a suitable geometrical cloak that could cover the naked body
of the electromagnetic �eld began. To this end, one needed to search for something analogous to the equivalence
principle, a physical fact that relates the electrical �eld to the behavior of measuring instruments. “However,
the fundamental fact which would correspond to the principle of equivalence is lacking” (Reichenbach, 1928,
354; tr. [493]). Thus, physicists had to proceed more speculatively. At this point, the separation of operation of
displacement from the metric acquired a central role. Weyl did not separate Γτµν and дµν merely for mathematical
reasons; his goal was their physical application (Reichenbach, 1928, 354; tr. [491]). Since the дµν were already
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appropriated by the gravitational �eld, Weyl (1918a) constructed a more encompassing geometrical setting that
contained some unassigned geometrical elements that he could ascribe to the electromagnetic �eld (see, e.g.,
Scholz, 2008).

Weyl’s strategy can be described as an attempt to keep a non-�at spacetime, as in general relativity, but weaken
the compatibility condition between the metric дµν and the connection Γτν µ , by resorting to a ‘displacement space’
in which Kµν ,σ = κσ . Weyl’s space is a special case of Reichenbach’s general displacement space since Weyl
imposed the condition that Γτµν is symmetric. As we have mentioned, in Weyl geometry, there are two kinds of
curvature, a direction curvature (Richtungkrümmung) Rτµνσ and a length curvature (Streckenkrümmung) fµν . Weyl
demonstrated that the length curvature is expressed by the curl of κσ . As it is well-known, in the four-dimensional
representation of Maxwell electrodynamics, the electromagnetic tensor �eld is the curl of the electromagnetic
four-potential vector. Thus, it was natural to interpret κσ as the electromagnetic four-potential vector and its curl
fµν as the electromagnetic tensor. The absence of the electromagnetic �eld fµν = 0 is represented by a space in
which the displacement of lengths is integrable. The absence of the gravitational �eld is represented by a space in
which the transfer of directions is integrable, that is, where Rτµνσ (Γ) = 0. Thus, only in a �at Minkowski spacetime,
there is neither electromagnetism nor gravitation.

This geometrical representation of the electromagnetic �eld is still a rather formal analogy. Thus, it remains
to be decided whether Weyl’s geometrical apparatus describes the behavior of actual physical systems. In
Reichenbach’s parlance, it was necessary to introduce a coordinative de�nition of the operation of displacement.
Weyl’s geometry is a balanced space, in which the comparison of lengths is de�ned, although not at a distance.
Thus, it is natural to assume that the length of vectors can be measured with rods and clocks. Weyl used rods and
clocks as indicators of the gravitational �eld and, at the same time, indicators of the electromagnetic �eld. As long
as a gravitational �eld exists alone, fµν = 0, the geometry is Riemannian; the behavior of the measuring rods can
be integrated; that is, they de�ne a comparison of length independent of the path. As soon as an electrical �eld is
added, however, fµν , 0, and the integrability fails. The behavior of the measuring instruments is describable
only in terms of the operation of displacement. Thus, “the Weylian space now constitutes the natural cloak for
the �eld, which is composed of electricity and gravitation” (Reichenbach, 1928, 354; tr. [494]).

Unfortunately, however, the theory does not agree with the physical facts. Even if the electromagnetic �eld is
introduced, the behavior of rods and clocks is still integrable. This is con�rmed by a large amount of experimental
knowledge about spectral lines of atoms that are typically employed as clocks. Those spectral lines are always
sharp, well-de�ned spectral lines. If atomic clocks changed their periods as a function of their spacetime paths,
one would expect that atoms with di�erent pasts would radiate di�erent spectral lines (Reichenbach, 1928, 355;
tr. [494]).10 Weyl might have also used the velocity vectors of freely moving mass points as a realization of the
operation of displacement. If one assumes that charged particles move on geodesics of the Weyl connection eq. [8],
one runs into a further di�culty. The a�ne connection in Weyl’s theory eq. [8] and, therefore, the right-hand
side of the geodesic equation depends on both the дµν and the κσ . As a consequence, uncharged particles will be
a�ected by the electromagnetic four-vector potential .11 This is, however, not the case. Thus, neither rods and
clocks nor charged particles behave as predicted by Weyl’s theory.

Thus, Weyl’s displacement space is not suited to describe the behavior of rods and clocks and charged mass
points in a combined electrical and gravitational �eld. “This means that we have found a cloak in which we can
dress the new theory, but we do not have the body that this new cloak would �t” (Reichenbach, 1928, 353; tr.
[493]). What alternatives do we have at our disposal? According to Reichenbach, physicists had tried to “forgo
[. . .] such a realization of the process of displacement” (Reichenbach, 1928, 371; tr. [519]). Weyl (1921a) reformulated
his theory by keeping the ‘balanced’ Weyl space, in which the dot product of vectors is de�ned, but not preserved
under parallel displacement; however, he rejected rods and clocks as indicators of the operation of displacement
Γτµν .12 At around the same time, Eddington (1921) moved beyond Weyl and adopted an unbalanced space in
which Riemannian geometry is maintained as true geometry of spacetime and a symmetric Γτµν is introduced
without reference to the metric. Lengths, even at the same point in di�erent directions, are not comparable. From
a symmetric Γτµν alone, one can construct a curvature tensor Rτµνσ (Γ) and a Ricci tensor Rµν that is generally
non-symmetric:

Rµν = −
∂Γαµν

∂xα
+ Γαµβ Γ

β
να +

∂Γαµα

∂xν
− Γαµν Γ

β
α β .

This tensor has an antisymmetric part as well as a symmetric part:

10This is, of course, celebrated objection against Weyl’s theory Einstein’s (1918). see Ryckman, 2005 for more details; also see Giovanelli,
2014.

11This is a less famous objection that Reichenbach raised in correspondence with Weyl.
12The idea that there are two versions of Weyl’s theory was suggested by Pauli, 1921. Cf. also (Weyl, 1921b) and (Reichenbach, 1922, 367–368).
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Rµν = Gµν + Fµν

It is natural to identify the antisymmetrical tensor Fµν with the electromagnetic �eld fµν and the symmetrical
tensor Gµν with the metrical/gravitational �eld, after some rescaling, by setting Gµν = λдµν . This identi�cation
is, of course, based on a merely formal analogy. However, Einstein (1923a, 1923b, 1925a) became convinced
that Eddington’s purely a�ne approach might constitute a good starting point to ‘guess’ the right the �eld
equations (see Sauer, 2014). Moreover, he hoped that by integrating the �eld equations, one could obtain solutions
corresponding to the positive and negative electron. If these results were achieved, then Eddington’s/Einstein’s
choice of the symmetric Γτµν as the fundamental geometrical structure of spacetime would be considered justi�ed,
so to speak, post facto. The latter would be the case, even if the operation of displacement has no physical meaning
in itself. Only the theory as a whole (geometry plus physics) can be compared with experience Einstein (1921,
1924, 1926).

Reichenbach, like many others (see, e.g., Pauli, 1926), was pessimistic about the feasibility of this formal
approach. According to Reichenbach, in a good theory, one must provide a physical interpretation of the operation
of displacement ex ante before one establishes the �eld equations, just as in general relativity, the metric was
interpreted in terms of rods and clocks behavior from the outset. Reichenbach, so to speak, wanted to combine the
best of both worlds. Contrary to Eddington, he considered important adoption of a balanced space, such as Weyl
geometry; however, at the same time, contrary to Weyl, he did not want to forgo a coordinative de�nition of the
operation of displacement. Reichenbach’s reasoning was roughly the following. If rods and clocks are indicators
of the metric дµν , then the only ‘balanced space’ we would still have at our disposal is the general metrical space.
However, this does not imply that we have to adopt a Riemannian geometry. Indeed, one has still the option of
dropping the symmetry of the connection Γτµν , Γτν µand obtaining a non-Riemannian geometry with additional
degrees of freedom. In this way, Reichenbach believed it to be possible to de�ne an operation of displacement
that contains the e�ect of the electrical �eld, but that, on the other hand, does not contradict the metric. “The
geometrical interpretation of electricity would then be expressed by the special kind of displacement of direction,
but no longer by an e�ect upon the comparison of length” (Reichenbach, 1928, 357; tr. [498]).

4 An Example of a Geometrical Interpretation of Electricity

To introduce an indicator for the process of displacement Γτµν , one must select a physical phenomenon in which
the gravitational and electric �elds together produce a ‘geometrical e�ect.’ The gravitational and electromagnetic
�elds together determine the motion of particles. Thus, a natural, but still arbitrary, choice is to use the motion of
charged und uncharged particles as indicators of the displacement. The дµν are measured with rods and clocks,
and the velocity four-vector uν of mass points becomes the physical realization of the displacement Γτµν . The
general relativistic equation of the motion of charged particles is, therefore, the starting point of Reichenbach’s
investigation:

µ
duτ

ds
= −

{
µν
τ

}

Christo�el symbols←

uµuν − ρ

→ charge

f τν

→ дµν f τν = fµν electromagnetic �eld strengths

uν . [14]

Equation [14] is a force equation of the type of eq. [13]. Reichenbach’s goal was to rewrite eq. [14] in the form of a
geodesic equation like eq. [13], in which Γτµν will not be equal to the Christo�el symbols. Not dissimilarly than in
Friedrichs’s (1928) theory, the idea was to get rid of the force term by absorbing it in the de�nition of Γτµν . In this
way, both charged and uncharged particles would not experience acceleration under the in�uence of the combined
gravitational/electromagnetic �eld. Their velocity-vector uν would be carried along by parallel displacement
according to a suitably de�ned non-Riemannian connection Γτµν . The four-velocity is not the velocity through
space, which can of course take on di�erent magnitude, but a velocity through spacetime which is �xed (up to a
constant). Thus, the length l of the four-vector velocity uν is given by

l2 = дµνu
µuν = 1 (by a suitable choice of units)13 . [15]

Thus, the length l of this velocity vector must remain unchanged under parallel transport d(l2) = 0. As we have
seen, if one does not require the connection to be symmetric, then one can work in a metrical space that is
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not identical to the Riemannian space. In this space, the straightest lines are not identical to the shortest ones
(see Misner, Thorne, and Wheeler, 1973, 248–251). Reichenbach exploited this fact to de�ne an operation of
displacement that expresses the e�ect of both the gravitational and electromagnetic �elds. Charged mass points of
move (that is, their four-vector velocity is parallel-transported) along the straightest lines, and uncharged particles
move on the straightest lines that are at the same time the shortest ones (or rather, the timelike worldlines of
extremal length). Since a more philological account of Reichenbach’s theory and a comparison with the manuscript
he had sent to Einstein have been provided elsewhere (Giovanelli, 2016), I will introduce below a slightly modi�ed
and simpli�ed account of Reichenbach’s geometrization of the electromagnetic �eld.

First Version of The Theory. Following the model of Eddington’s (1921) theory, Reichenbach �rst introduced the
fundamental tensor Gµν :

Gµν = дµν

gravitational �eld←

+ fµν

→ electromagnetic �eld

. [16]

Just like Eddington (1921), Reichenbach demonstrated how this tensor can be decomposed into a symmetric part
дµν and an anti-symmetric part fµν that, as one might expect, are identi�ed with the gravitational/metrical �eld
and the electromagnetic �eld, respectively. The metric can be de�ned as ds2 = Gµνdxµdxν = дµνdxµdxν . In
the absence of the electromagnetic �eld (fµν = 0) (the more Gµν is nearly approximate to дµν ), ds is measured
by using rods and clocks. Thus, rods and clocks are not indicators of fµν which is measured by the motion of
charged test particles. The two �elds are governed by Einstein and Maxwell equations, which are left unchanged.
Reichenbach’s aim was only to modify the equations of motions of particles in both �elds without considering the
relation of such �elds with their sources.

The second step was to introduce the displacement Γτµν that was to depend on the fundamental �elds дµν and
fµν :

Γτµν = γ
τ
µν + φ

τ
µν [17]

γ τµν = −

{
µν
τ

}
φτµν = −k f

τ
ν uµ [18]

where k = ρ/µ. Without pointing it out explicitly, Reichenbach relied on the fact that a non-symmetric displace-
ment is always the sum of symmetric displacement and a skew symmetric tensor with two lower indices (see
Schouten, 1924, 851). γ τµν is a symmetric connection that is set equal to the negative of the Christo�el symbols
of the second kind, which, in turn, are functions of the дµν and their �rst-order partial derivatives. φτνuµ is the
product an mixed anti-symmetrical tensor of rank two and a covariant vector (a tensor of �rst rank). The direct
product of two tensors (multiplying components from the two tensors together, pair by pair) increases the rank of
the tensor by the sum of the ranks of each tensor, keeping the character of the indices. Thus, f τν uµ is a mixed
tensor of third rank with lower indices.

In this formulation, the reason for the de�nitions of eq. [18] is immediately apparent. Using eq. [18], Reichenbach
can rewrite eq. 14 so that the force term is absorbed into suitably de�ned Γτµν :

duτ

ds
= Γτµν

→ γ τµν + φ
τ
µν

uµuν . [19]

According to eq. [17], this equation is equivalent to the following one:

duτ

ds
= γ τµνu

µuν + φτµνu
µuν . [20]

The three-index symbol γ τµν is de�ned as the Christo�el symbol of the second kind; thus, the �rst summand
of eq. [20] is simply the �rst summand of the left-hand side of the general relativistic force equation eq. [14].
Substituting the de�nition φτµν in the second summand of eq. [20], one obtains −k f τν uµuµuν . Since, according to
the de�nition of the four-velocity eq. [15], the dot product uµuµ = 1, we have −k f τν uν , where k = ρ/µ. Thus, after
multiplying both sides of the equation by µ, the �nal result is nothing but eq. [14], from which Reichenbach had
started.
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By de�ning the displacement space Γτµν using eq. [17] and eq. [18], Reichenbach was able to dress the physical
fact expressed by eq. [14] in the geometrical cloak of eq. [19]. Just like eq. [14] in general relativity, eq. [19] in
Reichenbach’s theory describes the motion of charged and uncharged test particles under the in�uence of the
combined gravitational and electromagnetic �elds. However, now the di�erence in the behavior of charged and
uncharged particles can be expressed in terms of geometrical di�erences. The velocity vectors of charged particles
of mass are parallel transported along the straightest lines de�ned by Γτµν and uncharged particles on shortest
lines. When the charge ρ of these particles is zero and the tensorial component of φτµν vanishes, Γτµν = γ τµν , i.e.,
it reduces to the Christo�el symbols. Thus, the straightest lines coincide with the shortest one as in Einstein’s
theory of gravitation.

Reichenbach conceded that the theory has a manifest problem.14 Equation [14] is supposed to be valid for
particles of arbitrary mass and arbitrary charge, that is, of arbitrary k . Thus, particles of the same charge-to-mass
ratio “will engender [their] own displacement geometry” (Reichenbach, 1928, 362; tr. [506]) and run along their
‘own’ straightest lines de�ned by it (Reichenbach, 1928, 363; tr. [508]). Indeed, the values of the components of Γτµν
depend on the values of ρ/µ. Thus, for every di�erent value of k , the numerical values of the components of Γτµν
would be di�erent, thus, also Rτµνσ (Γ) would be di�erent. However, Reichenbach recognized that this approach
was “questionable” (Reichenbach, 1928, 363; tr. [508]), since the existence of a �eld should not depend on the
properties of the test particles. Indeed, in Friedrichs’s (1928) geometrization of Newtonian gravity, the coupling
factor and mass are dropped because they are equal; only the �eld variable Φ appears in the tensorial part of the
connection.

“To avoid this peculiarity of our formulation” (Reichenbach, 1928, 367; tr. [506]), Reichenbach suggested an
alternative version of the theory. The de�nition of the fundamental tensor eq. [16] remains unchanged, but the
de�nition of the connection eq. [17] is modi�ed by setting k = 1 in the tensorial part φτµν of eq. [18]. Instead of
eq. [18], Reichenbach introduce the following de�nition of the displacement:

Γτµν = γ
τ
µν + φ

τ
µν .

γ τµν = −

{
µν
τ

}
φτµν = −f

τ
ν uµ . [21]

The tensorial part of the displacement is now so de�ned that it depends only on the �eld variable and the
electromagnetic �eld fµν and not on any property of the test particles, i.e., the coupling factor ρ and the inertial
mass (since k is set = 1). The equations of motion now apply only to unit mass particles of a certain unit charge
(Reichenbach, 1928, 363f.; tr. [508�.]). Under the in�uence of the electromagnetic �eld, a class of charged particles
with an arbitrarily chosen charge-to-mass ratio move on the straightest lines, and uncharged particles always
move on the shortest lines. The norm k = 1 can be chosen arbitrarily. However, it is advantageous to choose the
natural unit represented by the �xed ratio e/m between the charge and mass of the electron. Since there are two
types of electrons, positive (the nucleus of the hydrogen atom) and negative, with di�erent charge-to-mass ratio,
the natural choice of the geometry is not unique. There are two ‘natural’ geometries, that is, two connections Γτµν
with di�erent curvatures depending on the choice of k .

5 The Epistemological Meaning of Reichenbach’s Geometrical Interpretation of Electricity

Somewhat surprisingly, Reichenbach regarded both versions of his theory as successful examples of a ‘geometri-
zation’ of the electromagnetic �eld. “In the preceding section,” he wrote, “we have carried through a complete
geometrical interpretation of electricity” (Reichenbach, 1928, 365; tr. [510]). What is the physical signi�cance of
this theory? Reichenbach conceded that the theory does not add anything to the physical content of Einstein’s
and Maxwell’s theories. Maxwell’s and Einstein’s �eld equations remain unchanged, and eq. [19] is nothing but a
geometrical reformulation of eq. [14]. With a rather cheap trick, the force term in eq. [14] has been absorbed in the
de�nition of the connection and thus disappears from eq. [19]. The force equation of the type eq. [11] is transformed
into a geodesic equation of the type eq. [13]. In this sense, the electromagnetic �eld has been ‘geometrized’ like the
gravitational �eld in Einstein’s theory. Elaborating on a distinction introduced by Eddington (1925), Reichenbach
pointed out that most readers would conclude that his geometrical interpretation of electricity was merely a
graphical representation of the combined electromagnetic/gravitational �eld and not a proper geometrical interpre-
tation (Reichenbach, 1928, §15; tr. .) Yet, according to Reichenbach, this conclusion is due to a misconception of the
nature of a geometrical interpretation.

14It is possible that Einstein pointed out this problem to him in 1926. See Giovanelli, 2016.
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Weyl’s theory in its �rst form had the ambition to be a proper geometrical interpretation of the electromagnetism,
just like general relativity was a geometrical interpretation of gravitational �eld; like the latter, it was a theory
concerning the behavior of rods and clocks. The scale factor κσ was supposed do determine a change in the rate
of ticking of clocks, which could be observed empirically. However, the theory was contradicted by experience.
Real rods and clocks do not behave as predicted by the theory. Thus, Weyl forwent the coordinative de�nition
of the transport of lengths in terms of rods and clocks. According to Eddington, Weyl’s theory, in this second
form, should be regarded as a mere graphical representation (like a pressure-temperature diagram), which does
not aim to describe the actual structure of spacetime but simply summarizes empirically well-con�rmed laws in a
unitary framework (see Ryckman, 2005, §8.3). The reason, why the scale four-vector κσ is identi�ed with the
electromagnetic four-potential is that they both behave formally in the same way satisfying ??. In Reichenbach’s
view, his “geometrical interpretation of electricity is not a graphical representation, but a genuine geometrical
interpretation” (Reichenbach, 1928, 365; tr. [512]). Like the �rst version of Weyl’s theory, both the metric and the
displacement were coordinated with the behavior of existing physical systems (rods and clocks and motion of
charged and uncharged particles). However, the theory was not in con�ict with experience like the �rst version of
Weyl’s theory did. In this sense, Reichenbach’s considered his geometrical interpretation of the electromagnetic
�eld as no ‘worse’ than the geometrical interpretation of gravitation provided by general relativity (Reichenbach,
1928, 366; tr. [512]).

Reichenbach conceded that an obvious objection can be raised against this conclusion. At �rst sight, the
geometrical interpretation of electricity lacks a basic physical fact analogous to the principle of equivalence
principle, that is, the equality of inertial and gravitational mass. According to this principle, the trajectory of a
uncharged particle in a gravitational �eld depends only on its initial position and velocity. As Reichenbach had
explained a few pages earlier, if the gravitational and inertial masses were not equal, the paths of freely falling
particles would not travel on the same geodesics of the same non-�at spacetime geometry; “di�erent geometries
would result in various materials of the mass points” (Reichenbach, 1928, 293; m.e.; tr. 256). To keep all particles
with di�erent gravitational charge-to-mass ratiomд/m, one would need to introduce displacement-geometries
of di�erent curvatures depending on structure and material of test particles. At �rst sight, this is precisely the
di�erence between the electromagnetic �eld and the gravitational �eld. Indeed, charged particles of di�erent
charge-to-mass ratio e/m, starting from the same initial conditions, cannot travel on the same paths of the same
connection with the same curvature. Thus, “di�erent substances would supply us in this case with di�erent
geometries” (Reichenbach, 1928, 367; tr. [513]). In other terms, the electromagnetic �eld is not a universal force
like gravitation. However, Reichenbach believed that the geometrical setting he had introduced in the Appendix
“was chosen wide enough to express, within a single geometry, the corresponding di�erence in the behavior of
charged and uncharged unit mass points” (Reichenbach, 1928, 367; m.e.; tr. [513]).

Reichenbach admitted that in the �rst version of his theory φτµν = −k f τν uµ , each charged particle moves on
the geodesics of its own connection depending on its charge-to-mass ratio e/m; however, this is not the case in
the second version of Reichenbach theory φτµν = −f τν uµ , where the components of the a�ne connection do not
depend on the property of the particles. Thus, Reichenbach concluded, “[e]xpression [21] which prescribes only
the unit ratio of charge and mass is therefore more advantageous than [18]” (Reichenbach, 1928, 367; tr. [513]).
It is true that, in this way, one obtains “di�erent natural geometries for the positive and the negative charge”
(Reichenbach, 1928, 367; tr. [513]). However, Reichenbach insisted that it is “of extraordinary signi�cance that
this procedure yields only two natural geometries” (Reichenbach, 1928, 367; tr. [513]). It is a physical fact that
in electromagnetism, there is a di�erence between positive and negative charge, which produces a geometrical
asymmetry; this asymmetry is absent in the case of gravitation where there is only one gravitational charge
and thus only one natural geometry. In this sense, Reichenbach argued that this bifurcation may “be taken as an
analogy to Einstein’s principle of equivalence” (Reichenbach, 1928, 367; m.e.; tr. [514]). According to Reichenbach,
after all “the equality of gravitational and inertial mass originally represents only a proportionality” (Reichenbach,
1928, 367; tr. [513]). Indeed, also in the case of general relativity, we set the gravitational charge-to-mass ratio
mд/m = 1, just like in Reichenbach’s theory one normalizes the electric charge-to-mass ratio of the electron as
e/m = 1.

This conclusion is, as we shall see, puzzling, to say the least of it. However, it is on its basis that Reichenbach
tries to convince his readers that the geometrical cloak he had tailored �ts well the physical body of the combined
electromagnetic/gravitational �eld. This conviction is, unfortunately, the keystone of Reichenbach’s argument.
Einstein had found in Riemannian geometry a good cloak that �ts the body, the gravitational �eld. This cloak was
also particularly suitable to reveal something new about the form of body that it covers, that is, about properties of
the gravitational �eld that were previously unknown (Mercury perihelion, light de�ection, red shift, gravitational
waves, etc.). Reichenbach’s non-Riemannian geometry was an equally good cloak. However, that cloak did not
reveal anything new about the underlining body, the combined gravitational/electromagnetic �eld. Thus, covering
a �eld with a geometrical cloak might be the manifestation of great mathematical ingenuity, but it is no guarantee
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of physical insight:

Is it not true, though, that the geometrical interpretation of gravitation has brought about an advance of physics?
It has brought about it, yes, but it is not identical with this progress. It has led, in its e�ects, to a physical discovery,
but it in itself is not this discovery. [. . .] We must therefore recognize that the geometrical interpretation of
gravitation has attained its important position in the historical development of science, because it has led to
new physical insights. The geometrical interpretation itself is merely a formulation, a visualization of these new
insights. What we have attained with our geometrical interpretation of electricity is an analogous formulation of
physical insights regarding electricity, but these insights are not physically new. As long as the geometrical
interpretation of electricity does not act as a heuristic principle, its sole value will lie in the visualization it
provides (Reichenbach, 1928, 368; tr. [516]).

Einstein’s geometrical interpretation of gravitation has led to a new set of �eld equations and equations of motion.
The latter replaced the old Newtonian theory of gravitation and led to new con�rmed predictions. Reichen-
bach’s theory has also provided a complete geometrical interpretation of the two �elds; however, Reichenbach
continued to say that such “geometrical interpretation of electricity constitutes no more advance in physical
knowledge” (Reichenbach, 1928, 368; tr. [514]). Indeed, the theory reproduces the empirical content of Maxwell’s
or Einstein’s theory, the �eld equations are the same, and equations of motion have received only a cosmetic
redesign. “Rewriting the theory in this fashion would tell us nothing about the reality that we did not know
before” (Reichenbach, 1928, 368; tr. [514]). The recognition of this di�erence was, according to Reichenbach, an
important epistemological achievement. Relativists, especially under the in�uence of Weyl, have always “defended
the idea that the geometrical interpretation of electricity constitutes something which is physically essential”
(Reichenbach, 1928, 368; tr. [515]). Reichenbach could demonstrate that this is not the case. He had provided a good
geometrical reinterpretation of already well-known physical laws that does not bring anything physically new.
“This epistemological insight might very well be helpful to the physicist, by showing him the limitations of his
method and making it easier for him to free himself from the enchantment of a uni�ed �eld theory” (Reichenbach,
1928, 368; tr. [519]).

Conclusion

At the beginning of 1928, Einstein published a brief review of the Philosophie der Raum-Zeit-Lehre (Einstein, 1928b)
in the Deutsche Literaturzeitung. Einstein clearly recognized the importance of the Appendix, part of which he
had read as a draft 2 years earlier (Giovanelli, 2016). Einstein explicitly shared Reichenbach’s skepticism toward
the rhetorics of the ‘geometrization of physics’ that was widespread in technical and philosophical literature: “In
this chapter, [the Appendix] just like in the preceding—in my opinion quite rightly—it is argued that the claim
that general relativity is an attempt to reduce physics to geometry is unfounded” (Einstein, 1928b, 20; m.e.). Thus,
Einstein explicitly identi�ed the question of ‘geometrization’ as the fundamental issue of the last chapter on
general relativity and of the Appendix in Reichenbach’s book. At that time, this matter was close to Einstein’s
heart (Lehmkuhl, 2014), as it is testi�ed by Einstein’s contemporary review (Einstein, 1928c) of a book by French
philosopher Eḿile Meyerson (1925). There, Einstein criticizes Meyerson for having given too much weight to the
idea that general relativity has reduced physics to geometry (Giovanelli, 2018).

However, Einstein’s endorsement of Reichenbach’s criticism of the geometrization parlance should be taken
with a grain of salt. As Einstein had tried to explain to him in private correspondence, Reichenbach was right for
the wrong reasons (Giovanelli, 2016). Indeed, Reichenbach laid down a surprisingly bad argument to make a good
point. This is the reason why we speak of a ‘geometrical’ interpretation of gravitation is the universality of free
fall. Because of the weak equivalence principle, which establishes the equality of gravitational charge and inertial
mass, it is possible to assure that all particles of whatever gravitational charge-to-mass ratiomд/m, given the same
initial conditions, follow the same trajectory—a geodesic of a generally non-�at Riemannian spacetime—under the
in�uence of the sole gravitational �eld (Reichenbach, 1928, 293; tr. 256). In this sense, one can say that geometry
replaces the concept of gravitational force, and the trajectories of free-falling particles are determined not by a
force equation but by a geodesic equation (Reichenbach, 1928, 293; tr. 256). If the weak equivalence principle did
not hold, the geometrization of gravitation would fail. Test particles with di�erent gravitational charge-to-mass
ratiomд/m would all move on geodesics only if one introduces connections with di�erent curvatures of each type
of particles. However, the properties of a real �eld cannot depend on the properties of the test particles. Thus,
one should conclude that without the weak equivalence principle, the geometric description of a geometrical
interpretation of �eld breaks down.

A comparison with Friedrichs’s (1928) geometrization of Newtonian gravity is instructive (see above section 3).
Such geometrization works because the inertial mass and the coupling factor cancel out, and only the scalar
potential Φ enters in the tensorial part φτµν = −дµνhρσ ∂Φ/∂xσ of the connection in eq. [12]. It does not seem
to be possible to apply this stratagem to other types of interaction, where the ratio of the inertial mass to the

18



coupling factor is not the same for all bodies (see Friedman, 1983, 197). Reichenbach’s theory proves exactly this
point, and it is puzzling that Reichenbach tries to defend the very opposite claim. In the �rst version of his theory,
indeed all particles of any electrical charge-to-mass ratio e/m travel on geodesics, but of connections of di�erent
curvature. In fact, the components of Reichenbach’s connection depend on the charge-to-mass ratio, which is
encoded in the tensorial part of the connection φτµν = −k f

τ
ν uµ , where k = e/m. In the second version of the

theory k = 1, and, therefore, the ratio e/m does not appear in the tensorial part of the connection φτµν = −f τν uµ .
However, the cure is worse than the disease. If the charge-to-mass ratio e/m cannot be absorbed in the de�nition
of the connection, it must appear explicitly in the equations of motion. This implies that only one type of particle
travels on geodesics, that is, particles with a certain �xed and arbitrary chose electrical charge-to-mass ratio e/m,
say electrons. Reichenbach claims that this is an analogon of the equivalence principle, because in both cases,
the charge-to-mass ratio is set equal to 1. However, this claim is, to say the least, preposterous. The basis of the
weak equivalence principle is the experimental fact that all particles have the same gravitational charge-to-mass
ratio, which, therefore, can be set as = 1. The equivalence principle does not claim that particles have in general
di�erent charge-to-mass ratio, and we can arbitrarily set = 1 the charge-to-mass ratio of one class of particles.

Thus, Reichenbach’s theory proves the opposite of what Reichenbach wanted to prove. In a four-dimensional
setting, it is impossible to make all charged and uncharged particles to move on the geodesics of the same
connection with the same curvature. Reichenbach had found a geometrical cloak, but the cloak did not �t the body,
the combined electromagnetic/gravitational �eld, however one tries to stretch it. What Reichenbach’s theory
demonstrates is that the electromagnetic �eld cannot be geometrized, at least if one takes Reichenbach’s own
de�nition of geometrization. Unfortunately, Reichenbach did not seem to have ever questioned the content of
the Appendix (Einstein, 1928a, 1929). I could not �nd a convincing explanation for Reichenbach’s resounding
blunder. Reichenbach’s Appendix, in spite of admirable display of knowledge of the di�erential geometry of his
time, is ultimately somewhat underwhelming for the philosopher of physics. If Reichenbach had read Friedrichs’s
(1928) paper (see above section 3), he might have found there a much better example of geometrization of a
physical theory that does not change its physical content. At the same time, he might have realized that for
non-gravitational interactions, the trick of absorbing the force term into the de�nition of the connection inevitably
fails. Without the weak equivalence principle, the geometrization of a physical �eld is a non-starter (Droz-Vincent,
1967, cf., however,).

Nevertheless, the Appendix is a signi�cant document for the historian of the philosophy of science. The
Appendix gives more weight to a central issue of the Philosophie der Raum-Zeit-Lehre, the critique of the ‘geo-
metrization’ program, which, in spite of being explicitly emphasized by Einstein (1928b) in his review, has been
completely neglected in Reichenbach scholarship—including Co�a’s (1979) paper, the only one dedicated to the
Appendix. Reichenbach’s interpretation of general relativity appeared in a very di�erent light once he had
presented the theory as based on two separate, but compatible structures, the displacement and the metric, the
inertial and the chronogeometrical structure. The peculiarity of general relativity, in Reichenbach’s view, is the
fact that the metric and the connection are fully compatible. Physically, this means that moving particles, and
rods and clocks, when under the in�uence of the sole gravitational �eld, de�ne a single geometry; they measure
the same values of the components of the curvature Rτµνσ . Nevertheless, Reichenbach invited his readers not to
linger to admire this fancy geometrical cloak. What is essential in Einstein’s theory is what the cloak covers, the
universal coupling of gravitation with all other �elds. In Reichenbach’s view, only a yet to be developed theory of
matter (Reichenbach, 1928, 233; tr. 201) can assure that all coupling constants are indeed constant. If this would
not be the case, di�erent material devices, made up of di�erent non-gravitational �elds and particles, will yield
di�erent geometrical results. “The theory of relativity did not convert a part of physics into geometry. On the
contrary, even more physics is involved in geometry, than was suggested by the empirical theory of physical
geometry” (Reichenbach, 1928, 295; tr. 256).

A Reichenbach’s Classi�cation of Geometries

Kµν ,σ = ∇σ дµν Jµν ,τ = 1
2 Γ

τ
µν − Γ

τ
ν µ

metricity tensor asymmetry tensor

Kµν ,σ , 0 Jµν ,τ , 0
Dot products and lengths of vectors not preserved In�nitesimal parallelograms do not exist
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Displacement Space
Kµν ,σ , 0

Weyl geometry
Γτµν = Γτν µ

Γτµν , Γτν µ

Metrical Space
Kµν ,σ = 0

Riemann Geometry
Γτµν = Γτν µ

Reichenbach Geometry
Γτµν , Γτν µ

Auto-parallel curves: Straightest Curves Geodesic curves: Curves of shortest length

Reichenbach’s Geometry

Kµν ,σ = 0 Jµν ,τ , 0

Auto-parallel Curves , Geodesic Curves

Abbreviations

CPAE Albert Einstein (1987–). The Collected Papers of Albert Einstein. Ed. by John Stachel et al. 15 vols. Princeton: Princeton University Press,
1987–.

HR Archives of Scienti�c Philosophy (1891–1953). The Hans Reichenbach Papers. 1891–1953.
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