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Abstract. This paper presents new analytic and numerical analysis of sig-

nalling games that give rise to informational bottlenecks—that is to say, sig-

nalling games with more state/act pairs than available signals to communicate
information about the world. I show via simulation that agents learning to

coordinate tend to favour partitions of nature which provide maximal informa-

tion transfer. This is true despite the fact that nothing from an initial analysis
of the stability properties of the underlying signalling game suggests that this

should be the case. As a first pass to explain this, I note that the underlying
structure of our model favours maximal information transfer in regard to the

simple combinatorial properties of how the agents might partition nature into

kinds. However, I suggest that this does not perfectly capture the empirical
results; thus, several open questions remain.
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fer, informational bottlenecks, reinforcement learning; emergent communica-
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1. Introduction

Descriptive language concerning natural kinds has been taken to evolve as a

response to successful projections to more well-entrenched ‘kind predicates’ (Good-

man, 1965). Furthermore, the degree to which such descriptive language (regarding

terms that are supposed to be or represent kinds) is entrenched might have some

bearing on ‘general’, as opposed to ‘artificial’, kinds. With this sort of analysis in

mind, Barrett (2007) considers how a successful descriptive ‘kind language’ might

evolve in the context of a simple sender-receiver game, called a signalling game.

The signalling game, due to Lewis (1969), shows how successful communication

conventions might arise naturally by a process of repeated interactions. Evolution-

ary signalling games constitute a now-standard model for explaining and studying

the emergence of communication in a wide range of social organisms—from humans

and primates to bees and bacteria. This finds theoretical application in linguistics,
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evolutionary biology, and philosophy in research on language origins, in addition

to practical application in computer science—especially machine learning and AI—

in emergent communication. The basic signalling model has been extended in a

number of ways to shed light on a variety of phenomena that are of philosophical

interest, including meta-linguistic notions of truth and probability (Barrett, 2016,

2017), self-assembly and modular composition (Barrett and Skyrms, 2017; Barrett

et al., 2018; LaCroix, 2019c), prevarication (Skyrms and Barrett, 2018), etc.

Skyrms (2010a) highlights a variety of ways in which the simple signalling-game

framework might be extended. This may include varying the underlying dynamics,

varying the parameters of the model, or imposing some sort of network structure on

the game, among others.1 While there exist analytic results in some instances, many

such extensions are still being studied—often with the use of computer simulations.

I will be concerned here with a simple, but under-studied, extension of the sig-

nalling game where there are fewer signals than state/act pairs. This leads to

an informational bottleneck, as the agents cannot learn a bijective mapping from

states to signals and from signals to actions. That is to say, the agents in this sort

of signalling game lack the expressive power to communicate full information about

every possible state of the world that may obtain.

Of course, the players may learn rules for syntactic combination to perfectly par-

tition nature. This is the situation discussed in Barrett (2006, 2007, 2009): signals

are sent by multiple senders, which allows the receiver to obtain full information

about the exact state of the world. In this case, the players must simultaneously

invent the categories—i.e., partitions nature into distinct kinds—and code for rep-

resenting the categories thus invented. Syntax, therefore, helps create ‘new’ signals

from old ones to fully and naturally partition the world and represent those par-

titions via language. This is a step toward the sort of compositional richness that

would be required for a fully linguistic communication system.2

The present paper offers several new analytic and experimental results regarding

signalling situations where there are informational bottlenecks—i.e., fewer signals

than state/act pairs. Rather than modifying the game by adding players, as Barrett

(2006, 2007, 2009) does, I examine the types of partitions that in fact arise under nu-

merical simulation.3 Specifically, I demonstrate how prior analyses of evolutionary

stability do not give a complete picture of the expected outcome of the dynamic in

1See LaCroix (2019b) for further discussion.
2Though this simple syntactic game is not itself compositional, see the discussion in Franke (2016);

Steinert-Threlkeld (2016); LaCroix (2019a).
3In a related paper, Barrett and LaCroix (2020) use these results to explain how the structural

properties of a language come to reflect the world in which the language evolved. This shows

how something like a principle of indifference (in a Bayesian sense) might arise naturally in an
evolutionary context. This is discussed in further detail, in relation to the current analysis, in

Section 5.
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question—in this case, simple reinforcement learning. Perhaps surprisingly, there is

a natural movement toward optimal information transfer. Thus, I examine why we

should expect communication to naturally favour maximal information transfer in

addition to rates of successful communication, even though extant analytic results

(and indeed, the learning dynamic itself) only takes account of the latter.

Section 2 provides some background on the signalling-game framework. I offer

several formal definitions that will be of some use later in the paper. Section 3 looks

more closely at the signalling context that I will focus on here and surveys some

extant analytic results, primarily due to Donaldson et al. (2007), to which I will

appeal. Section 4 offers new analytic results, in addition to simulation results, to

demonstrate the connection between communicative success and information trans-

fer in a signalling-game context with fewer signals than state/act pairs. Section 5

concludes.

2. Signalling Games

The Lewis signalling game has two players, whom we call the ‘sender’ and the

‘receiver’. In the simplest signalling game, there are two possible states of the

world, denoted by ‘s0’ and ‘s1’; two possible signals or messages that the sender

might select, denoted by ‘m0’ and ‘m1’; and two possible actions that the receiver

might perform, denoted by ‘a0’ and ‘a1’. We refer to this as a 2×2 signalling game,

corresponding to the number of state/act pairs by the number of signals. Here,

each action coincides with a particular state of the world—we assume that ai is the

correct action in state sj just in case i = j.

On each play of the game, nature picks a state of the world at random.4 The

sender observes the state of the world directly and randomly selects a message to

send to the receiver. The receiver knows which message was sent, but does not

know which state of the world obtains. She then chooses an action at random.

If the receiver’s action was appropriate for the state, then the play is successful;

otherwise, it is a failure.

The players have evolved or learned an efficient language when they perform

better than chance on coordinating signals to state/act pairs. A maximally efficient

signalling convention is referred to as a signalling system (Lewis, 1969). In this case,

there is a map from unique states to unique signals to appropriate actions. The

2 × 2 signalling game has two possible signalling systems, shown in Figure 1. In

either case, at a signalling system for the 2 × 2 signalling game, the sender and

receiver have a communicative success rate of 1, and each signal carries exactly 1

bit of information.

4For now, I will assume that all states are equiprobable, so nature is unbiased, but this assumption
can be relaxed.
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(a) Signalling System 1
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(b) Signalling System 2

Figure 1. The two signalling systems of the 2× 2 signalling game

How the sender and receiver achieve such a communication convention is going

to depend largely upon the dynamic under consideration.5 I will use a simple

learning dynamic, called Herrnstein reinforcement learning. On this dynamic, the

probability of an actor’s choosing a particular action is proportional to that action’s

accumulated rewards.6 When the players succeed, they earn some payoff and thus

reinforce their behaviour. When they fail, they may receive nothing, or they may

receive some negative payoff (punishment).

We can understand this intuitively as a type of urn-learning procedure. For

the 2 × 2 signalling game, we now suppose that the sender comes equipped with

two urns—one labelled ‘s0’, and the other labelled ‘s1’. Each of the sender’s urns

contains two balls—labelled ‘m0’ and ‘m1’, respectively. Similarly, the receiver

comes equipped with two urns—one labelled ‘m0’, and the other labelled ‘m1’—

and each of her urns contains two balls—labelled ‘a0’ and ‘a1’, respectively. See

Figure 2.

s0

m0 m1

s1

m0 m1

(a) Sender Urns

m0

a0 a1

m1

a0 a1

(b) Receiver Urns

Figure 2. Simple reinforcement learning model

Now, on each play of the game, nature picks a state of the world at random. The

sender then chooses a ball at random from the urn corresponding to the current

state of the world and sends the message chosen to the receiver. The receiver chooses

a ball at random from the urn corresponding to the message that she received. If

the action chosen matches the state of the world, then both the sender and receiver

5See Huttegger et al. (2010) for an overview of a number of different dynamics.
6This simple reinforcement learning is based upon the ‘matching law’ proposed by Herrnstein

(1970), which is itself a formalisation of the ‘law of effect’, due to Thorndike (1905, 1911, 1927).
This learning rule is empirically tested in Roth and Erev (1995); Erev and Roth (1998). On the

real-world effectiveness of simple learning, Schultz et al. (1997) show that dopamine neurons in

certain areas of primate brains seem to enact a reasonably similar learning procedure. See also
Schultz (2004) and Glimcher (2011).
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return their ball to the urn from which it was chosen and additionally reinforce

their behaviour by adding another ball of the same type to that urn, thus shifting

the probabilities of choosing a particular signal or action over future plays. If the

action does not match the state of the world, then the sender and receiver both

simply return the ball to its urn.7 The game is then repeated.

This reinforcement procedure makes it more likely that a message [act] that led

to a success will be chosen when a particular state [message] occurs. Thus, signals

come to carry information (Skyrms, 2010a,b). Though this model is relatively

simple, it turns out to be extremely effective for learning how to communicate.8

The information that a signal carries might be understood as information about

the state.9 When signals are completely informative, the receiver has complete

information about the state of the world, and so can act as though she had observed

the state directly. Skyrms (2010a,b) shows how we can specify the quantity of

information in a given signal using Kullback-Leibler divergence. This compares the

(conditional) probability that the agents are in a particular state given that a signal

was sent, and the probability that the agents are in that state simpliciter.10

We can define the quantity of information carried by a particular signal, mj (i.e.,

about a specific state, si) as

H(mj) = log
p(si|mj)

p(si)
.

This quantity at a signalling system results in mj carrying 1 bit of information in

the 2× 2 game.11

Skyrms (2010a,b) points out that signals may carry some information about

different states. Thus, to get a real sense of the amount of information that a

particular signal carries, we can take a weighted sum of the probabilities of being

in any of the particular states conditional upon the particular signal. Therefore,

we obtain the following measure of the quantity of information that is carried by a

7Punishment for miscoordination can be included in this model. This simply consists of discarding

the ball when the agents fail to coordinate.
8In the 2 × 2 signalling game, when nature is not too biased, the sender and receiver converge

toward one or the other signalling system with probability 1 under this sort of dynamic (Argiento

et al., 2009). Therefore, in the limit, the players learn to coordinate perfectly. Furthermore, after
only 300 time-steps, the communicative success rate of the sender and receiver is approximately

0.9, on average (Skyrms, 2010a). Similar results hold for a variety of other dynamics, such as the

replicator dynamic. See Huttegger (2007a,c) for an overview.
9The signal may also be understood as being about actions; see Huttegger (2007b); Zollman (2011)

on separating indicatives and imperatives.
10See Godfrey-Smith (2011); Birch (2014); Shea et al. (2018) for a critical discussion of Skyrms’

notion of informational content in the signalling game.
11That is to say, there is a reduction of uncertainty from two possibilities to one. At a signalling

system in a 4× 4 game, signals carry two bits of information (and so on). One bit of information,
in this example, corresponds to the logarithm’s base being 2. The units of this quantity can be

specified similarly as nats or harts if we change the base to e or 10, respectively.
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particular signal, mj :

I(mj) =

|S|∑
i=1

p(si|mj) · log

(
p(si|mj)

p(si)

)
.

Note that this definition requires a slightly different interpretation than the original

notion of Shannon entropy since we are examining the quantity of information given

by a single message.12 This is a notion of semantic information (Dretske, 1981).13

We might also note the total entropy of a signalling strategy. This is just the

sum of the information contained in all the individual messages, weighted by the

probability that a message occurs. In the case of a signalling system in a symmetric

n × n signalling game, the probability that a message occurs will just equal the

probability that a given state (the one represented by that message) will occur.

For our purposes, it will be convenient to have a formal definition of a signalling

game, thus.14

Definition 2.1: Signalling Game

Let ∆(X) be a set of probability distributions over a finite set X. A Sig-

nalling Game is a tuple

Σ = 〈S,M,A, σ, ρ, u, P 〉

where S = {s1, . . . , sk} is a set of states, M = {m1, . . . ,ml} is a set of

messages, A = {a1, . . . , an} is a set of acts, with S,M , and A nonempty.

σ : S → ∆(M), is a function which defines a sender, ρ : M → ∆(A) defines

a receiver, u : S × A → R defines a utility function, and P ∈ ∆(S) gives a

probability distribution over states in S. Finally, σ and ρ have a common

payoff, given by

π(σ, ρ) =
∑
s∈S

P (s)
∑
a∈A

u(s, a) ·

(∑
m∈M

σ(s)(m) · ρ(m)(a)

)

The payoff π(σ, ρ) for a particular combination of sender and receiver strategies

is an expectation of the utilities of state/act pairs (given by u(s, a)) weighted by the

relative probability of a particular state, given by P (S). This is the communicative

success rate of σ and ρ.15 With this definition in mind, the signalling systems of a

signalling game can be defined formally as follows.

12See, Shannon (1948) and Shannon and Weaver (1949).
13In this context, the relative entropy of a particular signal can be understood as a measure
of the information with respect to additional bits gained by moving from a prior to a posterior
distribution, in a Bayesian sense.
14See Huttegger (2007a) and Steinert-Threlkeld (2016).
15This definition of a signalling game is more general than, e.g., that of Lewis (1969).
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Definition 2.2: Signalling Systems

A signalling system in a signalling game is a pair (σ, ρ) of a sender and

receiver that maximises π(ρ, σ).

I will be interested here in more narrow contexts of coordination problems. In

particular, I will focus on signalling contexts where there are fewer messages than

state/act pairs, where nature is unbiased, and where the utility function pays 1 just

in case the state and the act match and zero otherwise. Thus, the n×m signalling

game with unbiased nature is defined as follows.

Definition 2.3: n×m Signalling Game With Unbiased Nature

The n × m Signalling Game is the signalling game with |S| = |A| = n,

|M | = m, u(si, aj) = δij , and P (s) = 1/n for every s ∈ S. Further, δij is

the Kronecker delta, defined as

δij =

{
1 if i = j

0 else
.

Note, that the symmetric n×n signalling game is just a special case of the n×m
signalling game with |S| = |M | = |A| = n. If n < m we have a situation wherein

synonyms might arise (Skyrms, 2010a; Hu et al., 2011). If n > m, we get a situation

where the sender and receiver cannot communicate perfectly. This gives rise to an

informational bottleneck. I will be concerned here with solely the situation that is

described in Definition 2.3, with n > m. For ease of exposition, I will call this an

impoverished signalling game, since the communicative resources of the sender are

impoverished with respect to the complexity of the world.

Donaldson et al. (2007) offer an analytic analysis of this sort of situation; how-

ever, they use a more general utility function, u(si, aj), than the Kronecker delta, so

that there may be, for example, a general-purpose action that is more appropriate

than a specific-purpose action when the state of the world is uncertain. Advancing

the earlier work of Wärneryd (1993) and Trapa and Nowak (2000), they show that

it is possible to define an evolutionarily stable set of strategies in such a context.

This is particularly important for situations modelling animal communication since

“real predator alarm call systems tend to employ only a few signals to distinguish

between predators, with many types lumped together” (Donaldson et al., 2007,

231). In such a case, it is advantageous for individuals to represent a pool of states

by a single signal when those states are functionally similar. Based on the analysis

of Donaldson et al. (2007), I present some useful properties of the impoverished

signalling game in Section 3.
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3. State Partitions and Informational Bottlenecks

This section summarises and analyses some previous results for informational

bottlenecks that are pertinent to the discussion herein. In an evolutionary con-

text, we are effectively concerned with a two-population model, and thus a role-

asymmetric game. As such, a sender strategy in an evolutionarily stable state (ESS)

must be uniquely optimal against the receiver strategy, and the receiver strategy

must, similarly, be uniquely optimal against the sender strategy (Selten, 1980).

Donaldson et al. (2007) show that the following four conditions are necessary for

a signalling system to be a strict Nash equilibrium, and therefore an evolutionarily

stable strategy.

Property 3.1: The signalling strategy, σ, must be binary; that is, each

state gives rise to exactly one signal.16

Property 3.2: The receiving strategy, ρ, must be binary; that is, each

signal results in exactly one action.17

Property 3.3: The signalling strategy, σ, must be onto; that is, every

signal must be used.18

Property 3.4: The receiving strategy, ρ, must be one-to-one; that is, no

two signals may give rise to the same action.19

Donaldson et al. (2007) note that these four properties limit the type of multi-

plicity that is allowable in a signalling game. One state leading to multiple signals,

and one signal leading to multiple actions are both ruled out by a theorem of Sel-

ten (1980), from which Properties 3.1 and 3.2 follow. Namely, an evolutionarily

stable strategy can only have one possible response for a particular circumstance.

Property 3.4 rules out the possibility that multiple signals lead to the same action.

However, the possibility of multiple states leading to the same signal is not ruled

out. Donaldson et al. (2007) point out that if this is the case, then the signal comes

to ‘mean’ that one of several possible situations has occurred. (They further point

out that if payoffs are asymmetric, it is still possible to determine the unique action

with maximal payoff.) Though Properties 3.1–3.4 are individually necessary for

evolutionary stability, they are not jointly sufficient.

16See Donaldson et al. (2007). This follows from a proof due to Selten (1980).
17See Donaldson et al. (2007). This follows from a proof due to Selten (1980).
18Proof is given by Donaldson et al. (2007).
19Proof is given by Donaldson et al. (2007).
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I further introduce the following definitions, assuming Properties 3.1–3.4 hold,

to obtain a formal description of a state partition, where there are fewer signals

than state/act pairs, and the best response to such a partition.

Definition 3.1: State Partition

The partition of states τ(m) associated with a signal m is the set of states

mapping to that signal under σ: τ(m) = {s : p(m|s) = 1}.20

Definition 3.2: Best Response to a State Partition

A best response to a partition of states is an action which maximises the

expected payoff for all members of the partition:

BR(τ) = arg max
a∈A

∑
s∈τ

p(s)u(s, a).

If there is a unique such action, it is termed the strict best response to the

partition.

Given these definitions, two further properties hold:

Property 3.5: Every partition must have a strict best response, and the

signal corresponding to that partition must map to it.21

Property 3.6: For each member of a partition of states, the strict best

response for that partition must be a better response than the strict best

response of any other partition. That is, for all s ∈ τ(mi),mj 6= mi:
22

π(σ,BR(τ(mi))) > π(σ,BR(τ(mj))).

Thus, Donaldson et al. (2007) prove the following general theorem for evolution-

ary stability:

Theorem 3.1: A strategy that is determined by σ, ρ is evolutionarily sta-

ble if and only if the properties 3.1–3.6 listed above hold.23

In the case where there are fewer signals than state/act pairs, as in the impov-

erished signalling game, multiple states necessarily map to a single signal. While

this situation is consistent with the above properties, when payoffs are symmet-

ric it is impossible for this situation to be evolutionarily stable since there cannot

20Donaldson et al. (2007) refer to this as a ‘pool’, in order to draw a connection to pooling

equilibria. I will refer to τ as a partition. Thus, ‘pool’ and ‘partition’ refer to the same thing.
21Proof is given by Donaldson et al. (2007).
22Proof is given by Donaldson et al. (2007).
23Proof is given by Donaldson et al. (2007).
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be a unique (strict) best response to that partition—i.e., Property 3.6 is violated.

However, an evolutionarily stable set—namely, a partition that groups together a

set of acts and has a well-defined probability distribution over the acts—satisfies

Properties 3.1–3.6 and thus is evolutionarily stable. Figure 3 shows a particular

example where τ(m0) = {s0, s1} and τ(m1) = {s2}. No single evolutionarily stable

a0 a1 a2
s0 1 0 0
s1 0 1 0
s2 0 0 1

(a) Payoff table

s0

s1

s2

m0

m1

a0

a1

a2

x

1− x

(b) Evolutionarily stable set

Figure 3. Example of an evolutionarily stable set of strategies

strategy exists for this system. However, the set of strategies given by

{(σ, ρ(x)) : x ∈ [0, 1]}

is itself evolutionarily stable, since it constitutes an evolutionarily stable set.

4. Communicative Success and Information Transfer

In this section, I present novel analytic results for the impoverished signalling

game. However, the analytic results (Section 4.1) highlight that all stable partitions

have an equivalent expected payoff. As such, we might suppose that each of these

possibilities is equally likely. When we move to the simulation results of Section 4.2,

however, we see that this is not the case. Thus, the main findings of this paper

highlight that the analytic treatment, e.g., of Donaldson et al. (2007) is insufficient

for an explanation of what is happening on these models. In particular, the players

tend to favour partitions that offer maximal information transfer. Previous analytic

results do not explain this phenomenon. I discuss a possible combinatorial expla-

nation of what is driving this result; however, I show that this too is not sufficient

to explain these outcomes.

4.1. Analytic Results. The first proposition that we will require is given as fol-

lows.

Proposition 4.1: The maximal communicative success rate for the im-

poverished signalling game, as defined in Definition 2.3, is

maxπ(σ, ρ) =
|M |
|S|

,

where |M | is the cardinality of the set of messages, and |S| is the cardinality

of the set of states.
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Proof. See Appendix A for details. �

Note that for the symmetric n × n signalling game, this reduces to a maximum

expected payoff of 1 (|M | = |S|), as would be expected. Two corollaries follow

immediately from this.

Corollary 4.1: In a signalling game, as defined in Definition 2.3, a strategy

wherein the sender does not take advantage of all of the signals available

to her has a lower communicative success rate than a strategy which does

take advantage of all the signals available to her.

Proof. See Appendix A for details. �

Given this fact, it should not matter how many states are in any partition as

long as there are the same number of partitions as there are signals. (This also

implies that every partition contains at least one state.) Further:

Corollary 4.2: All probability distributions of strategies that take advan-

tage of all available messages have equivalent (maximal) communicative

success.

Proof. Since I assumed nothing about the actual probabil-

ity distributions in the proof of Proposition 4.1, this follows

immediately. �

Thus, it does not matter what the receiver’s probabilities are as long as she

partitions the acts in the same way that the sender partitions the states.

What I have just shown is that, under the assumption that nature is unbiased

(all states are equiprobable), and the utility function is given by u(i, j) = δi,j—the

Kronecker delta—as long as the sender takes advantage of all possible signals at her

disposal, the sender and receiver both receive maximal payoff, maxπ(σ, ρ) = |M |
|S| ,

independently of how the states are partitioned and independently of the receiver’s

probability distribution over acts given signals.

This gives rise to the following question: which partitions and which receiver

strategies (in response to those partitions) might we expect to arise for this type

of signalling game? The analytic results offer no indication of an answer to this

question—as long as a partition is stable, it will constitute a signalling system.

Recall that τ(mi) = {si,0, si,1, . . . , si,j} denotes a set of states that map to a

message, mi; the cardinality of τ(mi) tells us how many states are ‘contained’ in

that partition. Thus, let us introduce the following notation for denoting a full



12 TRAVIS LACROIX

partition of nature:

τ(M) = 〈|τ(m0)|, |τ(m1)|, . . . , |τ(mi)|〉.

For example, the unbiased partition for the 4 × 2 signalling game is denoted by

〈2, 2〉, which can be read in the following way: the first partition, corresponding to

m0, contains 2 states, and the second partition, corresponding to m1, contains 2

states.

Note that there is only one way at arriving at the unbiased partition, 〈2, 2〉, but

there are two ways of arriving at each of the biased partitions, 〈3, 1〉 versus 〈1, 3〉
and 〈4, 0〉 versus 〈0, 4〉. Since the latter pair do not take advantage of all of the

signals available, they are unstable, and we can assume that they will not occur.

As such, we might expect each of the remaining partitions to occur with frequency

1/3, since they all have the same communicative success rate (under the assumption

that the receiver is best responding to the partition).

However, this does not account for the fact that each ‘distinct’ partition, in

the above sense, has a variety of ways that it might be arrived at, and these are

not equinumerous across partitions. Accounting for the combinatorial properties of

these partitions, in the case of the 4 × 2 game, we have
(
4
2

)
= 6 ways of arriving

at the unbiased partition and
(
4
1

)
=
(
4
3

)
= 4 ways of arriving at each of the biased

partitions. Therefore, there are 14 possible combinations to consider, and their

relative frequencies are 3/7, 2/7 and 2/7, respectively.24

In this case, we should expect a distribution that looks like a binomial coefficient.

This course-grained analysis accounts for which types of partitions occur. However,

if we examine a more fine-grained analysis, we will expect a uniform distribution

across the various ways of getting at each partition—i.e., taking account of which

states are in a given partition.

So, on the course-grained analysis, simulations should result in a distribution

of partitions that approximates a binomial coefficient. Surprisingly, this is not

the case. What we find is that the partitions tend to be biased toward maximal

information transfer—more weight is put on those partitions close to the unbiased

partition. I present the data from these simulation results below and discuss why

the combinatorial measure alone cannot be used to explain the partitions that

evolve under simple reinforcement.

4.2. Simulation Results. In this section, I present simulation results which show

that neither an analysis of the stability properties of the impoverished signalling

24Again, I do not include in our frequency expectation the possible outcome for
(4
0

)
=

(4
4

)
= 1.

This would have us calculate our expected frequencies out of 16 possibilities rather than 14;
however, these outcomes correspond to unstable strategies, and so they will be selected against in

the long-term.
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game nor the combinatorial argument given above can serve to explain the observed

distribution of partitions under simple reinforcement learning.

4.2.1. Unbiased Nature. We will start with a 10× 2 signalling game with unbiased

nature. Thus, there are 10 states, each equiprobable, and 10 correspondent actions,

but only 2 signals with which the sender may represent these states.25 The chance

payoff for this game is 1/10 = 0.1, and the maximal payoff—occurring at any

possible stable partition and correspondent receiver strategy, as per the analytic

results above—is 1/5 = 0.2.

On simulation, after 106 plays per run, the expected payoff is 0.1999, on average

(1000 runs). Every run (1.000) achieves an expected payoff greater than 0.1990.

Furthermore, learning is fast. This is demonstrated by the fact that the cumulative

success rate is 0.1995 after 106 plays per run, on average (1000 runs).26 Many runs

(0.875) achieve a cumulative success rate of at least 0.1990.

As was suggested above by the reasoning that appealed to the combinatorial

measure, the unbiased 〈5, 5〉 partition is indeed the most common of the 9 stable

partitions for this game: almost 1/3 of the time (0.310), the sender and receiver per-

fectly partition nature for maximal information transfer. Most of the time (0.792),

the sender and receiver partition nature near-perfectly—that is, a 〈5, 5〉, 〈6, 4〉,
or 〈4, 6〉 partition. Rarely (0.031), the sender and receiver fail to evolve a clear

partition of nature.

Figure 4 shows the distribution of runs for the impoverished signalling game with

10 state/act pairs and 2 signals under simple reinforcement. The entropy (mean

information per signal) is represented in this figure to illustrate how the bias of the

partitions correspond to information transfer—namely, the less biased the partition,

the more informative it is. Note that the combinatorial measure does not perfectly

track the actual distribution of partitions on simulation. One might attribute this

to mere noise; however, the likelihood of more biased partitions drops off even

faster than the number of ways to obtain these partitions. A Kolmogorov-Smirnov

(KS) test of the distribution on simulation against a distribution sampled from the

combinatorial expectation yields a p-value of 0.0017 on the null hypothesis that the

expected distribution and the observed distribution are identical. This suggests that

the combinatorial expectation does not, by itself, explain the empirical results.27

25In our urn-learning metaphor, the sender has ten urns, each starting with two balls, and the

receiver has two urns each starting with 10 balls.
26The cumulative success rate is a measure of success that takes account of the history of the

game. It is calculated by dividing the number of plays that led to a success by the total number
of plays in that run. When the players are successful, early failures are washed out as the number

of plays increases.
27The KS test on these data gives the statistic D = 0.0843, which is the supremum of the set of

distances between the empirical distribution function we observe and the expected distribution
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Figure 4. Partitioning 10 unbiased states with 2 signals. Com-
parison of experimental results with combinatorial expectation and
average information transfer

We see the same phenomena in the impoverished signalling game with 9 state/act

pairs and 3 signals on simulation under simple reinforcement learning. In this case,

the chance payoff is 1/9 ≈ 0.1111, and the maximal payoff—again, occurring at any

possible stable partition and correspondent receiver strategy—is 1/3 ≈ 0.3333. Af-

ter 106 plays per run, the expected payoff is 0.3332, on average (1000 runs). Almost

every (0.926) run achieves a near-perfect expected payoff greater than 0.3330, and

every run (1.000) achieves an expected payoff greater than 0.3300. Again, learning

is fast: the cumulative success rate is 0.3323 after 106 plays per run, on average,

and almost every run (0.990) achieves a cumulative success rate of at least 0.330.

Again, the unbiased partition, 〈3, 3, 3〉, is the most common of the 28 stable

partitions. About 1/6 of the time (0.160), the sender and receiver perfectly partition

nature for maximal information transfer, and more than 2/3 of the time (0.684),

the sender and receiver partition nature near-perfectly—that is, a 〈3, 3, 3〉 partition

or one of the six permutations of the 〈4, 3, 2〉 partition. Rarely (0.031), the sender

and receiver fail to evolve a clear partition of nature—usually, this is because the

receiver has learned early on to never choose some act. In this case, the sender

usually mixes the correspondent state over two signals. The urn for this state

(almost) never changes, since the receiver (almost) never chooses that action.28

Figure 5 shows the distribution of runs for the impoverished signalling game

with 9 state/act pairs and 3 signals under simple reinforcement. The fact that the

function from the combinatorial measure. This gives us a calculated p-value of 0.0017, implying

that we can reject the null hypothesis with high confidence.
28Of course, since there is no punishment, every conditional action for the sender and receiver has
some weight; however, in these cases, the weight for these acts is less than 1 in 2500.
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Figure 5. Partitioning 9 unbiased states with 3 signals. Compar-
ison of experimental results with combinatorial expectation and
average information transfer

combinatorial measure does not perfectly track the actual distribution of partitions

on simulation is even more pronounced here: the observed frequency of the 〈3, 3, 3〉
partition is twice that of the expected frequency based on the combinatorial ar-

gument. This suggests that these discrepancies cannot be accounted for by mere

noise. Again, the likelihood of more biased partitions drops off even faster than the

number of ways to obtain these partitions: the observed frequency of the 〈6, 2, 1〉
partition, for example, is 1/4 of the expected frequency.

As such, it appears that the impoverished signalling game tracks unbiased—or

close to unbiased—partitions significantly better than the combinatorial measure

over the possible ways of obtaining each distinct type of partition. When we intro-

duce some bias into nature, we see that the combinatorial measure alone cannot be

used to explain the observed frequencies.

4.2.2. Biased Nature. Let us consider, again, the impoverished signalling game with

10 state/act pairs and 2 signals. However, let us now suppose that nature is biased

so that the probability distribution over the set of states is given by

∆(S) =
[
1
2

1
18

1
18

1
18

1
18

1
18

1
18

1
18

1
18

1
18

]
for states s0 through s9, respectively. Again, the chance payoff is 1/10 = 0.10.

When signals are used optimally—i.e., a 〈1, 9〉 partition, corresponding to the biased

state and every other state—the maximal expected payoff is 5/9 ≈ 0.5556. On

simulation, under simple reinforcement, after 106 plays per run, the expected payoff

is 0.5502, on average (1000 runs). Many runs (0.8989) achieve an expected payoff

of at least 0.550 by 106 plays. As with the unbiased-nature simulations, learning is
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fast: the cumulative success rate is 0.5496 after 106 plays, on average (1000 runs),

and many runs (0.887) achieve a cumulative success greater than 0.550.

Most of the time (0.897) the players learn to coordinate upon a partition nature.

Most often (0.570), we see a 〈9, 1〉 or a 〈1, 9〉 partition (with approximately equal

frequency). Here, the sender partitions the biased state into one signal, and the

rest of the states into the other signal. About 1/4 of the time (0.281), the sender

pools a second state into the signal containing the biased state for an 〈8, 2〉 or

〈2, 8〉 partition (again, with approximately equal frequency). Sometimes (0.082),

the sender pools two extra states into the signal containing the biased state for a

〈3, 7〉 or 〈7, 3〉 partition. Rarely (0.008), the sender pools three extra states into the

signal containing the biased state for a 〈4, 6〉 or 〈6, 4〉 partition. On simulation, we

never see a 〈5, 5〉 partition.

However, in every case, when the sender pools an extra state into the signal that

contains the biased state, the receiver learns to never choose the action correspond-

ing to that signal. That is, the sender always partitions one action—the action

corresponding to the biased state—via the signal that contains the biased state in

its partition. Thus, when the partition is, e.g., 〈2, 8〉, the signal that pools two

states carries disjunctive information about those states, and is sent with (uncon-

ditional) probability 10/18; however, the receiver interprets the signal as carrying

complete information about the act—namely, the act corresponding to the biased

state.

More subtle pooling can occur when nature is biased in this way. Sometimes

(0.083), the receiver learns to ignore the signal, and only do the action corresponding

to the biased state. (For one signal, she puts full weight on the act corresponding

to the biased state; for the other signal, she puts weight between (0.95, 1.00) on the

same state, with weight between (0.00, 0.05) distributed over the remaining actions

for that signal.) Here the players receive an average payoff of 0.4999.

The rest of the time (0.020), we get a graded result between these two cases.

The sender puts full weight on the action corresponding to the biased state for one

signal, and she puts some weight between (0.05, 0.95) on the same act for the other

signal. This gives an average payoff of 0.5222.

We see similar behaviour when we examine the impoverished signalling game

with 9 state/act pairs and 3 signals. Suppose that nature is biased so that the

probability distribution over the set of states is given by

∆(S) =
[
1
3

1
3

1
21

1
21

1
21

1
21

1
21

1
21

1
21

]
for states s0 through s8, respectively. The chance payoff, again, is 1/9 ≈ 0.1111.

When signals are used optimally—i.e., a 〈1, 1, 7〉 partition—the maximal expected

payoff is 15/21 ≈ 0.7142. On simulation, under simple reinforcement, after 106
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plays per run, the expected payoff is 0.6970, on average (1000 runs), and many runs

(0.794) achieve an expected payoff of at least 0.71 by 106 plays. The cumulative

success rate is 0.6952 after 106 plays, on average (1000 runs), with about 3/4 (0.742)

of the runs achieving a cumulative success rate of at least 0.71.

As with the 10× 2 case with biased nature, qualitatively, three different things

happen. Most of the time (0.772), the sender and receiver optimally partition the

states/acts with the signals for a maximal possible payoff. Of these, the most com-

mon result (0.347) is that the sender partitions one biased state into one signal,

the other biased state into the other signal, and the remaining seven states into

the third signal—a 〈7, 1, 1〉 partition (or its permutations, with each permutation

occurring with approximately equal frequency), and the receiver responds accord-

ingly. Next most often (0.325), the sender pools an extra state with one of the

signals that contains one of the biased states for a 〈6, 2, 1〉 partition. The rest

of the time (0.194), we see all the remaining partitions, noting that the unbiased

〈3, 3, 3〉 partition occurs least frequently.29

The most important thing to note is that when the sender pools another state

(or states) into the signal containing one of the biased states, the receiver learns to

ignore the action associated with the extra state, and puts all weight for that signal

onto the act associated with the biased state; thus, as with the 10 × 2 case, even

though the signal may carry disjunctive information about the states, the receiver

interprets it as carrying full information about a single act.

Sometimes (0.034), the sender pools both of the biased actions into one signal,

and the receiver mixes over the appropriate actions, given that signal. The receiver

perfectly partitions the remaining seven states into the other two signals, and the

receiver mixes over the appropriate actions, conditional upon the signal received.

This strategy has an expected payoff of 9/21 ≈ 0.4286.

Again, the rest of the time, we get a graded result between these two cases.

Here the sender puts some weight on the same (biased) state over two signals, and

the receiver puts some weight on the same action (corresponding to that biased

state) from two signals. Thus, the sender mixes signals for one biased state and

perfectly partitions the other biased state. When the receiver puts much weight on

the same act for two different signals, she generally ignores all the other actions.

This strategy has an expected payoff of 2/3 = 0.6667. This happens under 1/5 of

the time (0.194).

29More specifically, this includes the 〈5, 3, 1〉 partition (occurring 0.073); the 〈4, 4, 1〉 partition

(occurring 0.019); the 〈5, 2, 2〉 partition (occurring 0.066); the 〈4, 3, 2〉 partition (occurring 0.030);
and, rarely, the 〈3, 3, 3〉 partition (occurring 0.005). Again, in each case, we see all permutations

occurring with approximately equal frequency.
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4.2.3. Different Dynamics. We might wonder whether there is something special

about simple reinforcement learning that leads to the results we have seen thus far.

However, in examining variations of the learning dynamic, we must be sensitive to

the parameters of this game. For example, under a dynamic like Win-Stay/Lose-

Shift, no set of strategies will be stable. Since there is a significant informational

bottleneck in the 10×2 impoverished signalling game, at a signalling system the best

the players can do is to lose half the time. Thus, they will continuously shift their

strategies.30 However, they may spend some time in one region of the distribution

space, depending upon how the parameters of the model are implemented.

Here, I examine a variation of the simple reinforcement learning model to include

punishment for miscoordination. However, the model is extremely sensitive to the

parameters. We have already seen, in the simple reinforcement learning model,

that the sender and receiver often co-evolve their strategies; however, the receiver

sometimes learns more quickly than the sender, and this results in the receiver

ignoring some (or, when nature is quite biased, most) of the signals that the sender

sends. Therefore, if punishment is too severe, then the receiver will quickly learn

to glom onto a particular action for one or the other signal. This results in a 〈1, 9〉
or 〈9, 1〉 partition on the receiver’s end. However, the sender has no opportunity to

finesse a partition to which the receiver will be responsive. If the receiver learns too

quickly—as happens with severe punishment—she never performs certain actions,

so the sender is continually punished, at equal rates for each of the signals, when

the states corresponding to those unused actions are chosen by nature. Thus, on

average, her strategy remains unchanged for those particular states.

I examine a 10 × 2 signalling game where nature is unbiased, and where the

dynamic includes a positive payoff [+2] for coordination, and a negative payoff,

or punishment, [−0.1] for miscoordination. The success rate is as before—0.10 at

chance, and 0.20 at a signalling system. Taking account of reward and punishment,

the expected payoff is 0.11 at chance and 0.32 at a signalling system. Though

the formula for calculating the maximum expected payoff at a signalling system

no longer applies straightforwardly, the results of Corollaries 4.1 and 4.2 still hold.

I examine the communicative success rate since this measure is equivalent to the

impoverished signalling game previously discusses—0.10 at chance and 0.20 at a

signalling system. After 106 plays per run, the communicative success rate is 0.1997,

on average (1000 runs). Almost all runs (0.943) achieved a success rate greater than

0.1990. Learning is still fast.

30See the discussion of Win-Stay/Lose-Shift in Barrett and Zollman (2009); Huttegger and Zoll-
man (2011), and the related dynamic Win-Stay/Lose-Randomise in Barrett and Zollman (2009);

Barrett et al. (2017).
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When we introduce punishment into the impoverished signalling game, the sender

and receiver fail to evolve a clear partition of nature more often than without pun-

ishment (this occurs in 0.250 runs). This is because the receiver now learns more

quickly not to perform actions that often lead to failures. As was mentioned above,

when this happens, the sender is equally punished for sending m0 or m1 in the state

corresponding to the act which the receiver never chooses. Thus, over time, the

signals in the urn for this state remain unbiased, and the sender signals randomly

when this state is chosen.

Of the runs that evolve a clear partition, the unbiased 〈5, 5〉 partition is the most

common of the 9 stable partitions for this game: again, about one-third of the time

0.307, the sender and receiver perfectly partition nature for maximal information

transfer. Most of the time (0.738), the sender and receiver partition nature near-

perfectly—i.e., a 〈5, 5〉, 〈6, 4〉, or 〈4, 6〉 partition.

Figure 6 shows the distribution of runs for the impoverished signalling game

with 10 state/act pairs and 2 signals under simple reinforcement as compared with

the same parameters with punishment. Note again that the combinatorial measure

Figure 6. Partitioning 10 unbiased states with 2 signals. Com-
parison of impoverished signalling game with and without punish-
ment

does not perfectly track the actual distribution of partitions on simulation without

punishment. However, when punishment is included in the learning dynamic, the

distribution of partitions observed on simulation is somewhat more closely tracked

by the combinatorial measure—though the distribution still tends to favour more

informative partitions. This too is perhaps surprising, since the punishment is for

miscoordination on individual actions—the sender and receiver are not punished

for failing to evolve a maximally informative partition of nature.
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Furthermore, learning is extremely sensitive to the parameters chosen. For ex-

ample, when the sender receives both a reward and punishment [+2,−0.1], but the

receiver is not punished [+1, 0], the distribution is qualitatively similar to those

previously discussed, but the sender and receiver are more successful at evolving

a clear partition of nature, failing only at a rate of approximately 0.04. When re-

wards are asymmetric in the other direction ([+1, 0] for the sender, and [+2,−0.1]

for the receiver), they essentially always fail to evolve a clear partition (approxi-

mately 0.95). In these cases, the players still coordinate successfully for a success

rate close to 0.20 after 106 plays per run. However, the receiver learns very quickly

(with punishment) to simply ignore many of the actions—she puts all of her weight

on a single action for each of the signals. Thus, the sender never reinforces for the

states corresponding to those actions; rather than learning to partition nature, she

is learning to manipulate the (quickly fixed) dispositions of the receiver.31

This further serves to highlight the importance of the role asymmetries of the

sender and receiver, as is discussed in Brusse and Bruner (2017); LaCroix (2019a).

Note, that Brusse and Bruner (2017) suggest that signalling systems evolve more

readily when the sender learns more quickly than the receiver and that this re-

sult is quite robust—they highlight that Hofbauer and Huttegger (2008) show that

signalling conventions are possible when the mutation rate of the receiver popula-

tion exceeds that of the sender population under the replicator-mutator dynamic.

The results presented here are consistent with their analysis to the extent that they

interpret this as a situation in which the receiver (population) is relatively unrespon-

sive to the sender population. This is precisely what happens in the impoverished

signalling game when the receiver learns too quickly: the receiver becomes unre-

sponsive to the sender, forcing the sender to learn how to ‘manipulate’ the receiver

instead of learning a partition of nature.

5. Discussion

Barrett and LaCroix (2020) emphasise, as I have here, that a language which

partitions nature into equally probable sets allows for maximal information trans-

fer. We should undoubtedly expect agents who are rewarded for communicating

the most information per signal to evolve a communication system that is maxi-

mally informative—for example, if signals are costly. However, I have demonstrated

clearly that costly signalling is by no means a necessary condition for the evolution

of such an efficient, maximally-informative language. Indeed, in many cases, the

sender and receiver evolve a nearly unbiased partition of nature under simple re-

inforcement learning, where signalling is cost-free, and there is no punishment for

31For a discussion of sensory manipulation in the context of signalling games, see Barrett and
Skyrms (2017).
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miscoordination. Furthermore, when punishment is introduced for miscoordination,

the players learn more often a maximally informative signalling system. Again, this

is even though the cost of signalling is not a cost for being less informative.

Barrett and LaCroix (2020) use these results to explain how the structural prop-

erties of a language come to reflect the world in which the language evolved. This

shows how something like a principle of indifference (in a Bayesian sense) might arise

naturally in an evolutionary context. The key thing to note is that the naturalness

of a particular partition depends inherently upon the context under consideration.

I have shown here that nothing about the communicative success of a partition

alone recommends a symmetric partition; nonetheless, individuals are more likely

to choose partitions that maximise information transfer, given the communicative

capacities with which they are endowed.

Payoff alone drives the dynamics under reinforcement learning: upon receiving

a reward, the sender and receiver reinforce their behaviour, so rewards drive rein-

forcement. Despite this analytic fact, we have seen that under simulation there is

a natural tendency to move toward the most informative signalling system avail-

able. At first blush, this should be somewhat surprising, given that every signalling

system in the impoverished signalling game has equivalent communicative success.

A priori, there is no reason to think that one type of partition will be favoured

over another. In hindsight, however, we see that signalling systems are not in fact

equiprobable, when accounting for distinct partitions, and the most likely signalling

systems naturally come equipped with maximal information transfer. This point

generalises to the extent that both the binomial coefficient and the quantity of in-

formation are functions that increase monotonically toward the unbiased partition

(and decrease monotonically away from it).32

What I have shown in this paper is that agents learning to coordinate tend to

favour maximal information transfer in spite of the fact that nothing from an initial

analysis of the stability properties of the underlying signalling game suggests that

this should be the case. Further, I have explained why this might be so—namely, the

underlying structure of our model favours maximal information transfer in regard

to the simple combinatorial properties of how the agents might partition nature. I

showed that the structure of the game is such that there are more ways to achieve

maximal information transfer than not for any particular partition. Furthermore,

when nature is biased, the combinatorial argument alone cannot suffice to explain

the observed frequency of the various partitions under simulation. This suggests

that there is something over and above the combinatorial argument offered here that

is causing the results that we see. However, the analytic connection between the

32This follows straightforwardly from the formula for entropy on the one hand and the formula
for the binomial coefficient on the other.
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partitions in the impoverished signalling game and maximal information transfer

remains to be shown. This is an open question.

To the extent that the models presented accurately capture some real-world nat-

ural processes, we have seen that the evolutionary process is such that we can expect

individuals to communicate as efficiently as possible (at least under the contexts

which I have examined) and further that there is a natural tendency to achieve

maximal information transfer. That being said, the models presented here are,

of course, highly idealised and highly simplified—the actual world is significantly

more complex than the world which our sender and receiver inhabit. However, I

suggest that they are illuminating nonetheless, in the very least in a ‘how-possibly’

sense. Further examination is clearly warranted. On a methodological note, then,

this paper serves as an example to highlight the complementary roles of numerical

simulations and analytic results.
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A., Ebert, C., Jäger, G., and van Rooij, R., editors, Language, Games, and
Evolution, volume 6207 of Lecture Notes in Computer Science, pages 160–176.
Springer, Berlin, Heidelberg.

LaCroix, Travis (2019a). Accounting for Polysemy and Role Asymmetry in the
Evolution of Compositional Signals. Unpublished Manuscript. September, 2019.
PDF File.

LaCroix, Travis (2019b). Evolutionary Explanations of Simple Communication:
Signalling Games and Their Models. Journal for General Philosophy of Science
/ Zeitschrift für allgemeine Wissenschaftstheorie. Forthcoming.

LaCroix, Travis (2019c). Using Logic to Evolve More Logic: Composing Logi-
cal Operators via Self-Assembly. British Journal for the Philosophy of Science.
Forthcoming.

Lewis, David (2002/1969). Convention: A Philosophical Study. Blackwell, Oxford.
Roth, Alvin and Erev, Ido (1995). Learning in Extensive Form Games: Experi-

mental Data and Simple Dynamical Models in the Intermediate Term. Games
and Economic Behavior, 8:164–212.



24 TRAVIS LACROIX

Schultz, Wolfram (2004). Neural Coding of Basic Reward Terms of Animal Learn-
ing Theory, Game Theory, Micro-economics and Behavioural Ecology. Current
Opinion in Neurobiology, 14(2):139–147.

Schultz, Wolfram, Dayan, Peter, and Montague, P. Read (1997). A Neural Substrate
of Prediction and Reward. Science, 275:1593–1599.

Selten, Reinhard (1980). A Note on Evolutionarily Stable Strategies in Asymmetric
Animal Conflicts. Journal of Theoretical Biology, 84:93–101.

Shannon, Claude (1948). A Mathematical Theory of Communication. The Bell
System Mathematical Journal, 27:379–423.

Shannon, Claude and Weaver, Warren (1949). The Mathematical Theory of Com-
munication. University of Illinois Press, Urbana and Chicago.

Shea, Nicholas, Gofrey-Smith, Peter, and Cao, Rosa (2018). Content in Simple Sig-
nalling Systems. The British Journal for the Philosophy of Science, 69(4):1009–
1035.

Skyrms, Brian (2010a). Signals: Evolution, Learning, & Information. Oxford
University Press, Oxford.

Skyrms, Brian (2010b). The Flow of Information in Signaling Games. Philosophical
Studies, 147(1):155–165.

Skyrms, Brian and Barrett, Jeffrey A. (2018). Propositional Content in Signals.
Studies in the History and Philosophy of Science C. Forthcoming.

Steinert-Threlkeld, Shane (2016). Compositional Signaling in a Complex World.
Journal of Logic, Language, and Information, 25(3–4):379–397.

Thorndike, Edward L. (1905). The Elements of Psychology. The Mason Press,
Syracuse.

Thorndike, Edward L. (1911). Animal Intelligence: Experimental Studies. The
Macmillan Company, New York.

Thorndike, Edward L. (1927). The Law of Effect. American Journal of Psychology,
39:212–222.

Trapa, Peter E. and Nowak, Martin A. (2000). Nash Equilibria for an Evolutionary
Language Game. Journal of Mathematical Biology, 41(2):172–188.

Wärneryd, Karl (1993). Cheap Talk, Coordination and Evolutionary Stability.
Games and Economic Behavior, 5(4):532–546.

Zollman, Kevin J. S. (2011). Separating Directives and Assertions Using Simple
Signaling Games. The Journal of Philosophy, 108(3):158–169.

Appendix A. Extended Proofs

Proposition 3.1: The maximal communicative success rate for

the impoverished signalling game, as defined in Definition 2.3, is

maxπ(σ, ρ) =
|M |
|S|

.

Proof. The communicative success rate, as per Definition 2.1, is

given by

π(σ, ρ) =
∑
s∈S

P (s)
∑
a∈A

u(s, a) ·

(∑
m∈M

σ(s)(m) · ρ(m)(a)

)
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Under the assumption that nature is unbiased, as per Definition 2.3,

it follows that this is equivalent to

π(σ, ρ) =
1

|S|

[∑
a∈A

u(s, a) ·

(∑
m∈M

σ(s)(m) · ρ(m)(a)

)]
Under the assumption that the utility function is as it is given in

Definition 2.3, u(si, aj) = 0 whenever i 6= j. Therefore, this further

simplifies to

π(σ, ρ) =
1

|S|

 |S|∑
i=1

|M |∑
j=1

σ(si)(mj) · ρ(mj)(ai)


Note that σ(si)(m) is equivalent to P(m|si), and similarly ρ(m)(ai)

is equivalent to P(ai|m). Thus, we can expand the summation

inside the brackets. For ease of exposition, I will represent this

expanded sum as a table of values, with each cell containing an

individual summand.


P(m0|s0)P(a0|m0) · · · P(m|M ||s0)P(a0|m|M |)
P(m0|s1)P(a1|m0) · · · P(m|M ||s1)P(a1|m|M |)

...
. . .

...

P(m0|s|S|)P(a|S||m0) · · · P(m|M ||s|S|)P(a|S||m|M |)


By Definition 3.1, a partition is a set of states such that P(m|s) =

1. Therefore, by the law of total probability, it follows that exactly

1 the signal-probabilities conditional on the state equals 1 for each

row of the summand written above, and the rest equal zero.

Thus, we write our sum more compactly as follows:
P(a0|m0) P(a0|m1) · · · P(a0|m|M |)
P(a1|m0) P(a1|m1) · · · P(a1|m|M |)

...
...

. . .
...

P(a|S||m0) P(a|S||m1) · · · P(a|S||m|M |)


I just noted that many of these cells will be equal to 0, since

they will be multiplied by 0. However, what is important to note

is that (1) This table has dimensions |S| × |M |, and (2) all of the

columns sum to 1, by the law of total probability. Therefore, our

entire sum reduces to |M | additions of 1.
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Therefore, we have

π(σ, ρ) =
1

|S|
[|M |]

Therefore, under the assumption that all states are equiprobable,

and the utility function is as in Definition 2.3, it follows that the

maximal communicative success rate for this signalling game is

maxπ(σ, ρ) =
|M |
|S|

.

�

Corollary 3.1: In a signalling game, as defined in Definition 2.3,

a strategy wherein the sender does not take advantage of all of the

signals available to her has a lower communicative success rate than

a strategy which does take advantage of all the signals available to

her.

Proof. By Proposition 4.1, we know that the maximal payoff avail-

able to the sender and receiver is given by |M ||S| . I note that if the

sender does not use a particular signal, then the receiver will pool

all her actions to the remaining |M | − 1 possible messages that she

will receive. If she did not, then her strategy would not be a best

response to the sender’s strategy, σ. It follows, by the same argu-

ment as in Proposition 4.1 that the maximum expected payoff for

a strategy of this sort will be

|M | − 1

|S|
<
|M |
|S|

.

Therefore, the sender and receiver cannot acheive maximal payoff

unless they take advantage of all the available messages. �
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