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The Structure of Epistemic Probabilities 

 

Abstract The epistemic probability of A given B is the degree to which B evidentially 

supports A, or makes A plausible. This paper is a first step in answering the question of what 

determines the values of epistemic probabilities. I break this question into two parts: the 

structural question and the substantive question. Just as an object’s weight is determined by its 

mass and gravitational acceleration, some probabilities are determined by other, more basic ones. 

The structural question asks what probabilities are not determined in this way—these are the 

basic probabilities which determine values for all other probabilities. The substantive question 

asks how the values of these basic probabilities are determined. 

I defend an answer to the structural question on which basic probabilities are the 

probabilities of atomic propositions conditional on potential direct explanations. I defend this 

against the view, implicit in orthodox mathematical treatments of probability, that basic 

probabilities are the unconditional probabilities of complete worlds. I then apply my answer to 

the structural question to clear up common confusions in expositions of Bayesianism and shed 

light on the “problem of the priors.” 

 

Keywords Bayesian Epistemology; Bayesian Networks; Explanation; Probability; Inference 

to the Best Explanation 
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1. Introduction  

Were the dinosaurs killed by an asteroid? I don’t know—and neither do you. How 

confident ought we to be that this proposition is true? 

A plausible answer is that our confidence that the dinosaurs were killed by an asteroid 

ought to be equal to the probability of that proposition given our evidence. This raises two 

further questions: what is our evidence, and how is the probability of a proposition given some 

evidence determined? This paper is a first step in the (very large) project of answering the second 

of these questions. 

The relevant sense of probability here is epistemic probability. The epistemic probability 

of A given B—notated P(A|B)—is a relation between the propositions B and A. It is the degree 

to which B supports A, or makes A plausible. Entailment is a limiting case of this relationship; if 

B entails A, then P(A|B) = 1. It constrains rational degrees of belief, in that, if P(A|B) = n, then 

someone with B as their evidence ought to be confident in A to degree n.1 

Keynes (1921), Jeffreys (1939), Cox (1946), Carnap (1950), Williamson (2000: ch. 10), 

Swinburne (2001), Jaynes (2003), Hawthorne (2005), and Maher (2006) offer similar 

explications of probability.2 There is a great deal more that could be said about the nature of 

epistemic probability. Most of the above authors claim that epistemic probability relations are 

necessary and knowable a priori. I am sympathetic to these claims, but the approach to the 

 
1 If some probabilistic support relations are imprecise or non-unique, then we would need to amend this bridge 

principle so that degrees of support constrain but do not always determine rational degrees of belief. Note also that 

some philosophers (e.g., Williamson 2010) take epistemic probabilities to be identical to rational degrees of belief, 

rather than a determinant of what degrees of belief are rational. I defend a degree-of-support interpretation of 

probability over a degree-of-rational-belief interpretation in my manuscript, “Epistemic Probabilities are Degrees of 

Support, not Degrees of (Rational) Belief.” Philosophers skeptical of this degree-of-support interpretation can see 

this paper as provisionally working out the best way to develop it. (In addition, much of my project could be recast 

in terms of degrees of belief, for philosophers so inclined: see note 5 for further discussion.) 

2 These authors use various terms to describe their conceptions of probability, including ‘logical probability,’ 

‘inductive probability,’ ‘evidential probability,’ and ‘degree of support.’ For the most part any differences between 

these conceptions of probability are not important for my purposes here. 
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structure of epistemic probabilities I go on to defend could also be accepted by philosophers who 

conceive of probabilistic support relations in an externalist or subjectivist manner.3  

Epistemic probabilities conform to the laws of the probability calculus. However, these 

laws do not suffice to determine the values of epistemic probabilities. We can break down the 

project of explaining how these values are determined into two parts, which I will call the 

structural project and the substantive project. The structural project asks what probabilities’ 

values are determined by the values of other probabilities, and what probabilities’ values are not 

determined by the values of other probabilities. The substantive project then asks how the values 

of the latter probabilities are determined. (For example, one traditional answer would be that they 

are determined by the Principle of Indifference.) In this paper I undertake the structural project, 

leaving the substantive project for another time. 

The premise of the structural project is that just as an object’s weight is determined by its 

mass and its gravitational acceleration, the values of some probabilities are determined by the 

values of other probabilities.4 I will call probabilities the values of which are determined by the 

values of other probabilities non-basic. Basic probabilities, by contrast, are the elementary 

quantities out of which other probabilities are built; they are the ‘atoms’ of probability theory. 

Given values for basic probabilities, we can compute values for all non-basic probabilities.5 

 
3 Some of my arguments rely on assumptions about the objective values of certain probabilities—e.g., that the 

probability that the ball drawn out of an urn will be black, given that the urn has 1 black ball and 2 white balls, is 

1/3. That there are objective probabilities in easy cases like these is compatible, though, with the subjectivist 

intuition that in other, harder cases there is no one unique degree to which one proposition supports another. 

4 Plausibly, this determination relation is metaphysical grounding, but one need not assume this to pursue the 

structural question. I briefly discuss the possibility of other kinds of non-causal explanatory priority relations in 

section 2.3. 

5 Although some of the arguments that I go on to make regarding the structural project turn on a conception of 

epistemic probabilities as degrees of support, we could recast the structural project in terms of degrees of belief. In 

particular, when requiring that an agent’s credences be coherent, we could ask which credences (if any) should be 

assigned directly, and which ones should be conformed to these basic credences by the laws of probability. The 

approach I defend, applied to subjective probability, would make a (to be specified) subset of conditional credences 

at a time basic, and require an agent to conform her other credences at that time to those. Suitably reformulated, 
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So the structural project asks: what probabilities are basic? And the substantive project 

asks: how are the values of these basic probabilities determined? Although these questions are 

both metaphysical, they are interesting mainly because of their epistemological upshot. We want 

to be able to figure out how probable our evidence makes the hypothesis that the dinosaurs were 

killed by an asteroid. The structural and substantive projects aid us in this to the extent that they 

help us figure out the values of basic probabilities, and then compute the values of non-basic 

probabilities (like, I will argue, this one) as a function of those. 

In the past philosophers who have addressed the question of how we might figure out the 

values of epistemic probabilities have mainly focused on the substantive project, jumping 

straight to arguing for or against substantive methods like the Principle of Indifference. But what 

probabilities should we (for example) assign equal probabilities to? We must answer the 

structural question before we can know how to apply the Principle of Indifference (or some other 

substantive method). 

Some philosophers have suggested that the values of some epistemic probabilities can be 

directly perceived (e.g., Keynes 1921: ch. II.8). If this is so, it again raises the question: which 

ones? In sections 3.3 and 3.4, I argue that the values of basic probabilities are more epistemically 

accessible than the values of non-basic probabilities. This means that determining which 

probabilities are basic can help us more reliably figure out the values of probabilities we care 

about even in the absence of an answer to the substantive question.  

I call my answer to the structural question Explanationism. Informally, Explanationism 

says that the basic probabilities are the probabilities of atomic propositions conditional on 

 
arguments 2-5 in section 3 could provide reason for subjective Bayesians who interpret probabilities as degrees of 

belief to endorse Explanationism about the structure of degrees of belief, and argument 6 could provide reason for 

objective Bayesians who interpret probabilities as rational degrees of belief to endorse Explanationism about the 

structure of rational degrees of belief. 
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potential direct explanations of those propositions. In section 2, I explain Explanationism in 

more depth, contrasting it with the Orthodox view about the structure of probabilities. In section 

3, I argue for Explanationism against Orthodoxy. In section 4, I explore some philosophical 

implications of Explanationism. Section 5 concludes with some questions for further research. 

2. Rival Views on the Structure of Probabilities 

 Before us is an urn. We know that it was selected by coin flip from two urns, U1 and U2. 

U1 contains 1 black ball and 2 white balls, and U2 contains 2 black balls and 1 white ball. We 

propose to learn about the contents of the urn by sampling from it at random. Let B and W stand 

for the propositions that the ball we draw is black or white, respectively. 

In this problem there are two variables: the contents of the urn, and what color ball we 

draw. For each value that a variable can take on (e.g., the color of the ball drawn taking on the 

value black), there is an associated proposition (e.g., the proposition that the ball drawn out of 

the urn is black). Hence, each variable has an associated partition, that is, set of mutually 

exclusive and jointly exhaustive possibilities: {U1, U2}, {B, W}. (For ease of exposition, I will 

often informally speak of the members of these partitions as the values of their associated 

variables.) 

In this problem we have four atomic propositions: U1, U2, B, and W.6 We also have 

various complex disjunctions and conjunctions of these propositions which we can consider. Of 

particular interest are the following complex propositions: 

U1&B   

 U1&W 

U2&B 

 
6 By ‘atomic proposition,’ I mean a proposition that is not truth-functionally decomposable into other propositions. 
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U2&W 

These propositions are state-descriptions—conjunctions in which one member of each partition 

appears once. State-descriptions are maximally complete descriptions of the world of our 

problem. They answer all our questions, assign a value to all our variables. In general, if we have 

n partitions with m members each, then we have mn possible state-descriptions.7 

For any pair of propositions in our problem X and Y, we can consider P(X|Y). We can 

also consider “unconditional” probabilities like P(X), which is the probability of X conditional 

only on the background knowledge given in the statement of the problem. (For ease of 

exposition, I suppress this background in this and the next section, e.g., writing P(U1&B) rather 

than P(U1&B|K).) Our question, applied to this problem, is which of these probabilities are basic, 

and which are non-basic.  

2.1 Non-starters 

One answer is that all these probabilities are basic. The lack of attention to the structural 

question suggests that many philosophers tacitly assume this. A second answer is that all the 

unconditional probabilities are basic. On this view, P(U1) and P(B) are basic, but P(U1|B) and 

P(B|U1) are not. This view is suggested by Hedden’s (2015b: 470) claim that the “unique rational 

prior probability function … represents the a priori plausibility of each proposition,” and 

Williamson’s (2000: 211) remark that evidential probability “measures something like the 

intrinsic plausibility of hypotheses prior to investigation.” This second view is also implicit in 

Ramsey (1926) and Jeffrey (1983)’s subjective Bayesian theories, which define unconditional 

 
7 The term ‘state-description’ comes from Carnap (1950), but my definition is slightly different from Carnap’s. First, 

the conjuncts of state-descriptions in my sense are propositions rather than sentences. Second, and setting aside the 

first difference, state-descriptions in Carnap’s sense are the special case of state-descriptions in my sense where the 

partitions are all of the form {A, ~A}. This latter difference is purely formal: each Carnapian state-description will 

be materially equivalent to a state-description constructed from more fine-grained partitions, and vice-versa. 
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degrees of belief first, and then define conditional degrees of belief in terms of these.8 

Accepting either of these views makes it difficult to give an account of how the values of 

basic probabilities are determined. Standard answers to the substantive question would lead to 

probabilistic incoherence if applied to all probabilities, or applied to all unconditional 

probabilities. For example, the Principle of Indifference tells us to assign equal probabilities to a 

set of possibilities when our information does not support one over another. But it is impossible 

to assign equal values to all probabilities, or all unconditional probabilities; doing so will always 

be probabilistically incoherent. (For example, in the problem at hand, suppose that P(U1) = P(U2) 

= P(U1&B) = P(U1&W). Since P(U1) = P(U1&B) + P(U1&W), it follows that P(U1) = 2P(U1), 

and so P(U1) = P(U2) = 0. But this is impossible, since {U1, U2} is a partition, and so P(U1) + 

P(U2) = 1.) So the Principle of Indifference can never directly determine the values of all 

(unconditional) probabilities; if it determines the values of these probabilities at all, it must 

determine some indirectly, by determining the values of others. Or consider a substantive view 

on which simpler propositions have higher probabilities than more complex propositions. 

Presumably U1vB is a more complex proposition than U1. If this criterion of simplicity is applied 

unrestrictedly, it then implies that P(U1) > P(U1vB), which is impossible. 

I discuss further how answers to the structural question combine with substantive 

principles for determining the values of basic probabilities in section 3.6.1. For now the 

important thing to note is that principles like the above were designed to be applied to partitions 

of propositions, like {U1, U2} and {B, W}. What went wrong in the above examples is that the 

different propositions being assigned probabilities are not mutually exclusive. I will now 

 
8 Other answers that may initially appear appealing would not actually fix values for all probabilities. For example, 

an assignment of values to all unconditional probabilities of atomic propositions would not determine values for 

either conditional probabilities or unconditional probabilities of state-descriptions. Knowing P(U1), P(U2), P(B), and 

P(W) would not enable us to determine the values of, e.g., P(U1|B) or P(U2&W). 
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consider two structural views on which basic probabilities are assigned across partitions, in a 

way that makes it easier to combine these views with an answer to the substantive question. 

2.2 Orthodoxy 

The first of these views focuses on the partition of state-descriptions: in this case, 

{U1&B, U1&W, U2&B, U2&W}. On this view, the basic probabilities are the unconditional 

probabilities of state-descriptions: P(U1&B), P(U1&W), P(U2&B), and P(U2&W). This answer to 

the structural question takes its cue from orthodox mathematical probability theory, in which the 

probabilities of state-descriptions are assigned first, and other probabilities are determined as a 

function of these. Because of this, I call this view Orthodoxy. 

In Kolmogorov’s (1933) axiomatization of probability, the set of different state-

descriptions is the “sample space.” The sample space is one of the three basic notions in 

Kolmogorov’s axiomatization. The second notion is an “algebra” on this sample space, that is, a 

set of subsets of the sample space. We can understand this as a set of state-descriptions and 

disjunctions of state-descriptions. The third notion is a “probability function” from members of 

the algebra to the unit interval [0,1]. 

While Kolmogorov’s axioms for this probability function do not themselves require that 

any particular members of the algebra get assigned numbers first, the most standard way to 

construct a function that obeys these axioms is to begin by assigning probabilities to each 

member of the sample space (i.e., each state-description) such that these probabilities sum to 1.9 

(One can think of each state-description as taking up a certain proportion of the total space of 

possibilities, which has measure 1.) Kolmogorov’s axioms, together with the ratio definition of 

 
9 This assumes a finite number of state-descriptions. It is controversial whether the elements of the sample space 

need to sum to 1 if the sample space is infinite. For simplicity, I only discuss finite sample spaces in this paper. 
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conditional probability, then determine P(X|Y) for any pair of propositions in our algebra X and 

Y, because any such proposition is logically equivalent to a disjunction of state-descriptions.10 

Since orthodox probability theory assigns unconditional probabilities directly to each 

state-description, it treats the unconditional probabilities of state-descriptions as basic. Perhaps 

for this reason, most philosophers who have given precise quantitative (as opposed to merely 

qualitative) solutions to the substantive problem, including Carnap (1950), Solomonoff (1964), 

and Williamson (2010), have assumed Orthodoxy in their solutions.11 

2.3 Explanationism 

A final answer to our question, and the one I will defend, is Explanationism.12 According 

to Explanationism, basic probabilities are the probabilities of atomic propositions conditional on 

propositions directly explanatorily prior to them. Because {U1, U2} is directly prior to {B, W}, 

and nothing is prior to {U1, U2}, we have here six basic probabilities—P(U1), P(U2), P(B|U1), 

P(W|U1), P(B|U2), and P(W|U2). 

 

Figure 1 

 
10 Although I do not here address the question of which axiomatization of probability is best, in light of 

Explanationism’s commitment to conditional probabilities as basic, it is plausible that the Explanationist should 

endorse non-standard axioms of probability, like those presented by Cox (1946), Jaynes (2003), and Maher (2004), 

which make conditional probability a primitive notion. 

11 For contemporary followers of Carnap and Solomonoff, see Tooley (2012) and Rathmanner and Hutter (2011), 

respectively. I discuss Williamson’s system further in section 3.6. 

12 ‘Explanationism’ is sometimes used (e.g., in Lipton 2004) to describe the view that explanatory considerations are 

central to empirical inference. Explanationism in my sense implies, and gives specific content to, this more general 

claim. ‘Explanationism’ has also been recently used to describe non-Bayesian methods of updating credences 

(Douven 2013, Douven and Schupbach 2015) which I do not endorse (see Climenhaga 2017b). 
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Before offering a more formal statement of Explanationism, it will be helpful to go 

through this reasoning more slowly. According to Explanationism, the first step in determining 

the values of probabilities is to order the variables/partitions in our problem by their explanatory 

priority. In our current case, the Urn variable is explanatorily prior to the Draw variable—the 

contents of the urn influence what ball we draw out, but what we draw from the urn does not 

influence its (initial) composition. Fig. 1 formalizes these priority relations. It has two nodes, 

representing our two variables, with an arrow from the Urn node to the Draw node because the 

former is prior to the latter. 

After ordering our variables, we take the basic probabilities to be those given to values of 

a variable by values of the variable(s) immediately prior to it. A basic probability, then, is the 

probability of a “downstream” proposition conditional on immediately “upstream” propositions. 

In the current case there are six such probabilities: 

P(U1) = 1/2 

P(U2) = 1/2 

P(B|U1) = 1/3 

P(W|U1) = 2/3 

P(B|U2) = 2/3 

P(W|U2) = 1/3 

The Urn node is a root node; that is, there are no nodes pointing into it. As such, the (basic) 

probabilities of U1 and U2 are represented as unconditional. Really, they are conditional on the 

suppressed background knowledge given in the statement of the problem. 

 These six basic probabilities let us calculate any other probabilities we might be 

interested in. For example, Bayes’ Theorem gives us: 



11 

 

𝑃(𝑈1│𝐵) =
𝑃(𝑈1)𝑃(𝐵│𝑈1)

𝑃(𝑈1)𝑃(𝐵│𝑈1) + 𝑃(𝑈2)𝑃(𝐵│𝑈2)
=

(
1
2) (

1
3)

(
1
2) (

1
3) + (

1
2) (

2
3)

=
(

1
3)

1
=

1

3
 

In this simple example, we had only two variables to order. Consider now two 

modifications of the above case. In the first modification, we make two draws with replacement 

from the urn. Then our diagram looks like Fig. 2. In the second modification, we make two 

draws from the urn but do not replace the ball after the first draw. Then our diagram looks like 

Fig. 3. Alternatively, we could represent the choice to replace or not replace the first draw as a 

separate variable, as in Fig. 4. 

In these diagrams, we include an arrow from one variable to another if we think it 

possible that the value of the first variable somehow influences the value of the second. If we are 

sampling with replacement, the outcome of the first draw does not influence the outcome of the 

second. If we are sampling without replacement, it does; drawing black the first time lowers the 

probability that we draw it the second time. In Fig. 4, the lack of an arrow from the Draw 1 

variable to the Replacement variable represents the assumption that the outcome of the first draw 

will not influence our choice of whether to put the ball back in the urn.  

    

Figure 2  Figure 3  Figure 4 

Figures 1-4 are directed acyclic graphs (DAGs). A DAG is a directed graph with no 
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loops. It consists of a finite number of nodes, with arrows drawn from some nodes to other nodes 

such that the arrows never form a loop. We can interpret a DAG as giving us the ordering of the 

variables in our algebra which allows us to determine which probabilities are basic. To do this 

we employ the language of ancestors and descendants. We say that X is a parent of Y iff there is 

an arrow from X to Y, and an ancestor of Y iff it is a parent, parent of a parent, etc. (that is, there 

is a directed path from X to Y). If X is a parent/ancestor of Y, Y is a child/descendant of X. 

The variables represented by a DAG are said to obey the Markov condition just in case a 

variable’s parents screen it off from all non-descendants. For example, in Fig. 2 the Urn variable 

screens off Draw 1 from Draw 2—if we know what urn we are sampling from, learning the 

outcome of the second draw provides us no information about the outcome of the first draw, and 

vice-versa. Formally: 

Markov Condition 

A DAG obeys the Markov condition iff for all atomic X, X is conditionally independent, 

given its parents, from any (conjunction of) non-descendants of X. 

 

Where pa(X) represents the parents of X, the Markov condition says that P(X|pa(X)) = 

P(X|pa(X)&Z), unless (some conjunct of) Z is a descendant of X. 

The Markov condition is intuitively plausible when we think of a DAG as representing 

causal structure (and there are no relevant causal variables omitted from the DAG). If Y already 

tells us everything relevant to predicting X in advance, then we can only get more information 

about whether or not X is true by learning about its effects. For example, if we know that the 

only thing that directly causally influences one’s getting lung cancer is the amount of tar in one’s 

lungs, then it is plausible that the amount of tar in one’s lungs screens off getting cancer from 

one’s smoking habits—that is, P(cancer | tar) = P(cancer | tar&smoking).13 

 
13 The Markov condition is not completely uncontroversial in either epistemic or causal contexts, but I lack the space 
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A directed network of partitions that obeys the Markov condition is called a Bayesian 

network. On the Explanationist answer to the structural problem, we start off by ordering the 

partitions we are interested in in a Bayesian network. The basic probabilities will be those given 

to an atomic proposition by assignments of values to all its parents. All other probabilities in the 

network can be determined as a function of those (Pearl 2000: 14-16). For example, in Fig. 4, 

P(B2 | R&B1&U1) is basic, but P(B2 | B1&U1) is not, because the latter probability is not 

conditioned on all the parents of B2. Rather, P(B2 | B1&U1) must be calculated as a weighted 

average of P(B2 | R&B1&U1) and P(B2 | ~R&B1&U1), weighted by P(R | B1&U1) and P(~R | 

B1&U1).
14 

Here, then, is a first statement of Explanationism: 

Explanationism 1.0 

P(X|Y) is basic iff X is atomic, and Y is a conjunction of values for all parents of X in a 

Bayesian network that includes all variables immediately explanatorily prior to X, and 

correctly relates all the variables it includes. 

 

Later on, in section 3.6, I will relativize this statement to higher-order hypotheses about Bayesian 

networks, to allow for uncertainty about the correct Bayesian network. For the moment, I set 

these complications aside, as there is plenty to unpack here already.  

First, in saying that a Bayesian network correctly relates the variables it includes, I mean 

that it includes an arrow from V1 to V2 iff V1 is immediately explanatorily prior to V2.
15 By 

‘immediately explanatorily prior’ (or ‘directly explanatorily prior’), I mean that V1 is 

 
to address objections to it here. For discussion, see Pearl 1988: ch. 3 and Hitchcock 2012. 

14 More generally, we can break down the probability of a conjunction A&B where A is a parent of B into basic 

probabilities using the Conjunction Rule P(A&B) = P(A)P(B|A), break down the probability of a proposition given 

its descendant into basic probabilities using Bayes’ Theorem, and break down the probability of a proposition given 

non-descendants into basic probabilities using the Theorem of Total Probability (conditioning on all the ways the 

proposition’s parents could be). We will see further examples of these operations in sections 3 and 4. 

15 Similarly, Pearl (1988: 123) and Bovens and Hartmann (2003: 68) both suggest that Bayesian networks should be 

constructed so that the parents of a variable are its “direct influences.” 
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explanatorily prior to V2, and there is no other variable that mediates the explanatory relation 

between them. 

When is V1 explanatorily prior to V2? Causal priority, as in the above urn examples, is 

one kind of explanatory priority, and the most common kind to which Bayesian networks have 

been applied. Schaffer (2016) also uses Bayesian networks to formalize metaphysical grounding. 

Plausibly, causal and metaphysical priority are the only two kinds of direct explanatory priority, 

so that V1 is directly explanatorily prior to V2 iff it is either directly causally prior to V2 or 

directly metaphysically prior to V2. But if V1 is metaphysically prior to V2, which is causally 

prior to V3, then even if V1 is neither metaphysically or causally prior to V3, it is still 

explanatorily prior to it: indirect relations of explanatory priority need not be solely metaphysical 

or solely causal, but can be combinations of both (cf. Lange 2018: 1345). 

Whether causal and metaphysical priority are really the only two kinds of direct 

explanatory priority is disputable. Mathematical priority might be distinct from metaphysical 

grounding. Huemer (2009: 352-53) discusses temporal, part-whole, in-virtue-of, and 

supervenience priority. Henderson et al. (2010: 180) speak of more specific theories as being 

“constructed” out of more general theories, giving examples in which the probability of the 

specific theory conditional on the general theory is apparently treated as basic by scientists. I 

leave the question of whether these are really (distinct) kinds of explanatory priority, and 

whether there are other kinds, as an area for further research. 

 Although I am aware of no philosopher who has explicitly formulated Explanationism in 

the above manner, the view has several important predecessors. It sides with defenders of 

inference to the best explanation (e.g., Thagard 1978, Lipton 2004, Henderson 2014, Hedden 

2015a: sec. 4, Climenhaga 2017a) in holding that explanatory relations are central to uncertain 
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inference. Mathematically, it is indebted especially to Pearl’s (1988, 2000) groundbreaking work 

on Bayesian networks.16 For the most part, philosophers who have applied Bayesian networks to 

epistemology (e.g., Bovens and Hartmann 2003) do not discuss the foundational issues explored 

in this essay; the same goes for statisticians such as Gelman et al. (2014: ch. 5) who employ 

hierarchical Bayesian models (a special case of Bayesian networks)17 in statistics. 

Explanationism can justify these applications of Bayesian networks, as well as (I argue in section 

3.4) many other ordinary applications of probability that do not appeal to graphical modeling. 

The philosophers who have come closest to endorsing Explanationism are Henderson et al. 

(2010), who defend hierarchical Bayesian modeling in the philosophy of science, and Huemer 

(2009) and Weisberg (2009: 140-41), who defend the application of the Principle of Indifference 

to explanatorily basic partitions. Both of these are special cases of Explanationism.18 

 In the next section I give six arguments for Explanationism.19 The first is that it fits more 

naturally with the characteristics of epistemic probability than does Orthodoxy. The second is 

that in some cases, conditional probabilities may be well-defined while the associated state-

description probabilities are not, making the latter unavailable as a ground for the former. The 

third and fourth are that the probabilities that Explanationism identifies as basic are precisely 

 
16 In the past two decades, Bayesian networks have been applied to two main areas: artificial intelligence/machine 

learning (e.g., Pearl 1988, Russell and Norvig 2009: ch. 14, Korb and Nicholson 2011) and causality (e.g., Pearl 

2000, Spirtes et al. 2000, Hitchcock 2012). Explanationism is more in keeping with the epistemic interpretation of 

probability usually adopted in the artificial intelligence literature, but it agrees with contributors to the causality 

literature that causal relationships—and explanatory relationships more generally—cannot be reduced to 

probabilistic relationships.  

17 In particular, a hierarchical Bayesian model is a Bayesian network in which the variables are totally ordered from 

V1 to Vn, and the only arrows are from V1 into V2, V2 into V3, and so on. 

18 Jon Williamson, who I mentioned earlier (section 2.2) as a proponent of Orthodoxy, is a notable recent advocate 

for the use of Bayesian networks in epistemology. However, unlike me, Williamson endorses the use of Bayesian 

networks for purely pragmatic, computational purposes. For Williamson, the probability distribution is determined 

first, and the Bayesian network is a way to represent it; whereas for me, the Bayesian network comes first, and helps 

determine the probability distribution. See the discussion in section 3.6.1. 

19 See Climenhaga 2017b for some related arguments against taking state-descriptions (there called “world-states”) 

to be the primary objects of inference. 
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those which we find ourselves able to more easily judge the value of, both in urn-sampling 

thought experiments and in more realistic applications. The fifth is that Explanationism can be 

more easily extended to calculate probabilities conditioned on interventions rather than 

observations. The final, and most important, argument is that plausible substantive methods 

deliver incorrect results when combined with Orthodoxy, but not when combined with 

Explanationism.  

3. Six Arguments for Explanationism 

3.1 Explanationism fits better with the nature of epistemic probability. 

Orthodoxy about a kind of probability may look initially appealing partly because it 

offers to reduce conditional probabilities to unconditional probabilities. Epistemic probability, 

though, is a relation between propositions: the degree to which one proposition makes another 

plausible. This means that all epistemic probabilities are conditional, because only conditional 

probabilities have two relata. The “unconditional” epistemic probability of a state description is 

really the state-description’s probability conditional only on a priori truths (Hájek 2003: 315)—

the degree to which a priori truths make that state-description plausible. 

On the epistemic interpretation of probability, then, Orthodoxy becomes less motivated: 

it becomes unclear why we should think that the probabilities that Orthodoxy identifies as basic 

are basic. If these conditional probabilities can be basic, why must other conditional probabilities 

be defined in terms of them? What is special about the Orthodox basic probabilities? 

By contrast, Explanationism can give a principled explanation of why, say, P(B|U1) is 

basic—it is basic because U1 directly gives a probability to B in virtue of the Urn variable being 

the sole variable influencing B’s truth. U1 (which says that the urn contains 1 black and 2 white 

balls) directly makes B plausible to degree 1/3 because of the role it plays in explaining the truth 
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or falsity of B. This fits well with a conception of epistemic probability as measuring a quantity 

(namely, plausibility) that U1 confers on B. 

3.2 Conditional probabilities of atomic propositions may be well-defined when 

associated unconditional state-description probabilities are not. 

 

It is controversial whether all probabilities are well-defined. Hájek (2003: 303-05, 309-

10) suggests that there may not be well-defined physical or subjective probabilities for some of a 

person’s future free actions. Similarly, one might think that the unconditional epistemic 

probabilities of some future free actions are undefined. Consider again the urn example 

represented in Fig. 4, in which we include a variable for whether we sample with replacement. If 

the choice whether or not to replace is a free choice, it might be that P(R) is undefined. 

It is obvious that P(B2 | R&B1&U1) = 1/3—for U1 says that we are drawing from the urn 

with 1 black ball and 2 white balls, and R says that we replace our first draw, so that it does not 

impact the composition of the urn. However, Orthodoxy would have it that this value is 

determined by the equation 

𝑃(𝐵2│𝑅&𝐵1&𝑈1) =
𝑃(𝐵2&𝑅&𝐵1&𝑈1)

𝑃(𝑅&𝐵1&𝑈1)
=

𝑃(𝐵2&𝑅&𝐵1&𝑈1)

𝑃(𝐵2&𝑅&𝐵1&𝑈1) + 𝑃(𝑊2&𝑅&𝐵1&𝑈1)
 

But if P(R) is undefined, then so presumably are these state-description probabilities. So 

according to Orthodoxy, P(B2 | B1&R&U1) should be undefined too. By contrast, 

Explanationism identifies P(B2 | B1&R&U1) as basic, and so can easily let it be well-defined. 

 It is not obvious that some epistemic probabilities are undefined. But it is also not 

obvious that all epistemic probabilities are well-defined. Orthodoxy would make obviously well-

defined conditional probabilities undefined if the unconditional probabilities of some state-

descriptions turn out to be undefined. By contrast, Explanationism can allow that these obviously 

well-defined conditional probabilities are well-defined, even if the unconditional probabilities of 
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the associated state-descriptions turn out to be undefined. Inasmuch as we should leave open the 

possibility that some epistemic probabilities are undefined, we should prefer a structural theory 

that does not let potentially undefined probabilities extend their influence too widely. 

3.3 The probabilities Explanationism identifies as basic can be more directly perceived 

than those Orthodoxy identifies as basic. 

 

In the above urn cases, you can immediately tell that P(B|U1) = 1/3 as soon as you 

understand what B and U1 say. On the Orthodox treatment of probability, however, P(B|U1) is 

not basic, but is instead defined as  

𝑃(𝐵│𝑈1) =
𝑃(𝑈1&𝐵)

𝑃(𝑈1)
=

𝑃(𝑈1&𝐵)

𝑃(𝑈1&𝐵) + 𝑃(𝑈1&𝑊)
 

However, whereas you can immediately see that P(B|U1) = 1/3, the unconditional probabilities of 

the two state-descriptions are not immediately obvious. Were you called upon to determine 

P(U1&B), the way to proceed would be to reduce it to P(U1)P(B|U1) = (1/2)(1/3) = 1/6. But this 

way of determining its value appeals to P(B|U1) = 1/3, and so cannot be the means by which we 

gain knowledge of that equality (cf. Pearl 1988: 31 and 2000: 4). 

 It does not follow from the fact that we can more immediately see the value of P(B|U1) 

than P(U1&B) that the former is more metaphysically basic than the other. In many contexts, less 

metaphysically basic properties are more epistemically accessible. For example, we can more 

easily determine the weight of an object than its mass, even though the weight depends on the 

mass. In the a priori case, many of us can readily tell that, if we have four cards with “Beer” or 

“not-Beer” on one side and “Over 21” or “Under 21” on the other, then in order to make sure that 

no card violates the rule “If you are drinking beer you are over 21,” we must turn over any card 

with Beer face up and any card with Under 21 face up. But we cannot as readily tell that, if we 

have four cards with “P” or “not-P” on one side and “Q” or “not-Q” on the other, then, in order 
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to make sure that no card violates the rule “If P then Q,” we must turn over any card with P face 

up and any card with not-Q face up. 

 Nevertheless, the metaphysical basicality of P(B|U1) is the most plausible explanation of 

its epistemic directness in the present case. We are able to discover empirical properties without 

any knowledge of their metaphysical grounds because we can examine the way they affect the 

environment. For example, we can determine an object’s weight by placing it on a scale. But this 

is not how we determine the value of P(B|U1): we do not measure the effects of this value on 

some external stimulus. Similarly, we can sometimes more readily perceive less basic a priori 

facts because of our implicit knowledge of the more basic facts which make them true. But our 

knowledge that P(B|U1) = 1/3 does not appear to be based on any implicit grasp of the values of 

P(U1&B) and P(U1&W), in the way that our knowledge of how to react in the beer-rule example 

is based on implicit knowledge of how conditionals work. 

 Instead, in this case we appear to judge that P(B|U1) = 1/3 simply because we understand 

what B says and we understand what U1 says. If you were to ask a layperson, unfamiliar with 

Kolmogorov’s axiomatization, why P(B|U1) = 1/3, the most likely answer would appeal to the 

content of B and U1, and their explanatory relation: “Well, U1 says that 1 out of the 3 balls is 

black, and B says that we draw a black ball.” (And perhaps: “And we’ve got no reason to think 

we’re more likely to draw one ball than the other.”) So in the present case, it is plausible that we 

perceive the value of P(B|U1) either directly or in virtue of grasping some substantive rule like 

the Principle of Indifference. 

3.4 Explanationism better models actual probabilistic reasoning. 

 In the last sub-section I observed that the propositions Explanationism identifies as 

metaphysically basic in our urn example are exactly the ones that are most epistemically direct, 
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and argued that their being metaphysically basic is a plausible explanation of their being 

epistemically direct. You might worry that the urn example is cherry-picked, and that in other 

examples we would be more easily able to see the values of state-description probabilities. 

However, when we turn to real-life applications of Bayesian reasoning, we find that—despite 

orthodox mathematical probability theory’s commitment to Orthodoxy—philosophers and 

scientists reason more in accord with Explanationism than Orthodoxy. 

For example, consider Bayes’ Theorem, 

𝑃(𝐻│𝐸) =
𝑃(𝐻)𝑃(𝐸│𝐻)

𝑃(𝐻)𝑃(𝐸│𝐻) + 𝑃(~𝐻)𝑃(𝐸│~𝐻)
 

Expositions of Bayes’ Theorem frequently advocate its use in cases where H is a “hypothesis” or 

“theory” and E is some “empirical data” “predicted” by H (see, e.g., Howson & Urbach 2006: 

20-22, Joyce 2008: sec. 1, Weisberg 2015: sec. 1.2.2). These terms connote H’s being 

explanatorily prior to E, as in Fig. 5. If Fig. 5 is our entire network, then according to 

Explanationism, the basic probabilities in the network are exactly the ones in Bayes’ Theorem 

above.20 

 

 
20 The concurrence between Explanationism and applications of Bayes’ Theorem is even clearer in older Bayesian 

terminology. Whereas today philosophers and statisticians follow R.A. Fisher in speaking of posterior probabilities 

and likelihoods, older writers (e.g., Venn 1876: sec. VI.9) referred to these as “inverse probabilities” and “direct 

probabilities,” respectively. (These terms have occasionally survived, as in Joyce 2008: sec. 1.) The term “inverse 

probability” embodied the idea that in employing Bayes’ Theorem we are moving “backwards” from effects to 

causes (Fienberg 2006: 5), and the term “direct probability” connotes a probability the value of which we are able to 

directly see or determine. 
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Figure 5 

 When we turn to examples writers use to illustrate Bayes’ Theorem, they are invariably 

ones in which the hypothesis H is explanatorily prior to the evidence E. Salmon (1990: 178) 

illustrates Bayes’ Theorem with an example in which H is the hypothesis that a particular can 

opener was produced by a machine with a given propensity for producing defective can openers, 

and E is the (explanatorily downstream) proposition that this can opener is defective. All four 

examples (drawing balls from an urn, finding a spider in a batch of bananas, hearing a witness 

report the color of a taxi, and getting a positive result on a medical test) in the “Bayes’ Rule” 

chapter from Ian Hacking’s introductory textbook (2001: ch. 7) likewise conform to this pattern. 

 

Figure 6 

Again, consider the standard Bayesian treatment of Duhem’s problem that most scientific 

hypotheses only make definitive predictions when combined with auxiliary assumptions. If H is 

our hypothesis and E is our empirical data, as before, this amounts to the problem of determining 

P(E|H) and P(E|~H) when applying Bayes’ Theorem. The standard Bayesian resolution is to 

make explicit different possible auxiliary assumptions {A1, …, An} and incorporate them into 

Bayes’ Theorem as follows (Howson & Urbach 2006: 103-14): 

𝑃(𝐻│𝐸) =
∑ 𝑃(𝐻&𝐴𝑖)𝑃(𝐸│𝐻&𝐴𝑖)𝑖

∑ [𝑃(𝐻&𝐴𝑖)𝑃(𝐸│𝐻&𝐴𝑖) + 𝑃(~𝐻&𝐴𝑖)𝑃(𝐸│~𝐻&𝐴𝑖)]𝑖

 

If H and the Ai are independent (relative to any implicit background knowledge), then P(H&Ai) 
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= P(H)P(Ai), and we have: 

𝑃(𝐻│𝐸) =
∑ 𝑃(𝐻)𝑃(𝐴𝑖)𝑃(𝐸│𝐻&𝐴𝑖)𝑖

∑ [𝑃(𝐻)𝑃(𝐴𝑖)𝑃(𝐸│𝐻&𝐴𝑖) + 𝑃(~𝐻)𝑃(𝐴𝑖)𝑃(𝐸│~𝐻&𝐴𝑖)]𝑖

 

In this context, the Ai are understood to be additional assumptions about, e.g., experimental set-

up, the accuracy of our measurements, and any background theory relevant to making 

predictions about the outcome of our experiment. This suggests (if H and the Ai are independent) 

the network in Fig. 6. According to Explanationism, in this network, the terms on the right-hand 

side of the above equation are all basic.21 

The above examples furnish us with another argument for Explanationism: many 

applications of Bayesian reasoning break down probabilities into precisely those quantities 

which Explanationism says are basic (or closer to being basic, inasmuch as the above networks 

approximate the actual evidential situation). As Pearl (1988: 78) notes, 

Human performance shows the opposite pattern of complexity [from Orthodoxy]: 

probabilistic judgments on a small number of propositions … are issued swiftly and 

reliably, while judging the likelihood of a conjunction of propositions entails much 

difficulty and hesitancy. This suggests that the elementary building blocks of human 

knowledge are not entries on a joint-distribution table. Rather, they are low-order 

marginal and conditional probabilities defined over small clusters of propositions. 

 

Inasmuch as it is plausible that the more metaphysically basic probabilities will also be more 

epistemically direct, Explanationism explains the way people reason probabilistically in both 

philosophical and empirical contexts. By contrast, if Orthodoxy is true it is unclear why 

philosophers and scientists so often apply rules like Bayes’ Theorem to break down complex 

probabilities into precisely those probabilities which Explanationism identifies as basic. 

3.5 Explanationism combines more easily with a probabilistic calculus for causal 

interventions. 

 

 
21 See Bovens and Hartmann 2003: 107-11 for a more detailed application of Bayesian networks to Duhem’s 

problem, including cases in which H and the Ai are not independent. 
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 Another advantage of Explanationism presents itself when we consider adding the 

possibility of “direct causal interventions” to our problem. Explanationism, but not Orthodoxy, 

can easily tell us what probabilities to assign propositions conditional on such interventions. 

In his influential 2000 book Causality, Pearl argues that we need to expand the syntax of 

the probability calculus to include probabilities of the form P(X|do(Y)), where do(Y) says that 

we directly make Y true, rather than observe that Y is true. Pearl (2000: 110) observes, 

By specifying a[n Orthodox] probability function P(s) on the possible states of the world, 

we automatically specify how probabilities should change with every conceivable 

observation e, since P(s) permits us to compute (by conditioning on e) the posterior 

probabilities P(E|e) for every pair of events E and e. However, specifying P(s) tells us 

nothing about how probabilities should change in response to an external action do(A).  

 

Constructing a Bayesian network relating X and Y allows us to determine P(X|do(Y)) by 

simply deleting any arrows going into Y, and calculating P(X|Y) in our mutilated network. 

Consider again the case of sampling twice from our urn with replacement in Fig. 2. Because we 

are sampling with replacement, the outcome of the first draw does not influence the outcome of 

the second—hence there is no arrow between them. However, learning that the first draw was 

black gives us information about the contents of the urn, and so is evidence that the second draw 

will also be black. By breaking down the value of P(B2|B1) into basic probabilities, we can see 

that B1 raises the probability of B2 by raising the probability of U2 from 1/2 to 2/3: 
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𝑃(𝐵2│𝐵1) = 𝑃(𝑈1│𝐵1)𝑃(𝐵2│𝑈1) + 𝑃(𝑈2│𝐵1)𝑃(𝐵2│𝑈2) =

=
𝑃(𝑈1)𝑃(𝐵1│𝑈1)

𝑃(𝑈1)𝑃(𝐵1│𝑈1) + 𝑃(𝑈2)𝑃(𝐵1│𝑈2)
𝑃(𝐵2│𝑈1)

+  
𝑃(𝑈2)𝑃(𝐵1│𝑈2)

𝑃(𝑈1)𝑃(𝐵1│𝑈1) + 𝑃(𝑈2)𝑃(𝐵1│𝑈2)
𝑃(𝐵2│𝑈2)

=
(
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2) (

1
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1
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1
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2
3)

(
2

3
) = (

1

3
) (

1

3
) + (

2

3
) (

2

3
)

=
1

9
+

4

9
=

5

9
 

 The value of P(B2) can similarly be obtained by summing over U1 and U2 as above. In 

that calculation, the weights P(U1) and P(U2) are both equal to 1/2, and P(B2) is a simple average 

of P(B2|U1) = 1/3 and P(B2|U2) = 2/3, so that P(B2) = 1/2 < P(B2|B1) = 5/9. 

 

Figure 7 

But now suppose that we directly “set” the value of the first draw to black, e.g., we hire 

someone to look inside the urn and intentionally pull out a black ball. If we then put the ball back 

in the urn, we learn nothing about the outcome of the second draw. Explanationism can deliver 

this result if we take P(B2|do(B1)) in our original network to be equal to P(B2|B1) in the mutilated 
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network in Fig. 7. Here P(B2|B1) = P(B2), because B1 neither raises the probability of B2 directly 

nor via some intermediary, as in the original network. 

 By contrast, the Orthodox probability distribution over our four state-descriptions 

imposes no constraints on P(B2|do(B1)). The Orthodox probabilist could assign a new probability 

distribution over a new set of state-descriptions that includes actions like do(B1). But nothing in 

Orthodoxy requires that this distribution give probabilities like P(B2|do(B1)) the intuitively 

correct values. If it does give the correct values, this is simply a brute fact about those probability 

distributions. Inasmuch as Explanationism requires intuitively correct equalities that Orthodoxy 

must stipulate ad hoc, this gives us reason to prefer Explanationism. 

3.6 Substantive methods for determining the values of basic probabilities get the wrong 

result if applied to Orthodox basic probabilities. 

 

 Recall that the task of determining the values of epistemic probabilities has two parts. We 

have been exploring the structural part, which asks which probabilities are basic and which are 

non-basic. The substantive part involves assigning values to the basic probabilities. Substantive 

methods will have different implications if applied to different (allegedly basic) probabilities. 

One of the most important reasons to settle the structural question is to guide the application of 

substantive methods in probabilistic reasoning. I will now argue that when we combine 

Orthodoxy and Explanationism with proposed substantive methods and they deliver different 

results, it is Orthodoxy that goes wrong. The proposed substantive methods I will consider are 

Maximum Entropy (a generalization of the Principle of Indifference) and assigning higher 

probabilities to simpler hypotheses. 

 I should stress that I am not committed to the correctness of these proposed substantive 

methods. My argument is conditional: if Maximum Entropy or simplicity are the correct criteria 

of basic probability, they get the right result only if combined with Explanationism. I argue, 
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moreover, that the basic problematic phenomenon I identify—the addition of explanatorily 

posterior variables affecting the probability of explanatorily prior variables—will take place with 

any method that assigns probabilities directly to state-descriptions. 

 My argument in this sub-section will be most effective with objectivists who think there 

are privileged probability assignments determined by some substantive method or other. 

However, I would note two points. First, applying Maximum Entropy to Explanationist basic 

probabilities rather than state-descriptions allows us to avoid many of the paradoxes the Principle 

of Indifference is often held to lead to (see Huemer 2009). As such, some objections to 

objectivism may be undermined by my argument in this sub-section. Second, many subjectivists 

about probability think of the impact of evidence as something individuals are free to determine 

based on how they weigh conflicting substantive criteria—such as symmetry and simplicity—

against each other. So subjectivists who use these criteria to determine their own personal 

probabilities might still be moved by my arguments in this sub-section, provided that they share 

my intuitions about which applications of these criteria seem unsatisfying. 

3.6.1 Example 1: Maximum Entropy 

The Principle of Indifference says that we should assign equal probability to a space of 

alternatives if our knowledge does not favor any of these alternatives over any other. The 

Maximum Entropy principle (MaxEnt) generalizes this by telling us to assign probabilities that 

are as close to equal as is consistent with our knowledge (Williamson 2005: 80, 2010: 28-29).22 

Orthodox probabilists like Williamson would have us apply MaxEnt to the set of all 

 
22 For the technical details of how to spell out “closeness to equality,” see Williamson (2005: 79-84, 2010: 28-30 

and 49-66) and Jaynes (2003: ch. 11). The equivocality, or uninformativeness, of a distribution is measured by its 

entropy, and we seek to maximize this entropy consistent with constraints provided by our knowledge—hence the 

name Maximum Entropy. In the text I rely on an intuitive understanding of closeness to equality; the results I give 

are those we would find by applying the mathematical methods in the above texts. 
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possible state-descriptions. On Williamson’s version of objective Bayesianism, “the probabilities 

of the atomic states [i.e., state-descriptions] are basic: all other probabilities can be defined in 

terms of them” (2010: 27). According to Williamson, when one has no information favoring one 

state-description over another, one should assign equal probabilities to all of them. If one does 

have information favoring one state-description over another, one should assign probabilities as 

close to equal as is consistent with one’s information. 

I will now argue that applying MaxEnt to state-descriptions in this way leads to absurd 

results. Suppose I tell you that I have an urn in front of me that contains 1 black ball and 1 white 

ball. If I sample from the urn only once and we apply the Principle of Indifference to the 

partition {B1, W1}, we get the result that P(B1) = P(W1) = 1/2. 

But now suppose that I tell you that I am going to sample from the urn twice, and that the 

outcome of the first draw will influence the outcome of the second one. In particular, if I draw 

the black ball the first time, I will set it aside, and so be ensured to draw the white ball the second 

time. If I draw the white ball the first time, I will set it aside, but also add a green ball to the urn.  

Now we have two partitions: {B1, W1}, {B2, W2, G2}. This gives us six state-

descriptions: {B1&B2, B1&W2, B1&G2, W1&B2, W1&W2, W1&G2}. Your background 

knowledge that B1 ↔ W2 and W1 ↔ (B2)v(G2) allows you to eliminate the first, third, and fifth 

outcomes, leaving you with {B1&W2, W1&B2, W1&G2}. If you apply the Principle of 

Indifference to those state-descriptions not excluded by your knowledge, they each get 1/3 

probability. This implies that, before either draw has been made, P(B1) = 1/3 and P(W1) = 2/3. So 

without giving you any new knowledge about how I make the first draw and without telling you 

about any actual (as opposed to merely possible) effects of that draw, I have made it more 

initially likely for you that the first draw is white. 
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This is the intuitively wrong result. The outcome of the first draw is determined prior to 

the outcome of the second. B1 and W1 should both be assigned unconditional probability 1/2, and 

B2 and G2 should each be assigned equal probability conditional on B1. This gives probabilities 

of 1/2, 1/4, and 1/4 to our state-descriptions. 

Explanationism delivers the intuitively correct result in this case. First, we order our 

variables: Draw 1 is prior to Draw 2. Then we have the following basic probabilities: 

 P(B1) = P(W1) = 1/2, 

 P(B2|B1) = P(G2|B1) = 0, 

 P(W2|B1) = 1, 

P(B2|W1) = P(G2|W1) = 1/2, 

 P(W2|W1) = 0. 

The first and fourth lines follow from the application of MaxEnt to {B1, W1} and to {B2, W2, G2} 

conditional on W1. It follows that 

P(B1&W2) = P(B1)P(W2|B1) = (1/2)(1) = 1/2, 

P(W1&B2) = P(W1)P(B2|W1) = (1/2)(1/2) = 1/4, 

P(W1&G2) = P(W1)P(G2|W1) = (1/2)(1/2) = 1/4. 

Williamson (2005: 95-106; cf. 2010: 46-47) recognizes the above problem with applying 

MaxEnt to state-descriptions when we have causal information, discussing a similar example 

raised by Pearl (1988). His solution is to introduce causal constraints in addition to the 

quantitative constraints P(W2|B1) = 1 and P([B2vG2] | W1]) = 1 imposed by the above 

information. These causal constraints say that if our knowledge tells us that variables {V1, … Vi} 

are causally ordered from 1 to i, then we begin by maximizing entropy over the propositions in 

V1, giving us a probability distribution P1. Next, we select the highest entropy probability 
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distribution over V1⨯V2 (i.e., the Cartesian product of V1 and V2) which is consistent with P1, 

giving us P2. Then, we select the highest entropy probability distribution over V1⨯V2⨯V3 which 

is consistent with P2, and so on.  

In the above case, we begin by maximizing entropy over {B1, W1}, assigning probability 

1/2 to each possibility, and then choose the probability distribution which maximizes entropy 

over {B1&W2, W1&B2, W1&G2} among those distributions consistent with P(B1) = P(W1) = 1/2. 

This gives us the same result as the Explanationist method. 

There are two problems with using the above method to save Orthodoxy. First, it appears 

to be Orthodox in name only. From the perspective of Orthodoxy, Williamson’s causal constraint 

looks ad hoc and unmotivated, wheeled in only to stave off counterexamples. If the probabilities 

of state-descriptions really are basic, then why does our background knowledge require us to 

conform them to probabilities first assigned to what are, from the perspective of Orthodoxy, 

disjunctions of state-descriptions (e.g., [W1&B2]v[W1&G2])? 

Indeed, this constraint gets the right results only because it parrots the Explanationist 

approach. For example, if P(W1) = 1/2, then 

P(W1&B2) = P(W1)P(B2|W1) = (1/2)P(B2|W1) 

and  

P(W1&G2) = P(W1)P(G2|W1) = (1/2)P(G2|W1). 

We obtain the most equal distribution over {B1&W2, W1&B2, W1&G2} by setting P(B2|W1) = 

P(G2|W1) = 1/2, which gives us the {1/2, 1/4, 1/4} distribution over this partition. At each step 

we maximize entropy over the new set of variables consistent with the causal constraints 

precisely by maximizing entropy over the conditional probabilities P(X|pa(X)), i.e., the 

probabilities that Explanationism says are basic. 
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 Second, and more seriously, Williamson’s method only applies to the special case in 

which we know which variables causally influence which other variables. But consider a 

modification to the above case. As before, I tell you that an urn will be sampled from twice, and 

that in the one draw the possible outcomes are {B1, W1} and in the other they are {B2, W2, G2}. 

And as before, I tell you that B1 ↔ W2 and W1 ↔ (B2)v(G2). However, now I do not tell you 

which draw takes place first.  

We can continue denoting the draw in which the only possibilities are black and white as 

Draw 1 and the other as Draw 2, but now these should be understood simply as labels, and not as 

denoting temporal information. So for all you know, the situation could be as represented in Fig. 

8, or it could be as represented in Fig. 9. In this latter scenario, if I draw white in Draw 2 (which 

is now the first draw), I set the white and green balls aside, ensuring that I draw black on Draw 1; 

and if I draw black or green in Draw 2, set the black and green balls aside, ensuring that I draw 

white in Draw 1. 

Williamson’s method only applies when we know what the causal constraints are (2005: 

99). As such, it will not preclude the ordinary application of MaxEnt to the state-descriptions 

{B1&W2, W1&B2, W1&G2}. So we will again assign 1/3 probability to each of these, since that 

makes our distribution maximally equivocal. But inasmuch as you have no reason to think that 

either draw comes first, the Principle of Indifference should advise you to assign equal 

probability to both these possibilities, and then determine how likely each of these possibilities 

would make each of these state-descriptions. Letting N1 stand for the hypothesis that the network 

in Fig. 8 is correct (i.e., Draw 1 comes first), and N2 stand for the hypothesis that the network in 

Fig. 9 is correct (i.e., Draw 2 comes first), this gives us  
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𝑃(𝐵1&𝑊2) = 𝑃(𝑁1)𝑃(𝐵1&𝑊2│𝑁1) + 𝑃(𝑁2)𝑃(𝑊2&𝐵1│𝑁2)

= 𝑃(𝑁1)𝑃(𝐵1│𝑁1)𝑃(𝑊2│𝐵1&𝑁1) + 𝑃(𝑁2)𝑃(𝑊2│𝑁2)𝑃(𝐵1│𝑊2&𝑁2)

= (1
2⁄ )(1

2⁄ )(1) + (1
2⁄ )(1

3⁄ )(1) = 1
4⁄ + 1

6⁄ = 3
12⁄ + 2

12⁄ = 5
12⁄  

𝑃(𝑊1&𝐵2) = 𝑃(𝑁1)𝑃(𝑊1&𝐵2│𝑁1) + 𝑃(𝑁2)𝑃(𝐵2&𝑊1│𝑁2)

= 𝑃(𝑁1)𝑃(𝑊1│𝑁1)𝑃(𝐵2│𝑊1&𝑁1) + 𝑃(𝑁2)𝑃(𝐵2│𝑁2)𝑃(𝑊1│𝐵2&𝑁2)

= (1
2⁄ )(1

2⁄ )(1
2⁄ ) + (1

2⁄ )(1
3⁄ )(1) = 1

8⁄ + 1
6⁄ = 3

24⁄ + 4
24⁄ = 7

24⁄  

𝑃(𝑊1&𝐺2) = 𝑃(𝑁1)𝑃(𝑊1&𝐺2│𝑁1) + 𝑃(𝑁2)𝑃(𝐺2&𝑊1│𝑁2)

= 𝑃(𝑁1)𝑃(𝑊1│𝑁1)𝑃(𝐺2│𝑊1&𝑁1) + 𝑃(𝑁2)𝑃(𝐺2│𝑁2)𝑃(𝑊1│𝐺2&𝑁2)

= (1
2⁄ )(1

2⁄ )(1
2⁄ ) + (1

2⁄ )(1
3⁄ )(1) = 1

8⁄ + 1
6⁄ = 3

24⁄ + 4
24⁄ = 7

24⁄  

  

Figure 8  Figure 9 

My initial statement of Explanationism in section 2.3, Explanationism 1.0, assumed that 

our background information entailed a unique explanatory network. We can amend 

Explanationism to recommend the above calculation by representing uncertainty about {N1, N2} 

as higher-order uncertainty about what network is correct, and then taking basic probabilities to 

be relative to the network endorsed by Ni (cf. Huemer 2009: 363-65, Weisberg 2009: 141)—e.g., 

P(B1|N1) and P(W2|B1&N1) in the first equation above.  

More formally: 

Explanationism 2.0 
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P(X|Y&Ni) is basic iff X is atomic, and Y is a conjunction of values for all parents of X 

in a Bayesian network that, according to Ni, includes all variables immediately 

explanatorily prior to X, and correctly relates all the variables it includes.23
 

 

Given values for the basic probabilities identified by Explanationism 2.0, we can determine 

P(W|Z&Ni) for any W and Z in Ni. From these we can then obtain P(W|Z) by averaging over 

P(W|Z&Nj) for all possible networks Nj, weighted by the network-probabilities P(Nj|Z), as 

above. These latter probabilities are a function of the prior probabilities of the networks, P(Nj), 

and the degree to which these networks predict Z, P(Z|Nj). Explanationism 2.0 can hold that the 

prior probability of a network P(Nj) is basic by holding that this probability is implicitly relative 

to a higher-order network which contains a partition of the different possible first-order networks 

Nj. In the example above, this higher-order network would contain a single node, with the 

partition {N1, N2}.24 

 Although Williamson, like me, advocates the use of Bayesian networks in calculating 

probabilities, he cannot accommodate this higher-order uncertainty about networks into his 

framework. On my view Bayesian networks are logically prior to probability assignments, and 

basic probabilities are determined by means of them. But for Williamson, Bayesian networks 

play the purely pragmatic role of simplifying computations (2010: ch. 6), except in the special 

case in which a Bayesian network is uniquely determined by our causal information. If we do not 

know which of the Draw variables comes first, Williamson’s method for constructing Bayesian 

networks (2005: 84-95) would lead to the network represented in Fig. 9, simply because Draw 2 

 
23 Explanationism 2.0 is my final statement of Explanationism for the purposes of this essay. In what follows I again 

mostly ignore network-relativity for simplicity’s sake, but it is important to keep in mind for many applications, 

because network uncertainty is very common. 

24 Higher-order networks could get much more complicated—e.g., we could imagine a higher-order network that 

made which of Draw 1 and Draw 2 is first itself prior to the order of variables in some other problem. We could also 

complicate things by making the higher-order network uncertain rather than given in the statement of the problem. A 

question for further exploration is whether we need to eventually reach an a priori higher-order network relating all 

uncertain lower-order networks, in order to avoid an infinite regress in the determination of some probabilities. 
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has more variables than Draw 1 and so placing it prior to Draw 1 on the network, combined with 

successive applications of MaxEnt in the way that Explanationism recommends, gives us the 

same result as directly maximizing entropy over the state-descriptions {B1&W2, W1&B2, 

W1&G2}. So except in the special case in which causal knowledge forces us to adopt a particular 

network, what Bayesian network to employ is determined by what will maximize entropy over 

the state-descriptions. By contrast, according to Explanationism what Bayesian network or 

networks to employ is determined by explanatory relations that are prior to the application of 

MaxEnt or any other substantive method for determining the values of basic probabilities. 

3.6.2 Example 2: Simplicity 

I have considered the application of MaxEnt to determining the values of basic 

probabilities, and argued that it gives us the wrong result if the basic probabilities are those 

posited by Orthodoxy, whereas it gives us the right result if the basic probabilities are those 

posited by Explanationism. The same phenomenon occurs if we employ other proposed criteria 

of basic probability, such as simplicity. For illustrative purposes, let us follow Hesse (1974: 234-

36) and Swinburne (2001: 87) in taking one facet of simplicity to be quantitative parsimony, so 

that a theory is simpler to the extent that it posits fewer entities.25 

Suppose that we know that either 1 male or 1 male and 1 female bird (of the same 

species) flew to an island off the coast of the Americas 2 generations ago. We further know that 

 
25 Hesse (1974: ch. 10) appears to endorse Orthodoxy, writing that “ceteris paribus, the universe is to be postulated 

to be as homogeneous as possible consistently with the data” (230). Bradley (forthcoming) defends a view similar to 

Hesse’s. Swinburne (2001: ch. 4) sometimes speaks of the importance of simplicity in a way that suggests that he 

also thinks it attaches fundamentally to state-descriptions. For example, he writes: “We should postulate, on grounds 

of simplicity as most likely to be true, that theory of a narrow region which makes our overall world theory the 

simplest for the total data. That theory may not be the simplest theory of the narrow aspect of the world, considered 

on its own” (96, emphasis mine). Elsewhere, though, he clarifies his view in a way that makes clear that his view is 

closer to Explanationism than Orthodoxy: “the intrinsic probability of a world is a function of how simple are the 

highest-level hypotheses which it contains and how well they are able to explain all the other propositions which the 

world contains” (Swinburne 2011: 394). 
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each pair of male-female birds has 5 male and 5 female children in a generation. Then the total 

number of birds (in all generations) under the second hypothesis is 2 + 10 + 50 = 62. Since, on 

the first hypothesis, the bird has no mate with which to reproduce, the total number of birds 

given the first hypothesis is 1. 

If we read quantitative parsimony as attaching to the total number of entities to which we 

are committed in our overall worldview, then the 2-bird hypothesis is much less simple than the 

1-bird hypothesis—it posits 62 times as many birds! Intuitively, however, the 2-bird hypothesis 

is only slightly less simple than the 1-bird hypothesis, inasmuch as it posits only one more 

(comparatively) fundamental entities (birds). And as with the adding-a-green-ball-to-the-urn 

example above, comparing the simplicity of state-descriptions would lead to the implausible 

conclusion that learning that one more generation has gone by should lower the relative 

probability of the 2-bird hypothesis. It seems, then, that if we want to give preference to simpler 

hypotheses, we should compare the simplicities of atomic hypotheses on the same level of 

explanation, and not the simplicities of overall worldviews. 

In this sub-section I have considered the application of substantive methods for 

determining the values of basic probabilities, and argued that they give us the wrong result if we 

adopt Orthodoxy, and the right result if we adopt Explanationism. The defender of Orthodoxy 

might object that the methods I have considered are not the correct ones, or have been 

misapplied. But the same general phenomenon of the addition of explanatorily posterior 

variables wrongly affecting the probability of explanatorily prior variables will take place with 

any method that assigns probabilities directly to state-descriptions, unless a safeguard is built 

into the method to avoid this, as in Williamson’s version of MaxEnt. And such a safeguard will 

likely, as above, either fail to avoid all counterintuitive consequences, reveal an implicit 
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commitment to the order of explanation as prior to the assignment of probabilities, or both.  

4. Why Explanationism Matters 

In section 3 I gave six arguments for Explanationism over Orthodoxy. First, it is 

philosophically better motivated than Orthodoxy as a theory of basic epistemic probabilities. 

Second, it allows for conditional probabilities to be well-defined even when the state-description 

probabilities to which Orthodoxy would reduce them may not be well-defined. Third, we are 

more easily able to judge the values of the probabilities Explanationism identifies as basic than 

those Orthodoxy identifies as basic. Fourth, it better describes actual (good) scientific and 

empirical reasoning. Fifth, it can more easily be combined with Pearl’s (2000) probabilistic do-

calculus. Finally, it leads to more intuitive probability assignments when combined with 

substantive methods like the Principle of Indifference. 

In light of my fourth argument, that applications of Bayesian reasoning tend to conform 

better to Explanationism than Orthodoxy, you may wonder what Explanationism can really teach 

us. Even if philosophers don’t explicitly endorse the view, don’t they already tacitly assume it in 

their reasoning? Unfortunately, while many applications of probability conform to 

Explanationism, the lack of explicit attention to the structure of probabilities leads to both 

incorrect expositions of basic concepts and bad reasoning about more complicated examples. 

This is especially so when it comes to the use of Bayes’ Theorem in calculating probabilities. 

Expositors of Bayes’ Theorem,26 

𝑃(𝐻│𝐸&𝐾) =
𝑃(𝐻│𝐾)𝑃(𝐸│𝐻&𝐾)

𝑃(𝐻│𝐾)𝑃(𝐸│𝐻&𝐾) + 𝑃(~𝐻│𝐾)𝑃(𝐸│~𝐻&𝐾)
 

frequently speak as if the “empirical data” E that enters into it is always “new evidence we have 

 
26 For the rest of this essay I make our background knowledge K explicit in all probabilities. As we will see, this 

becomes philosophically important when we try to apply Explanationism more generally. 
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just acquired” (Salmon 1990: 177). Others describe Bayes’ Theorem “as a normative rule for 

updating beliefs in response to evidence” (Pearl 1988: 32-33, emphasis mine). However, our 

having just learned a proposition E is neither necessary nor sufficient for Bayes’ Theorem to 

break P(H|E&K) into more basic quantities. All that is necessary is that the evidence E is 

explanatorily downstream from the hypothesis H. 

 The terms in Bayes’ Theorem are often divided into “priors” (P(H|K), P(~H|K)), 

“likelihoods” (P(E|H&K), P(E|~H&K)), and “posteriors” (P(H|K)). Many philosophers of 

probability attach undue metaphysical weight to these divisions, holding that there is a special 

problem with determining the values of prior probabilities. Talbott (2015: 4.2.F) is 

representative: “Are there constraints on prior probabilities other than the probability laws? This 

is the issue that divides the Subjective from the Objective Bayesians.”27 

Other philosophers have pointed out that the assumption that only prior probabilities are 

difficult to determine is dubious: for example, Earman (1992: 84) writes that “while much of the 

attention on the Bayesian version of the [Duhem] problem has focused on the assignments of 

prior probabilities, the assignments of likelihoods involves equally daunting difficulties.” But the 

assumption that likelihoods are objective, while priors are not, is not only dubious—it is 

impossible. There can be no intrinsic difference between prior probabilities and likelihoods 

because these terms describe not the intrinsic nature of different probabilities, but their functional 

role in a particular application of Bayes’ Theorem. In different instances of Bayes’ Theorem, one 

and the same probability can be both a prior probability and a likelihood.  

 
27 Compare Gillies (1991: 530), who writes that likelihoods “can usually be calculated in a quite unproblematic 

manner,” and Hawthorne (1994: 241), who contrasts “objective” likelihoods and “subjective” priors. So-called 

“swamping solutions” to the problem of the priors, according to which agents with different priors eventually 

converge on their posteriors given enough data, likewise presuppose intersubjective agreement on likelihoods. The 

older terminology of ‘direct probability’ instead of ‘likelihood’ also seems to take for granted that the values of 

likelihoods are obvious. 
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For example, consider the proposition C: a coin will be flipped to choose between urns 

U1 and U2. P(U1|C) will be a “likelihood” if we are calculating the posterior probability of C, 

P(C|U1), and it will be a “prior probability” if we know C and are calculating the posterior 

probability of U1 given that we draw black, P(U1|C&B). Either way, P(U1|C) is a basic 

probability, and we can see that its value is 1/2. What matters for determining the values of 

probabilities is not whether they are likelihoods or priors, but whether they are basic or non-

basic, and if they are non-basic, what basic probabilities they can be reduced to. 

The assumption that there is a special problem with the objectivity of prior probabilities 

has led most philosophers who discuss the problem of determining the values of probabilities to 

misconstrue it as the “problem of the priors.” In turn, most existing solutions to the problem of 

the priors are based on a false presupposition—namely, that the unconditional, or “intrinsic,” 

probabilities of hypotheses are basic.28 On Explanationism, this amounts to the assumption that 

when we have no background knowledge, the partition of rival hypotheses being assigned 

(unconditional) prior probabilities in a problem is a root node in the Bayesian network 

representing our hypothesis space; that is, it has no parents. Substantive methods like the ones 

discussed in section 3.6 can then be applied to that partition: for example, a flat (indifferent) 

distribution can be assigned over the partition, or the hypotheses in the partition can be ranked in 

order of simplicity, with higher probabilities given to simpler hypotheses. 

In idealized cases (including the urn scenarios above) it is often useful to assume that 

 
28 Jaynes (2003: ch. 11-12) seems to assume this in his defense of MaxEnt. And in his defense of simplicity as a 

criterion of prior probability, Swinburne (2001: ch. 4) suggests that when we have no background knowledge and 

two hypotheses have equal scope, the simpler hypothesis will always have higher prior probability. (For similar 

claims, see Plantinga 1993: 145-146 and Draper 2016. Draper’s proposed criterion for which he thinks this is true is 

coherence, rather than simplicity.) Bayesian discussions of the history of science, such as Salmon 1990: 181-87, 

tend to do better than more abstract solutions to the problem of the priors at acknowledging the role background 

theories play in determining prior probabilities. 
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prior probabilities are basic. But in real-life Bayesian reasoning the prior probability of almost 

any hypothesis is non-basic. This is because there are almost always other theories explanatorily 

prior to the hypothesis which make a difference to how likely it is to be true. 

 For example, consider the formulation of Darwin’s theory of evolution by natural 

selection. The prior probability of Darwinism (i.e., its probability apart from the data 

explanatorily downstream from it) was not basic. Rather, it was influenced by such 

considerations as empirical data suggesting that the earth was comparatively young, so that there 

had not been sufficient time for the speciation required by Darwin’s theory to take place 

(McGrew et al. 2009: 242). The age of the Earth is explanatorily prior to the origins of Earth’s 

species, and so in evaluating the prior probability of a theory about the latter we need to sum 

over different hypotheses about the former and about other relevant higher-level possibilities. 

For example, the network in  Fig. 10 lets us calculate the probability of Darwinism as follows: 

𝑃(𝐷𝑎𝑟𝑤𝑖𝑛𝑖𝑠𝑚|𝐾) = ∑ ∑ 𝑃(𝐴𝑖|𝐾)𝑃(𝑇𝑗|𝐾)𝑃(𝐷𝑎𝑟𝑤𝑖𝑛𝑖𝑠𝑚|𝐴𝑖&𝑇𝑗&𝐾)
𝑗𝑖

 

  

Figure 10 

Historically we had empirical data relevant to the higher-level hypotheses in this 

network. But the structure of the network is not dependent on the existence of these data. 

Evidence that the earth is young is not necessary for us to see that the possibility of the degree of 

speciation necessary to produce the variety of life on earth today depends on how old the earth is. 
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So even in the absence of such background knowledge, the prior probability of Darwinism would 

still be a function of its probability on different combinations of higher-order theories like those 

in Fig. 10, weighted by the prior probability of those combinations. (These priors will be 

influenced by even more explanatorily basic hypotheses, suggesting that we need to expand the 

above Bayesian network. How far back we need to expand it—at what point we reach 

explanatorily fundamental theories, or ultimate explanations—is a large question which I do not 

have space to address here.) 

It follows that how well Darwinism and Special Creationism satisfy proposed criteria of 

theory choice, such as simplicity, is not directly relevant to their relative prior probabilities, when 

those simplicities are measured in the absence of potential background explanations. Their prior 

probabilities are a function of their probabilities conditional on conjunctions of higher-order 

theories. These conditional probabilities may partially be a function of the simplicity of 

Darwinism and Special Creationism relative to these conjunctions; but in this case what matters 

is not how simple the two theories are unconditionally, but how simple they are when we assume 

the truth of particular higher-order theories.29 

5. Conclusion 

How are the values of epistemic probabilities determined? In this paper I have taken a 

first step towards answering this persistently difficult question. In particular, I have addressed the 

 
29 Perhaps because the role of background considerations is so obvious here, I know of no Bayesian attempts to 

directly apply substantive methods to the prior probability of Darwinism and rival theories of the origins of Earth’s 

species. But some Bayesians have tried to apply substantive methods to the prior probability of rival physical 

theories in a similarly misguided way. For example, Swinburne (2001) suggests that Newton’s law of gravity has a 

higher intrinsic probability than its rivals because it is simpler than them. But the argument here shows that if this 

law is more intrinsically probable than its rivals, this is because it is more likely given particular theories about the 

origins of the universe and its physical laws, not because it is simpler (except insomuch as this makes a difference to 

how likely it is on these theories of cosmic origins). (It might be legitimate to apply substantive methods to rival 

physical laws directly if one thought it a priori true that there are no deeper explanations of these laws. But 

Swinburne is a theist, and thinks that God’s actions explain why our universe has the physical laws it does.) 
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structural problem of how to “break down” a non-basic probability into basic probabilities of 

which it is a function. I have defended a view on which the explanatory structure of probabilities 

is determined by the explanatory structure of the propositions these probabilities relate. We 

obtain basic probabilities by explanatorily ordering different partitions of propositions, and 

determining which propositions potentially explain the truth of other propositions. Consideration 

of both simple thought experiments and actual applications of probabilistic reasoning reveals that 

we do conceive of basic probabilities in this way. 

On the Orthodox approach, the probabilities of complete state-descriptions are basic, and 

other probabilities are determined as a function of those. Because Orthodoxy ignores the 

explanatory relations between the conjuncts of state-descriptions, it conflicts with our intuitive 

judgments about what probabilities are basic. Moreover, when combined with substantive 

methods for determining probabilities, it delivers the wrong results. By ignoring the asymmetry 

of explanation, it wrongly allows the addition of future, explanatorily downstream, variables to 

alter the probability distribution over past, explanatorily upstream, variables. 

Explanationism has important implications for many debates in epistemology and 

philosophy of science. In particular, it sheds light on informal debates about the substantive 

problem, such as the literature on the so-called “problem of the priors.” According to the 

Explanationist, these debates are largely misconceived, treating prior probabilities of empirical 

hypotheses as sui generis, rather than imposed on them by explanatorily prior theories. 

There remain significant open questions about how to flesh out the Explanationist 

picture:  

- Besides causal and metaphysical priority, are there other kinds of explanatory priority 

relevant to constructing a Bayesian network? 

 

- Is an infinite explanatory regress possible? Or is the Explanationist committed to there 



41 

 

being a first cause/ultimate explanation? 

 

- In cases of network uncertainty, is an infinite regress of higher-order networks possible? 

Or is the Explanationist committed to there being some a priori higher-order network that 

relates all lower-order networks? 

 

All these issues deserve further investigation. In addition, the substantive question of what 

determines the values of basic probabilities continues to loom large. 

 Daunting questions remain, then. Nevertheless, the Explanationist picture seriously 

advances the project of determining the values of epistemic probabilities, laying a foundation for 

further work and dispelling much of the dust and confusion surrounding this thorny project. 
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