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Substructural approaches to paradoxes have attracted much attention from
the philosophical community in the last decade. In this paper we focus
on two substructural logics, named ST and TS, along with two structural
cousins, LP and K3. It is well known that LP and K3 are duals in the sense
that an inference is valid in one logic just in case the contrapositive is valid
in the other logic. As a consequence of this duality, theories based on either
logic are tightly connected since many of the arguments for and objections
against one theory reappear in the other theory in dual form. The target of
the paper is making explicit in exactly what way, if any, ST and TS are dual
to one another. The connection will allow us to gain a more fine-grained
understanding of these logics and of the theories based on them. In partic-
ular, we will obtain new insights on two questions concerning ST which are
being intensively discussed in the current literature: whether ST preserves
classical logic and whether it is LP in sheep’s clothing. Explaining in what
way ST and TS are duals requires comparing these logics at a metainferen-
tial level. We provide to this end a uniform proof theory to decide on valid
metainferences for each of the four logics. This proof procedure allows us to
show in a very simple way how different properties of inferences (unsatisfia-
bility, supersatisfiability and antivalidity) that behave in very different ways
for each logic can be captured in terms of the validity of a metainference.

Substructural approaches to paradox − Non-transitive logic − Non-reflexive
logic − Strong Kleene

1 Substructural Logics and Paradoxes

In a sequent calculus a structural rule (as opposed to an operational rule) is
a rule that does not mention any particular piece of logical vocabulary. We
can think of it as expressing some structural property of the consequence
relation itself, more than giving meaning to a particular item in the logical
vocabulary. Consider, for example, the rules of Identity and Cut:
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Id
A⇒ A

Γ⇒ ∆, A A,Γ′ ⇒ ∆′
Cut

Γ′,Γ⇒ ∆,∆′

We can think of Identity as expressing the property of reflexivity and of Cut
as expressing the property of transitivity of a consequence relation.

A good number of papers in the recent literature about paradoxes focus on
the so-called “substructural logics”, that is, non-classical logics obtained by
restricting or completely abandoning one or more structural rules. There are
good reasons indeed for going substructural − at least if you want to hold
on to some intuitively correct features about truth, like transparency. Para-
doxes can arise in different forms: the Liar (involving negation), the Curry
(involving the conditional), the Validity Curry (involving a Validity predi-
cate) and some more. While the structuralist needs to solve these paradoxes
one by one, playing with the rules for each connective, the substructuralist
makes the promise of getting rid of paradoxes in a uniform way while keeping
the meaning of classical connectives − or introducing minimal disturbance.
After a persuasive argument in this direction, David Ripley concludes,

Rather than rushing from paradox to paradox making ad hoc
modifications, these substructural approaches grapple with the
paradoxes where they live: in the basic features of argumentation.
This way, they can avoid having to worry about rules governing
particular pieces of vocabulary; in a single fell swoop they address
liars, curries, validity curries, Hinnion-liberts, and so on.(Ripley,
2015, 310)

Each possible substructural approach to paradoxes has been defended by
some philosopher in the recent literature.1 In this paper we focus on two
substructural approaches named ST and TS, and on two structural cousins,
LP and K3. In subsection 2.1 we introduce these logics as based on Strong
Kleene valuations. In subsection 2.2 we describe three properties of infer-
ences, in addition to the standard property of validity. Although the rela-
tionship between these properties are straightforward in the classical setting,
in the context of Strong Kleene logics the picture is more complex. Subsec-
tion 2.3 concludes by briefly discussing the notion of duality for consequence
relations. In section 3 we introduce a proof procedure for metainferential
validity for any of the four logics discussed. This procedure will allow us
to show in section 4 that the properties discussed in section 2.2, and par-

1See Petersen (2000), Shapiro (2010) Zardini (2011), Beall and Murzi (2013) and Rosen-
blatt (2019) for non-contractive approaches; Weir (2005), Cobreros et al. (2013) and Rip-
ley (2013) for non-transitive approaches; French (2016) and Nicolai and Rossi (2018) for
non-reflexive approaches and Da Ré (2020) for non-monotonic.
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ticularly that of xy-antivalidity, can be captured by the (xy-)validity of a
metainference. Section 5 concludes.

2 Strong Kleene Logics

2.1 Four Three-valued Logics

Let L be a propositional language with the usual connectives (∨,∧,⊃
,¬,>,⊥)2 and let an interpretation v be a function from propositional let-
ters to the set of truth values {1, 12 , 0}. Interpretations extend to formulas
according to the Strong Kleene scheme:

v(A ∨B) = max(v(A), v(B))

v(A ∧B) = min(v(A), v(B))

v(A ⊃ B) = max(1− v(A), v(B))

v(¬A) = 1− v(A)

v(>) = 1

v(⊥) = 0

The semantics make room for two notions of formula satisfaction. We say
that a formula A is strictly satisfied by an interpretation v, written v s A,
when v(A) = 1 and that it is tolerantly satisfied, written v t A, when
v(A) > 0. Strict and tolerant satisfaction are duals in the sense that v 1t A
if and only if v s ¬A and v 1s A if and only if v t ¬A (most of what
comes later hangs on this fact).

If we understand validity as a form of preservation of satisfaction from
premises to conclusions it is natural to consider two notions of validity out
of our two notions of satisfaction: one preserving strict satisfaction and one
preserving tolerant satisfaction. It is possible, however, to consider mixed
forms of validity, where both strict and tolerant satisfaction appear in the
definition.3 Therefore, given these two notions of formula satisfaction, we
can define four different notions of inference satisfaction, substituting the

2Although we introduce here > and ⊥ as logical constants their only role in this paper
will be marking an empty position in a sequent.

3The idea that, in addition to preservation of a designated value, logical consequence
can mix different notions of satisfaction appears, as far as we know, in the works of:
Malinowski (1990), Nait-Abdallah (1995), Bennett (1998), Frankowski (2004), Zardini
(2008), Cobreros et al. (2012), Cobreros et al. (2013) and Ripley (2013).
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x’s and y’s by t’s and s’ in the following schematic definition,4

v �xy Γ⇒ ∆ iff

if v x A (for every A in Γ) then v y B (for some B in ∆).

We say that an inference is xy-valid, written �xy Γ ⇒ ∆, iff it is xy-
satisfied by every valuation. For example, �ss Γ⇒ ∆ just in case for every
valuation, if all premises are strictly satisfied, then some conclusion is strictly
satisfied (we read premises conjunctively and conclusions disjunctively). The
resulting logics5 are ordered (valid inferences in the logic below are included
into the valid inferences of the logic above) according to diagram 1.

st

ss tt

ts

Figure 1: Four 3-valued logics

tt corresponds to Priest’s Logic of Paradox LP, ss to Strong Kleene K3
while st and ts correspond to the logics ST and TS. In the following we
will therefore use ss (respectively, tt, st and ts) and K3 (respectively LP, ST
and TS) interchangeably. If we consider just inferences, TS is the weakest
logic, since no sequent is TS-valid (apart from sequents involving > or ⊥).
Regarding valid inferences again, ST is the strongest logic (any TS, K3 or
LP-valid inference is also ST-valid); actually, the set of ST-valid inferences
coincides with the set of classically valid inferences (these facts about TS
and ST will be made evident after the discussion in section 3).

Although ST coincides with classical logic in the set of valid sequents, these
logics differ in an important respect: it is possible to consistently extend ST
with a transparent truth predicate (‘A’ and ‘T 〈A〉’ are intersubstitutable in
every extensional context without a change in validity, see Cobreros et al.

4Where ‘⇒’ stands for the sequent arrow. We take, as usual, a sequent as expressing
an inference.

5Under the assumption that the notion of satisfaction applies equally to sequents at
any metainferential level, see Scambler (2019) section 3.3 for a clarification of this point.
Following Barrio et al. (2019), Chris Scambler shows that there are uncountably many
logics differing perhaps only at some metainferential level. A discussion of these results is
beyond the scope of this paper.
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(2013), Ripley (2013)). The key feature that makes this extension possible
is that ST admits failures of transitivity. That is, ST admits cases where B
follows from A and C from B while C does not follow from A. This tran-
sitivity property can be characterised as a metainference, in the sense of an
inference relating some inferences to other inferences. It is the failure of this
metainference that makes ST “substructural”. Similarly, TS is substructural
since it admits failures of reflexivity, which in turn can be characterised as
the failure of a metainference: that one allowing us to draw the inference
that A follows from A out of any inference whatsoever (again, these facts
should be evident after our discussion in section 3).

2.2 Inference properties

There are different properties of inferences that might be of interest in ad-
dition to validity. In this section we focus on four such properties, including
validity itself.

In a classical setting, we will say that a valuation v unsatisfies a sequent
A ⇒ B, written v  A ⇒ B,6 just in case if it satisfies A then it does not
satisfy B. A valuation v supersatisfies A ⇒ B, written v



A ⇒ B when if
it does not satisfy A, it does satisfy B. Finally, a valuation v antisatisfies
A⇒ B, written v


A⇒ B, when if it does not satisfy A, it does not satisfy

B either. We can represent these notions in a visually more appealing way:

• v  A⇒ B iff v  A ; v  B

• v  A⇒ B iff v  A ; v 1 B

• v



A⇒ B iff v 1 A ; v  B

• v



A⇒ B iff v 1 A ; v 1 B

Quantifying over valuations we can define the corresponding notions of va-
lidity (�), unsatisfiability ( � ), supersatisfiability (

�

) and antivalidity
(

�

).

Since classical satisfaction is self-dual (in the sense that v 1 A just in case
v  ¬A) all the three new properties above (uns-, super- and anti-) can be
defined in terms of satisfaction via negation. Thus, that a sequent A ⇒ B
is classically unsatisfied by v, written v  A⇒ B, means that v  A⇒ ¬B;

6For simplicity we will talk about sequents involving only one premise and only one
conclusion. In the four logics, the comma in the premises works as a conjunction and the
comma in the conclusions as a disjunction; this is the reason why we find this simplification
unproblematic.
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that v



A⇒ B means that v  ¬A⇒ B, and that v



A⇒ B means that
v  ¬A⇒ ¬B (similarly, that A⇒ B is classically unsatisfiable means that
A⇒ ¬B is classically valid etc.)

In the setting of Strong Kleene logics, analogous notions can be defined using
tolerant and strict satisfaction for formulas. For instance, a sequent A⇒ B
is xy-unsatisfied by a valuation v, written v  xy A⇒ B, iff if A is x-satisfied
by v, B is not y-satisfied by v. Perhaps visually more appealing,

• v xy A⇒ B iff v x A ; v y B

• v  xy A⇒ B iff v x A ; v 1y B

• v



xy A⇒ B iff v 1x A ; v y B

• v



xy A⇒ B iff v 1x A ; v 1y B

Since tolerant and strict satisfaction are not self-duals but, rather, each
other’s dual, the situation is now quite different than in the classical case.
The un-, super-, and anti-satisfaction of a sequent can be expressed in terms
of the satisfaction of a sequent in which either the antecedent, or the con-
sequent (or both) are negated. However, the notion of satisfaction used will
be that of another Strong Kleene logic. For example, that a sequent is ST-
unsatisfied by v, written v  STA ⇒ B means that the sequent A ⇒ ¬B is
K3-satisfied by v, that is, v K3 A ⇒ ¬B. More generally, using negation
we can map the un-, super- and anti-satisfaction of a sequent into the sat-
isfaction of another sequent by jumping from one logic to another as shown
in diagram 2.

�

�

�

�

ST K3 LP TS

s; t s; s t; t t; s

s; 1t s; 1s t; 1t t; 1s

1s; t 1s; s 1t; t 1t; s

1s; 1t 1s; 1s 1t; 1t 1t; 1s

Figure 2: Inference properties in Strong Kleene logics
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2.3 Duality about consequence

Duality about connectives usually refers to a certain kind of De Morgan
relation between them. Thus, we say that ‘∧’ and ‘∨’ are duals in a given
logic when ¬(A∧B) is equivalent to ¬A∨¬B. Strict and tolerant satisfaction
are duals in very much this sense since 1s A just in case t ¬A (although
this second duality involves two different negations: one in the metalanguage
and one in the object language).

The duality in the case of a consequence relation does not fit this mould,
as it is not generally the case that 2 A ⇒ B just in case � ¬A ⇒ ¬B.
So when we say that classical logic is self-dual we must mean something
different. Plausibly, duality about a consequence relation refers to a direct
consequence of the underlying notion of satisfaction: the connection between
validity and antivalidity.

We defined validity in terms of a (universally closed) metalinguistic con-
ditional connecting satisfaction in the premises to satisfaction in the con-
clusions. Being it a conditional we can contrapose it: swap premises and
conclusions and negate both. There are, however, two ways of negating
premises and conclusions: one in the metalanguage and one in the object
language. All these come to the same thing in classical logic, since classical
satisfaction is self-dual (see figure 3).

� A⇒ B

�

B ⇒ A� ¬B ⇒ ¬A

Figure 3: Classical duality

The connections in figure 3 motivate the adoption of the following terminol-
ogy. We will say that two consequence relations `∗ and `† are operationally
duals when

�∗ A⇒ B iff �† ¬B ⇒ ¬A

and that they are structurally duals when

`∗ A⇒ B iff †a B ⇒ A.

Thus, according to this terminology, classical logic is both operationally and
structurally self-dual. The situation is different in the case of Strong Kleene
Logics, as the notions of satisfaction involved are not self-dual. We already
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know that LP and K3 are operationally duals. Now it can be seen, by in-
specting the definition of anti-validity above, that LP is structurally self-dual.
Figure 4 depicts the situation for LP about operational and structural dual-
ity.

�LP A⇒ B

�

LP B ⇒ A�K3 ¬B ⇒ ¬A

Figure 4: LP-K3 duality

The situation is somehow reversed for the logic ST. Again, by looking into
the definitions of validity and anti-validity, it can be seen that ST is oper-
ationally self-dual but structurally it is the dual of TS, amounting to the
picture in figure 5.

�ST A⇒ B

�

TS B ⇒ A�ST ¬B ⇒ ¬A

Figure 5: ST-TS duality

One of the arguments for ST lies in its alleged preservation of classical logic.7

But the diagram in figure 2 seems to show that ST is K3-ish about unsatisfia-
bility, LP-ish about supersatisfiability and TS-ish about antivalidity. Further,
ST is self-dual only in the operational sense, but dual of TS in the struc-
tural sense. Do these non-classical features threaten in any way the alleged
classicality of the logic ST?

At first, the answer to this question seems to be negative. The defender of
ST might claim that she is committed just to validity and no other property
of inferences. Whether other ST-properties of inferences (such as, say, ST-
antivalidity) are classical or not, is none of her business. She might insist
that her theory is committed to validity alone and this property behaves in
the classical way.

In section 4 we will argue that this line of response is not available to the
defender of ST. Although none among ST-antivalidity, ST-unsatisfiability
and ST-supersatisfiability can be captured in terms of the ST-validity of an

7See, in particular, (Cobreros et al., 2013, 853)
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inference, they can all be captured in terms of the ST-validity of a metain-
ference. In order to show this, we introduce first a method to decide on
metainferences.

3 Trees: inferences and metainferences

3.1 Trees for inferences

It is possible to adapt Smullyan’s (1995) trees to decide the validity of infer-
ences for all the logics described above.8 The underlying idea is the following.
In order for an inference to be xy-valid, there must not be an interpretation
x-satisfying the premises and not y-satisfying the conclusions. Our trees
provide a systematic search for a valuation of the relevant kind for any given
inference (if there is no such valuation the trees will tell us).

Since there are two notions of satisfaction, our trees need to keep track of
which is the relevant notion of satisfaction for which formulas. To this end,
formulas in a tree go with a tag, ‘s’ for ‘strict’ and ‘t’ for ‘tolerant’. Tree
rules are exactly like the classical rules with the exception of the tag. For
example:

A ⊃ B, x

¬A, x B, x

¬(A ⊃ B), x

A, x

¬B, x

The justification is the following. (For the rule on the left taking x to be s):
A ⊃ B is strictly true exactly when either A is strictly false or B strictly
true. (For the rule on the right taking x to be s): A ⊃ B is strictly false
exactly when A is strictly true and B strictly false. A similar justification
applies when we take x to be t: A ⊃ B is tolerantly true exactly when either
A is tolerantly false or B tolerantly true; A ⊃ B is tolerantly false exactly
when A is tolerantly true and B tolerantly false. Tree rules are summarised
in figure 6.

A branch closes when it contains any of the following pairs of formulas
‘A, s/¬A, s’ or ‘A, t(s)/¬A, s(t)’, or it contains the formula ‘⊥, t(s)’ but,
crucially, the pair ‘A, t/¬A, t’ is not enough to close a branch (since both are
tolerantly satisfied when A takes the middle value).

8See also Priest (2008) specially sections 8.4.8 and 8.4.11, although the trees there for
LP and K3 are presented in a slightly different way. The exact kind of trees used here are
described in Cobreros et al. (2012).
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A ∧B, x ¬(A ∨B), x ¬(A ⊃ B), x ¬¬A, x ¬>, x ¬⊥, x
A, x ¬A, x A, x A, x ⊥, x >, x
B, x ¬B, x ¬B, x

¬(A ∧B), x A ∨B, x A ⊃ B, x

¬A, x ¬B, x A, x B, x ¬A, x B, x

Figure 6: Tree rules

The difference between trees for either logic is just the tags in the initial list
of formulas. Let d() be a function swapping t’s to s’ and s’ to t’s. We say
`xy A1, . . . , An ⇒ B1, . . . , Bm iff there is a closed tree with initial list,9

A1, x
...

An, x

¬B1, d(y)
...

¬Bm, d(y)

In order to see the rationale for the initial list of formulas, recall that “B is
not y-satisfied” is equivalent to “¬B is d(y)-satisfied”.

Example 1. 0LP (A ⊃ B) ∧ (B ⊃ C)⇒ A ⊃ C

(A ⊃ B) ∧ (B ⊃ C), t
¬(A ⊃ C), s
A ⊃ B, t
B ⊃ C, t

A, s
¬C, s

¬A, t
×

B, t

¬B, t C, t
×

The tree shows that the conditional in LP is not transitive. Observe that
9Soundness and completeness proofs are adaptations of the corresponding proofs in

Priest (2008).
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we can rearrange tags to find the tree corresponding to a different logic. For
example, if we change t’s by s’ and s’ by t’s in the tree above, we get the
tree corresponding to K3 (which shows, by the way, that the conditional is
transitive in K3).

Notice also that the trees for ST contain only s’ in their initial list of formulas.
Since tagged trees and classical trees are identical, except for the tags, if a
branch closes in a classical tree (with a pair A/¬A) it will close in the
corresponding ST-tree (with a pair A, s/¬A, s). This proves the claim above
that any classically valid sequent is also valid in ST. Observe finally, that
trees for TS contain only t’s and therefore they never close (so no sequent is
valid according to TS, as claimed before).

Notice that the method can be applied to decide xy-unsatisfiability, xy-
supersatisfiability or xy-antivalidity of an inference by selecting the appro-
priate initial list of formulas (as shown un figure 7).

` xyA⇒ B
just in case

there is a closed
tree

A, x
B, y

`

xyA⇒ B
just in case

there is a closed
tree

¬A, d(x)
¬B, d(y)

`

xyA⇒ B
just in case

there is a closed
tree

¬A, d(x)
B, y

Figure 7: Unsatisfiability, supersatisfiability, antivalidity

3.2 Trees for metainferences

Given our propositional language L, an inference is an expression of the
form ‘Γ ⇒ ∆’ where Γ,∆ ⊆ L. Call Inf(L) to the set of all inferences. A
metainference is an expression of the form ‘Γ V ∆’ where Γ,∆ ⊆ Inf(L).
Thus, for example,

(i) A ⊃ B,B ⊃ C ⇒ A ⊃ C is an inference, and

(ii) A⇒ B,B ⇒ C V A⇒ C is a metainference.

An inference can be considered a metainference without premises. Thus, for
example, the inference ‘A ⇒ A’ can also be read as the metainference ‘V
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A⇒ A’. For readability we will often mark the empty side of a metainference
with either ‘>’ (for an empty left-hand side) and ‘⊥’ (for an empty right-hand
side). Notice further that, ‘>’ can be read as an abbreviation of ‘⊥ ⇒ >’
and ‘⊥’ can be read as an abbreviation of ‘> ⇒ ⊥’, so that we will write a
metainference like ‘V A ⇒ A’ simply as ‘> V A ⇒ A’ and ‘A ⇒ A V’ as
‘A⇒ AV ⊥’.

A metainference ΓV ∆ is xy-satisfied by a valuation v, written v xy ΓV
∆, iff either v 1xy Γ or v xy ∆. A metainference is xy-valid, when it is
xy-satisfied by every valuation.10

The conditional and the arrow sequent have different meanings in each of the
four logics we are considering. For example, we know that the conditional
in LP is not transitive, and so inference (i) is not LP-valid. However, the LP
consequence relation is transitive, which means that the metainference (ii)
above is LP-valid. This motivates extending trees to cover metainferences,
and we add rules for the arrow sequent to that end (relative to each logic):

A⇒ B, xy

¬A, d(x) B, y

A⇒ B, xy

A, x

¬B, d(y)

The expression “A ⇒ B, xy” means that the sequent A ⇒ B is not xy-
satisfied. The justification of the rules can be easily seen keeping in mind
that t and s are duals. Thus, for example, the sequent ‘A ⇒ B’ is LP-
satisfied just in case either A is not tolerantly satisfied or B is tolerantly
satisfied. But recall that ‘A is not tolerantly satisfied’ means the same as
‘¬A is strictly satisfied’.

We write `xy A1 ⇒ A1′ , . . . An ⇒ An′ V B1 ⇒ B1′ , . . . Bm ⇒ Bm′ iff there
is a closed tree with initial list,

A1 ⇒ A1′ , xy
...

10These definitions come from Dicher and Paoli (2019) and are also used in Barrio
et al. (2019). For a matter of uniformity we define metainferences with possibly multiple
inferences as conclusions, although the examples we will consider below involve all a single
inference in the conclusion side. The idea of validity for a metainference is also present in
Barrio et al. (2015) although in a slightly different (“global-substitutional”) sense. In the
paper Cobreros et al. (2013) the validity of a metainference is used in a third different way
(“simply global”). Which of these notions is the appropriate one, if any, is an interesting
question beyond the scope of this paper. The notion of a metainference can be generalised
to cover metainferences of any order, where a metainference of order n is an arrow with
metainferences of order n− 1 at each side. Barrio et al. (2019) use this generalisation to
prove some intriguing results. See Scambler (2019) for a rejoinder.
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An ⇒ An′ , xy

B1 ⇒ B1′ , xy
...

Bm ⇒ Bm′xy

Example 2. 0ST A⇒ B,B ⇒ C V A⇒ C

A⇒ B, st
B ⇒ C, st
A⇒ C, st

A, s
¬C, s

¬A, t
×

B, t

¬B, t C, t
×

The tree shows that the metainference expressing the transitivity of the
arrow is not valid in ST. Observe that, except for the initial list of formulas,
the tree is identical to that of Example 1 showing the non-transitivity of
the conditional in LP. Comparing trees for LP-inferences and trees for ST-
metainferences, we can see that there’s a correspondence between the two
logics. A metainference is ST-valid just in case the result of “lowering” it to
an inference (that is, substituting ‘⇒’ by ‘⊃’ and ‘V’ by ‘⇒’) is LP-valid (this
connection was noticed and proved in Barrio et al. (2015)). An analogous
correspondence connects TS metainferences to K3 inferences (see Cobreros
et al. (2019) for more on this).11

11In a companion paper in preparation we show how the trees can be “turned upside
down” to obtain a sequent calculus that covers the four 3-valued logic under consideration
as well the hierarchy of meta-inferential logics considered by Barrio et al. (2019). As it
is implicit in the construction of the trees (in particular, from the fact that to test the
xy-validity of a sequent we start a tree by simply taking the formulas in the antecedent
labelled by x together with the negation of those in the antecedent marked by the dual
of y), the corresponding sequent calculus is two-sided and labelled, where the labels are
used to reflect syntactically the key features of the semantics. The calculus (like the trees
presented here) therefore fulfils the elegance conditions introduced in Fjellstad (2017)
(in particular, if one forgets the labels, the rules are just those for classical logic; and
one has a straightforward connection between derivability of sequents and validity), and
it stands to the st semantics as the dual-two-sided calculus of Fjellstad stands to his
dual valuation semantics. The duality issues we investigate in the present paper could
in principle be reformulated in terms of Fjellstad’s dual valuation semantics and hence
also in his sequent calculus, but they can be more straightforwardly formulated using the
strict-tolerant semantic settings, which is the reason why we preferred introducing these
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4 Expressing xy-antivalidity

As announced at the end of subsection 2.3, in this section we explain how
xy-antivalidity can be expressed in terms of xy-validity. Consider again the
trees for xy-validity and xy-antivalidity (figure 8),

`xy A⇒ B

just in case
there is a closed tree

A, x
¬B, d(y)

`

xyA⇒ B

just in case
there is a closed tree,

¬A, d(x)
B, y

Figure 8: Validity and antivalidity trees

Notice that in the case of ST (and similarly for TS), the ST-antivalidity of
an inference is not given by the ST-validity of any other inference, since ST-
validity trees contain only s’ while ST-antivalidity trees only t’s. There is a
general way, however, to express the xy-antivalidity of an inference in terms
of the xy-validity of a metainference.

Proposition. xya A⇒ B iff `xy A⇒ ⊥,> ⇒ B V ⊥.

Proof. Write the tree for the xy-validity of the metainference at the right-
hand side of the biconditional,

A⇒ ⊥, xy
> ⇒ B, xy
¬⊥, xy

¬A, d(x)

¬>, d(x)
×

B, y

⊥, y
×

and notice that the only open branch of this tree contains exactly the for-
mulas in the initial tree for xy-antivalidity of the inference at the left-hand
side (as shown in figure 8).

Corollary.

trees rather than working with Fjellstad’s calculus.
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(i) ` xyA⇒ B iff `xy > ⇒ B V A⇒ ⊥ and
(ii)

`

xyA⇒ B iff `xy A⇒ ⊥V > ⇒ B.

By inspecting the corresponding trees, we can verify the equivalences in
figures 4 and 5,

• `LP A⇒ B iff LPa B ⇒ A

• `ST A⇒ B iff TSa B ⇒ A

In words: an inference is LP-valid just in case the result of swapping premises
and conclusions gives you an LP-antivalid inference. In contrast, an inference
is ST-valid just in case the result of swapping premises and conclusions gives
you a TS-antivalid inference. Or adopting the terminology in subsection 2.3,
LP is structurally self-dual while ST and TS are structurally duals.

We end up with a final observation. If we consider the sequent A⇒ A, the
structural duality of ST and TS unpacks into,

�ST > ⇒ A, A⇒ ⊥V ⊥

iff

�TS >V A⇒ A

Which are metainferences representing instances of the rule of Cut and Iden-
tity, respectively. Given the close relations between ST and LP, on the one
hand, and TS and K3, on the other, the failure of Cut can be read as a
form of structural paraconsistency and the failure of Identity as a form of
structural paracompleteness.

5 Final remarks

The goal of this paper was that of explaining in what sense the logics ST
and TS are duals, in analogy with the already well-known duality between
LP and K3. As in the case of LP and K3, the duality spelled out in this
paper (if successful), should allow us to deepen the understanding of these
logics and of the theories based on them. In this line, the discussion above
supports at least two claims in the debate about ST.
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In the first place, it supports the idea that the logic ST is more akin to
other Strong Kleene logics than to classical logic and that it is, therefore, on
the non-classical side of the scene. Particularly, the fact that we can record
all (non-classically behaving) ST-like properties of inferences in terms of the
ST-validity of a metainference shows that the supporter of a theory based on
the logic ST is not in a position to avoid the commitment to those properties.
In a similar way in which the supporter of LP cannot avoid the commitment
to

`

LPA⇒ A, since she is already committed to `LP > ⇒ A,A⇒ ⊥V ⊥,
the supporter of ST cannot avoid the commitment to

0

STA⇒ A since she’s
already committed to 0ST > ⇒ A,A ⇒ ⊥ V ⊥. We don’t think this fact
should be something terribly worrying for the supporters of ST, since Strong
Kleene logics like LP and K3 have many interesting properties and have been
very fruitful in their application to different phenomena. Arguments for ST
based on it’s alleged classicality, however, seem to loose their bite under the
above considerations.

The second point concerns the status of a theory based on ST as a distinctive
approach to paradoxes. The connections shown by Barrio et al. (2015) and
Dicher and Paoli (2019) between ST and LP ground their claim that ST is
nothing more than LP in sheep’s clothing. Although a proper assessment
of their arguments is outside the scope of this paper, the fact that we can
represent xy-unsatisfiability, xy-supersatisfiability and xy-antivalidity of an
inference in terms of the xy-validity of a metainference shows that all these
logics are connected by different symmetries to one another. This fact can
be used to argue that either all logics are different or all come to the same
thing, no middle position seems to be tenable. We grant that a proper
assessment of this last claim would require a more detailed explanation of the
connections between the properties discussed above. We intend to examine
these connections in future work.

In addition to these two points of discussion, the connection between ST and
TS raises some general questions in the area of Philosophical Logic. First,
whether it is possible to extract from any given non-transitive consequence
relation a dual non-reflexive consequence relation. Second, whether the fail-
ure of transitivity can be generally understood as a form of paraconsistency
and failure of reflexivity as a form of paracompleteness. Third, whether
there are interesting logical theories that are structurally paraconsistent and
structurally paracomplete beyond ST and TS.
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