TURING ANALOGUES OF GÖDEL STATEMENTS AND COMPUTABILITY OF INTELLIGENCE

YASHA SAVELYEV

Abstract. We show that there is a mathematical obstruction to complete Turing computability of intelligence. This obstruction can be circumvented only if human reasoning is fundamentally unsound. The most compelling original argument for existence of such an obstruction was proposed by Penrose, however Gödel, Turing and Lucas have also proposed such arguments. We first partially reformulate the argument of Penrose. In this formulation we argue that his argument works up to possibility of construction of a certain Gödel statement. We then completely re-frame the argument in the language of Turing machines, and by partially defining our subject just enough, we show that a certain analogue of a Gödel statement, or a Gödel string as we call it in the language of Turing machines, can be readily constructed directly, without appeal to the Gödel incompleteness theorem, and thus removing the final objection.

Question 1. Can human intelligence be completely modelled by a Turing machine?

An informal definition of a Turing machine (see [1]) is as follows: it is an abstract machine which permits certain inputs, and produces outputs. The outputs are determined from the inputs by a fixed finite algorithm, in a specific sense. In particular anything that can be computed by computers as we know them can be computed by a Turing machine. For the purpose of the main result the reader may simply understand a Turing machine as a digital computer with unbounded memory running a certain program. Unbounded memory is just mathematical convenience, it can in specific arguments, also of the kind we make, be replaced by non-explicitly bounded memory.

Turing himself has started on a form of Question 1 in his “Computing machines and Intelligence”, [2], where he also informally outlined a possible obstruction to a yes answer coming from Gödel’s incompleteness theorem. For the incompleteness theorem to come in we need some assumption on the fundamental soundness or consistency of human reasoning. We need some qualifier like “fundamental” as even mathematicians are not on the surface sound at all times. Here this “fundamental” is understood as follows. We are on the surface unsound not because of fundamental internal inconsistencies of our mental constructions, but for the following pair of reasons. First, due to time constraints humans make certain leaps of faith without fully vetting their logic. Second, the physically noisy, faulty, biological nature of our brain leads to interpretation errors of our mental constructions. By “faulty” we mean the possibly common occurrence of faults in brain processes, coming from things like brain cell death, signaling noise between neurons, neurotransmitter imbalance, etc. Let us call all these possible fault vectors “brain noise”. In other words, according to us to say that a human being is fundamentally sound, is to say that after “stripping out” the “brain noise” this human being will be sound and have undiminished reasoning powers.

Gödel first argued for a no answer to Question 1 in [10, 310], relating the question to existence of absolutely undecidable problems, see Feferman [5] for a discussion. Since existence of absolutely undecidable problems is such a difficult and contentious issue, even if Gödel’s argument is in essence correct it is not completely compelling.

Later Lucas [9] and later again and more robustly Penrose [15] argued for a no answer, based only on soundness. Such an argument if correct would be extremely compelling. They further formalized and elaborated the obstruction coming from Gödel’s incompleteness theorem. And they reject the
possibility that humans could be unsound on a fundamental level, as does Gödel but for him it is apparently not even a possibility, it does not seem to be stated in [10].

It should also be noted that for Penrose in particular, non-computability of intelligence is evidence for new physics, and he has specific and very intriguing proposals with Hameroff [8], on how this can take place in the human brain. Here is a partial list of some partially related work on mathematical models of brain activity and or quantum collapse models: [11], [14], [6], [7].

The following is a slightly informal version of our main Theorem 4.1.

Theorem 0.1. Either there are cognitively meaningful, non Turing computable processes in the human brain, or human beings are fundamentally unsound. This theorem is indeed a mathematical fact, given our chosen interpretation of fundamental soundness of human reasoning as outlined above.

The immediate implications and context of the above are in mathematical physics and in part biology, and philosophy. For even existence of non Turing computable processes in nature is not known. For example we expect beyond reasonable doubt that solutions of fluid flow or N-body problems are generally non Turing computable, (over \mathbb{Z}, if not over \mathbb{R} cf. [3]), as modeled in essentially classical mechanics. But in a more physically accurate and fundamental model they may both become computable, (possibly if the nature of the universe is ultimately discreet.) Our theorem says that either there are absolutely, that is model independent, non-computable processes in physical nature, in fact in the functioning of the brain, or human beings are fundamentally unsound, which is a mathematical condition on the functioning of the human brain. Despite the partly physical context the technical methods of the paper are mainly of mathematics and computer science, as we need very few physical assumptions.

Outline of the main idea of the Gödelian analysis. What follows will be very close in essence to the argument Penrose gives in [16], which we take to be his main and final argument. However we partially reinterpret this to be closer to our argument later on. While this outline uses some of the language of formal systems, we will not use this language in our main argument, which is based purely on the language of Turing machines, and is much more elementary, in particular any gaps of the following outline should disappear.

Let P be a human subject, which we understand at the moment as a machine printing statements in arithmetic, given some input. That is for each Σ some string input in a fixed finite alphabet, $P(\Sigma)$ is a statement in arithmetic, e.g. “There are infinitely many primes.” Say now P is in contact with experimenter/operator E. The input strings that E gives P are pairs (Σ_T, n) for Σ_T specification of a Turing machines T, and $n \in \mathbb{N}$.

Let Θ_T be the statement:

\[
(0.2) \quad T \text{ computes } P.
\]

For each (Σ_T, n), P prints his statement $P(\Sigma_T, n)$, which he asserts to hold if Θ_T. We ask that for each fixed T: $\{P(\Sigma_T, n)\}_n$ is the complete list of statements that P asserts to be true conditionally on Θ_T. Finally, we put the condition on our P that he asserts himself to be fundamentally consistent. More specifically, P asserts for each T the statement I_T:

\[
(0.3) \quad \Theta_T \Rightarrow T \text{ is consistent}.
\]

By T being consistent we mean here:

\[
T(\Sigma_T, n) \neq \neg(T(\Sigma_T, m)),
\]

for any n, m with \neg the logical negation of the statement, and where inequality is just string inequality of the corresponding sentences. As a side remark, asserting ones own consistency is by no means contentious, as most people assert their consistency in some form by implication. For if a human H asserts $0 \neq 1$ in absolute faith, that is H asserts that they will never assert $0 = 1$, while “sane”, then

1 It is likely most mathematicians would sympathize with Gödel, after all the entirety mathematics is meaningless if mathematicians are fundamentally unsound.
Definition 1.1. A Turing machine \(M \) consists of:

- Three infinite (1-dimensional) tapes \(T_i, T_o, T_c \), (input, output and computation) divided into discrete cells, next to each other. Each cell contains a symbol from some finite alphabet. A special symbol \(b \) for blank, (the only symbol which may appear infinitely many often).
- Three heads \(H_i, H_o, H_c \) (pointing devices), \(H_i \) can read each cell in \(T_i \) to which it points, \(H_o, H_c \) can read/write each cell in \(T_o, T_c \) to which they point. The heads can then move left or right on the tape.
- A set of internal states \(Q \), among these is “start” state \(q_0 \). And a non-empty set \(F \subset Q \) of final, “finish” states.

by implication \(H \) asserts their consistency. For if \(H \) is not consistent (but accepts first order logic) they must eventually assert everything, while “sane”, in particular \(0 = 1 \).

Let then \(T_0 \) be a specified Turing machine, and suppose that \(E \) passes to \(P \) input of the form \((\Sigma_{T_0}, n) \). Now, as is well known \(^2\), the statements \(\{T_0(\Sigma_{T_0}, n)\}_n \) must be the complete list of provable statements in a certain formal system \(\mathcal{F}(T_0) \) explicitly constructible given \(T_0 \). And \(\mathcal{F}(T_0) \) would be consistent if \(\Theta_{T_0} \) and if \(I_{T_0} \). In particular if \(\Theta_{T_0} \) and if \(I_{T_0} \), then there would be a true (in the standard model of arithmetic) Gödel statement \(G(T_0) \) such that \(T_0(\Sigma_{T_0}, n) \neq G(T_0) \), for all \(n \).

But \(P \) asserts \(I_{T_0} \), hence he must assert by implication that

\[
\Theta_{T_0} \implies G(T_0).
\]

And so if \(P \) knew how to construct \(G(T_0) \) then this statement must be in the list \(\{P(\Sigma_{T_0}, n)\}_n \), and so in the list \(\{T_0(\Sigma_{T_0}, n)\}_n \), so we would get a contradiction. So either not \(\Theta_{T_0} \), that is \(P \) is not computed by \(T_0 \) or \(P \) is not consistent, but \(T_0 \) is arbitrary so we obtain an obstruction to computability of \(P \).

The above outline would at least in principle work if \(G(T_0) \) was constructible by \(P \). From this author’s point of view constructibility of \(G(T_0) \) is not in principle an issue. This is because the specification of \(\mathcal{F}(T_0) \) could be explicitly obtained by \(P \), given the finite specification of \(T_0 \). And the Gödel statement could always, at least in principle, be explicitly constructed once one knows the formal system, even if in practice this may be hopelessly difficult. We will delve no further into this.

One detailed critique of the Penrose argument is given in Koellner [12], [13], see also Penrose [17], and Chalmers [4] for discussions on related issues. (Note of course that our argument above is significantly different.)

In this note we completely solve the above problem of explicit construction of the Gödel statement. We reformulate the above idea using a more elementary approach, more heavily based in Turing machines. To this end, we partially define our subject henceforth denoted by \(S \), by means of formalizing properties of a certain function associated to \(S \). We do this so that a certain analogue of the Gödel statement can be readily constructed directly, avoiding intricacies of formal systems and the general incompleteness theorem. This will not be exactly “Gödel statement”, but rather a “Gödel string” as we call it, because we will not even be dealing with formal systems, but purely with Turing machines. But this string has analogous properties.

As a final remark, technically the paper is mostly elementary and should be widely readable in entirety.

1. Some preliminaries

This section can be just skimmed on a first reading. Really what we are interested in is not Turing machines per se, but computations that can be simulated by Turing machine computations. These can for example be computations that a mathematician performs with paper and pencil, and indeed is the original motivation for Turing’s specific model. However to introduce Turing computations we need Turing machines, here is our version which is a computationally equivalent, minor variation of Turing’s original machine.

Definition 1.1. A Turing machine \(M \) consists of:

- Three infinite (1-dimensional) tapes \(T_i, T_o, T_c \), (input, output and computation) divided into discrete cells, next to each other. Each cell contains a symbol from some finite alphabet. A special symbol \(b \) for blank, (the only symbol which may appear infinitely many often).
- Three heads \(H_i, H_o, H_c \) (pointing devices), \(H_i \) can read each cell in \(T_i \) to which it points, \(H_o, H_c \) can read/write each cell in \(T_o, T_c \) to which they point. The heads can then move left or right on the tape.
- A set of internal states \(Q \), among these is “start” state \(q_0 \). And a non-empty set \(F \subset Q \) of final, “finish” states.

\(^2\)I don’t know a standard reference but see for example [5].
• Input string Σ: the collection of symbols on the tape T_1, so that to the left and right of Σ there are only symbols b. We assume that in state q_0 H, points to the beginning of the input string, and that the T_2, T_0 have only b symbols.

• A finite set of instructions I that given the state q the machine is in currently, and given the symbols the heads are pointing to, tells M to do the following, the taken actions 1-3 below will be (jointly) called an **executed instruction set**, or just step:
 (1) Replace symbols with another symbol in the cells to which the heads H_c, H_o point (or leave them).
 (2) Move each head H_1, H_c, H_o left, right, or leave it in place, (independently).
 (3) Change state q to another state or keep it.

• Output string Σ_{out}, the collection of symbols on the tape T_o, so that to the left and right of Σ_{out} there are only symbols b, when the machine state is final. When the internal state is one of the final states we ask that the instructions are to do nothing, so that these are frozen states.

We also have the following minor variations on standard definitions, and notation.

Definition 1.2. A complete configuration of a Turing machine M or **total state** is the collection of all current symbols on the tapes, position of the heads, and current internal state. A Turing computation, or computation sequence for M is a possibly not eventually constant sequence

$$\star M(\Sigma) := \{s_i\}_{i=0}^{\infty}$$

of total states of M, determined by the input Σ and M, with s_0 the initial configuration whose internal state is q_0, s_{i+1} is the total state that results from executing the instructions set of M on the total state s_i. If elements of $\{s_i\}_{i=\infty}^{0}$ are eventually in some final machine state, so that the sequence is eventually constant, then we say that the computation **halts**. In this case we denote by s_f the final configuration, so that the sequence is eventually constant with terms s_f. We define the **length** of a computation sequence to be the first occurrence of $n > 0$ s.t. $s_n = s_f$. For a given Turing computation $\star M(\Sigma)$, we shall write

$$\star M(\Sigma) \to x,$$

if $\star M(\Sigma)$ halts and x is the output string.

We write $M(\Sigma)$ for the output string of M, given the input string Σ, if the associated Turing computation $\star M(\Sigma)$ halts.

Definition 1.3. Let $Strings$ denote the set of all finite strings, including the empty string \emptyset, of symbols in some fixed finite alphabet, for example $\{0, 1\}$. Given a partially defined function $f : Strings \to Strings$, that is a function defined on some subset of $Strings$ - we say that a Turing machine M **computes** f if $\star M(\Sigma) \to f(\Sigma)$, whenever $f(\Sigma)$ is defined.

We may just call a partially defined function $f : Strings \to Strings$ as a function, for simplicity. So a Turing machine T itself determines a function, which is defined on all $\Sigma \in Strings$ s.t. $\star T(\Sigma)$ halts, by $\Sigma \mapsto T(\Sigma)$. The following definition is purely for writing purposes.

Definition 1.4. Given Turing computations (for possibly distinct Turing machines) $\star T_1(\Sigma_1)$, $\star T_2(\Sigma_2)$ we say that they are **equivalent** if they both halt with the same output string or both do not halt. We write $T_1(\Sigma_1) = T_2(\Sigma_2)$ if $\star T_1(\Sigma_1)$, $\star T_2(\Sigma_2)$ both halt with the same value.

In practice we will allow our Turing machine T to reject some elements of $Strings$ as valid input. We may formalize this by asking that there is a special final machine state q_{reject}, so that $T(\Sigma)$ halts with q_{reject} for

$$\Sigma \notin I \subset Strings,$$

where I is some set of all valid, that is T-**permissible** input strings. We do not ask that for $\Sigma \in I$ $\star T(\Sigma)$ halts. If $\star T(\Sigma)$ does halt then we shall say that Σ is **acceptable**. It will be convenient to forget q_{reject} and instead write

$$T : I \to O,$$
where \(I \subset Strings \) is understood as the subset of all \(T \)-permissible strings, or just input set and \(O \) is the set output strings or output set, keeping all other data implicit. The specific interpretation should be clear in context.

All of our input, output sets are understood to be subsets of \(Strings \) under some encoding. For example if the input set is \(Strings^2 \), we may encode it as a subset of \(Strings \) via encoding of the type: “this string \(\Sigma \) encodes an element of \(Strings^2 \)” its components are \(\Sigma_1 \) and \(\Sigma_2. \)” In particular the sets of integers \(\mathbb{N}, \mathbb{Z} \) will under some encoding correspond to subsets of \(Strings \). However it will be often convenient to refer to input, output sets abstractly without explicit reference to encoding subsets of \(Strings \). (Indeed this is how computer languages work.)

Remark 1.5. The above elaborations mostly just have to do with minor set theoretic issues. For example we will want to work with some “sets” \(T \) of Turing machines, with some abstract sets of inputs and outputs. These “sets” \(T \) will truly be sets if implicitly all these abstract sets of inputs and outputs are implicitly encoded as subsets of \(Strings \).

Definition 1.6. We say that a Turing machine \(T \) computes a function \(f : I \to J \), if \(I \) is contained in the set of permissible inputs of \(T \) and \(\ast T(\Sigma) \to f(\Sigma) \), whenever \(f(\Sigma) \) is defined, for \(\Sigma \in I \).

Given Turing machines

\[M_1 : I \to O, M_2 : J \to P, \]

we may naturally compose them to get a Turing machine \(M_2 \circ M_1 : C \to P \), for \(C = M_1^{-1}(O \cap J) \), (\(O \cap J \) is understood as intersection of subsets of \(Strings \)). \(C \) can be empty in which case this is a machine which rejects all input. Let us not elaborate further as this should be clear, we will use this later on.

1.1. Join of Turing machines. Our Turing machine of Definition 1.1 is a multi-tape enhancement of a more basic notion of a Turing machine with a single tape, but we need to iterate this further.

We replace a single tape by tapes \(T^1, \ldots, T^n \) in parallel, which we denote by \((T^1 \ldots T^n) \) and call this \(n \)-tape. The head \(H \) on the \(n \)-tape has components \(H_i \) pointing on the corresponding tape \(T^i \). When moving a machine \(M \) it moves all of its components separately. A string of symbols on \((T^1 \ldots T^n) \) is an \(n \)-string, formally just an element \(\Sigma \in Strings^n \), with \(i \)'th component of \(\Sigma \) specifying a string of symbols on \(T^i \). The blank symbol \(b \) is the symbol \((b^1, \ldots, b^n) \) with \(b^i \) blank symbols of \(T^i \).

Given Turing machines \(M_1, M_2 \) we can construct what we call a \(\text{join} \ M_1 \ast M_2 \), which is roughly a Turing machine where we alternate the operations of \(M_1, M_2 \). In what follows symbols with superscript 1,2 denote the corresponding objects of \(M_1 \), respectively \(M_2 \), cf. Definition 1.1.

\(M_1 \ast M_2 \) has three \((2) \)-tapes:

\[(T^1_1T^2_2), (T^1_1T^2_2), (T^1_1T^2_2), \]

three heads \(H_i, H_c, H_o \) which have component heads \(H^1_i, H^2_i, H^1_o, j = 1,2 \). It has machine states:

\[Q_{M_1 \ast M_2} = Q^1 \times Q^2 \times \mathbb{Z}_2, \]

with initial state \((q_0^1, q_0^2, 0)\) and final states:

\[F_{M_1 \ast M_2} = F^1 \times Q^2 \times \{1\} \cup Q^1 \times F^2 \times \{0\}. \]

Then given machine state \(q = (q^1, q^2, 0) \) and the symbols \((\sigma^1, \sigma^2), (\sigma^1, \sigma^2), (\sigma^1, \sigma^2)\) to which the heads \(H_i, H_c, H_o \) are currently pointing, we first check instructions in \(I^1 \) for \(q^1 \), \(\sigma^1, \sigma^2, \sigma^3 \), and given those instructions as step 1 execute:

1. Replace symbols \(\sigma^1, \sigma^1 \) to which the head components \(H^1_i, H^1_o \) point (or leave them in place, the second components are unchanged).
2. Move each head component \(H^1_i, H^2_i, H^1_o \) left, right, or leave it in place, (independently). (The second component of the head is unchanged.)
3. Change the first component of \(q \) to another or keep it. (The second component is unchanged.)

The third component of \(q \) changed to 1.

Then likewise given machine state \(q = (q^1, q^2, 1) \), we check instructions in \(I^2 \) for \(q^2 \), \(\sigma^2, \sigma^2, \sigma^2 \) and given those instructions as step 2 execute:
(1) Replace symbols σ_i^2, σ_o^2 to which the head components H_c^2, H_o^2 point (or leave them in place, the first components are unchanged).

(2) Move each head component H_c^2, H_o^2 left, right, or leave it in place.

(3) Change the second component of q to another or keep it, (first component is unchanged) and change the last component to 0.

Thus formally the above 2-step procedure is two consecutive executed instruction sets in $M_1 \ast M_2$. Or in other words it is two terms of the computation sequence.

1.1.1. Input. The input for $M_1 \ast M_2$ is a 2-string or in other words pair (Σ_1, Σ_2), with Σ_1 an input string for M_1, and Σ_2 an input string for M_2.

1.1.2. Output. The output for

$$*M_1 \ast M_2(\Sigma_1, \Sigma_2)$$

is defined as follows. If this computation halts then the 2-tape (T_1^1, T_2^2) contains a 2-string, bounded by b symbols, with T_1^1 component Σ_b^1 and T_2^2 component Σ_b^2. Then the output $M_1 \ast M_2(\Sigma_1, \Sigma_2)$ is defined to be Σ_b^2 if the final state is of the form $(q_f, q, 1)$ for q_f final, or Σ_b^1 if the final state is of the form $(q, q_f, 0)$, for q_f likewise final. Thus for us the output is a 1-string on one of the tapes.

1.2. Universality. It will be convenient to refer to the universal Turing machine U. This is a Turing machine already appearing in Turing’s [1], that accepts as input a pair (T, Σ) for T an encoding of a Turing machine and Σ input to this T. It can be partially characterized by the property that for every Turing machine T and Σ input for T we have:

$$*T(\Sigma) \text{ is equivalent to } *U(T, \Sigma).$$

1.3. Notation. In what follows \mathbb{Z} is the set of all integers and \mathbb{N} non-negative integers. We will often specify a Turing machine simply by specifying a function

$$T : I \rightarrow O,$$

with the full data of the underlying Turing machine being implicitly specified, in a way that should be clear from context.

When we intend to suppress dependence of a variable V on some parameter p we often write $V = V(p)$, this equality is then an equality of notation not of mathematical objects.

2. Setup for the proof of Theorem 0.1

Definition 2.1. A machine will be a synonym for a partially defined function $A : I \rightarrow O$, with I, O abstract sets with a prescribed encoding as subsets of Strings, (cf. Preliminaries).

\mathcal{M} will denote the set of machines. Given a Turing machine $T : I \rightarrow O$, we have an associated machine T by forgetting all structure except the structure of a partially defined function. \mathcal{T} will denote the set of machines, which in addition have the structure of a Turing machine.

2.1. Diagonalization machines. As we are going to directly construct a certain Turing machine analogue of a Gödel statement, to make it exceptionally simple we will need to formulate some specific properties for our machines that will require a bit of setup.

We denote by $\mathcal{T}_\mathbb{Z} \subset \mathcal{T}$ the subset of Turing machines, with input set of $X \in \mathcal{T}_\mathbb{Z}$ of the form $S_X \times \mathbb{N}$, understood as a subset of Strings$_{\mathbb{Z}} := Strings \times \mathbb{N}$ and with output set of X being \mathbb{Z}. Let

$$O \subset \mathcal{T}_\mathbb{Z} \times Strings$$

consist of $(X, \Sigma) \in \mathcal{T}_\mathbb{Z} \times Strings$ with $\Sigma \in S_X$, defined as above. And set

$$O' := O \times \mathbb{N} \subset \mathcal{T}_\mathbb{Z} \times Strings_{\mathbb{Z}}.$$

Define \mathcal{M}_0 to be the set of machines M whose input set is $I = \mathcal{T} \times \mathbb{N}$ and whose output set is $\mathcal{T}_\mathbb{Z} \times Strings$.

Let

$$D_1 : \mathbb{Z} \cup \{\infty\} \rightarrow \mathbb{Z},$$
be a fixed Turing machine which satisfies

\begin{align}
 D_1(x) &= x + 1 \text{ if } x \in \mathbb{Z} \subset \mathbb{Z} \cup \{\infty\} \\
 D_1(\infty) &= 1.
\end{align}

(2.2)

(2.3)

Here \(\{\infty\}\) is the one point set containing the symbol \(\infty\), which is just a particular distinguished symbol, also implicitly encoded as an element of \(\text{Strings}\). In what follows we sometimes understand \(D_1\) as an element of \(T_\mathbb{Z}\), denoting the Turing machine:

\begin{align}
 (x, m) \mapsto D_1(x),
\end{align}

for all \((x, m) \in (\mathbb{Z} \cup \{\infty\}) \times \mathbb{N}\).

We need one more Turing machine. Let

Definition 2.5. We say that a Turing machine

\[
 R : \mathcal{O}' \subset T_\mathbb{Z} \times \text{Strings}_0 \to \mathbb{Z} \cup \{\infty\},
\]

has property \(G\) if the following is satisfied:

- \(R\) halts on the entire \(\mathcal{O}'\), that is \(\mathcal{O}'\) is the set of \(R\)-acceptable strings.
- \(R(X, \Sigma) \neq \infty \implies R(X, \Sigma) = X(\Sigma)\), for \(\Sigma \in \text{Strings}_0\) and \(X \in T_\mathbb{Z}\).
- \(\forall m : R(D_1, \infty, m) \neq \infty\), and so \(\forall m : R(D_1, \infty, m) = 1\), by previous property.

Lemma 2.6. There is a Turing machine \(R\) satisfying property \(G\).

Proof. Let \(W_n\) be some Turing machine \(W_n : \{\emptyset\} \to \{\infty\}\), for \(\emptyset\) the empty string. So as a function it is not very interesting since the input and output sets are singletons. We ask that the length of \(*W_n(\emptyset)\) is \(n > 0\), (cf. Preliminaries).

For \((X, \Sigma) \in \mathcal{O}'\) set

\[
 R_n(X, \Sigma) = W_n \ast U(\emptyset, (X, \Sigma)),
\]

in the language of the join operation described in Section 1, for \(U\) the universal Turing machine. Clearly \(R_n\) halts on the entire \(\mathcal{O}'\), and satisfies

\[
 R_n(X, \Sigma) \neq \infty \implies R_n(X, \Sigma) = X(\Sigma).
\]

As a function \(\mathbb{Z} \cup \{\infty\} \to \mathbb{Z}\), \(D_1\) is completely determined but it could have various implementations as a Turing machine, so that the length \(l_m\) of \(*D_1(\infty, m)\) depends on this implementation. Clearly we may assume that \(\forall m : l = l_m\) for some \(l\), by definition of \(D_1\) as an element of \(T_\mathbb{Z}\), as in (2.4). We then ask that \(n > l\) is fixed. Then by construction we get:

\[
 \forall m : R_n(D_1, \infty, m) = D_1(\infty, m) = 1.
\]

Thus \(R := R_n\) has property \(G\). \(\square\)

We set \(\mathcal{T}_0 \subset \mathcal{M}_0\) to be the subset corresponding to Turing machines, and we set \(\mathcal{I}_0 := \mathcal{T}_0 \times \mathbb{N}\). Given \(M \in \mathcal{M}_0\) and \(M' \in \mathcal{T}_0\) let \(\Theta_{M, M'}\) be the statement:

\[
 M \text{ is computed by } M'.
\]

(2.7)

For each \(M \in \mathcal{M}_0\), we define a machine:

\[
 \tilde{M} : \mathcal{I} \to \mathcal{T}_\mathbb{Z} \times \text{Strings}_0
\]

(2.8)

\[
 \tilde{M}(B, m) = (M(B,m), m),
\]

which is naturally a Turing machine when \(M\) is a Turing machine.
Definition 2.9. For $M \in \mathcal{M}_0$, $M' \in \mathcal{T}_0$, an abstract element $(X, \Sigma_1) \in \mathcal{T}_2 \times \text{Strings}$ is said to have property $C = C(M, M')$ if:

$$\Theta_{M,M'} \implies \forall m : \left((X(\Sigma_1, m) = D_1 \circ R \circ \tilde{M}(M', m)) \lor (*M'(M', m) \text{ does not halt}) \lor (M'(M', m) \notin \mathcal{O}) \right),$$

for \tilde{M} determined by M' as in (2.8).

To be more formal when we write $*M'(M', m)$ we should write $*M'(\Sigma_{M'}, m)$ for $\Sigma_{M'}$ the string encoding of the Turing machine M'. But we conflate the notation for the Turing machine and its string specification.

Definition 2.10. We say that $M \in \mathcal{M}_0$ is C-sound if for each $(M', m) \in \mathcal{I}_0$, with $M(M', m) = (X, \Sigma_1)$ defined, (X, Σ_1) has property $C(M, M')$. We say that M is C-sound on M' if the list ${M(M', m)}_m$ has only elements with property $C(M, M')$.

Thus $M \in \mathcal{M}_0$ is C-sound iff it prints strings with property C, which expresses a certain “diagonal” property with respect to the input. By “diagonal” we mean that this setup has something analogous to Cantor’s diagonalization argument, but we will not elaborate.

Define a C-sound $M' \in \mathcal{T}_0$ analogously.

Definition 2.11. If M, M' as above are C-sound we will say that $\text{sound}(M)$, $\text{sound}(M')$ hold. If M is C-sound on M' we say that $\text{sound}(M, M')$ holds.

Example 1. A trivially C-sound machine M is one for which

$$M(M', m) = (D_1 \circ R \circ \tilde{M}', M')$$

for every $(M', m) \in \mathcal{I}_0$. As the condition:

$$\forall m : \left((X(\Sigma_1, m) = D_1 \circ R \circ \tilde{M}'(M', m)) \lor (*M'(M', m) \text{ does not halt}) \lor (M'(M', m) \notin \mathcal{O}) \right),$$

is automatically satisfied for all $M' \in \mathcal{T}_0$, if $(X, \Sigma_1) = (D_1 \circ R \circ \tilde{M}', M')$. In general, for any M, M' the list of all strings ${((X, \Sigma_1))}_m$ with property $C(M, M')$ is always infinite, as by this example there is at least one such string $(D_1 \circ R \circ \tilde{M}', M')$, which can then be modified to produce infinitely many such strings.

Theorem 2.12. If $\text{sound}(M, M') \land \Theta_{M,M'}$ then

$$\forall m : M(M', m) \neq (D_1, \infty).$$

On the other hand, if $\text{sound}(M, M')$ then the string

$$\mathcal{G} := (D_1, \infty) \in \mathcal{O}$$

has property $C(M, M')$. In particular if $\text{sound}(M)$ then \mathcal{G} has property $C(M, M')$ for all M'.

So given any C-sound $M \in \mathcal{M}_0$ there is a certain string \mathcal{G} with property $C(M, M')$ for all M', s.t. for each M' if $\Theta_{M,M'}$ then

$$\mathcal{G} \neq M(M', m)$$

for all m. This “Gödel string” \mathcal{G} is what we are going to use further on. What makes \mathcal{G} particularly suitable for our application, is that it is independent of the particulars of M, all that is needed is $\mathcal{M} \in \mathcal{M}_0$ and is C-sound. So \mathcal{G} is in a sense universal.

Question 2. It would be interesting to understand what is the analogue of such universal Gödel strings for formal systems in logic. In other words is there a notion of universal Gödel statements? This would have to do with certain collections of formal systems with a certain property, (perhaps generalizing our C-sound property).
Proof. Suppose not and let M'_0 be such that $\Theta_{M,M'_0} \land sound(M,M'_0)$ and such that
\begin{equation}
M(M'_0,m_0) = \mathcal{G} \text{ for some } m_0.
\end{equation}
Set $T = (M'_0, m_0)$. Since $sound(M,M'_0)$, since Θ_{M,M'_0}, and since $*M'_0(T) \to \mathcal{G} \in \mathcal{O}$ since $M(T) = \mathcal{G}$ is defined, we have that:
\begin{align*}
1 &= D_1(\infty,m_0) = D_1 \circ R \circ \tilde{M}'_0(T) = D_1 \circ R(D_1,\infty,m_0) \quad \text{by the conditions just above,} \\
&= 2 \quad \text{by property } G \text{ of } R \text{ and by (2.2)}.
\end{align*}
So we obtain a contradiction.

We now verify the second part of the theorem. Given $M' \in \mathcal{T}_0$, we show that:
\begin{equation}
\forall m : \left(sound(M,M') \land (M'(T) \in \mathcal{O}) \land \Theta_{M,M'} \implies R(\tilde{M}'(T)) = \infty \right),
\end{equation}
where $T = (M',m)$. Suppose otherwise that for some m_0 and $T_0 = (M',m_0)$ we have:
\begin{equation}
sound(M,M') \land (*M'(T_0) \text{ halts}) \land (M'(T_0) \in \mathcal{O}) \land \Theta_{M,M'} \land (R(\tilde{M}'(T_0)) \neq \infty).
\end{equation}
Then since $M'(T_0) = (X,\Sigma_1)$, for some $(X,\Sigma_1) \in \mathcal{O}$ and since R is everywhere defined:
\begin{equation*}
R(\tilde{M}'(T_0)) = R(X,\Sigma_1,m_0) = X(\Sigma_1,m_0) = x \in \mathbb{Z}, \text{ for some } x,
\end{equation*}
by Property G of R and by $R(\tilde{M}'(T_0)) \neq \infty$.

Then we get:
\begin{equation*}
x = X(\Sigma_1,m_0) = D_1 \circ R \circ \tilde{M}'(T_0) = D_1(x) = x + 1
\end{equation*}
by $\text{sound}(M,M')$, $\Theta_{M,M'}$ and by (2.2), so we get a contradiction and (2.14) follows. Our conclusion readily follows.

\begin{flushright}
\Box
\end{flushright}

3. A system with a human subject S as a machine in \mathcal{M}_0

Let S be in an isolated environment, in communication with an experimenter/operator E that as input passes to S elements of $\mathcal{I} = \mathcal{T} \times \mathbb{N}$. Here isolated environment means primarily that no information i.e. stimulus, that is not explicitly controlled by E and that is usable by S, passes to S while he is in this environment. For practical purposes S has in his environment a general purpose digital computer with arbitrarily, as necessary, expendable memory, (in other words a universal Turing machine).

We suppose that upon receiving any $T \in \mathcal{I}$, as a string in his computer, after possibly using his computer in some way, S instructs his computer to print after some indeterminate time an element
\begin{equation*}
S(T) \in \mathcal{T}_\mathbb{Z} \times \text{Strings}
\end{equation*}
We are not actually assuming that $S(T)$ is defined on every T, (although this would be a safe assumption) only that if defined $S(T) \in \mathcal{T}_\mathbb{Z} \times \text{Strings}$. So S also denotes a machine in our language, or a partially defined function.

Definition 3.1. We say that S the human subject is **computable** if the corresponding machine S above is computable.

3.1. **Additional conditions.** We now consider a more specific S_0 of the type above, which additionally behaves in the following way. For any fixed $B \in \mathcal{T}_0$
\begin{equation*}
\{S_0(B,m)\}_m
\end{equation*}
is the complete list of strings that S_0 asserts to have property $C(S_0,B)$. Of course we don’t actually need S_0 to list infinitely many strings, we only need that S_0 can list as many strings as we like, and that given any particular B, eventually any particular string that S_0 asserts to have property $C(S_0,B)$ will appear. Also as in the Penrose argument we ask that S_0 asserts that he is fundamentally sound. Our human subjects are assumed to be idealized, so that all the “brain noise” issues are stripped out of them. In other words for our idealized humans fundamental soundness and soundness conditions are
4. Proof of Theorem 0.1

Theorem 4.1.

\[S_0 \text{ is computable } \implies \neg \text{sound}(S_0). \]

That is if our subject \(S_0 \) is computable he cannot be fundamentally sound. In fact we prove more, for any \(S' \in \mathcal{T}_0 \):

\[\Theta_{S_0, S'} \implies \neg \text{sound}(S_0, S'). \]

This formalizes Theorem 0.1.

Proof. Suppose \(\Theta_{S_0, S'} \) for some \(S' \in \mathcal{T}_0 \). Suppose in addition \(\text{sound}(S_0, S') \). Then by Theorem 2.12

\[S_0(S', m) \neq (D_1, \infty) \]

for any \(m \). On the other hand \(S_0 \) asserts \(\text{sound}(S_0) \) and hence must assert that \((D_1, \infty) \) has property \(C(S_0, S') \), by the second half of Theorem 2.12. In particular the string \((D_1, \infty) \) must be in the list \(\{S_0(S', m)\}_m \), since this list is meant to be complete. So we have reached a contradiction. \(\square \)

4.1. Formal system interpretation. This is not necessary for our main theorem, but in practice it might be helpful to interpret the above in terms of formal systems. For simplicity we will base everything of standard set theory \(\mathcal{ST} \). Turing machines are assumed to be naturally formalized in \(\mathcal{ST} \).

Definition 4.2. We will say that \(S \), the machine as above, is captured by a formal system \(\mathcal{F} \supset \mathcal{ST} \) if whenever \(S(S', m) = (X, \Sigma) \) then it is provable in \(\mathcal{F} \) that \((X, \Sigma) \) has property \(C(S, S') \). Note that \(\mathcal{F} \) is not uniquely determined by this condition.

Let \(\text{Con}(S) \) denote the meta-statement:

\[\exists \mathcal{F} : (\mathcal{F} \supset \mathcal{ST}) \land (\mathcal{F} \text{ captures } S) \land (\mathcal{F} \text{ is consistent}). \]

In what follows by “provably” we mean provably in \(\mathcal{ST} \).

Theorem 4.3. Let \(S_0 \) be as above then:

\[(\exists S' \in \mathcal{T}_0 \text{ so that provably } \Theta_{S_0, S'}) \implies \neg \text{Con}(S_0), \]

or in more logic symbols,

\[(\exists S' \in \mathcal{T}_0 : \mathcal{ST} \vdash \Theta_{S_0, S'}) \implies \neg \text{Con}(S_0). \]

Note that “provably \(\Theta_{S_0, S'} \)” does not mean that \(S_0 \) can prove \(\Theta_{S_0, S'} \) in the practical sense. It just means that after the terms \(S_0, S' \) in the statement \(\Theta_{S_0, S'} \) have been completely interpreted in set theory \(\mathcal{ST} \), \(\Theta_{S_0, S'} \) is provable in \(\mathcal{ST} \). But interpretation of the term \(S_0 \) may not even be practically attainable by \(S_0 \), as \(S_0 \) is underlaid by some very complex physical system. And even if this interpretation was attainable, \(S_0 \) may not be clever enough to find the proof of \(\Theta_{S_0, S'} \), again in the practical sense.

Proof. Let \(\mathcal{F}(S_0) \) capture \(S_0 \) as above. If \(\Theta_{S_0, S'} \) then by the second part of Theorem 4.1, the following statement \(L = L(S_0, S') \) holds:

\[\exists m : (S_0(S', m) \text{ is defined}) \land (S_0(S', m) \text{ does not have property } C(S_0, S')). \]

So if provably \(\Theta_{S_0, S'} \), \(L \) is provable in \(\mathcal{ST} \) and hence in \(\mathcal{F}(S_0) \). On the other hand, by assumption that \(S_0 \) is captured by \(\mathcal{F}(S_0) \), \(\neg L \) is provable in \(\mathcal{F}(S_0) \). Then the conclusion follows. \(\square \)
5. Concluding remarks

The soundness hypothesis deserves additional further study, beyond what we can do here, and beyond what already appears in the work of Penrose, and others. Here is however one final remark. If our given human S_0 is provably computed by a specific Turing machine, then by the pair of theorems above S_0 is fundamentally inconsistent. Then given sufficient advances in neuroscience and computer science, we should be able to discover inconsistencies of such humans by brute force computer analysis of the underlying formal systems. We can then lead S_0 to assert in absolute faith that $0 = 1$. Moreover, in the context of our “thought experiment” above, we can make this brute force analysis more explicit. For by Theorem 4.3 if provably $\Theta_{S_0, S'}$ then $\{S_0(S', m)\}_m = T_Z \times Strings$, since if S_0 is inconsistent (in the sense of theorem) he must assert that every element of $T_Z \times Strings$ has property C. In particular, for some m_0 $S'(S', m_0)$ evidently (and provably) will not have property C, then by the proof of Theorem 4.3 we immediately find a contradiction in the corresponding formal system. As an example, one such non-sense string is $(D_1 \circ R \circ \tilde{S}' + 1, S')$, evidently it will not have property $C(S_0, S')$ for all S'. So we can ask a super computer to search for such non-sense strings in the list $\{S'(S', m)\}_m$, they must eventually appear.

In the above we assume not just computability but provable computability by a particular Turing machine. This extra assumption is unnecessary if our modified version of the Penrose argument, given in the introduction, is accepted. In that argument we conclude inconsistency solely based on computability. The downside of that argument is the possibly contentious issue of constructability of a certain Gödel statement, whereas in the above everything is totally explicit.

Acknowledgements. Dennis Sullivan, David Chalmers, and Bernardo Ameneiro Rodriguez for comments and helpful discussions.

References