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February 11, 2020

Abstract

We explore the prospects of a monist account of explanation for both
non-causal explanations in science and pure mathematics. Our start-
ing point is the counterfactual theory of explanation (CTE) for expla-
nations in science, as advocated in the recent literature on explanation.
We argue that, despite the obvious differences between mathematical
and scientific explanation, the CTE can be extended to cover both
non-causal explanations in science and mathematical explanations. In
particular, a successful application of the CTE to mathematical ex-
planations requires us to rely on counterpossibles. We conclude that
the CTE is a promising candidate for a monist account of explanation
in both science and mathematics.
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1 Lange’s Challenge

Since the late 1980s the attention of philosophers interested in theories of ex-
planation has been almost entirely on causal explanations and causal theories
of scientific explanation. However, the tide has turned: many philosophers
of science and philosophers of mathematics in the current debate on expla-
nation agree with the view that both causal and non-causal explanations
exist (see Reutlinger 2017a and Mancosu 2018 for overviews of the current
literature). This recent debate, however, has focussed almost exclusively on
philosophical accounts of non-causal explanations in the sciences.1

One prominent account of non-causal (and causal) explanations in the
sciences consists in (different versions of) the counterfactual theory of expla-
nation (CTE henceforth). The key idea of the CTE is that causal as well
as non-causal explanations provide information about how the explanandum
counterfactually depends on the explanans. We believe that this development
constitutes progress in the debate on scientific explanation. (We will provide
a detailed exposition of the CTE below.) But even if the CTE is an ade-
quate theory of scientific explanations, the question arises whether it can be
expanded to cover explanations in pure mathematics (aka intra-mathematical
explanations).

The question of extending the CTE to explanations in mathematics is
usually overlooked by proponents of the CTE. Indeed, as Lange (2016: 231)
correctly points out, non-causal explanations in pure mathematics have not
received sufficient attention and there is very little by way of any philosophi-
cal accounts of explanation in mathematics. Clearly, the sciences are not the
only intellectual projects striving for explanation, be it causal or non-causal.
Pure mathematics is also in the business of providing explanations — that
is, explanations of why a particular mathematical statement is true. And,
indeed, Lange’s current work (e.g. Lange 2014, 2016, 2018) makes significant
steps towards an analysis of mathematical explanations — thus building on
work by Steiner (1978a, b), Kitcher (1981), and Colyvan (2012).2

Lange suggests that the CTE cannot capture non-causal explanations in
pure mathematics (Lange 2016: 87–8, 307; 2018: Sect. 2).3 What is the

1However, the current interest in non-causal explanations was nonetheless (partly)
initiated by the work of philosophers of mathematics, including, for example, Smart (1990),
Colyvan (1998, 2002), and Baker (2005).

2See Mancosu’s (2018: Sect. 4–7) for an up-to-date overview of the history of debate
on explanation in pure mathematics.

3Lange also argues that the CTE fails to capture at least one important type of non-
causal explanation in the sciences which Lange calls “explanation by constraint”. We
will set aside the issue of explanations by constraint, since French and Saatsi (2018) and
Reutlinger (2018) have already argued how to apply the CTE to such cases.
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source of the problem of applying the CTE to explanations in pure mathe-
matics? According to Lange, the problem rests in the kind of necessity at-
tached to the explanatory assumptions in mathematical explanation: “they
possess an especially strong variety of necessity and therefore have an espe-
cially strong resistance to being changed” (Lange 2017: 88). Indeed, Lange’s
objection seems to be natural and prima facie compelling because, after all,
mathematics is usually taken to be a body of necessary truths. What kind
of necessity could have a “stronger resistance to being changed” than the
necessity of pure mathematics? One way to articulate this objection relies
on specific semantics for counterfactuals (although Lange does not explicitly
do so): a counterfactual whose antecedent expresses an impossible proposi-
tion (such as ‘if mathematical statement p were false’) is trivially true (for
instance, Lewis 1973 and Stalnaker 1968). Let us rephrase Lange’s objection
as a challenge to the CTE:

Lange’s Challenge: Proponents of the CTE must show that
their theory of explanation is applicable to explanations in pure
mathematics.

This is a serious challenge and we are convinced that anyone defending the
CTE as a general account of explanation has to respond to it.4 Taking the
CTE’s success regarding scientific explanations for granted, we will defend
the claim that a broadly CTE-approach to explanation is able to capture
explanations in pure mathematics. The approach we explore is one utilising
counterpossible conditionals.

We will proceed as follows: in section 2, we will provide a definition
of monism and suggest that the CTE is currently one the most promising
monist approaches to explanation. In section 3, we reconstruct the CTE in
a way that is supposed to remain neutral with respect to different versions
of it. Supposing that the CTE has been successfully applied to causal and
non-causal explanations in science, we argue that our ‘neutral’ reconstruction
of the CTE is also applicable to two examples of mathematical explanation.
Section 4 deals with a consequence of section 3: if one expands the CTE
to mathematical explanations, one has got to provide a semantics for coun-
terpossibles. We simply point out that advocates of the CTE can rely on
already existing work on a non-standard semantics for counterpossibles and
we provide a sketch of one version of such a semantics. Section 5 presents an

4Reutlinger (2016b) already acknowledges this challenge in the context of grounding
explanations in metaphysics that are based on grounding facts obtaining with metaphysical
necessity. But he does not address the challenge. See also Wilson (2018) for a case for
counterpossibles in the service of grounding explanations in metaphysics.
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independent argument for extending the CTE to mathematical explanations.
It is not merely a requirement of the CTE to use counterpossibles, at least
in the context of mathematical explanation. We provide evidence for the
claim that mathematicians also do in fact appeal to counterpossibles in their
reasoning. This evidence lends additional support to our proposal of extend-
ing the CTE from scientific to mathematical explanations. In section 6, we
sum up what has been achieved with respect to a defence of a CTE-based
monism.

2 Monism versus Pluralism

Why is it important to address Lange’s challenge? The challenge brings
into focus an important question about one of the big-picture issues in the
present debate on explanation in science and pure mathematics: the issue
of whether one should be a monist or a pluralist , about explanation. If
there are causal and non-causal explanations in the sciences and non-causal
explanations in pure mathematics, what does it mean to be a monist or a
pluralist with respect to explanation? We follow Reutlinger’s (2017a, b) and
Reutlinger and Saatsi’s (2018) exposition of the distinction between monism
and pluralism and we think it is helpful to take Lange’s work as a starting
point to illustrate this distinction.5

Lange favours a kind of explanatory pluralism. As we understand Lange’s
project, his discussion of a variety of case studies of scientific and mathemat-
ical non-causal explanations mainly serves the purpose of gathering evidence
for explanatory pluralism. Lange describes his pluralist approach in various
places. For instance:

“I will not try to portray non-causal scientific explanations as
working in roughly in the same way as causal scientific expla-
nations do (except that some variety of non-causal dependence
appears in place of causal dependence). I will not even try to
portray all non-causal scientific explanations as working in the
same way as one another.” (Lange 2016: xii)

Summarising the results of his book, Lange writes:

“I have not argued that every example of explanation in math or
every example of non-causal scientific explanation falls into one

5Reutlinger (2017a, b) and Reutlinger and Saatsi (2018) also present other big-picture
views such as causal reductionism and particularism. In this paper, we will focus on the
prospects of monism as a competitor to pluralism.
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of the kinds of non-causal explanations I have identified. I have
also not tried to force all of the explanations into a single narrow
mould. (Indeed I see no good reason to award any greater degree
of plausibility to a proposed ‘model’ of explanation in math and
science [...] just because it purports to offer the same account of
all examples.) However, I have tried to group the examples that
I have studied into various kinds based on how the explanations
work, and I have also tried to highlight some of the affinities
among these kinds of explanation.” (Lange 2016: 371)

It is appropriate to characterise Lange’s explanatory pluralism and explana-
tory pluralism in general as follows: a pluralist holds that, first, there are
different types of explanations (in this particular debate, causal and non-
causal explanations) in the sciences and in pure mathematics, and that, sec-
ond, there is no single theory of explanation covering all of these types of
causal and non-causal explanations; instead one needs two (or more) dis-
tinct theories of explanation to adequately capture all causal and non-causal
explanations.

Monists agree with pluralists that there are (prima facie, at least) different
types of explanation — here, causal and non-causal ones. However, monists
claim that — contrary to pluralists — there is indeed one single philosophical
account capturing both causal and non-causal explanations in the sciences
and in pure mathematics. Monists hold that causal and non-causal explana-
tions share at least one feature that makes them explanatory.

Perhaps the most promising and most elaborate recent attempt to make
progress on a monist approach to explanation comes from counterfactual the-
ories of causal and non-causal explanations. Proponents of the counterfactual
theory have articulated and explored this approach in application to various
examples of non-causal explanations in science (Bokulich 2008; Kistler 2013;
Saatsi and Pexton 2013; Pexton 2014; Pincock 2015; Rice 2015; Reutlinger
2016a, 2016b, 2018; Saatsi 2018; French and Saatsi 2018; Woodward 2003,
2018).

There has also been some preliminary work of applying the CTE to math-
ematical and logical explanations (Baron et al. 2017, forthcoming). Tra-
ditionally, Hempel’s covering law account and Kitcher’s unification account
were candidates for monist accounts of explanation but both of these accounts
face notorious problems in the context of (causal) scientific explanations (see
Woodward 2017; and Salmon 1989).6

6Strevens’ (2008) kairetic account is another candidate for a monist account of expla-
nation in the current debate, although we think that more needs to be said to defend the
kairetic account as a brand of monism (see Reutlinger [2017a: Sect. 3.3] for a discussion).
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As a referee correctly pointed out to us, monists propose necessary and
sufficient conditions for explanations that are satisfied in the case of both
causal and non-causal explanations. But monists might still want to draw
a distinction between causal and non-causal explanations. In this paper,
it is not our goal to argue in favour of one particular strategy for drawing
such a distinction. But consider two examples of how this might be ac-
complished. First, Hempel’s covering-law account is an instructive historical
example for illustrating monism (Hempel 1965: 352). Hempel argues that
causal and non-causal explanations are explanatory by virtue of having (at
least) one feature in common: nomic expectability. In the case of causal
explanations, one expects the explanandum to occur on the basis of causal
covering laws (laws of succession) and initial conditions; in the non-causal
case, one’s expectations are based on non-causal covering laws (laws of co-
existence) and initial conditions. Second, if one accepts a counterfactual
theory of explanation, non-causal explanations are explanatory by virtue of
exhibiting non-causal counterfactual dependencies; causal explanations are
explanatory by virtue of exhibiting causal counterfactual dependencies. Pro-
ponents of the counterfactual theory propose different strategies for drawing
a distinction between causal and non-causal counterfactual dependencies (for
a comprehensive overview, see Reutlinger 2017a: section 3.3).

Why should one prefer monism to pluralism? We believe the answer is
straightforward: prima facie, monism is superior to pluralism, if one assumes
that, ceteris paribus, philosophers prefer more general philosophical theories
to less general theories.7 Monism promises one general theory of causal and
non-causal explanations in science and mathematics, while the pluralist al-
ternative is piecemeal, offering different, less general accounts of explanation
in various cases. For this reason, we take it that monism is an attractive view
deserving further exploration. However, recalling Lange’s challenge, our cen-
tral question is whether monists are able to deliver a plausible account of
explanations in pure mathematics.

3 Extending the CTE to Mathematical Ex-

planations

As already indicated, we hold that arguably the most promising monist ap-
proach is the counterfactual theory of explanation (CTE). Current counter-
factual theories typically take Woodward’s counterfactual account of causal
explanations as their starting point:

7We will not argue for this methodological assumption here.

6



“An explanation ought to be such that it enables us to see what
sort of difference it would have made for the explanandum if
the factors cited in the explanans had been different in various
possible ways.” (Woodward 2003: 11)

Woodward’s version of the counterfactual theory of explanation and its un-
derlying interventionist theory of causation is originally intended to capture
causal explanations (Woodward 2003: 203). However, the core idea of the
counterfactual theory — that is, analysing explanatory relevance in terms of
counterfactual dependence — is not necessarily tied to a causal interpreta-
tion. Indeed, Woodward suggests this line of argument, although without
pursuing the idea any further:

“[T]he common element in many forms of explanation, both causal
and non-causal, is that they must answer what-if-things-had-
been-different questions.” (Woodward 2003: 221).

To answer what-if-things-had-been-different questions is to reveal how the
explanandum counterfactually depends on possible changes in the conditions
described by the explanans. Hence, the monist proposal of the CTE is that
causal and non-causal explanations are explanatory by virtue of exhibiting
how the explanandum counterfactually depends on the explanans (for Wood-
ward’s own recent efforts to develop a CTE-style monism, see Woodward
2018).

In this paper, we will focus on two necessary conditions that different
versions of the CTE impose on scientific explanations:

1. Inference Condition: The explanans statements allow us to either
deductively infer the explanandum statement, or to infer a conditional
probability of the explanandum statement given the explanans state-
ments, such that P (explanandum|explanans) > P (explanandum).8

2. Dependency Condition: The explanandum counterfactually de-
pends on certain possible changes in the conditions described by the
explanans (i.e. if the explanans conditions were different, then the ex-
planandum would be different as well).

We focus on these two conditions because they are the common denominator
of different versions of the CTE (Bokulich 2008; Kistler 2013; Saatsi and

8For our discussion of explanations in mathematics, the probabilistic part of the Infer-
ence Condition is not relevant.
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Pexton 2013; Pexton 2014; Pincock 2015; Rice 2015; Reutlinger 2016a, 2016b,
2018; Colyvan 2018; Saatsi 2018; Baron et al. 2017, forthcoming; French and
Saatsi 2018; Woodward 2003, 2018; Jansson and Saatsi 2019). We adopt
Reutlinger’s useful labels for and reconstructions of these two conditions
(Reutlinger 2016a: 737, 2016b: 244, 2018: 78–9).

For the purposes of this paper, we will take it as a premise that the CTE
applies to non-causal and causal explanations in science. That is, we will as-
sume that the CTE is a successful monist account of scientific explanation. In
this paper, it is not our goal to defend the CTE as an account of (non-causal
and causal) scientific explanation. This work has been done elsewhere — for
instance with respect to symmetry explanations and renormalisation group
explanations (see references in the previous paragraph above). In section 3,
we will address our main question whether the success of the CTE can be
extended from non-causal explanations in science to non-causal explanations
in pure mathematics.9 We will discuss this question in light of two examples
of explanations in mathematics in sections 3.1 and 3.2.

3.1 Explaining the intermediate-value theorem

Consider an example of a mathematical explanation of why the intermediate-
value theorem holds. Recall that the intermediate-value theorem states that
if f is a real-valued function continuous on a closed interval [a, b] and c is any
number between f(a) and f(b) (inclusive), then there exists a z in [a, b] such
that f(z) = c. The intermediate-value theorem holds because the image of
the interval [a, b] under f is connected (since the image of a connected set
under a continuous function is also connected) and c is in this connected set,
since it lies between f(a) and f(b) (Apostol 1967). Connectedness (of the
image of interval [a, b] under f) is what is doing the immediate explanatory
work but it turns out that continuity is the key, since it is continuity that
guarantees the connectedness of the image in question. After all, from what
is given in the conditions of the theorem we have no other reason to expect
that the image of [a, b] under f is connected; it is the continuity of f that
ensures the connectedness of the set of interest.

9As one referee pointed out and as Woodward (2003: 220–1) notes, extending the
CTE to mathematical explanations can be seen as elaborating a necessary condition that
Steiner (1978b: 143) imposes on mathematical explanation: namely, that explanations
in mathematics consist in “varying” certain features of a proof, in showing that a theo-
rem “depends” on the assumptions from which it is proven. However, proponents of the
CTE do not necessarily have to accept other features and conditions of Steiner’s account
(such as the notion of a “characterising property” or the requirement that mathematical
explanations have to be “generalisable”).
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We can reconstruct this explanation as having the familiar explanans-
explanandum structure: what we wish to explain here (the explanandum) is
the theorem itself (or why it holds). The explanans appeals to the notions
of connectedness , and continuity . That is, these notions constitute the core
part of the explanans. Consider continuity and the crucial role it plays.
The definition of a continuous function at play here is as follows: a function
f : X → Y is continuous iff the pre-image of every open set in Y is open
in X. This is the topological definition but there are others (e.g. the well-
known ε–δ definition, which is a special case of the topological definition).
Any of these usual mathematical definitions can be used to support the
proof of the intermediate-value theorem, because such definitions guarantee
the connectedness of the image of [a, b] under f .

But there are also other possible definitions of continuity that have not
been taken up in standard mathematics.10 For example, suppose that space-
time is discrete, then standard ε–δ notions of continuity would not serve us
well. We could either stick with our standard definitions and hold that there
is no continuous motion or we could adopt a different notion of continu-
ity. We contend that it would be very reasonable to follow the latter path
and that such definitions of “continuity” would not support a proof of the
intermediate-value theorem.

Now, what would it take for this mathematical explanation to satisfy the
conditions of the CTE? The CTE applies to the presented explanation of why
the intermediate-value theorem holds if the following statements are true:

1. The Inference Condition is met, because the explanans statements
(mainly consisting of appeal to the standard notions of connectedness ,
and continuity) deductively entail the explanandum (the intermediate-
value theorem).

2. For the Dependency Condition to be satisfied the following counterfac-
tual has to be true:

(CF1) “If continuity were defined in a non-standard way, then
the intermediate-value theorem would not hold.”

In the context of this explanation, we hold that the Inference Condition is
satisfied, because the explanation has the form of deductively valid proof.

The question, however, is whether the Dependency Condition is met in
the case of the example. What the explanation sketched above indicates is
that we can entertain counterfactuals associated with the explanation of the

10See Colyvan and Easwaran 2008 for discussion of such “physical” notions of continuity.
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intermediate-value theorem; counterfactuals that involve apparently impossi-
ble statements as: “suppose that g is a continuous function that violates the
intermediate-value theorem” (such as CF1 above). We could entertain such a
function by appeal to an impossible situation or by appeal to a different def-
inition of continuity (perhaps, motivated by contingent features of the struc-
ture of space-time).11 Either way, we have counterfactuals/counterpossibles
associated with our explanation of the intermediate-value theorem, at least
if one favours the CTE as an account of explanation.12 We will turn to the
issue of such conditionals in section 4.

3.2 Explaining why you can’t square a circle

Consider a second example of a mathematical explanation: the explanation
for the impossibility of squaring the circle. According to the CTE, this
explanation involves appeal to counterpossibles.

It is well known that it is impossible to construct a square of the same
area as given circle, using only a straight edge and compass.13 The reason is
surprising: π is a transcendental number. That is, π is not the root of any
polynomial with (non-zero) rational coefficients. A sketch of the proof will
help us see how the transcendentalness of π explains this famous impossibility
result. Since the area of a circle is πr2, where r is the radius of the circle,
constructing a square of the same area amounts to constructing a square
with sides

√
πr. Now consider the constructions one can make with straight

edge and compass. It turns out that only the following constructions can be
made (where a and b are lengths constructed via straight edge and compass):
a+ b, a− b, ab, a/b, and

√
a. We now switch to abstract algebra to look at

the algebraic structure of these geometric constructions. We can show that
the constructible lengths form a field. It follows that all rational lengths can
be constructed and any constructible length is algebraic — that is, it is the
root of some polynomial with (non-zero) rational coefficients. The 1882 proof
by Lindemann that π is transcendental completes the proof that the circle

11See Lakatos (1976) for discussion of the role of definition in the proofs of mathematical
results.

12 Moreover, as a referee pointed out, this example is somewhat different in structure
from the others in that here the dependency condition requires us to entertain alternative
accounts of continuity rather than have some variable take a different value. We can,
however, think of the dependency condition here in terms of a ‘continuity variable’ tak-
ing different values, where the values in question are different definitions of continuity.
Thought of this way, this example is not so different from the others.

13As usual, we restrict our attention to Euclidean space here. It turns out that the circle
can be squared in certain non-Euclidian spaces such as Gauss-Bolyai-Lobachevsky Space
(Gray 1989).
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cannot be squared (Bold 1982).
We can reconstruct this explanation as having the following explanans-

explanandum structure: the explanandum statement is that it is impossible
to construct a square of the same area as a given circle, using only a straight
edge and compass. The explanans consists of the following key mathematical
statements: (a) the area of a circle is πr2, (b) constructing a square of the
same area amounts to constructing a square with sides

√
πr, (c) all rational

lengths can be constructed and any constructible length is algebraic (that
is, not transcendental), and (d) π is transcendental. Statements (a) and (b)
amount to definitions of the area of the geometric figures relevant in the
context of the explanation (circle and square).

Again, what would it take for this mathematical explanation to satisfy
the conditions of the CTE? The CTE applies to the no-squaring-the-circle
explanation if the following statements are true:

1. The Inference Condition is met, because the explanandum (the im-
possibility result) is deductively entailed by the explanans statements
(a)–(d).

2. For the Dependency Condition to be satisfied something like the fol-
lowing counterfactual will be the key:

(CF2) “If π were an algebraic number (and not transcenden-
tal), then the circle could be squared.”’14

We take it that, being a mathematical proof, the explanation of the impos-
sibility of squaring the circle straightforwardly satisfies the Inference Condi-
tion. However, as noted, the crux is satisfying the Dependency Condition.
We will turn to this topic in the next section and argue that the Depen-
dency Condition can in fact be met in the case of non-causal mathematical
explanations, if one relies on counterpossibles and an appropriate semantics
for them. If this is right, the prospects for monism about explanation are in
good shape.

14Strictly speaking, this is not right and requires suitable qualification; not all algebraic
numbers are constructible. It would take us too far afield to specify the extra conditions
required on algebraic numbers in order to guarantee that they are constructible. The
precise conditions, in fact, do not matter for present purposes but if you prefer, you can
replace the counterfactual here with something like: “Were π an algebraic number of the
right kind , the circle could be squared”.
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4 Counterpossibles Without Tears

The apparent problem for extending the CTE to the mathematical case is
that it is hard to make sense of the counterfactuals in question. More specif-
ically, satisfying the dependency condition looks problematic: one needs to
consider what if things had been different. In the mathematical case, this in-
volves supposing that mathematical facts were different. But on the standard
philosophical accounts of mathematics, mathematical truths are necessary.
So the counterfactuals that are at the core of the CTE would seem to be
deeply problematic in the mathematical case. The counterfactuals in ques-
tion are those such as CF1 and CF2 figuring in the last section. Indeed,
another way of stating Lange’s challenge is thus: the CTE trivialises in the
case of mathematics; so it is of no use. After all, according to the stan-
dard semantics for counterfactuals, any counterfactual with an impossible
antecedent is trivially true because there is no possible world where the an-
tecedent is true (Lewis 1973 and Stalnaker 1968). Thus, the counterfactual:

(CF3) “Had Fermat’s Last Theorem been false, Munich would
not be in Germany.”

would be true. We will argue that the problem we are encountering here is
with the standard semantics for counterfactuals not with the CTE.

First we note that we can make sense of mathematical counterfactuals.
For example:

(CF4) “Had Fermat’s Last Theorem been false, there would be
positive integers, a, b, and c and some integer n > 2 such that
an + bn = cn”

Indeed, this is what it would be for Fermat’s last theorem to be false, hence
the counterfactual CF4 is true. But other counterfactuals such as CF3 are
false. In short, CF4 is true but not trivially true and CF2 is false (not
trivially true) — contrary to the standard semantics for counterfactuals. Of
course, we now know that Fermat’s Last Theorem is true so the counter-
factuals in question may seem slightly odd. But consider an open problem
in mathematics such as the existence of quasiperfect numbers.15 There are
theorems involving the two possible cases here: quasiperfect numbers exist or
they do not. In one of these cases the theorems involve counterpossibles. For
example, if, in fact, there are no quasiperfect numbers, then a theorem about

15The details about quasiperfect numbers do not matter; all that matters is that the
existence of such numbers is a genuinely open question. For the record, a quasiperfect
number is a natural number that is equal to the sum of its non-trivial divisors.
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their existence is based on an impossible assumption. But the corresponding
counterfactual:

(CF5) “Were quasiperfect numbers to exist then they would all
be greater than 1035 and have at least 7 distinct prime factors”

is not trivially true (see Hagis and Cohen 1982).
In a nut shell, the standard semantics for counterfactuals is ill-equipped

to deal with impossible antecedents — they were not designed to deal with
such cases. What we need is some way to evaluate counterpossibles : counter-
factuals such as CF1-CF5. Indeed, in light of the discussion above, it might
be argued that we need such an account, irrespective of any ambitions of
having CTE as our monist theory of explanation.

Thankfully there are a number of ways of extending something like the
standard account of counterfactuals to counterpossibles. Indeed, this can be
done with very little effort by way of non-classical logical machinery. One
needs to allow impossible worlds in addition to possible worlds. But that is
about it. Here we sketch one such way.

In the remainder of this section, we will suggest that if proponents of
the CTE want to meet Lange’s challenge and are, thereby, committed to
counterpossibles, then they can rely on a ‘non-standard’ semantics for coun-
terfactuals and, in particular, counterpossibles. Note that we will not defend
such a semantics here, we will rather take it as a premise (see Baron et al.
[2017, forthcoming] for further elaboration, further defence of this approach
to mathematical counterpossibles, and further references).

Consider a garden-variety counterfactual such as:

(CF6) Had the plate not been dropped, it would not have broken.

The core moves for assessing the truth of a counterfactual such as CF6
amount to three steps: (i) hold some class of facts fixed, (ii) vary (or “twid-
dle”) some other facts in order to make the antecedent of the counterfactual
true, then (iii) consider the downstream consequences of the varying facts
for the facts not held fixed.

With a counterfactual such as CF6, it is clear how these three steps
apply. We typically hold the past history of the universe fixed, along with
the relevant laws. It is worth noting that we need to make a choice as to what
we hold fixed — for instance, how much of the past history of the universe we
hold fixed needs to be decided. The twiddle also involves choices. Obviously
we need to vary events from the actual world in order to make the relevant
antecedent true (i.e. the plate not being dropped) and there are many ways to
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do this. For the most part, the variety of ways a plate can fail to be dropped
do not matter but this overdetermination can lead to problems.16 With good
choices of what to hold fixed and what to twiddle, the consequences, should,
in most cases, be a matter of inspection (as it were).

Except for the reference to events in the above description, we can use
the same three-step procedure in mathematics. In particular, we can as-
sess counterpossibles such as, say, CF1, CF2, and CF3 by: (a) holding most
of mathematics fixed, (b) varying the transcendentalness of π, varying the
standard definition of continuity, or varying the truth of Fermat’s Last The-
orem and (c) see what follows from (a) and (b). Of course, the twiddle at
step 2 involves an impossibility (at least on standard philosophical accounts
of mathematics) but it turns out that this fact does not change things very
much at all. Given that it is true that π is transcendental, the standard
definition of continuity holds, and that Fermat’s Last Theorem is false, how
do we bring it about that these mathematical statements are false? We do
not need to; we only need to suppose that they are false. We no more need
to make it the case that π is not transcendental, that continuity is defined in
a non-standard way and that Fermat’s Last Theorem is false than we need
to make it the case that a dropped and broken plate was not dropped.

What of assessing the downstream consequences for the non-fixed facts
after the twiddle? Since the twiddle results in an impossibility, one might
think that this means that all hell breaks loose and there is no sensible way
of getting non-trivial consequences from the impossible antecedent. This is
simply not so. Trivialism follows for the standard account of counterfactuals
and, indeed, many logical systems are ‘explosive’ — that is, any arbitrary
proposition follows from a contradiction in such logics (e.g. classical logic and
intuitionistic logics). In paraconsistent logics, however, this is not the case.
If needed, we can appeal to paraconsistent logics and impossible worlds.17

But it is not clear that anything of the sort is needed to get the basic idea.
We can see that were π not transcendental (or were Fermat’s Last Theorem
false), it would not follow that Munich would be anywhere other than in
Germany. We can appeal to a paraconsistent logic to bolster such claims but
there really is no need. This is just as obvious as the inference about the
plate not breaking had it not been dropped.18 The point is that, just as with

16Recall examples such as Quine’s “had Verdi and Bizet been compatriots then would
Verdi have been French or would Bizet been Italian?” (Quine 1982).

17In fact, one may not need to drop the classical consequence relation to have a semantics
for counterpossibles that does not render them all trivially true — impossible worlds might
be all it takes. See Berto et al. (2018) for an example of such proposal.

18And in the plate case we also rely on intuitions; we do not, nor do we need to, formally
deduce — in a specific logic — the non-breaking of the plate or build a detailed physical
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regular counterfactuals, we typically do not need to follow the ramifications of
the twiddle through to its logical closure (or in causal cases, follow its causal
history back to the big bang). We simply stipulate that the antecedent is
true and look at (only) the relevant downstream consequences.

There are other concerns you might have about this proposal for assessing
the truth of counterpossibles but it would take us too far afield to fully defend
the proposal here. And besides, such a defence has already been provided
(Baron et al. 2017, forthcoming).

What have we achieved? We have argued that proponents of the CTE
who care to meet Lange’s challenge can rely on proposals for generalising the
standard semantics for counterfactuals to cover counterpossibles in a non-
trivial way. If one is convinced by such a semantics of counterpossibles, then
the — seemingly problematic — Dependency Condition of the CTE can be
satisfied even in the mathematical case. If so, this is a big step towards
defending the CTE as a monist account of explanations in science and math-
ematics.

In the next section, we go beyond the requirements that the CTE imposes
on explanations: we will examine whether there is evidence that mathemat-
ical practice involves appeal to counterpossibles.

5 Do We Need Conditionals in Mathematics?

In sections 3 and 4, we argued that, according to the CTE, mathematical
explanations involve counterpossibles. Our argument might give rise to an
interesting objection: the CTE diverges from actual mathematical theorising,
because mathematicians do not use — or do not need to use — anything quite
so exotic as counterfactuals and counterpossibles. Perhaps all they are doing
is looking at deductive inferences from various assumptions. Some of the
assumptions turn out to be true and some turn out to be false. According to
this objection, there is no need for putting counterpossibles or, indeed, any
conditionals in the mouths of mathematicians.19

This objection includes two related worries that should be distinguished
here. The first is a claim about mathematical practice: mathematicians do
not, in fact, use such counterpossible language. The second is the modal
claim that there is no need for mathematicians to use such counterfactuals.
As we will show in this section, mathematicians do seem happy to use condi-
tionals, including counterfactuals and counterpossibles. This, of course, does

model to test the claim in question.
19Hartry Field once suggested (without endorsement) to Mark Colyvan that this might

be all that is going on in such cases.
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not show that they are right in using such language. There may be some
reconstruction of their practice along the lines of the suggested objection,
appealing only to assumptions and deductive consequences without appeal
to conditionals. Be that as it may, the fact that mathematicians do use
counterfactuals in such circumstances (as we will show) gives us prima facie
reason to take such counterfactuals seriously and we are reluctant to engage
in too much reconstruction or reinterpretation of mathematical practice — at
least not without good reason.

To avoid misunderstandings, it is not the purpose of this section to pro-
vide more examples of explanation in mathematics. What we are going to
demonstrate instead is something more general, namely, that mathemati-
cians do use counterfactual conditionals, and counterpossibles in particular,
in their writings, and that their choices regarding the grammatical form of
their statements do not seem to be accidental. In other words, we want
to show that counterfactual and counterpossible conditionals are not just
idiosyncrasies of philosophical reconstructions (such as the CTE).

One way to empirically determine if a certain linguistic community speaks
in a particular way is to search the corpus of their language, that is, a collec-
tion of texts (typically records of both written and spoken word) produced
by that community. Since the goal of finding out if mathematicians use
counterfactual language is relatively modest, our pilot corpus study did not
need to employ any sophisticated, computational methods developed in the
field of corpus linguistics. Instead, we searched through a sample of texts
written by mathematicians to find examples of the kind of language use we
are interested in.

The first step in our pilot study was to assemble a corpus consisting of
20 mathematical texts published between 1984 and 2018. We collected three
different types of texts:

1. A selection of research papers exploring, among other things, the con-
sequences of as yet unproven hypotheses, such as Riemann hypothesis,
or of assuming the existence of impossible mathematical objects, such
as the field with one element.

2. Essays collected in an anthology of “survey papers presenting the sta-
tus of some essential open problems in pure and applied mathematics,
including old and new results as well as methods and techniques used
toward their solution.” (Nash & Rassias, 2016, p. v.)

3. Undergraduate and graduate textbooks and lecture notes introducing
students to various fields of mathematics, such as: Analysis, Calculus,
Geometry, or Number Theory.
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The selection of the texts was dictated partly by their availability in digital
form via open access resources such as arXiv.org, researchers’ personal web-
pages, or resources accessible through the university libraries’ subscriptions,
such as, SpringerLink. In these texts, we searched for the occurrences of
subjunctive conditionals. Since the purpose of the study is to argue against
the claim that counterfactual language plays no role in mathematical prac-
tice, a single instance, in principle, makes the point. For this reason, we
will only present a number of examples showing that mathematicians do not
only use conditional and counterfactual language, but also, that they use it
purposefully, leaving any quantitative analyses for future studies.

To facilitate the search, we focused on the paradigmatic surface structure
of a subjunctive conditional, that is, we looked for the sentences consisting
of an if -clause and a main clause involving the auxiliary ‘would.’ We ended
up with a list of 42 conditionals of the form ‘if it had been the case / if it
were the case that ϕ, then it would be / it would have been the case that
ψ.’ More specifically, we found instances of counterfactual language in 11
out of 17 essays collected in Nash and Rassias (2016), summing up to total
21 conditionals, in 4 out of 12 research papers, total 7 conditionals, and
in 6 out of 7 textbooks, total 14 conditionals. It is then an empirical fact
that mathematicians use counterfactual conditionals in their writing. In fact,
mathematicians use conditionals both in indicative and subjunctive modes,
depending on what they are writing about.

For instance, in a paper on the consequences of the Generalised Riemann
Hypothesis by Deshouillers, Effinger, te Riele, and Zinoviev (1997), we can
find the following statements:

(1) “If the Generalized Riemann Hypothesis holds, then every odd num-
ber above 5 is a sum of three prime numbers.” (p. 99)

(2) “If the primes up to 108 were uniformly distributed, which they are
not, a proportion of about 0.8852 of the even numbers would not be
covered by [the set of even numbers] F2.” (p. 102)

The paper is devoted to “The 3-Primes Problem,” that is, the question
whether every odd number greater than 5 can be written as a sum of three
prime numbers. The sentence (1) is the main theorem of the paper, while
(2) occurs in the context of a presentation of a computer search method for
verification of the Goldbach conjecture on a given interval [a, b] (which in
the authors’ own experiments was an interval of the length of 108), involved
in the proof of (1). Since the Riemann Hypothesis has not been proven one
way or another, the truth value of the antecedent of (1) is unknown, hence
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the use of the indicative conditional is a natural choice.20 By contrast, when
the authors entertain an antecedent which is not only false, but also known
to be false, such as “the primes up to 108 are uniformly distributed” in (2),
they choose to phrase the dependency between this assumption and whatever
follows from it as the subjunctive conditional. Note that (2) is not only a
counterfactual but also a counterpossible.

A subjunctive form can also be used when the antecedent is not known
to be false, that is, when its truth value is itself an open question, though
the choice of subjunctive tends to reveal the author’s belief in its falsehood.
Many instances of subjunctive conditionals can be found when mathemati-
cians explore the consequences of not-yet-proven conjectures such as the Rie-
mann Hypothesis mentioned above, Fermat Last Theorem, The Chromatic
Number of the Plane Problem, or, to consider an example more familiar to
philosophers, P 6= NP.21 For instance, in his essay on the P 6= NP hypothesis,
Scott Aaronson writes:

(3) “If just one of these problems [i.e. problems that have been shown
to be in P] had turned out to be both NP-complete and in P, that
would have immediately implied P = NP.” (Aaronson 2016: 25)

The counterfactual conditional (5) occurs in a context of an empirical argu-
ment for the inequality of two classes of computational complexity, P and
NP.22 This argument rests on an observation that while thousands of prob-
lems have been shown to be either in P or to be NP-complete, there is not
a single one that has been shown to be both. The antecedent of (5) has
not been proven to be false — in principle, it might still happen that an NP-
complete problem will turn out to be in P. Yet the use of the subjunctive

20However, as we will see, such cases also permit the use of a counterfactual.
21For more examples of counterfactuals and counterpossibles used in mathematical pa-

pers, see, for instance, Aaronson (2016: 3, 4, 25, 27–28, 51); Bennett (2016: 179); Borger
(2009: 7, 10); Constantin (2016: 265); Harrison and Pugh (2016: 297); Kauffmann (2016:
305); Manin (2008: 5); Morris and Soltan (2016: 366); Mussardo and LeClair (2018:
9–10, 12); Rosenberg (2016: 386); Saymour (2016: 420, 432–433); Soifer (2016: 454, 470);
Szemerédi (2016: 463, 470); Vaughan (2016: 484).

22Recall that P denotes a class of all decision problems that can be solved by a Turing
machine in a polynomial time, which can be said to capture the notion of an “efficient” or
“feasible” computation (Arora and Barak 2009: 25–27). NP stands for “nondeterministic
polynomial time.” It denotes a class of all decision problems that can be “efficiently
verified”, that is, if the answer to a problem is “yes,” then “there is a polynomial-size
proof that a Turing machine can verify in polynomial time” (Aaronson 2016: 2). While it
is clear that the class P is contained in NP, since, if a problem can be solved, its solution
can also be verified in polynomial time, it remains an open question if this containment is
proper or if P = NP.
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is appropriate as it corresponds to a belief that is empirically justified and
widely shared in the computer science community.

Counterfactual language can also be found in texts that are primarily of a
didactic nature, such as undergraduate textbooks to mathematics or lecture
notes. Authors use conditionals to explain basic notions, e.g., the notion of
logical equivalence:

(4) “If X and Y are logically equivalent, and X is false, then Y has to
be false also (because if Y were true, then X would also have to be
true).” (Tao 2016a: 311)

More interestingly, conditionals can be used to explain consequences of cer-
tain assumptions such as, for instance, the infamous axiom of Universal Spec-
ification, that is, an assumption that every property corresponds to a set. Let
us define P (x) as the following property: “x is a set and x /∈ x,” and the
set Ω as a set of all such x of which P (x) is true, that is, a set of all sets
that do not contain themselves. In the following passage from a textbook to
Analysis, Terrence Tao explains why these assumptions lead to the Russell’s
paradox:

(5) “If Ω did contain itself, then by definition this means that P (Ω) is
true, i.e., Ω is a set and Ω 6∈ Ω. On the other hand, if Ω did not
contain itself, then P (Ω) would be true, and hence Ω ∈ Ω. Thus in
either case we have both Ω ∈ Ω and Ω 6∈ Ω, which is absurd.” (Tao
2016a: 47)

As we emphasised above, it was not the aim of our pilot corpus study to
provide more examples of explanations, but to demonstrate that mathemati-
cians use counterfactual language. Nevertheless, textbooks and lecture notes
may be considered particularly valuable sources of data on the language used
by mathematicians in the context of explanation, given that the primary goal
of proofs found in such texts is arguably to explain key ideas to students. In
the literature on mathematical education, it has been emphasised that the
role of a proof is not restricted to showing that a theorem holds, but first and
foremost to provide an explanation of why a theorem is true (Hanna 1990;
Hersh 1993). Unsurprisingly, then, in teaching materials, we can find multi-
ple examples of conditional and counterfactual language used in the context
of proofs, particularly the reductio ad absurdum proofs.

For instance, Clark (2002) in his lecture notes on the number theory, in
the contexts of a discussion of primality tests, presents a proof of a theorem
(a converse of Fermat’s Little Theorem) that states that if m ≥ 2 and for all
a such that 1 ≤ a ≤ m − 1 it holds that am−1 is congruent to 1 modulo m,
then m must be prime. The first step of the proof is phrased as an indicative
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conditional: “if the hypothesis holds, then for all a with 1 ≤ a ≤ m − 1,
we know that a has an inverse modulo m, namely, am−2 is an inverse for m
modulo m,” The next step makes use of a theorem proven earlier (p. 72),
which is also an indicative conditional, namely: if the product of two integers
a and b is congruent to 1 modulo m > 0 then both a and b are relatively prime
to m, that is, the greatest common divisor of a and m, written gcd(a,m),
equals 1, and so does gcd(b,m). In virtue of this fact, the first step amounts
to an observation that for 1 ≤ a ≤ m − 1, the greatest common divisor of
a and m is 1. Now, to show that m must be prime, one can consider the
consequences of the assumption that it is not. Such an assumption leads to
a contradiction, it is naturally phrased as a subjunctive conditional:

(6) “. . . if m were not prime, then we would have m = ab with 1 < a < m,
1 < b < m. Then gcd(a,m) = a > 1, a contradiction. So m must be
prime.” (Clark 2002: 97)23

Again, this conditional is not only a counterfactual, but also a counterpossi-
ble: its antecedent is necessarily false.

Although this research does not show that mathematicians need to use
counterfactuals and counterpossibles, we do have sufficient empirical evidence
to support the claim that counterfactual language is used in mathematical
writing, including, importantly, didactic texts such as textbooks and lecture
notes, which can be said to have, broadly speaking, an explanatory charac-
ter.24 This finding lends additional support to our proposal of extending the
CTE from scientific to mathematical explanations.

6 Conclusion and Discussion

We have argued for the desirability of a monist account of explanation across
scientific and mathematical contexts and for both causal and non-causal ex-
planations. Our candidate monist philosophical account is the CTE. We
have not defended this theory as the only, or even the best, candidate for

23For more instances of counterfactuals occurring in teaching materials, see, for instance:
Geveci (2016: 70); Guirao et al. (2016: 4, 132); Stein (2009: 14, 82); Tao (2016a: 36, 258);
Tao (2016b: 14, 103, 176, 177). Naturally, reductio ad absurdum proofs can be found in
research articles, too, e.g. Mussardo and LeClair (2018: 12).

24A follow-up study could establish whether the counterfactual language is more preva-
lent in didactic text than in research papers whose main aim is, typically, to report proofs
of new theorems. The results of our pilot study already hint at such a possibility. How-
ever, a quantitative study would require a more careful construction of the corpus than
the pilot reported here.
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such a monist account. There may be others such as Strevens’ kairetic ac-
count (2008) or perhaps older theories of explanation (such as the unification
or covering law accounts) can be revived for such purposes. We leave these
possibilities for others to explore. We have focussed on the CTE for two
reasons. First, it is perhaps the current front runner in the literature on sci-
entific explanations so we take ourselves to be adopting a popular account and
showing that it can be generalised to accommodate non-causal explanations
in both science and mathematics. Second, according to Lange’s challenge,
the CTE is thought to have a serious limitation in its ability to accommodate
mathematical explanations. We accepted the challenge to show how, with
a relatively straightforward move from counterfactuals to counterpossibles
(and a semantics for them), the CTE can be applied to mathematical expla-
nation. The latter, in turn, clears the way for the CTE to be a candidate for
a monist theory of explanation.

We also note that we have restricted our attention to explanation in sci-
ence and in mathematics, with our primary attention on the latter. We have
not discussed explanations in other areas such as folk discourse, ethics, meta-
physics, and logic. Again, there is further work to be done here — perhaps
explanatory folk discourse will largely resemble (causal) scientific explanation
while the latter three might resemble mathematical explanation in significant
ways. In any case, providing an account of mathematical explanation will
presumably help in providing an account of explanation in other areas where
non-causal and non-contingent matters prevail.25

If we have been successful in our arguments thus far, monism about ex-
planation is a live option. Moreover, the CTE looks like a good candidate
for such an account. After all, we have argued that the CTE can be applied
in both mathematics and science. What we have not done, however, is show
that the CTE can handle all instances of explanation in science and math-
ematics. For example, Colyvan et al. (2018) suggest that there might be
two quite different kinds of explanation in operation within pure mathemat-
ics: one that bears some resemblance to unificationist explanation and one
that places emphasis on local relevance. Similarly, it might be argued that
no single theory of explanation can work across the board in all scientific
contexts.26 If so, monism about explanation would be in trouble. It is too
early to say much about the kinds of explanations found in mathematics. As
we have already noted, there is surprisingly little philosophical work on this
topic.

25See Baron and Colyvan (2016) for a discussion of logical explanation and its similarity
to mathematical explanation.

26Recall Lange’s (2016) claim that the CTE cannot be applied to explanations by con-
straint in science.
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But even so, the arguments of this paper show that monism is not scuttled
by the mere fact that there are explanations in mathematics. The CTE
can deal with the kind of problems raised by the modality of mathematical
explanations. Whether it can deal with all mathematical explanations or,
indeed, all scientific explanations is an open question. Be that as it may, in
our view, monism remains a live option and one well worth pursing.27
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[66] Szemerédi, E. 2016. ‘Erdős’s Unit Distance Problem’ in: J.F. Nash &
M.Th. Rassias (eds.), Open Problems in Mathematics, Springer, pp. 459–477.

[67] Tao, T. 2016a. Texts and Readings in Mathematics: Vol. 37. Analysis I,
Springer.

[68] Tao, T. 2016b. Texts and Readings in Mathematics: Vol. 38. Analysis II,
Springer.

[69] Vaughan, R.C. 2016. ‘Goldbach’s Conjectures: A Historical Perspective’, in:
J.F. Nash & M.Th. Rassias (eds.), Open Problems in Mathematics, Springer,
pp. 479–520.

26



[70] Wilson, A. 2018. ‘Grounding Entails Counterpossible Non-Triviality’, Philos-
ophy and Phenomenological Research 96(3): 716–728.

[71] Woodward, J. 2003. Making Things Happen, New York: Oxford University
Press.

[72] Woodward, J. 2017. ‘Scientific Explanation’, in E.N. Zalta (ed.),
The Stanford Encyclopedia of Philosophy (Fall 2017 Edition), URL =
https://plato.stanford.edu/archives/fall2017/entries/scientific-explanation/.

[73] Woodward, J. 2018. ‘Some Varieties of Non-Causal Explanation’, in A. Reut-
linger & J. Saatsi (eds.), Explanation Beyond Causation, Oxford: Oxford
University Press, pp. 117–137.

27


	Lange's Challenge
	Monism versus Pluralism
	Extending the CTE to Mathematical Explanations
	Explaining the intermediate-value theorem
	Explaining why you can't square a circle

	Counterpossibles Without Tears
	Do We Need Conditionals in Mathematics?
	Conclusion and Discussion

