There Is No Such Thing As
Miscomputation

Joe Dewhurst

March 2020

Abstract

This paper will argue that there is no such thing as miscomputation,
contrary to the received view in philosophy of computation and (pos-
sibly) computer science. There are just hardware problems on the one
hand and programming errors on the other, neither of which constitute
a distinct kind of computational malfunction. One upshot of this argu-
ment is that philosophical accounts of physical computation should not
be assessed on whether they can accommodate miscomputation in the
abstract, but rather on whether they can make sense of the range of dif-
ferent phenomenona that are commonly (and misleadingly) described as
miscomputations.

Introduction

There has been a recent renaissance in philosophical work on physical computa-
tion (see e.g. Piccinini 2007, 2015; Milkowski 2013; Fresco 2014), but rather less
has been written on the topic of miscomputation, i.e. the circumstance under
which some physical state or process counts as performing a computation, but
performing it wrong. This is in spite of the fact that one of the leading ac-
counts of physical computation, Gualtiero Piccinini’s mechanistic account, lists
miscomputation as one of six key desiderata that any account of physical com-
putation must accommodate (2015: 13-14). Aside from Piccinini’s own work,
there have been articles published on (or relating to) miscomputation by Fresco
& Primiero (2013), Dewhurst (2014), Floridi, Fresco, & Primiero (2015), Pet-
ricek (2017), Tucker (2018), Primiero, Solheim, & Spring (2019), and Colombo
(forthcoming). In general each of these authors assume that there is a distinc-
tive category of computational errors, but here I will argue that this is not the
case, and that there is really no such thing as miscomputation as such. Section
1 will review existing accounts of physically computation and miscomputation,
focusing primarily on mechanistic accounts. Section 2 will present the argu-
ment(s) that there is no such thing as miscomputation, but rather just various
kinds of hardware malfunctions and design errors. Finally, section 3 will discuss
the ramifications of this argument for existing accounts of physical computation,



and consider some future work that could be done on the topic formerly known
as miscomputation.

1 Physical computation and miscomputation

I am concerned here with physical computation, i.e. the question of what it
means to say that a physical system performs or implements an abstract com-
putation, and hence what it would mean to say that the same system somehow
fails in this regard, or miscomputes. Before we can discuss the latter I must
first say a little about the former, although a full treatment is beyond the scope
of this paper. At a first pass we can say that a physical system implements
an abstract computation if there is a mapping between the physical structure
of the system and the formal structure of the computation (Putnam 1960, cf.
Godfrey-Smith 2009). This is a notoriously weak definition, according to which
almost any physical system might implement almost any computation (Putnam
1988; see Godfrey-Smith 2009 and Sprevak 2018 for discussions of this issue),
and so it is typically strengthened with additional constraints on the kinds of
physical system that qualify as computational. Examples include causal con-
straints (e.g. Chalmers 1994), semantic constraints (e.g. Sprevak 2010), and
pragmatic or perspectival constraints (e.g. Schweizer 2019), but I will focus
here on a subclass of causal constraints offered by the various mechanistic ac-
counts of physical computation, and specifically Gualtiero Piccinini’s version of
this account (2007, 2015; see also Milkowski 2013, Fresco 2014). My argument
against the very possibility of miscomputation should mostly generalise to other
accounts of physical computation, but I will note where it does not, and consider
some of these other possibilities in the final section.

According to Piccinini’s mechanistic account, a physical computer is a kind
of mechanism whose function is to perform computations, understood as sys-
tematic transformations between medium independent digits (2015: chapter
7).} Digits are components whose function is to be recognised and systemati-
cally transformed (into other digits) by processors, and are medium independent
insofar as they are individuated only by those physical properties that are rele-
vant to this function. Processors are components whose function is to identify
and systematically transform digits according to a rule specified by the abstract
computation that the system is meant to implement (i.e. the program). Fur-
ther computational component-types include input and output components that
transform external stimuli into digits and vice versa, memory components that
store strings of digits, and so on. A computing mechanism will also typically
include non-computational components such as a power source, a cooling fan,
and so on. Crucially, the core components (digits and processors) must possess
a sufficiently stable causal structure to qualify as computational, thus constrain-
ing the range of physical systems that will implement a computation (although

INote that this is specifically an account of digital computation. Piccinini does also offer
related accounts of analog, generic, and sui generis neural computation, but for the sake of
simplicity I will focus just on the digital case here.



for further discussion of some concerns about this account, see e.g. Dewhurst
2018a; Coelho Mollo 2018, 2019; Fresco & Milkowski 2019).

Piccinini gives a list of six desiderata that he thinks any account of physical
computation ought to be able to fulfil, including that it “should explain how it’s
possible for a physical system to miscompute” (2015: 14). He defines miscom-
putation as cases where a system “fails to follow every step of the procedure
it’s supposed to follow all the way until producing the correct output” (ibid.),
and emphasises that explaining miscomputation is important because of the
important role that (avoiding it) plays in computer science. His account is able
to explain miscomputation due to its functional nature: if what it means for a
physical system to perform a computation is to be a mechanism whose compo-
nents have the function of performing that computation, then those components
could also malfunction, resulting in a miscomputation (ibid: 122).? An example
of this kind of miscomputation is a hardware malfunction where e.g. a logic
gate that is supposed to perform AND instead performs NAND, meaning that
the digits are processed incorrectly relative to the rule specified by the abstract
computation that is supposed to be implemented. Piccinini also allows for other
kinds of miscomputation, including those resulting from incorrect design, im-
plementation, or usage (ibid: 149-50). Here he is presenting a taxonomy that
he first introduced in Piccinini (2007), which was then discussed by Fresco &
Primiero (2013), and further refined for the mechanistic account by Dewhurst
(2014).

Floridi, Fresco, & Primiero (2015) further develop the taxonomy of miscom-
putation presented by Fresco & Primiero (2013) to include software malfunc-
tions, Petricek (2017) specifically discusses programming errors, and Primiero,
Solheim, & Spring (2019) provide an additional analysis of malware classifica-
tion. Tucker (2018) develops Piccinini’s functional approach to miscomputation
by distinguishing between a system’s proper function and its actual function,
and Colombo (forthcoming) applies the notion of miscomputation to computa-
tional psychiatry. I will return to each of these issues as they arise naturally in
the rest of the paper.

2 There is no such thing as miscomputation

In the previous section I introduced the taxonomy of miscomputations developed
by Piccinini (2007, 2015), Fresco & Primiero (2013), and Dewhurst (2014). Let
us now examine that taxonomy in more detail. Piccinini (2015: 149-50) lists five
notions of miscomputation, each relating to a different perspective from which
we might evaluate the performance of a computational system:

1. Miscomputations relative to the designer’s intentions.

21 have elsewhere argued against the use of proper functions in mechanistic accounts of
computation (Dewhurst 2016), and proposed an alternative approach based on perspectival
functions (Dewhurst 2018b), but I will not be pursuing that argument here. In the next
section I will argue that, even if the mechanistic account appeals to proper functions, there is
still no such thing as miscomputation.



[N)

. Miscomputations relative to the designer’s blueprint.

w

. Miscomputations relative to what was actually built.

W

. Miscomputations due to incorrect programming.

ot

. Miscomputations due to incorrect usage.

Fresco & Primiero draw a further useful distinction between “errors of func-
tioning” and “errors of design” (2013: start of section 2), inspired by a similar
distinction originally made by Turing (1950: 449). Errors of functioning, or
what we might call ‘operational malfunctions’, occur when the system as it was
actually built fails to function correctly, i.e. a physical component malfunctions
in some way that affects the computational procedure. Piccinini’s type-3 mis-
computation is a clear case of operational malfunction, but all of the others
seem to be of the latter type, which we might call ‘design errors’. If a system
is designed incorrectly (type-1), such that it cannot perform the function that
it was intended for, then this is not a problem with the operation of the system
itself, but rather a mistake on behalf of its designer. Similarly, if the initial
design is good, but a token system is manufactured incorrectly (type-2), then
this is not a case of the system itself malfunctioning, but rather a mistake on
behalf of its proximal designer (the agent or system that manufactured it). A
programming error (type-4) is also not a case of operational malfunction, as
the physical system itself performs perfectly fine, it was just given bad instruc-
tions (at least relative to the programmer’s intentions — for the system itself
there is no sense in which the instructions can be good or bad). Finally, errors
on behalf of the user (type-5) are clearly not operational malfunctions, as the
system itself (both hardware and software) performs perfectly fine. In fact, it
is not even clear that incorrect usage should be considered as a kind of design
error either, but for the purpose of this analysis I will stretch the definition of
‘designer’ to include the end user of a computational system (who indeed might
also sometimes be a programmer).

While Piccinini suggests that we should consider all five of these notions
to be types of miscomputation, I will now argue that in fact none of them
should be considered to be types of miscomputation, at least in a strict sense.
The first half of this argument, that design errors are not miscomputations, is
relatively uncontroversial, and so I will not spend too long on it. The second
half, that operational malfunctions are not miscomputations either, will require
a little more attention. After presenting this argument I will proceed in section
3 to consider some additional complications and implications that arise once we
accept that there is (strictly speaking) no such thing as miscomputation.

2.1 Design errors are not miscomputations

Fresco & Primiero “argue that a computational system can only make an error
of functioning (i.e. an operational malfunction)” (2013: section 1, emphasis in



original), which would presumably mean that design errors are not miscompu-
tations. However, they also have a somewhat broader conception of operational
malfunctions than that which I introduced above, including certain kinds of soft-
ware errors (Piccinini’s type-4 miscomputations). So why shouldn’t we consider
design errors, including programming errors (cf. Petricek 2017) and software
malfunctions, to be kinds of miscomputation?

In Dewhurst (2014) I previously offered an argument to this effect, focusing
on the mechanistic account of computation introduced above. I argued that we
should not assess the behaviour of a computing mechanism relative to the de-
signer’s intentions, but rather relative to their actual design, as implemented in
the token system that we are analysing. This is because a computing mechanism
is simply a system that transforms strings of digits according to the rules that it
1s given, without any understanding of either those rules or the semantic content
of the digits. So a (physically) functioning computing mechanism provided with
a program to run cannot fail to correctly implement that program, even if the
end result is not what the programmer intended. For this reason I do not think
that we should consider programming errors of any kind to be miscomputations,
at least in the sense of computation captured by the mechanistic account (I will
discuss some complications introduced by other accounts of computation in the
final section).

Other kinds of design error, like user errors or errors in the physical manu-
facture of the system, are also not miscomputations in the strict sense. Mistakes
made by the end user of a computing mechanism, e.g. by issuing meaningless or
misunderstood (by the user) commands, are clearly not cases of the system it-
self miscomputing. Manufacturing errors might qualify as malfunctions of some
kind, but these cannot be computational malfunctions (of the end product):
either the token system that is the result of the faulty manufacturing process
does not function as a computing mechanism at all, or else it does function as
one, but not in the way that the designer intended. The latter case is similar
to programming errors, insofar as the system will continue to compute some-
thing, and do so ‘correctly’ relative to its actual physical structure, even if this
is different to how the designer originally envisioned it. Such an outcome might
depend on malfunctions in the manufacturing process, but once this process is
complete, the system thereby created cannot be blamed for these malfunctions.
If it functions as a computing mechanism at all, it simply computes according
to the rules that it was given, i.e. those that are implicit in its actual physical
structure.

Software malfunctions, as discussed by Floridi, Fresco, & Primiero (2015),
are also typically a kind of design error. Some apparent software malfunctions
might be due to physical limitations, such as a logic gate functioning incorrectly
or a memory component failing in some way, but it is debatable whether these
really qualify as software malfunctions, rather than physical malfunctions that
affect the software (ibid: 18 of preprint). In any case, I will deal with the
question of physical (‘operational’) malfunctions in the next section. Other
software malfunctions might be due to badly written code (missing brackets,
mistyped variables, infinite loops), but as Floridi, Fresco, & Primiero themselves



admit, malfunctions of this kind “are simply design errors for which only the
designer can be deemed responsible” (ibid). As I argued above, a computing
mechanism can only do the best it can with what it is given — as computer
scientists sometime say, “garbage in, garbage out”.?

Design errors of all kinds, including mistakes in the original specification of
the computing mechanism, faulty manufacturing, bad or misguided program-
ming, and erroneous usage, do not qualify as miscomputations, as the mistake
in each case is attributable to something other than the computing mechanism
itself (i.e. the machine’s designer, manufacturer, programmer, or end user). In
section 3 I will argue that some of the (putative) miscomputations discussed in
computational psychiatry (cf. Colombo forthcoming) could also be more fruit-
fully understood as design errors. For now I will proceed to the second class of
putative miscomputations, those due to operational malfunctions in the physical
structure of the computing mechanism.

2.2 Operational malfunctions are not miscomputations

Towards the end of their analysis of miscomputation, Fresco & Primiero sug-
gest, somewhat allusively, that what they call operational malfunctions might
not strictly be computational either: “the cause of the miscomputation is often
the physical substrate that is contingent to the computational process itself”
(2013: final paragraph, emphasis added). If the physical substrate is contingent
to the computations being performed, then it doesn’t seem like operational mal-
functions are an essentially computational phenomenon. Turing seemed to hold
a similar view, writing that (abstract) computational machines (i.e. idealised
Turing machines) are “By definition [...] incapable of errors of functioning”
(1950: 449). Now, admittedly Turing was discussing abstract computations at
this point, and we are concerned here with concrete (physical) computations. So
should we say that a physical malfunction that causes a computing mechanism
to produce the wrong result is (strictly speaking) a miscomputation?

I now that think that the answer to this second question should also be “no”
(previously, in Dewhurst 2014, I suggested otherwise). To see why, we need to
think a little more about what (physical) computations are, and what it might
mean for them to fail to operate correctly. According to the mechanistic account
(introduced in section 1), a physical computation is just the transformation of
some medium-independent vehicles (‘digits’) according to a rule. The rule itself
is specified by the physical structure of the system (in the simplest case, by the
structure of a single processing component such as an AND-gate), and, crucially,
none of the components of the system themselves ‘understand’ the rule. It is
by this simple conjuring trick that physical computation is able to produce

3The Free On-Line Dictionary of Computation attributes this phrase to Wilf Hey
(http://foldoc.org/Garbage+In,+Garbage+Out).# Charles Babbage expressed a similar sen-
timent with regard to his Difference Engine: “On two occasions I have been asked, ‘Pray, Mr.
Babbage, if you put into the machine wrong figures, will the right answers come out?’ ... I
am not able rightly to apprehend the kind of confusion of ideas that could provoke such a
question” (1864: 67).

4With thanks to Keith Wilson for locating the source of this attribution.



seemingly semantic transformations from merely syntactic (or causal) processes
— or as Haugeland memorably put it, “If you take care of the syntax, then the
semantics will take care of itself” (1985: 106). An important consequence of
this, though, is that a computational component does not “follow a rule” in
the normative sense of an agent choosing to obey it, but rather it just responds
causally to the physical structure of the system of which it is a part.” With
this in mind, let us return to the question of miscomputation and operational
malfunction.

There is one class of operational malfunction that we can dismiss immedi-
ately, those that render the system incapable of performing any computations
at all. If the system overheats and catches fire, or if the power source stops
working, then the system has not miscomputed, it is simply no longer comput-
ing. This much should hopefully be uncontroversial. The more difficult cases
are those where the system still computes, i.e. we provide it with an input and
it provides us with an output, but, due to a physical (operational) malfunction,
it does not provide us with the ‘correct’ output (that which we would expect to
receive, were we able to verify the abstract computation by some other means).
A simple case like this might be one where the physical sensitivity of a voltage
gate has changed, such that where it once computed AND it now computes OR
(and even a simple case like this could of course have serious consequences for
the more complex operations within which it is embedded). This might seem
prima facie like a clear case of miscomputation due to operational malfunction:
the component was meant to compute AND, but (due to a change in its phys-
ical structure) it instead computed OR. However, recall that all it means for a
computational component to follow a rule is for it to respond (according to its
own physical structure) to the physical structure of the system of which it is a
part. Our malfunctioning AND-gate has done precisely this — it receives a pair
of voltage levels as inputs and, depending on whether the sum of those voltages
is above a certain threshold, it produces another voltage level as output. So it
is still following the rule embodied in its physical structure, and thus computing
correctly, it’s just that this structure has changed. That change itself might
very well qualify as a malfunction, such that we can say that the AND-gate
is a malfunctioning component, but I don’t think that we should say that it
is miscomputing. This is because the component, qua computation, has done
nothing wrong; it is ‘just following the orders’ given to it by its (new) physical
structure (cf. Rapaport 2019: sec. 2).

There are some obvious objections and replies to this argument that I will
turn to in the next section, but for now I just want to summarise where we have
got to. We saw that there are two main classes of (putative) miscomputations,
those due to design errors of some kind, and those due to operational malfunc-
tions. The former do not qualify as miscomputations because the fault lies out-
side of the system, whether that be with the system’s designer, its manufacturer,
its programmer, or its end user. The latter do not qualify as miscomputations

5There are some concerns in this vicinity to do with Kripke’s discussion of Wittgenstein’s
rule-following considerations, see e.g. Buechner (2011, 2018); cf. Wittgenstein 1953, Kripke
1982.



because they either prevent the system from performing any computations at
all (in the case of a total breakdown), or else they change the rule that the
system is meant to follow (embodied in its physical structure) such that while
it computes something different from what it was originally designed to, it does
not miscompute. Therefore there is no such thing as miscomputation.

3 The topic formerly known as miscomputation

In this final section I will attempt to address a number of outstanding issues,
possible objections, and further applications of the argument developed in the
previous two sections. These all have a common theme, which is that even if
there is no such thing as miscomputation, we must still say something about
cases where people (philosophers, cognitive scientists, and computer scientists)
talk as though there was, in order to make sense of both our existing concept(s)
of computation and actual scientific practice. It is worth emphasising, though,
that the account presented here is not intended to be revisionary: rather than
attempting to stipulate how researchers should talk about computation, I think
this account can actually help us to explicate how researchers currently do talk
about computation. So I am not advocating a general ban on the term ’mis-
computation’, but instead suggesting that we should exercise some caution in
how it is understood and what it implies. (Or to put it another way, while there
is strictly no such a thing as miscomputation, it might still make sense to use
the term in an informal or colloquial sense, provided that it does not lead to
any misunderstanding.)

3.1 Objections and replies

In the previous section I argued that an operational malfunction that changes
the physical structure of a processing component, such that it now carries out a
different computation, should not be classified as a miscomputation. Given that
I deny that anything could count as a miscomputation, it seems like an obvious
response would be to push back here, and argue that we should count at least
this kind of operational malfunction as a miscomputation. After all, these are
malfunctions that straightforwardly cause a component to compute something
other than what it was designed for, e.g. an overly sensitive AND-gate instead
computing OR, so why not just call them miscomputations? I agree that this is
an intuitive thought, and that it might be a relatively harmless way of using the
term miscomputation, but I still think that it implies a misunderstanding about
the nature of physical computation: to compute is just to follow a rule, but the
rule that a computing mechanism follows is not that which was intended by its
designer (to which it has no access), but rather that which is embodied in its
physical structure. Ideally that structure will conform to its designer’s inten-
tions, but when it does not (whether due to poor design or later malfunction)
the system itself cannot be blamed for following the ‘wrong’ rule. What has
gone wrong here is not anything computational, but rather the initial specifi-



cation of the rule itself (as embodied in the system’s structure). So to call an
operational malfunction a miscomputation is misleading, because the system is
computing (according to the rule that it was given) just fine.

I have focused here on mechanistic accounts of computation, but there is an-
other (fairly popular) class of semantic accounts, according to which the analysis
of miscomputation might look quite different. While there has actually not been
much work done on miscomputation by defenders of the semantic account, we
can try and reconstruct what they might say. According to this account, physical
computation is necessarily semantic; in addition to possessing the right kind of
causal structure (as per the mechanistic account), a computational system must
also represent something, and to compute is to manipulate representational ve-
hicles according to a rule (see Sprevak 2010 for a basic overview). While there
are many other points on which mechanistic and semantic accounts disagree
(see e.g. Piccinini 2008, Dewhurst 2018a, Shagrir 2018), this does not actu-
ally change things too much when it comes to our analysis of miscomputation.
I think it is clear that semantic accounts should still deny that design errors
are a kind of miscomputation, for all the reasons that I discussed in section
1. The same goes for operational malfunctions, except that there is a certain
kind of malfunction that might qualify as miscomputation according to the se-
mantic account, namely misrepresentations (cf. Neander 1995). If computation
is representational, then (at least some) misrepresentations might plausibly be
understood as miscomputations, especially those caused by operational mal-
functions. For example, if an operational malfunction causes a computational
state to misrepresent some feature of its environment, and as a result of this
it produces an erroneous output, then according to the semantic account this
might qualify as a miscomputation. I will leave a full analysis of representa-
tional miscomputations for a proponent of the semantic account, but I mention
this possibility here for the sake of fairness. If, like Piccinini, one thinks that
allowing for the possibility of miscomputation ought to be included in the list
of desiderata for our theory of physcial computation, then this might even be
a reason to favour the semantic account. (Of course, this reasoning goes both
ways: I don’t think the semantic account works, and one consequence is that I
don’t think miscomputation should be on our list of desiderata.)

3.2 Applications and further issues

T have focused so far (at least implicitly) on artificial computers, i.e. like the one
that I am typing on now, but it would also be interesting to consider the ques-
tion of miscomputation in natural computational systems, such as (potentially)
the human brain. A full analysis of this question will have to wait for future
work, but I would like to briefly comment on one particularly interesting aspect
of it, which is the putative role played by miscomputations in computational
psychiatry. Colombo (forthcoming) has recently argued that there are several
different notions of miscomputation at play in computational psychiatry, and
that a semantic account of computation is required to account for all of them.
I will not respond directly to that argument here, but I instead want to suggest



a different way to think about ‘miscomputation’ in computational psychiatry,
building on Garson’s (2019) work on mental disorders and malfunctions.
Garson argues that rather than being malfunctions as such, many cases of
mental disorder might instead be better understood as “developmental mis-
matches”, i.e. cases where a perfectly well-functioning system has just been
placed into the wrong environment (2019: 176-8). He gives the example of how
a child who has developed aggressive and violent behavioural tendencies in or-
der to cope with an abusive environment might later be diagnosed with conduct
disorder (ibid: 179). In their initial environment this behaviour was adaptive,
but once it has become ingrained and they are removed from that environment
it becomes maladaptive. Design errors, in the context of computational psychi-
atry, look very much like developmental mismatches: the computational system
(in this case, the brain) has been designed or programmed for one purpose
(whether intentionally or by accident), but is then placed in an environment
within which this behaviour is maladaptive. These are neither cases of mal-
function not miscomputation: the system performs perfectly adequately, qua
computation, but this performance does not match its novel context (some of
the cases that Colombo considers, such as differences in the magnitude of pre-
diction error signalling in healthy controls and schizophrenic patients, might
also be explained in this way). Operational malfunctions, on the other hand,
look more like traditional ‘physical’ diseases, which might cause the symptoms
associated with mental disorders, but should not be understood as miscomputa-
tions (for the reasons I discussed in section 2). So the neurodegenerative process
that is thought to cause Alzheimer’s disease might be an operational malfunc-
tion that changes how the brain performs computations, but it is not itself a
miscomputation, not does it produce any. The distinction between operational
malfunctions and design errors maps neatly on to Garson’s loose distinction be-
tween physical diseases (often, but not always, understood as malfunctions) and
mental disorders (often, but not always, understood in terms of developmental
mismatches), and can help us to make sense of the role played by what might
previously have been called ‘miscomputations’ in computational psychiatry.
Primiero, Solheim, & Spring (2019) describe malware (i.e., malicious soft-
ware such as computer viruses) as a kind of miscomputation induced by a tar-
geted attack. The taxonomy and analysis they provide is helpful, and provides
some practical recommendations, but following my arguments in the previous
section I think it is clear that malware does not cause miscomputations as such,
but rather modifies the behaviour of a computational system in some way that
is not desirable to its designer or user. The system itself either continues to
compute perfectly fine (in the case of malware that hijacks or otherwise infects
a system) or simply ceases to compute (in the case of malware that shuts it down
entirely), but it does not miscompute. There is a further question of whether
we should even think of malware as inducing (non-computational) malfunctions
in the target computer, i.e. by rewriting the instructions (rules) enmbodied by
its physical structure (see section 2.2). Here an analogy with biological viruses
might be helpful: relative to the host system, a (biological or computational)
virus certainly induces a malfunction, but relative to the virus itself (or its de-

10



signer), the system functions perfectly well, by serving to reproduce the virus.
So in many cases there may not be a clear answer to the question of whether
malware induces a malfunction, let alone a miscomputation.

Finally, I want to briefly discuss a useful distinction introduced by Tucker
(2019), between a mechanism’s proper and actual functions. He (like almost
everyone else) is a realist about miscomputation, but he defines it in terms of
norms that are individuated widely (i.e. with reference to selection history or de-
signer intentions), whereas he defines computational behaviour in narrow terms
(i.e., just in terms of the physical structure of the system). Widely individuated
norms fix the proper function of a computing mechanism (what it’s supposed
to do) while narrowly individuated behaviour fixes its actual function (what it
actually does), and, for Tucker, a miscomputation occurs when these two func-
tions are misaligned. This could be because of either design error (the system
was programmed badly) or operational malfunction (it doesn’t work properly).
I am willing to allow that mismatches of this kind explain what we usually call
miscomputations, but I would argue that we should restrict talk of computa-
tion (and thus miscomputation) proper to what Tucker calls ‘actual’ functions
(and T suspect that he might agree). A full presentation of that argument will,
however, have to wait for another day.

If there is no such thing as miscomputation, then what ought we to say about
the inclusion of miscomputation in Piccinini’s list of desiderata for an account
of physical computation? I think he is correct to say that we need to make
sense of the kinds of thing people (including computer scientists, computational
neuroscientists, etc.) say when they believe that a computational process has
“gone wrong’ in some sense, but I don’t think that we need any notion of
miscomputation as such in order to do this — and in fact, relying on such a notion
might hold us back in some cases. The taxonomy provided by Fresco & Primiero
(2013) makes it clear that there many different ways in which a computational
process can “go wrong” that don’t really have much in common with one another
at all. Our diagnosis of, and solution to, a programming error is going to be very
different to that which is appropriate for a manufacturing defect or operational
malfunction. Each case calls for a different kind of analysis and response, and so
referring to them all under the broad category “miscomputation” is misleading
at best. Of course, one could choose to use the term to refer to just one of these
cases (probably operational malfunctions), but for the reasons I have argued for
here, I think even this limited usage could have confusing implications, and so
it is better that we avoid it in favour of more precise language.

Conclusion

I first reviewed some existing accounts of physical computation and miscomputa-
tion, focusing on the version of the mechanistic account developed by Gualtiero
Piccinini. I then argued that, according to this account, there can be no such
thing as miscomputation, as all putative cases of miscomputation are either
the result of design errors (for which the computing mechanism itself cannot be

11



blamed) or operational malfunctions (which are not strictly computational). Fi-
nally, I considered some possible objections to, and further implications of, this
argument, including the idea that operational malfunctions should in fact qual-
ify as miscomputations, an alternative semantic account of miscomputation, the
role of miscomputation in computational psychiatry, the case of malware, and
a recently proposed distinction between proper and actual functions. In future
work I would like to extend these considerations to include some more general
applications of the argument that there is no such thing as miscomputation,
such as to debates about the neuroscience of free will, agency in artificial (and
natural) systems, and what it means to follow a rule.

References

Babbage, C. 1864. Passages from the Life of a Philosopher. London: Longman,
Green, Roberts, Longman, & Green.

Buechner, J. 2011. “Not Even Computing Machines Can Follow Rules.” In
Berger (ed.), Saul Kripke. Cambridge, UK: CUP.

Buechner, J. 2018. “Does Kripke’s Argument Against Functionalism Undermine
the Standard View of What Computers Are?” Minds and Machines, 28(3):491-
513.

Chalmers, D. 1994. “On implementing a computation.” Minds and Machines,
4(4): 391-402.

Coelho Mollo, D. 2018. “Functional individuation, mechanistic implementa-
tion.” Synthese, 195(8): 3477-3497.

Coelho Mollo, D. 2019. “Are There Teleological Functions to Compute?” Phi-
losophy of Science, 86(3): 431-452.

Colombo, M. Forthcoming. “(Mis)computation in Computational Psychiatry.”
In Calzavarini Viola (eds), New Challenges in Philosophy of Neuroscience.
Springer Studies in Brain and Mind.

Dewhurst, J. 2014. “Mechanistic Miscomputation.” Philosophy & Technology,
27(3): 495-498.

Dewhurst, J. 2016. “Review of Physical Computation.” Philosophical Psychol-
ogy, 29(5):795-797.

Dewhurst, J. 2018a. “Individuation Without Representation.” The British Jour-
nal for the Philosophy of Science, 69(1):103-116.

Dewhurst, J. 2018b. “Computing Mechanisms Without Proper Functions.”
Minds and Machines, 28(3): 569-588.

Floridi, L., Fresco, N., & Primiero, G. 2015. “On Malfunctioning Software.”
Synthese, 192:1199-1220.

Fresco, N. 2014. Physical Computation and Cognitive Science. Springer Nether-
lands.

12



Fresco, N. & Mitkowski, M. 2019. “Mechanistic Computational Individuation
without Biting the Bullet.” The British Journal for the Philosophy of Science,
online first.

Fresco, N. & Primiero, G. 2013. “Miscomputation.” Philosophy & Technology,
26(3):253-272.

Garson, J. 2019. What Biological Functions Are And Why They Matter. Cam-
bridge, CUP.

Godfrey Smith, P. 2009. “Triviality arguments against functionalism.” Philo-
sophical Studies, 145:273-295.

Haugeland, J. 1985. Artificial Intelligence: The Very Idea. Cambridge, MA:
MIT Press.

Kripke, S. 1982. Wittgenstein on Rules and Private Language. Oxford: Black-
well.

Milkowski, M. 2013. Ezplaining the Computational Mind. Cambridge, MA: MIT
Press.

Neander, K. 1995. “Misrepresenting & malfunctioning.” Philosophical Studies,
79:109-141.

Petricek, T. 2017. “Miscomputation in software: Learning to live with errors.”
The Art, Science, and Engineering of Programming, 1.2: 14.

Piccinini, G. 2007. “Computing Mechanisms.” Philosophy of Science, T4(4):
501-526.

Piccinini, G. 2008. “Computation without representation.” Philosophical Stud-
ies, 137(2):205-241.

Piccinini, G. 2015. Physical Computation. Oxford: OUP.

Primiero, G., Solheim, F.J.; & Spring, J.M. 2019. “On malfunction, mechanisms
and malware classification.” Philosophy € Technology, 32(2), 339-362.

Putnam, H. 1960. “Minds and Machines.” In Hood (ed.), Dimensions of Mind:
A Symposium, New York: Collier.

Putnam, H. 1988. Representation and Reality. Cambridge, MA: MIT Press.

Rapaport, W.J.2019. “Syntax, Semantics, and Computer Programs.” Philoso-
phy & Technology, online first.

Schweizer, P. 2019. “Triviality Arguments Reconsidered.” Minds and Machines,
29(2):287-308.

Shagrir, O. 2018. “In defense of the semantic view of computation.” Synthese,
online first.

Sprevak, M. 2010. “Computation, individuation, and the received view on repre-
sentation.” Studies in History and Philosophy of Science Part A, 41(3):260-270.

Sprevak, M. 2018. “Triviality arguments about computational implementation.”
In Sprevak & Colombo (eds.), The Routledge Handbook of Philosophy of Com-
putation. Routledge.

13



Tucker, C. 2018. “How to Explain Miscomputation.” Philosophers’ Imprint,
18(24).
Turing, A. 1950. “Computing Machinery and Intelligence.” Mind, 49:433-460.

Wittgenstein, L. 1953. Philosophical Investigations. Macmillan Publishing Com-
pany.

14



