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Abstract

Let H be a finite-dimensional complex Hilbert space and D the set of density
matrices on H , i.e., the positive operators with trace 1. Our goal in this note
is to identify a probability measure u on D that can be regarded as the uniform
distribution over D . We propose a measure on D , argue that it can be so regarded,
discuss its properties, and compute the joint distribution of the eigenvalues of a
random density matrix distributed according to this measure.
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1 Introduction

With every probability distribution µ over wave functions, i.e., over the unit sphere
S(H ) in a complex Hilbert space H , there is associated a density matrix

ρ =

∫
S(H )

µ(dψ) |ψ〉〈ψ| . (1)

In this note, in contrast, we consider a probability distribution over density matrices,
and we ask whether there exists a distribution that should be regarded as the uniform
distribution u over all density matrices. Our considerations involve certain applications
of random matrix theory.

Here is our motivation for the question. Density matrices can arise not only as
encoding random ψ’s, but also as partial traces of states of larger systems; moreover, it
is conceivable that even the fundamental state, as known to nature, is a density matrix ρ.
For example, it is easy to set up a version of Bohmian mechanics in which the particles
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are guided, not by a wave function ψ, but by a density matrix ρ [6]. The density matrix,
in such a theory, is not an expression of our ignorance of the actual pure state even if we
continue to call it a “mixed state,” nor is it an expression of entanglement with another
system, but it is a fundamental object—a physical variable on which the motion of the
Bohmian particles depends. Likewise, a density matrix can be a fundamental object in
collapse theories or many-worlds theories [2]. But if a density matrix is a fundamental
object in nature, then it makes sense to consider a random density matrix. For example,
when considering the initial state of the universe, it is common to consider a random
state in a particular subspace HPH of the Hilbert space of the universe associated with
very low entropy; the statement that the initial state of the universe lies in the subspace
HPH is often called the past hypothesis (PH) [1]. Here, one usually has in mind a
random pure state ψ in HPH , but if states ρ that are fundamentally mixed are possible,
as illustrated by the above-mentioned versions of Bohmian mechanics, collapse theories,
and many-worlds theories, we can also consider a random ρ in HPH [4]. Since one
considers for ψ the uniform distribution over S(HPH), the analog would involve the
uniform distribution u over all ρ concentrated in HPH , which brings us to the question
whether such a distribution u exists, whether it is uniquely defined, and what it looks
like. To our knowledge, the question has not been studied in the literature.

Here, we propose a natural definition of u on any Hilbert space H of finite dimension
d ∈ N. It will be clear from the definition that u exists and is unique. For infinite-
dimensional Hilbert spaces H , it does not seem that a uniform distribution exists over
the density matrices on H , which is not surprising as there is no uniform distribution
either over H itself or S(H ). Of course, our reasoning also yields, for any subspace
H of a bigger Hilbert space K with dim H < ∞, a uniform probability distribution
over the density matrices concentrated on H , regardless of whether dim K is finite
or infinite. We show that u is invariant under unitary operators on H , so that a u-
distributed ρ has an eigenbasis that is uniformly distributed in the set of all orthonormal
bases of H . Furthermore, we compute the joint distribution of the eigenvalues of ρ.
The expectation value of ρ is d−1I, where I is the identity operator on H .

In applications, the normalized measure u may often play the role of a typicality
measure (see, e.g., [8, Sec. 6] and [9, Sec. 7.1]) rather than that of direct probability.
That is, it may serve for defining what is true of most density matrices (that are, say,
concentrated in a certain subspace such as HPH). For example, the properties of u will
entail that for a bipartite system, most density matrices are entangled, just as most
pure states are [7].

Concerning the past hypothesis, another approach proposes to take the initial density
matrix of the universe to be the normalized projection onto HPH [3, 5]. So, one could
consider different kinds of initial conditions: a random ψ with uniform distribution over
S(HPH), a fixed density matrix proportional to the projection to HPH , or a random
density matrix with distribution u over the density matrices in HPH . It seems reasonable
to expect that all three theories are empirically equivalent, according to the appropriate
sense of typicality. We leave that issue to another paper.

2



2 Definition of the Measure

Let S be the space of self-adjoint operators on H (a real vector space of dimension
d2), P ⊂ S the set of positive operators on H , and Tc the set of self-adjoint operators
with trace c (an affine subspace of S of dimension d2 − 1); the set D of all density
matrices is D = P ∩ T1. Since for d = 1, D has only one element, we assume d ≥ 2.
Let P◦ denote the interior of P, which is the set of positive definite operators on H ,
and D◦ = P◦ ∩ T1 the interior of D in T1 (the set of density matrices for which 0 is
not an eigenvalue).

As in every affine space of finite dimension, there is a natural notion of volume in
T1: a nonzero translation-invariant measure on the Borel σ-algebra of T1. It is well
known that this measure is unique up to a global positive factor.

Proposition 1. For every such measure, the volume of D is neither zero nor infinite.

Proof. It is not zero because the interior D◦ is open and non-empty. That it is finite will
follow once we show that D is compact and therefore bounded in T1. The compactness
of D will follow from the fact that the continuous image of any compact set is compact.
Here, the relevant mapping is ϕ : Rd × U(d) → S (where U(d) denotes the unitary
group of d× d matrices, here regarded as orthonormal bases of H ) defined by

ϕ(λ1, . . . , λd, ψ1, . . . , ψd) =
d∑
i=1

λiψi . (2)

ϕ is clearly continuous, and since U(d) is known to be compact and

Λ :=
{

(λ1, . . . , λd) ∈ [0, 1]d : λ1 ≥ . . . ≥ λd ,
d∑
i=1

λi = 1
}

(3)

is clearly compact, also Λ× U(d) is compact, which gets mapped to D .

Thus, one can restrict the volume measure in T1 to D and normalize, which removes
the arbitrary constant. The resulting measure is the desired measure u.

3 Properties of the Measure

3.1 Unitary Invariance

Proposition 2. u is invariant under unitary transformations U of H .

Proof. U maps S to itself in a linear way and maps T1 to itself in an affine-linear way.
Thus, any translation invariant measure on T1 will be mapped by U to a multiple of
itself. Since U also maps P to itself, it also maps D to itself. As a consequence, it must
preserve volumes when acting on T1, and so it preserves u.
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Alternative proof. Equip S with the Hilbert-Schmidt inner product

〈A,B〉 = tr(AB), (4)

which is invariant under U . Using the inner product, one has a notion of area on every
surface, in particular on T1. u is just the normalized surface area restricted to D , and
it follows that surface area is invariant under U .

Note that unitary invariance does not uniquely select the measure u. Unitary invari-
ance means that the joint distribution of the eigenvectors of ρ is uniform while saying
nothing about the joint distribution of the eigenvalues. The property that selects u as
the natural normalized measure on D is that u is, when looked at in the right way, just
volume.

3.2 Expectation and Covariance

The covariance of a random vector V in a real vector space V with inner product 〈 , 〉
is defined to be the operator C : V → V such that

〈v, Cv′〉 = E
[〈
v, (V − EV )

〉〈
(V − EV ), v′

〉]
(5)

for all v, v′ ∈ V .

Proposition 3. A u-distributed ρ has expectation

Eρ = 1
d
I (6)

and covariance (in V = S with Hilbert-Schmidt inner product (4))

C = c(d)PT0 , (7)

with c(d) > 0 some constant and PT0 the projection to the set T0 of traceless operators
in S .

Proof. As a consequence of Proposition 2, Eρ must be invariant under U , and since the
only operators in H invariant under all unitaries are the multiples of the identity I, (6)
follows.

Likewise, C must be invariant under U(d). To determine all U(d)-invariant operators
on S , we first show that the representation of U(d) on S is the direct sum of two
irreducible representation spaces, RI (the multiples of the identity) and T0.

Clearly, RI and T0 are U(d)-invariant (as tr(UAU−1) = tr(A)), they are orthogonal
in the Hilbert-Schmidt inner product, their sum is S , and RI is irreducible because it
is 1-dimensional. In order to show that T0 is irreducible, we show that {0} and T0 are
its only invariant subspaces. To this end, let U 6= {0} be an invariant subspace of T0;
we show that U +RI = S , which implies that U = T0. Note that U +RI is invariant.
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Let 0 6= A ∈ U . Then A has at least two different eigenvalues; choose an orthonormal
basis of H that diagonalizes A. We show that all B ∈ S that are diagonal in the
same basis also lie in U + RI; it then follows by applying unitaries that U + RI = S .
For this, it suffices to show that for d ≥ 2 the only subspace of Rd that is invariant
under permutation of components and contains c := (1, 1, . . . , 1) and some vector not
proportional to c is Rd itself. Indeed, if W is such a subspace and w ∈ W \ Rc, then
wi 6= wj for some i 6= j. Let w′ be the vector obtained from w by permuting wi and wj,
then w′′ := w −w′ ∈ W has w′′i = wi − wj, w′′j = wj − wi, while all other components
of w′′ vanish. Thus, using permutations again, (1,−1, 0, . . . , 0) ∈ W and

(1, 0, . . . , 0) =

1
d

[
c+ (1,−1, 0, 0, . . . , 0) + (1, 0,−1, 0, . . . , 0) + . . .+ (1, 0, . . . , 0,−1)

]
∈ W . (8)

By permutation, all (0, . . . , 0, 1, 0, . . . , 0) ∈ W , so W = Rd.
Now, since T0 is irreducible, we can apply Schur’s lemma [11]. Since the irreducible

representations RI (which has dimension 1) and T0 (which has dimension d2 − 1 ≥ 3)
are inequivalent, Schur’s lemma yields that every U(d)-invariant operator C : S → S
is of the form

C = c̃PRI + cPT0 . (9)

For the covariance operator C, since always ρ− Eρ ∈ T0, we have that c̃ = 0.

We can characterize the value of c = c(d) as follows. Fix ψ ∈ S(H ) and set
v = v′ = |ψ〉〈ψ|. Then

〈v, Cv〉 = E
[(

tr[v(ρ− Eρ)]
)2]

(10)

= E
[(
〈ψ|ρ|ψ〉 − d−1

)2]
(11)

= E
[
〈ψ|ρ|ψ〉2

]
− 2d−1E〈ψ|ρ|ψ〉+ d−2 (12)

= E
[
〈ψ|ρ|ψ〉2

]
− d−1 . (13)

On the other hand,

〈v, Cv〉 = c(d)〈v, PT0v〉 (14)

= c(d)
(
〈v, v〉 − 〈v, PRIv〉

)
(15)

= c(d)
(

1− 〈v, d−1/2I〉〈d−1/2I, v〉
)

(16)

= c(d)
(
1− d−1(tr v)2

)
(17)

= c(d)(1− d−1) . (18)
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Thus,

c(d) = d
d−1E

[
〈ψ|ρ|ψ〉2

]
− 1

d−1 . (19)

We did not succeed in evaluating the expectation value.

3.3 Distribution of Eigenvalues

Let T1 be the plane

T1 :=
{

(λ1, . . . , λd) ∈ Rd :
d∑
i=1

λi = 1
}
. (20)

Proposition 4. Under u, the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd of ρ have joint distribution
in Λ ⊂ T1 with density

f(λ1, . . . , λd) = N
∏

1≤i<j≤d

|λi − λj|2 (21)

relative to the volume measure in T1 with normalization constant N > 0.

Proof. The strategy of proof is to use, instead of volume on S , a Gaussian unitary
ensemble, for which the distribution of the eigenvalues is known, and then let its variance
tend to infinity, so that the distribution becomes flat on every compact set.

The Gaussian unitary ensemble [10] is the probability distribution over self-adjoint
d× d matrices Xij = Aij + iBij with real part Aij = Aji and imaginary part Bij = −Bji

such that all Aij (i ≤ j) and all Bij (i < j) are independent random variables, where
Aij with i < j and Bij are Gaussian with mean 0 and variance 1/(2d), while the Aii
are Gaussian with mean 0 and variance 1/d. Thus, the joint distribution of all Xij has
density (with lower case symbols the possible values of random variables)

fX(x11, x12, . . . , xdd) ∝
∏
i<j

e−da
2
ije−db

2
ij

∏
i

e−da
2
ii/2 (22)

=
d∏

i,j=1

e−d|xij |
2/2 (23)

= e−d trx
2/2 . (24)

It is known [10] that the eigenvalues µ1 ≥ . . . ≥ µd of X have joint distribution with
density

gX(µ1, . . . , µd) ∝
d∏

k=1

e−
d
2
µ2k

∏
1≤i<j≤d

|µi − µj|2 . (25)

That is, ϕ−1 maps the distribution fX(x) dx to the product of gX(µ) dµ (with µ =
(µ1, . . . , µd)) and the uniform distribution on U(d).
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Now consider Y := σX with arbitrary σ > 0 that we will ultimately let tend to
infinity. Y has density

fY (y11, y12, . . . , ydd) ∝ e−d tr y
2/2σ2

, (26)

and its eigenvalues ν1 = σµ1, . . . , νd = σµd have joint density

gY (ν1, . . . , νd) ∝
d∏

k=1

e−dν
2
k/2σ

2
∏

1≤i<j≤d

|νi − νj|2

σ2
. (27)

Again, ϕ−1 maps the distribution fY (y) dy to the product of gY (ν) dν (with ν =
(ν1, . . . , νd)) and the uniform distribution on U(d).

Since ϕ maps T1×U(d) to T1, it maps the conditional distribution of ν on T1, times
the uniform distribution on U(d), to the conditional distribution of Y on T1. Likewise,
it maps the conditional distribution of ν on Λ, times the uniform distribution on U(d),
to the conditional distribution of Y on D . Note that the conditional distribution of Y
on T1 has density, up to a normalizing factor, given by fY restricted to T1, and the
conditional distribution of ν on T1 has density gY on T1 up to a factor. In the limit
σ →∞, the right-hand side of (26) converges to 1, in fact uniformly on the compact set
D ; thus, also fY (including the appropriate normalizing factor) converges uniformly to
1 on D . On the other hand, in the same way, the right-hand side of (27), after dropping
the factors of σ in the denominator, converges to

∏
|νi − νj|2, in fact uniformly on the

compact set Λ. We want to draw the conclusion that ϕ maps the limit of gY -conditional-
on-Λ (times the uniform distribution on U(d)) to the limit of fY -conditional-on-D (i.e.,
to u).

To justify this conclusion, we note the following. The interior of Λ is

Λ◦ =
{

(λ1, . . . , λd) ∈ T1 : λ1 > . . . > λd > 0
}
. (28)

Since Λ is a convex set, its boundary has measure zero in T1; thus, it does not matter
whether we consider continuous measures on Λ or Λ◦. ϕ maps Λ◦ × U(d) bijectively to
the set of non-degenerate positive definite density matrices, a dense set of full u-measure
in D . Since ϕ is smooth (in particular) on T1 × U(d), so is its Jacobian determinant;
since Λ × U(d) is compact, the Jacobian is bounded on Λ × U(d). According to the
transformation formula for integrals, the density of the pre-image is the Jacobian times
the density of the image; as a consequence, if the Jacobian is bounded and the density
of the image converges uniformly, then so does the density of the pre-image. That is,
we can pull the limit through ϕ, as we claimed.

The upshot is that ϕ−1 maps u to

lim
σ→∞

gY (ν) dν × uniformU(d) (29)

= N
( ∏

1≤i<j≤d

|νi − νj|2
)
dν × uniformU(d) , (30)

which proves (21) (and by the way again the unitary invariance of u).
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