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Abstract

Fundamental physics contains an important link between properties of elementary
particles and continuous symmetries of particle systems. For example, properties
such as mass and spin are said to be ‘associated’” with specific continuous symmetries.
These ‘associations’ have played a key role in the discovery of various new particle
kinds, but more importantly: they are thought to provide a deep insight into the
nature of physical reality.

The link between properties and symmetries has been said to call for a radical
revision of perceived metaphysical orthodoxy. However, if we are to use claims
about an ‘association’ between properties and symmetries in the articulation of
metaphysical views, we first need to develop a sufficiently precise understanding of
the content of these claims. The goal of this paper is to do just that.

1 Introduction

Fundamental physics posits an important link between properties of elementary particles
and continuous symmetries of particle systems. As Steven Weinberg puts it, properties
such as mass and spin are each “associated with” specific continuous symmetries.® This
link has played a key role in the discovery of various new particle kinds, but more
importantly: it is thought to provide a deep insight into the nature of physical reality.
For example, Weinberg claims that the relevant physical properties “are what they are
because of the [associated] symmetries of the laws of nature.”?

According to an influential line of scholarship, this link between properties and
symmetries calls for a radical revision of metaphysics—away from a perceived orthodoxy
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Weinberg (1993, p. 146). Other physicists have made similar claims; for example, Heisenberg (1976,
p. 924), Penrose (2004, p. 568), and Ne’eman and Sternberg (1991, p. 327). The link between properties
and symmetries was first hypothesized by Eugene Wigner (1939).

Q(Weinberg, 1993, p. 138n, emphasis added). Elsewhere, Weinberg claims that the relevant link
between properties and symmetries shows that “at the deepest level, all we find are symmetries and
responses to symmetries” (Weinberg, 1987, p. 80) and that “matter thus loses its central role in physics”
(Weinberg, 1993, p. 139).



according to which the world fundamentally consists of objects instantiating properties,
and toward a metaphysics which conceives of fundamental reality as purely ‘structural’
in a sense to be elucidated (at least in part) by appeal to just this link between properties
and symmetries. Proponents of this line—also known as ontic structural realism—claim
that the link between physical properties and symmetries is “the basis of the claim that
such properties should be conceived of structurally,”® in the sense that “the properties
that particles have [...] appear to be explicable via considerations of [symmetry]| structure”
so that “what should be regarded as properly fundamental is the symmetry structure |[...]
that explains [the properties of elementary particles].”* However, if we are to use claims
about a link between physical properties and continuous symmetries in the articulation
of metaphysical theories, let alone as the basis for a radical revision of metaphysics, we
first need to develop a sufficiently precise understanding of the content of these claims.
The purpose of this paper is to do just that.

The link between physical properties and symmetries that is of concern in this paper
is distinct from a more familiar correspondence, captured by Noether’s theorem, between
continuous symmetries and conserved quantities.>® For example, Noether’s theorem
entails that rigid rotations about a given point are a symmetry of a physical system iff
the system’s total angular momentum about that point is conserved, i.e. constant in
time—a fact which explains why figure skaters spin more quickly when drawing in their
arms. But this is not the connection physicists have in mind when they claim that a given
property is linked to a continuous symmetry in the relevant sense. Whereas this link
concerns “the way particles behave when you perform various symmetry transformations”
such as rotations,” Noether’s theorem concerns the way particles behave under temporal
evolution, i.e. whether certain physical quantities are conserved. The correspondence
captured by Noether’s theorem is therefore distinct from the link between properties
and continuous symmetries that is the target of this paper.

The relevant sense in which a physical property may be said to be linked to a
continuous symmetry is also distinct from the claim that this property is invariant under
that symmetry, in the sense that any two states of the system related by that symmetry
agree about this property. There is something right about this proposal: every property
linked to a symmetry in the relevant sense is invariant under that symmetry. But there is
also something wrong about this proposal: a property can be invariant under a symmetry
without being linked to that symmetry in the relevant sense. Consider a classical n-
particle system in three-dimensional Euclidean space. At every instant of time, the
system has values of various vector quantities, such as total linear momentum p’ and, for
every spatial point, the total angular momentum L of the system about that point. The

3(French, 2014, p. 109).

*(McKenzie, 2014b, p. 21). This is echoed by other authors; e.g. Ladyman (1998); Ladyman and Ross
(2007); Kantorovich (2003). Ontic structuralists also use the link between properties and symmetries
to argue against other metaphysical views such as certain varieties of dispositional essentialism; for
example, French (2014, pp. 251) and Saatsi (2017); cf. (Livanios, 2010).

5(Noether, 1918).

SPhysical quantities (like mass and energy) can be thought of as associated with a range of values,
each of which is a property in its own right.

"(Weinberg, 1987, p. 79); emphasis added.



system also has values of various scalar quantities, such as the magnitude of total linear
momentum |p] and, for any given point, the magnitude |E] of total angular momentum
about that point. Both of these magnitudes are invariant under rigid rotations about any
given point.® And yet, for every point z, only the magnitude of total angular momentum
about x is linked to rigid rotations about z in the sense identified by physicists.

L=qxp
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Figure 1: Illustration of a classical one-particle system in orbital motion about z. ¢
represents the position of the particle in a co-ordinate system originating at xz, pits
linear momentum and L = ¢ X p its angular momentum about x.

The question we’re asking has a standard mathematical answer—one that physicists
like Weinberg presumably have in mind when making the more colourful claims cited
above. This answer goes roughly as follows. The notion of a continuous symmetry is
mathematically formalized by the notion of a group: roughly, a collection of transforma-
tions of a given type, such as rotations. And every group G of continuous symmetries of
a system is associated with a mathematical space capturing certain essential features of
the transformations in G.? Now, there are mathematical objects (functions in the context
of classical mechanics, operators in the context of quantum mechanics) whose invariance
under G can be derived exclusively from the essential features of transformations in G
captured by this space—objects which are called Casimir invariants of G and whose
number depends on G. The key observation is now that every property linked with
a particular symmetry group is represented by one of the Casimir invariants of that
group.'? For example, the magnitude of total angular momentum about spatial point z
of a classical n-particle system is represented by a Casimir invariant of the group of rigid
rotations of the system about x, whereas the magnitude of total linear momentum is not.
Similarly, mass and spin of elementary particles are each represented by one of the two

8Throughout this paper, I understand the relevant transformations actively; that is, as transformations
on physical systems, rather than merely as transformations of the mathematical objects representing
those systems. See (Brading and Castellani, 2007, pp. 1342-3) for more on this distinction.

9This space is called the Lie algebra of G.

0By ‘representation’ I mean the way in which items of a linguistic or mathematical sort (theories,
models, sentences, variables, predicates, functions, operators) are used to make claims about items of a
‘metaphysical’ or ‘worldly’ sort (possible worlds, facts, propositions, objects, properties, quantities).



Casimir invariants of the group of relativistic boosts, rotations, and translations.!'! The
standard mathematical answer is thus that a physical property P is linked to a continuous
symmetry group G in the relevant sense iff the mathematical object representing P is a
Casimir invariant of G.

A mathematical physicist or a certain sort of philosopher might think that this is
all that needs to be said about the matter. According to this viewpoint, mathematical
physics in itself is perfectly adequate and fully intelligible as a representation of the
underlying reality, and no further understanding is to be gained by going ‘beyond’ physics
into the murky waters of metaphysics.?

But for another kind of philosopher, the standard mathematical answer isn’t good
enough. According to this philosopher, there is something dissatisfying about characteriz-
ing features of reality by reference to the mathematical properties of their mathematical
representations. If someone unfamiliar with the concept of money asks what is conveyed
about a bag by saying that it contains some amount of US dollars in cash, the response
‘that the bag has whatever feature is accurately represented by the dollar sign printed
on its side’ is likely to be dismissed as unilluminating. It is similarly inadequate to
characterize the feature that a physical property has just in case it is linked with a
symmetry group as whatever feature of this property is accurately represented by the
fact that its mathematical representative is a Casimir invariant of that group. Therefore,
once the mathematical physicist has explained the notion of a Casimir invariant, there’s
a further question that this philosopher would like to see addressed: what information
about a property is conveyed by saying that its mathematical representative—the function
or operator associated with it—is a Casimir invariant of some continuous symmetry
group? This is the question I am going to answer in this paper.

I proceed as follows. I explain the standard mathematical answer in section 2 by
considering the case study of total angular momentum about a point x of a classical
n-particle system and the group of rigid rotations of the system about z. Subsequently, I
explain the metaphysical content of the notion of a Casimir invariant. According to the
proposal I develop in section 3, what is conveyed about a property by the fact that it is
represented by a Casimir invariant of a given group is that this property is a fine-grained
invariant under that group—a notion I introduce. This notion is ‘fine-grained’ in the
sense that not every invariant (in the ordinary sense) under a group is also a fine-grained
invariant under that group: for example, it will turn out that the magnitude of total
angular momentum about z is a fine-grained invariant under rigid rotations about x,
whereas the magnitude of total linear momentum is not. Finally, section 4 draws some
contrasts with ontic structural realism.

"This group is referred to as the Poincaré group.

20ne influential philosopher of physics who holds this view is David Wallace: “I'm happy to say
that the way theories represent the world is inherently mathematical, so that the reason property P is
‘associated’ with symmetry G is simply because P is represented by the Casimir invariant of G, and
there’s no need to say more.” (Personal correspondence, quoted with permission.)



2 Casimir Invariance

According to the standard mathematical answer, a physical property P is linked to
a continuous symmetry group G in the relevant sense iff the mathematical object
representing P is a Casimir invariant of G. The goal of this section is to introduce this
notion and to characterize the theoretical and metaphysical framework I’'ll be using
throughout this paper.

2.1 The Framework

To begin with, I need to tell you what notion of symmetry is operative in the link
between symmetries and physical quantities. The relevant symmetries are symmetries of
the mathematical space representing state space, or state-space symmetries, for short.

By way of illustration, consider an n-particle system described in terms of the
Hamiltonian formulation of classical mechanics. This theory describes the particles as
each instantiating the values of certain variable quantities with a special feature: the
values of these quantities, together with the masses of the particles, fix the values of all
other physical quantities at that time. These quantities are position and momentum.
A fact about the value of position and momentum instantiated by each particle at a
given time is what’s called the instantaneous state of the system at that time. The state
space of an n-particle system is just the space of all possible instantaneous states of this
system; that is, the space of all possible assignments of position and momentum values
to particles. In Hamiltonian mechanics, this space is represented by a mathematical
space called phase space.

Now, just like a transformation on Euclidean space is a symmetry of Euclidean space
just in case it preserves what one may think of as the characteristic structural feature of
Euclidean space—the Fuclidean metric—a transformation of phase space is a symmetry
of phase space just in case it preserves the characteristic structural feature of phase
space: the symplectic form on phase space.'® In the present context, you can think of
the symplectic form as something that determines the volumes of phase space regions,
and of phase space symmetries as transformations that preserve the volumes of such
regions.14

Now, the theoretical setting in which physicsts most confidently express the claim that
certain physical quantities are linked to specific symmetries is that of quantum theory,
and quantum field theory in particular. Here, the mathematical spaces used to represent
the state space of a given system are called Hilbert spaces. In this context, state-space
symmetries are therefore Hilbert space symmetries. The relevant characteristic structural
feature of Hilbert spaces—the feature that a transformation of Hilbert space must
preserve to count as a Hilbert space symmetry—is the inner product, a function which
determines the length of vectors and their projections onto one another.'® In other words:

13Phase space symmetries are also referred to as symplectomorphisms.

This is only a first approximation: although every transformation that preserves the symplectic
form also preserves the volumes of phase space regions, the converse is not true.

15Hilbert space symmetries are also referred to as unitary transformations. My terminology here



Hilbert space symmetries are the direct quantum-theoretic analogues of phase space
symmetries. This means that the notion of symmetry relevant to the hypothesized link
between symmetries and physical quantities can be found in both the classical and the
quantum setting.

It is worth noting that state-space symmetries usually have the additional feature of
preserving the dynamical equations and thus also count as dynamical symmetries. But
these two notions of symmetry—state-space symmetry and dynamical symmetry—are
not logically coextensive: not every state-space symmetry is also a dynamical symmetry.
Moreover, the transformations that figure in the hypothesized link between quantities and
symmetries do so qua being state-space symmetries, even though these transformations
typically have the additional feature of being dynamical symmetries.

The mathematical complexity of quantum field theory is substantial. Luckily, the
above-mentioned parallels in the treatment of state-space symmetries between the
classical and the quantum setting means that we don’t need let ourselves be sidetracked
by these complexities: we can understand the link between quantities and symmetries
within the relatively simple setting of n-particle Hamiltonian mechanics. This is the
framework I'll be using in this paper.'6

Let me briefly introduce a few important features of n-particle Hamiltonian mechanics.
The phase space of an n-particle system in three-dimensional Euclidean space is given by
its configuration space—the space whose points each represent a possible instantaneous
spatial configuration of the system—together with an n-dimensional vector space attached
to every point, a space whose elements each represent a possible assignment of a specific
value of linear momentum to every particle at that point.!” We can describe any given
state of the system by a 6n-tuple of numbers with regard to some co-ordinate system of
R3: three spatial co-ordinates as well as three momentum co-ordinates for each of the n
particles.

Each physical quantity of the system is associated with a smooth distribution of
values over state space; that is, with a smooth assignment, to each possible state, of a
value of this quantity. These distributions are specified by smooth functions from phase
space to the real numbers (in the case of scalar quantities) or by smooth functions from
phase space to triples of real numbers (in the case of vector quantities). For example, the
distribution of total energy over the state space of the n-particle system is represented
by a real-valued function referred to as the Hamiltonian and denoted by H.'® For the

follows (Weinberg, 1995, pp. 50) and is based on work by Eugene Wigner (1931).

16To be sure: n-particle Hamiltonian mechanics has no hope of being the true theory of fundamental
physical reality. But that’s fine: this paper is not intended as a contribution to the metaphysics of
classical mechanics. Instead, the point of this investigation is to draw metaphysical conclusions that can
be transposed to more cutting-edge physical theories, or that (at the very least) allow us to identify
general strategies for handling such cases.

In mathematical terms, the phase space of an n-particle system is the cotangent bundle of its
configuration space.

8Physical quantities associated with smooth phase space functions are generally not invariant under
changes of inertial reference frames (or Galilei frames): for example, there are Galilei frames which
disagree about linear momentum and total energy. This means that we should always be talking about
these quantities relative to a particular Galilei frame. However, the way these quantities are talked about



sake of brevity, I will abbreviate ‘the state-space distribution associated with a quantity
@ is represented by the phase space function fg’ by ‘@ is represented by fQ’.lg

I will take for granted that physical quantities can be distinct despite being represented
by the same phase space function. More precisely: call two quantities Q and Q' state-space
co-extensive just in case their associated distributions assign the same value to every
state in state space, i.e. just in case the corresponding phase space functions fg, for are
mathematically co-extensive: fg = for. Then, the claim I take for granted is that there
are distinct state-space co-extensive quantities.

One motivation for this assumption is that state-space co-extensive quantities need
not be metaphysically co-extensive. More precisely: suppose we think of the distributions
associated with physical quantities as assigning values to every metaphysically possible
state of the system, rather than merely to the possible states represented by points
in phase space. Then, for any phase space function, there will generally be distinct
quantities such that the restriction to state space of their associated distributions is
accurately represented by this function.

By way of example, suppose that the total energy of the n-particle system is in fact
state-space co-extensive with the quantity whose value at a state is the result of a certain
specific operation on the position and momentum facts at that state corresponding to the
sum of the values of kinetic energy and Newtonian gravitational energy at that state—a
fact we may express in terms of the equation H = T'+V,, where T', and V;, are phase space
functions representing kinetic and Newtonian gravitational energy, respectively. But
total energy and the quantity represented by 1"+ V, aren’t metaphysically co-extensive:
for example, they disagree at metaphysically possible states which contain electrostatic
energy. This motivates the assumption that there are distinct state-space co-extensive
quantities.

This paper focuses on the quantity of total angular momentum about a given spatial
point x. The state-space distribution of this quantity is specified by the vector function
L=IL['+. + I_:”, where L¥ = g% x p* represents the angular momentum of the k-th
particle about z, ¥ its position in a co-ordinate system centered on z, and F* its linear
momentum. The scalar components of L are real-valued phase space functions each of
which represents the state-space distribution of the component of angular momentum
along some axis through z.2°

Certain continuous sequences of states (or state-space curves) capture important
dynamical and modal facts about the system. Most importantly, the state-space curves
that count as possible dynamical histories of the system allow us to answer questions such
as ‘what will the system be like in five minutes’? Another important type of state-space

in physics and philosophy often doesn’t make their Galilei-dependence explicit. In this paper, I follow
this practice for the sake of brevity.

9Not all quantities represented by smooth phase space functions are equally natural: any ‘gerryman-
dered’ function of position and momentum, such as the product ¢* - 5* of the position vector of the i-th
particle with the linear momentum vector of the k-th particle, is less natural than (for example) the
function which represents the linear momentum of a given particle. Distinctions based on naturalness
are familiar from the metaphysics of properties; cf. (Lewis, 1986, pp. 59).

20Let {e1, ez, ...,en} be an orthonormal basis of a real vector space V. The scalar components of any
v =wvie1 + veez + ... + vpe, € V are the real numbers v, va,..., Up.



curves allow us to answer questions such as ‘what would the system be like if it were
rigidly rotated by 180° about an axis through some spatial point 2?7’ These state-space
curves correspond to rigid rotations of the system about axes intersecting z.
State-space curves of a given type are specified in terms of some particular flow on
phase space, i.e. in terms of some particular family of phase space curves such that each
phase space point is intersected by exactly one curve in this family. (Think of a flow
as the family of curves traced out by water molecules of a river.) Each flow has a real
parameter: for example, for every real number ¢, the dynamical flow representing the
dynamical histories of the system assigns to each phase space point its image under
dynamical evolution by ¢ units of time. Similarly, for each real number ¢, the rotational
flow corresponding to rigid rotations of the system about an axis through x assigns to
each phase space point its image under a rigid rotation by an angle of ¢ about this axis.
It is worth stressing that the relevant rotations are non-dynamical: whereas the
parameter of the dynamical flow is interpreted as time, the parameter of a given
rotational flow is interpreted as the corresponding angle of rotation; and states related
by a rotation are generally not related by dynamical evolution, as illustrated in figure

(2)-

Figure 2: Illustration of phase space with a dynamical flow line and a rotational flow
line (dotted) through phase space point (g, p).

This is where a crucial aspect of Hamiltonian mechanics comes into play: the phase
space flows representing (for example) dynamical evolution and rotations about some
axis in physical space are what’s referred to as Hamiltonian flows. I'll explain this notion
in a moment.

But first, let me tell you why it’s important, in the present context, that these flows are
Hamiltonian. The first reason is that Hamiltonian flows are symmetries of phase space:
they preserve the symplectic form, the characteristic structural feature of state space.
(Again, you can think of this as the claim that Hamiltonian flows preserve the volumes
of phase space regions.?!) Second, each of these flows has an important mathematical

21The qualification given in footnote (14) applies here as well.



relationship to some specific smooth phase space function: each Hamiltonian flow is
determined by such a function in a way that preserves this function. The function which
determines a Hamiltonian flow is called the generator of this flow. For example, the
dynamical flow is the Hamiltonian flow generated by the total energy function H, and the
rotational flow corresponding to rigid rotations about some axis through z is generated
by the scalar component of L along this axis.

The technical reason for why Hamiltonian flows preserve the symplectic form (and
thus count as state-space symmetries) need not concern us here. By contrast, the
determinative relationship between smooth phase space functions and the Hamiltonian
flows they generate provides crucial inspiration for the metaphysical account T will
propose later, so bear with me while I explain this relationship in more detail.

2.2 Hamiltonian Flows and their Generators

What is it for a smooth function to be a generator of its Hamiltonian flow? Here is an
informal picture. We are familiar with the sense in which a vector field generates a flow.
(Think of a vector field on some space as a function which assigns a vector to every
point in this space.) For example, the flow of the velocity vector field of a river can be
thought of as the family of curves traced out by the water molecules dragged along by
the current of the river. But what is it for a scalar function to be a generator of a flow?

There’s a fairly intuitive sense in which a scalar function is the generator of the flow
of its gradient. Recall: the gradient of a smooth function f on a Riemannian manifold is
the vector field which assigns to each point of the manifold the vector that points in
the direction of greatest increase of f at that point.?? And every smooth function f on
such a manifold determines its gradient in a two-step process. The first step consists
in an operation that takes smooth functions as input and throws away all but two
specific sorts of information: first, information about the regions of the manifold in
which the input function is constant, also called level surfaces of this function;?® and
second, information about the differences in value of this function between each of its
level surfaces. In mathematics jargon, this operation is called the exterior derivative. For
example, the information contained in the exterior derivative of the elevation function of
a piece of terrain suffices to draw an accurate map of the terrain: on the basis of this
information, one can draw contour lines as well as the differences in elevation between
these lines. What would be missing from the map, however—the information thrown
away by the exterior derivative—is the absolute elevation of a given point of the terrain.
In other words: the exterior derivative of a function is equivalent to this function up to
an additive constant.

The information contained in the exterior derivative of f is not yet packaged in the
form of a vector field. This is the task of the second step, in which the exterior derivative

22 A Riemannian manifold is a smooth manifold equipped with a Riemannian metric, a positive-definite
map from pairs of vector fields to smooth functions that we can think of as a generalisation of the
Euclidean dot product.

2Level surfaces are generalisations of the one-dimensional contour lines familiar from hiking maps,
i.e. the lines of constant elevation of the relevant piece of terrain.



of f is turned into the gradient of f. The specifics of this mathematical procedure are
not relevant for our purposes, except for the fact that it is defined with regard to the
Riemannian metric on the underlying manifold, a rule we can think of as the Euclidean
‘dot product’ of two vectors. Intuitively: the role of the Riemannian metric is to take
something that doesn’t point in any direction (the exterior derivative of f) and turn it
into something that does point in a direction (the gradient of f).

It is by way of these two steps that a function determines its gradient. But as noted
above, a vector field also determines its flow. Thus, f also determines the flow of its
gradient, which is captured by saying that f is a generator of this flow.?*

But what is it for a function on phase space to generate its Hamiltonian flow? The
answer lies in a different way to package the information contained in the exterior
derivative, a different procedure for turning this information into a wvector field—a
procedure peculiar to Hamiltonian mechanics and defined with regard to a mathematical
device we encountered earlier as the ‘characteristic structural feature of phase space’:
the symplectic form on phase space. The key difference between the procedure defined
in terms of the Riemannian metric and the procedure defined in terms of the symplectic
form is this: whereas the former turns the exterior derivative of a function into a vector
field that everywhere points in the direction of greatest increase of the function, the
latter turns the exterior derivative into a vector field that everywhere points along the
level surfaces of this function, as illustrated in figure (3). Vector fields of this sort are
referred to as Hamiltonian vector fields and their flows as Hamiltonian flows. As a result,
each phase space function f determines or generates a specific Hamiltonian flow: the
flow of the Hamiltonian vector field of f. Moreover, since the Hamiltonian vector field of
f points everywhere along the level surfaces of f, each flow line of the Hamiltonian flow
generated by f is confined to some level surface of f. This is the reason for why smooth
phase space functions are invariant under the Hamiltonian flows they generate.

We thus understand what it is for a scalar function to generate its Hamiltonian flow,
and thus what it is for the component of L along some axis through spatial point x to
be a generator of the Hamiltonian flow corresponding to rigid rotations about this axis.

Now, the rigid rotations about arbitrary axes intersecting x taken together have
the structure of a group, namely the group SO(3) of orientation-preserving isometric
rotations in three-dimensional Euclidean space.2> More precisely, rigid rotations of the n-
particle system about a given point are implemented by an action of SO(3) on the phase
space of the system, i.e. by a rule for how the position and momentum of each constituent
particle transforms under every abstract element of the group: for every spatial point,
the action of SO(3) as rotations about that point consists in an assignment, to each

24Gince there is an infinity of distinct functions with the same exterior derivative—the functions that
agree up to an arbitrary real constant—the flow of each gradient vector field has an infinity of generators.
The same applies to Hamiltonian flows that will be introduced shortly.

25The statement that rotations about a point have the structure of a group is equivalent to the
conjunction of four claims. First, the combination of any two rotations is also a rotation. Second, the
result of first performing rotation R followed by the combination of rotations R’ and R” is the same as
first performing the combination of R and R’, followed by the rotation R”. Third, every rotation can be
reversed. Fourth, some rotations are equivalent to doing nothing—e.g. rotations by 0 and 360 degrees.

10



ham(f)

Figure 3: Illustration of the level surfaces (contour lines) of a function f on a two-
dimensional manifold. grad(f) and ham(f) denote the values at x of the gradient and
the Hamiltonian vector field of f, respectively.

abstract element of SO(3), of a rotation by some angle about some axis intersecting
that point.

This has an important consequence: any two phase space points related by a rotation
about spatial point = are related by a rotation about some specific axis i intersecting x. A
fortiori, any two such phase space points lie on a flow line belonging to the Hamiltonian
flow generated by the i-component of L. In this way, the action of SO(3) as rigid rotations
about x is implemented by Hamiltonian flows corresponding to rotations about axes
through x, and so the generators of the flows about these axes—the components of L
along these axes—are also generators of this action of SO(3), or SO(3)-generators, for
short.

Although each SO(3)-generator is invariant under its own Hamiltonian flow, SO(3)-
generators are not SO(3)-invariant: it is not the case that any two phase space points
related by a rotation about some axis through = agree about every component of L.
Exactly how do the components of L change under rotations? This is the last question
we need to answer before we can state the notion of a Casimir invariant.

11



2.3 SO(3) Poisson brackets

Physics is often concerned with determining the rates of change of physical quantities
under certain important variations of the system. For example, velocity is the instanta-
neous rate of change through time of position, and net force is the instantaneous rate of
change through time of total linear momentum.

In Hamiltonian mechanics, facts of this sort are represented by the derivatives of phase
space functions with regard to the parameter of the Hamiltonian flow that characterizes
the relevant variation of the system. The instantaneous rate of change under dynamical
evolution of the position of the k-th particle is given by the derivative of §* with regard
to time, the parameter of the Hamiltonian flow generated by the total energy function H.
Similarly, the rate of change of the linear momentum of the k-th particle under rotations
about some axis through z is represented by the derivative of p* with with regard to the
angle of rotation about that axis, the parameter of the Hamiltonian flow generated by
the component of L along that axis.

The derivative of a smooth function with regard to the parameter of a Hamiltonian
flow can be expressed directly in terms of the generator of this flow. More specifically,
the derivative of a function f with regard to the parameter A of the Hamiltonian flow
generated by another function g is given by?%

df
=l (1)

where {-,-} is the Poisson bracket, a product on the space of smooth functions satisfying
certain conditions, the details of which need not concern us here.?”

For present purposes, the following intuitive picture of the mathematical content of
(1) shall suffice. A perfectly standard way to represent the rate of change of the elevation
of a piece of terrain along a path through the terrain is by means of the derivative of
the elevation function in the direction of this path.?®

Suppose now that we are considering an entire family of paths through the terrain,
and suppose that this family can be represented by the flow of some vector field Y. We
then have a notion of a derivative of the elevation function in the direction of Y. This
derivative can be thought of as the function which assigns to every point of the terrain a
number that tells us how much of the greatest increase of elevation we're experiencing in
the direction of Y—the function whose value at a point x is the projection, with regard
to the Riemannian metric, of the value of the gradient of the elevation function at x
onto the value of Y at z, as illustrated in figure (4).

Equation (1) has a very similar mathematical role: {f, g} also captures a sort of deriva-
tive of f in the direction of a vector field—mamely, in the direction of the Hamiltonian
vector field of g. However, the vector field that is being projected onto the Hamiltonian

26Recall: we're supposing that the f and g are real-valued functions on phase space only. This entails
that % = 0, where X is the parameter of the flow of g.

2"The Poisson bracket is a Lie bracket; that is, it is anti-symmetric, bi-linear, non-associative and
satisfies the Jacobi identity: for any smooth functions f, g, h, {{f, 9}, h} + {{g,h}, f} + {{h, f},9} = 0.

28In mathematical jargon, this derivative is known as the directional derivative of the elevation
function along the path.
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Figure 4: Tllustration of a function f via its contour lines, showing a flow line (dotted)
of the vector field Y and the value grad(f) of the gradient of f at x.

vector field of g is not the gradient of f, but rather the Hamiltonian vector field of
f- Moreover, the projection operation is different: whereas in the previous case the
projection operation is given by the Riemannian metric, here it is given by the symplectic
form. Notwithstanding these differences, we may think of the Poisson bracket {f, g} as a
derivative of f in the direction of the Hamiltonian vector field of g, and thus as a phase
space function that captures how f varies along the Hamiltonian flow of g.

Poisson brackets are therefore the tool we need to determine how the components of L
vary under rotations about some spatial point x. Denote by L; the scalar component of
L along axis ¢ through z, and let 1, 2, and 3 be the labels of pairwise perpendicular axes
through x. Then, {Lq, Lo} is the derivative of L; along the Hamiltonian flow generated
by Lo. And as it turns out, the derivative of any given SO(3)-generator along the flow of
another SO(3)-generator is also an SO(3)-generator: {L1, Ly} = L3. Equations of this
sort are called SO(3)-Poisson bracket equations and summarized as

{Li, L} = ejjiLy, (2)

where 1, j, k take values in the labels of any given triple of pairwise perpendicular axes
intersecting x and €;; is 1 for even permutations of ijk, —1 for uneven permutations
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and 0 otherwise.2?

We need to take note of a related, important use of Poisson brackets. It might be
remembered from high school calculus that a function of a single variable is constant
just in case its derivative vanishes everywhere. Similarly, a function f is constant (or
invariant) along the Hamiltonian flow of another function g iff the derivative of f along
this flow vanishes everywhere in phase space; that is, iff {f, g} = 0. Facts about the
invariance of functions along Hamiltonian flows are thus facts about vanishing Poisson
brackets.

We can use this to say what it is for a function to be invariant under rotations about
some spatial point x: a function f has this property just in case, for every axis i through
x, its derivative along the Hamiltonian flow corresponding to rigid rotations about i
vanishes: {f, L;} = 0. I refer to functions which have this property as SO(3)-constant
functions.

Note that the physical quantities represented by SO(3)-constants are such that any
two states related by an SO(3)-transformation agree about these quantities—which is to
say that these quantities are SO(3)-invariant. Whenever there is a risk of confusion, I refer
to the quantities represented by SO(3)-constant functions as ordinary SO(3)-invariants.

The goal of this section was to explain how the SO(3)-generators change under
rotations. As promised, this was the last thing we needed to understand before articulating
the notion of a Casimir invariant. To this I now turn.

2.4 Casimir Invariants

I follow the standard definition in physics texts.3’ For a smooth function C' on phase
space to be a Casimir invariant of the action of SO(3) as rigid rotations about = (or
an SO(3)-Casimir, for short) is for C' to satisfy two conditions. First, C' must be an
SO(3)-constant: {C, L;} = 0 for every axis i through z. Second, C' must be a function
exclusively of the SO(3)-generators.

One phase space function which satisfies these conditions is L? = L? + L3 + L3, the
Euclidean dot product of the angular momentum vector function with itself. First, L?
is an SO(3)-constant; that is, {L?, L;} = 0 for every axis i through 2.3! Second, L? is
a function only of SO(3)-generators, as can be seen by noting that no two states can
differ about L? without differing about at least one component of L. Importantly, L? is
the unique ‘independent’ SO(3)-Casimir, in the sense that every other SO(3)-Casimir is
a function of L?—for example, the function cos(L?). For this reason, we may refer to L?
as the SO(3)-Casimir.

L? has a systematic relationship with the function |I_:| representing the magnitude
of angular momentum M: ]E| is the square root of L2. In the remainder of this paper,
I follow an informal convention in physics by treating L? and |E| as having the same
representational content, so that M may be said to be represented by L? as much as by

2Tn mathematical jargon, equation (2) means that the set of SO(3)-generators forms a Lie algebra
with regard to the Poisson bracket, called the SO(3)-Poisson Lie algebra.

30(Penrose, 2004, pp. 553,568), (Fuchs and Schweigert, 2003, pp. 254).

31This is derived in (Goldstein et al., 2001, p. 418).
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|E| In so doing, it is important to keep in mind that any given value of M is represented
by the square root of the corresponding numerical value of L?.

The functional dependence of SO(3)-Casimirs on SO(3)-generators is responsible
for an important feature of Casimirs: a function C' is an SO(3)-Casimir iff the fact
that C' is SO(3)-constant can be derived from the SO(3)-Poisson brackets alone. In
particular, the SO(3)-Poisson brackets {L;, L;} = €L are sufficient to derive the
equations {L?, L;} = 0. This feature of SO(3)-Casimirs will be important later, so keep
it in mind.

Not every SO(3)-constant is also an SO(3)-Casimir. For example, the function p?
representing the magnitude of total linear momentum is an SO(3)-constant: it obeys
{p?, L;} = 0 for every relevant axis i and thus satisfies the first condition of being an
SO(3)-Casimir. But p? is not a function of the SO(3)-generators: the phase space points
(¢, p) and (24, %ﬁ) representing states of a one-particle system agree about L= qgXp
and thus about all components thereof, but disagree about p?. It follows that p? is not
a function of the SO(3)-generators, and thus not an SO(3)-Casimir. This is confirmed
by the fact that the SO(3)-constancy of p? cannot be derived from the SO(3)-Poisson
brackets alone.

According to the standard mathematical account, the magnitude of total angular
momentum about z is linked to the group SO(3) of rigid rotations about x (in the
relevant sense) just in case the mathematical representative of this quantity is an SO(3)-
Casimir. We now understand what this means: to be an SO(3)-Casimir is to be an
SO(3)-constant function of the SO(3)-generators. I will now explain what is conveyed
about the magnitude of total angular momentum about x by saying that its mathematical
representative is an SO(3)-Casimir invariant.

3 Fine-Grained Invariance

Let me dispense with a tempting proposal immediately. As we just saw, one feature that
distinguishes SO(3)-Casimirs from mere SO(3)-constants is that the former, but not
the latter, are functions only of the SO(3)-generators. This is reflected in the fact that,
for any triple of co-ordinate axes through x, L? can be written as the sum of squares
of components of L along these axes, whereas the mere SO(3)-constant p? cannot. It
may now be tempting to think that it is a very similar feature that distinguishes the
SO(3)-invariant quantity represented by the SO(3)-Casimir from other SO(3)-invariant
quantities. Observe that the magnitude of total angular momentum M can be thought
of as having the following sort of functional dependence on the components of angular
momentum: M is the quantity such that, for any triple of pairwise perpendicular axes
through z, the value of M at a state is the result of whatever specific operation on the
position and momentum facts at that state corresponds to taking the square root of
the sum of squares of the values of the angular momentum components along these
axes at that state. According to the tempting proposal, what is conveyed about M by
saying that its mathematical representative is an SO(3)-Casimir is the conjunction of
two claims: first, M is an ordinary SO(3)-invariant; and second, M has just this sort of
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functional dependence on the components of angular momentum.

The problem with this proposal is that it cannot be applied in quantum mechanics.
For example, actions of SO(3) as rigid spatial rotations of a non-relativistic n-particle
quantum system about a spatial point are generated by self-adjoint operators L; that
represent components of the total orbital angular momentum about that point. In
this setting, the SO(3)-Poisson bracket equations (2) become the commutator bracket
equations [IA/Z7 ﬁj] = eijkf/k, and the Casimir invariant associated with this action of
SO(3) is the operator that can be written as ? = i}% + ﬁ% + L3, interpreted as the
magnitude of total orbital angular momentum.

The crux is now that it is impossible for a quantum system to simultaneously possess
determinate values of quantities represented by non-commuting operators.?> This means
that a quantum system cannot simultaneously have values for every component of total
orbital angular momentum, and so no physical quantity can functionally depend on
these components in the way fleshed out above.

The simple idea therefore does not carry over to quantum theory. But it is precisely
the context of quantum theory in which the link between properties and symmetries
is of greatest physical significance, and so any plausible account of this link ought to
be applicable to this context. Since the simple idea does not meet this requirement, it
should be rejected.

What, then, is the right account? The simple idea we just considered hypostatizes
one mathematical feature of Casimir invariants: the functional dependence of Casimir
invariants on the relevant generators. I propose that we focus on another distinctive
feature of Casimir invariants: the fact that the SO(3)-constancy of SO(3)-Casimirs is
derivable exclusively from the SO(3)-Poisson bracket equations. Let the SO(3)-variation
facts be the collection of facts consisting, for every triple of pairwise perpendicular axes
through x, of the facts stated by the SO(3)-Poisson bracket equations {L;, L;} = € Ly;
where i, j, k take values in the labels of these axes. According to my proposal, what
is conveyed about a property by saying that it is represented by an SO(3)-Casimir
invariant is that the ordinary SO(3)-invariance of this property is determined by the
SO(3)-variation facts; a determinative relationship which corresponds to the derivability
of one collection of Poisson bracket equations from another collection of Poisson bracket
equations. This proposal is illustrated in figure (5).

To implement this proposal, we need to do two things: first, we need to explain the
nature of SO(3)-variation facts; and second, we need to understand the nature of the
determinative relationship whose mathematical proxy is the derivability between the
relevant mathematical propositions.

32Note that this claim does not depend on the controversial eigenstate-eigenvalue link. In other words:
it is not presupposed that (1) every physical quantity is represented by a Hermitian operator, nor that
(2) if a quantity @ is represented by a Hermitian operator, the only way of determinately having @ is
being in an eigenstate of Q.
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{fo,Li} =0 @ is an ordinary SO(3)-invariant

A A

derivation determination

{Li, Lj} = eijr Ly, SO(3)-variation facts

Figure 5: Illustration of the proposal, according to which the mathematical feature of the
SO(3)-Casimir invariant function fg shown on the left is reflected in a similar feature,
shown on the right, of the quantity @) represented by fq.

3.1 Modality, Variation, and Determination

What is the content of Poisson bracket equations such as {L1, Lo} = L3? For every axis
1 through spatial point z, denote by M; the i-component of total angular momentum
about z. Then our question seems to have the following, straightforward answer. The
Poisson bracket {L1, Lo} expresses the definite description ‘the quantity whose value at
every state equals the rate of change of M; under rotations about the 2-axis’; and the
equation {L1, Lo} = L3 expresses the non-trivial identity of the satisfier of this definite
description with Ms.

But there is a problem with this idea. The Poisson bracket {L;, Lo} prominently
mentions Lo, the mathematical representative of Ms; and it does so for an important
mathematical reason: Lo is the generator of the flow in the direction of which we’re
taking the derivative of Li. By contrast, the proposed definite description mentions only
My, but not M. This suggests that an important part of the content of {Lq, Lo} is
missed by the straightforward proposal.

A natural thought is to make the definite description expressed by {Lj, Lo} reflect
the mathematical content of {Li, Lo} more closely. Mathematically, {L1, L2} can be
paraphrased as ‘the function whose value at every phase space point equals the derivative
of Ly along the Hamiltonian flow generated by Lo’ This suggests that the definite
description stated by {Li, Lo} is ‘the quantity whose value at every state equals the
rate of change of M; along the family state-space curves generated by My As it stands,
however, this is obscure: there is no obvious sense in which a quantity counts as a
generator of a family of state-space curves. The key challenge is thus to give content to
this sort of definite description.

The mathematical account reviewed in section (2.2) is suggestive of the following
proposal. What is conveyed about a quantity () by the fact that its mathematical
surrogate fg is a generator of its associated phase-space flow is that certain facts
about the state-space distribution of Q) to determine facts about the state-space curves
represented by the Hamiltonian flow of fp in a way that mirrors the mathematical
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determination of this flow by fq, for some appropriate notion of determination.

To implement this proposal, we need to do three things. We need to understand the
nature of the facts determined by certain facts about the quantities characterized by
generators. We need to explain the nature of facts about those quantities that determine
these facts. And we need to say more about the nature of the determination relation
that obtains between the relevant facts.

What is the nature of the facts determined by certain facts about quantities char-
acterized by generators? I said earlier that Hamiltonian flows on the phase space of
an n-particle system capture certain modal features of the system. For example, the
Hamiltonian flow of L1 can be used to answer questions such as ‘what would the system
be like if it were rigidly rotated by 180° about the 1-axis?’ Think of the facts determined
by the relevant facts about M; as answers to questions of this kind.

More precisely, let’s say that state s’ is rotationally accessible from state s just in
case there is an angle ¢ such that s is related to s’ by a rotation about the 1-axis by ¢.
Second, stipulate that a proposition p is 1-possible at a state s iff p holds at some state
rotationally accessible from s, and that p is 1-necessary at s if p holds at every state
rotationally accessible from s. Third, for any two states s and s’ related by a rotation
about the 1-axis, let the modal distance between s and s’ be the smallest number |¢|
such that s and s’ are related by a rotation by an angle of +¢.33 Finally, let the 1-modal
facts at a state s be the collection of facts about what is 1-possible and 1-necessary
at s, together with facts about the modal distances between s and states rotationally
accessible from s. The facts determined by the relevant facts about M; are the 1-modal
facts at every state.

Next, consider a physical quantity characterized by the generator of some phase-space
flow. What is the nature of the facts about this quantity that are supposed to determine
the relevant modal facts? Start by observing that the 1-modal facts at every state are
characterized by the Hamiltonian flow of Li: a state s is rotationally accessible from
another state s’ just in case the phase space points representing s and s’ lie on the same
Hamiltonian flow line of L;. This suggests that we can use the mathematical account of
the facts that determine a particular Hamiltonian flow line of Ly as a blueprint for an
account of the nature of the facts that determine the 1-modal facts at every state.

According to the mathematical account reviewed in section (2.2), the Hamiltonian flow
of a smooth phase space function is determined by the exterior derivative of this function,
i.e. by facts of two sorts: first, facts about which regions of phase space are level surfaces
of the function; and second, facts about the differences in value of the function between
these level surfaces. And a particular flow line is selected by additionally specifying
a particular phase space point—the ‘initial value’ of this flow line. For example: the
exterior derivative of L, together with a specific point (g, p), determines which phase
space points are related to (g, p) by a rotation about the 1-axis.

The facts about a function fg captured by its exterior derivative correspond to facts

33To obtain a reparametrisation-invariant measure of the modal distance—a measure invariant under
a change from degrees to radians, for example—an appropriate normalisation factor needs to be added:
> |¢| in radians and g5 |¢| in degrees. In mathematics jargon, this measure is referred to as the Haar
measure on the underlying group; cf. (Fuchs and Schweigert, 2003, pp. 375-8).
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about the state-space distribution of the physical quantity @ represented by fq, facts I'll
refer to as the level surface facts about Q: first, facts about the regions of state space in
which the quantity has a given constant value; and second, facts about the differences in
value of this quantity between those regions. And in close analogy to the mathematical
story just described, to infer which states are rotationally accessible from actuality—to
infer the actual 1-modal facts—one also needs to know which state one is in; i.e. one
needs to know the actual position and momentum facts. This suggests that the range of
facts which determine the 1-modal facts are the level surface facts about M7, together
with the position and momentum facts.

Finally, we need to say more about the nature of the determination relation. To begin
with, determination in the relevant sense is a relation between facts: namely, the relation
that obtains between (say) the 1-modal facts at some state and the level surface facts
about Mj, together with the position and momentum facts at that state. Moreover, this
relation is not identity: the conjunction of the relevant modal facts is clearly distinct
from the conjunction of the corresponding level surface facts. It is also asymmetric: the
relevant notion of determination is supposed to give metaphysical content to a piece of
asymmetric mathematical language, namely the mathematical sense in which a smooth
phase-space function is the generator of some specific phase-space flow. Thus, the target
notion of determination is such that the 1-modal facts at some state are determined by,
but do not determine, the level surface facts about M7, together with the position and
momentum facts at that state. The determination relation is also clearly not a causal
relation: there is no obvious sense in which the 1-modal facts are caused by the level
surface facts about My, together with the position and momentum facts.

Moreover, the relevant notion of determination is also distinct from necessitation and
supervenience. I'll here focus on the case of supervenience with metaphysical necessity,
according to which facts of type Y supervene on facts of type X iff it is metaphysically
impossible for there to be a difference in the Y-facts without a difference in the X-facts.
(The case against metaphysical necessitation is analogous.) The idea is as follows: for
the 1-modal facts to be determined by the level surface facts about M, together with
the position and momentum facts, is for the 1-modal facts to supervene on the level
surface facts about Mj, together with the position and momentum facts. We have a
clear grip on the supervenience of the 1-modal facts on the position and momentum
facts: there can be no difference in which states are rotationally accessible without a
difference in which possible state is actual. By contrast, if we hold fixed the actual
state of the system, i.e. the actual position and momentum facts, then the 1-modal
facts are metaphysically necessary: given that the actual state of n-particle system is
thus-and-such, and given what it is for the system to be ‘rigidly rotated’ about the
1-axis, facts about which states are rotationally accessible from actuality could not have
failed to obtain. This implies that, given the position and momentum facts, the 1-modal
facts supervene with metaphysical necessity on any fact whatsoever. But it is not the
case that, given the position and momentum facts, the 1-modal facts are determined by
any fact whatsoever. The relevant notion of determination is therefore more fine-grained
than metaphysical necessitation and supervenience: although determination implies
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necessitation and supervenience, it is not tantamount to these notions.?*

This feature of the determination relation is consistent with the following observation
about its fineness of grain. Whereas the mathematical proxy of the determination
relation is extensional in the sense that every phase space function co-extensive with f
counts as a generator of the Hamiltonian flow of f, we have reason to deny that, if the
level surface facts about some quantity @ (together with the position and momentum
facts) determine the relevant modal facts, so do the level surface facts about every
quantity state-space coextensive with (). Even if the total energy of the n-particle
system is in fact state-space co-extensive with the quantity equivalent to the sum of
kinetic and Newtonian gravitational energy, someone who thinks that facts about the
latter determine the dynamical state-space curves would derive wrong claims about the
dynamical evolution of the system in the metaphysical possibility in which the system
contains electrostatic energy in addition to kinetic and gravitational energy. The relevant
notion of determination is more fine-grained than its mathematical surrogate.

Finally, the ‘generating’ idiom suggests that determination is an explanatory relation.
For example: when we say that a device is a generator of electricity, we literally mean
that it produces electricity in the sense that there is an underlying physical process in
virtue of which the generator is causally responsible for the electricity produced by it.
This suggests that determination is an explanatory relation of a similarly productive
(albeit non-causal) kind. According to this conception, when p determines ¢, then ¢ may
be thought of as ‘produced’ by p in a sense that may be paraphrased as ‘p is responsible
for ¢’ or as ‘p makes it the case that q’.

So, the relevant notion of determination is that of an asymmetric non-causal explana-
tory relation between facts that implies (but is not implied by) metaphysical necessitation
and supervenience.?® These characteristics are compatible with various more specific
metaphysical notions that have been discussed in the literature.3® The project of this
paper, however, does not require a commitment to any particular such notion. For our
purposes, the characterization of the fairly general features of the determination relation
just given is sufficient.

This account of what is conveyed about a property by the fact that it is represented
by a generator might seem abstract and unintuitive. But the general kind of explanatory
move should be familiar from everyday modal claims. According to the account just

34Note that this reasoning applies a fortiori to proposals which deploy narrower necessities, such as
nomic necessity.

35Given the holding of the non-trivial identities stated by the Poisson bracket equations {L;, L;} =
€ijk Ly, there are different, equally correct ways to state the relevant determination claims. For example,
the claim that the 1-modal facts are determined by the level surface facts about M, together with the
position and momentum facts, can be stated just as accurately as the claim that the 1-modal facts are
deterrmined by the level surface facts about the quantity whose value at every state is equal to the rate
of change of Mz along state-space curves generated by Ms, together with the position and momentum
facts. In other words: the relata of the determination relation involve the relevant generating quantities,
but not the definite descriptions by which these quantities can be picked out.

36The fineness of grain of the determination relation is suggestive of resources from hyperintensional
metaphysics, such as metaphysical grounding (Fine, 2001, 2012; Rosen, 2010), essence (Fine, 1994a,b;
Rosen, 2015), ontological dependence (Fine, 1995; Correia, 2008; Koslicki, 2012) or metaphysically
impossible worlds (Nolan, 2013; Jago, 2014).
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presented, the fact that some proposition p is 1-possible is determined by the level surface
facts about M, together the position and momentum facts. Now, the level surface facts
about M, together with the position and momentum facts, include the fact that all
rotationally accessible states agree about M, and a fortiori they include the fact about
the actual value of My. Therefore, the fact that p is 1-possible is partially determined,
and thus partially explained by, the fact about the actual value of M;. In other words,
the proposed account entails that an invariant feature of actuality partially explains
what is possible, in the relevant sense of ‘possible’.

This is reminiscent of more familiar types of modality. When we make claims about
what is possible, we always hold certain contextually relevant features of actuality fixed.
For example, if you want to know whether it’s possible to fit eight people in my car, you
are presumably holding fixed the actual size of my car. And the features of actuality we
hold fixed in making these claims often seem explanatory of the latter: the fact that it’s
impossible to fit eight people in my car is explained by the fact that my car has room
for no more than five people.

We are now in a position to understand the definite descriptions that are expressed
by Poisson brackets. The Poisson bracket {L1, Lo} expresses the definite description
‘the quantity whose value at every state is equal to the rate of change of M; along the
state-space curves determined by the level surface facts about My’; and {L1, Lo} = L3
expresses the non-trivial identity of the satisfier of this definite description and Ms.

Moreover, we can now sharpen our understanding of ordinary SO(3)-invariance. Let
() be the quantity represented by the function fg. The fact that @ is an ordinary
SO(3)-invariant consists in the conjunction, for every axis 7 through spatial point z, of
the variation facts stated by {@, L;} = 0.

Let me pause briefly to review what we have accomplished so far. Our goal is to
understand what is conveyed about a physical quantity by the fact that it is represented
by a Casimir invariant under some relevant group—say, SO(3). According to our strategy,
the answer is that the ordinary SO(3)-invariance of that quantity is determined by the
SO(3)-variation facts. The central result of this section is that we now have a precise
account of the SO(3)-variation facts. The remaining task is to characterize the sense in
which these facts determine the ordinary SO(3)-invariance of the relevant quantity. This
is what I turn to now.

3.2 Fine-Grained Invariance

There is reason to think that the relevant notion of determination relation is the same
as the notion discussed in the previous section. Like before, determination is a relation
between facts that is distinct from the identity relation: the conjunction of the SO(3)-
variation facts is clearly not identical to the ordinary SO(3)-invariance of the magnitude
of angular momentum. The relation is arguably asymmetric: the SO(3)-variation facts
determine, but are not determined by, the fact that the magnitude of angular momentum
is an ordinary SO(3)-invariant. It is also non-causal: there is no obvious sense in which
facts of the former type cause facts of the latter type. Moreover, by familiar reasoning,
determination is not necessitation or supervenience. Given what it is for the n-particle

21



system to be ‘rigidly rotated’ about a point, it is metaphysically necessary that magnitudes
of vector quantities are SO(3)-invariant. Intuitively, that the magnitudes of vectors
don’t change under rotations follows from what it is to rotate a vector. This means
that the ordinary SO(3)-invariance of any vector quantity supervenes with metaphysical
necessity on, and is metaphysically necessitated by, any fact whatsoever; but the ordinary
SO(3)-invariance of this quantity is not determined by any fact whatsoever.

The relevant determination relation also has explanatory characteristics. Intuitively,
facts about how every component of a vector changes under a given type of transformation
(such as rotations) explain facts about whether the magnitude of this vector is invariant
under these transformations. In the present context, the fact that the function L?
is an SO(3)-constant, i.e. the fact that {L? L;} = 0 for every axis i through z, is
explained by the fact that equations {L;, L;} = €;j5Li hold—i.e. by facts about how
the components of L change under rotations. This suggests that the ordinary SO(3)-
invariance of the magnitude of total angular momentum is explained by facts about how
total angular momentum components change under rotations—i.e. by the SO(3)-variation
facts. Determination is an explanatory relation.

In sum, the operative notion of determination is, again, that of an asymmetric
non-causal explanatory relation between facts that implies (but is not implied by)
metaphysical necessitation and supervenience.3”

We are now in control of all notions involved in our proposal for the feature that is
attributed to a quantity by saying that its mathematical representative is an SO(3)-
Casimir invariant. I call this feature of the fine-grained SO(3)-invariance of this quantity:

Fine-Grained SO(3)-Invariance. For a quantity @ to be a fine-grained
SO(3)-invariant is for the fact that @ is an ordinary SO(3)-invariant to be
determined by the SO(3)-variation facts.?8

Fine-grained invariance is the notion we’ve been looking for. I said earlier that the
ordinary invariance of a physical quantity under a symmetry group is too coarse-grained
to account for the link between properties and symmetries: a quantity can be invariant
under a group without being linked to that group in the relevant sense. By contrast,
fine-grained invariance has exactly the right fineness of grain: the fine-grained SO(3)-
invariants are all and only the quantities linked to SO(3) in the sense identified by
physicists.

37 As before, for present purposes we can leave open which more specific metaphysical notion is best
suited to play this role; see footnote 36 for some options.

38Note that the SO(3)-variation facts are closed under substitutions of co-denoting definite descriptions.
For example, the variation fact stated by the equation obtained from {L1, L2} = L3 by replacing L with
{L2, L3}, Lo with {Ls, L1}, and Lz with {L1, Lo} is also among the SO(3)-variation facts. It follows that
the relevant determination claims are preserved under substitutions of co-denoting definite descriptions
of the sort expressed by SO(3)-Poisson bracket equations.
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4 Ontic Structural Realism

Earlier, I noted that the phenomenon that motivates this paper—assertions of a link
between symmetries and properties encoded in the notion of a Casimir invariant—has
inspired ontic structural realists to draw substantive metaphysical conclusions about
the relative metaphysical priority of structures on the one hand and physical objects
and their properties on the other. The core idea is that, if the essential propeties of
elementary particles can be exhaustively characterized in terms of mathematical objects
that are defined in terms of symmetry groups—such as Casimir invariants—this suggests
that symmetry structure is more fundamental than particles and their properties. To
what extent does my account differ from ontic structuralist approaches?

To begin with, my ambitions in this paper are more modest. The goal has been
merely to explain what is conveyed about a physical quantity by the fact that it is
mathematically characterized by a Casimir invariant, rather than to defend a claim
about the relative fundamentality of such quantities and their bearers vis-d-vis symmetry
structure. Moreover, the present investigation is not predicated on the goal of vindicating
a structuralist metaphysics. The question as to whether the notion of a fine-grained
invariant is consistent with ontic structuralism strikes me as open.

I take it that this is an advantage of the present investigation. One persistent criticism
of ontic structural realism has been that the operative notion of ‘structure’ has not been
sufficiently clarified.?? It therefore seems worth examining whether the metaphysical
content of Casimir invariance can be identified without an antecedent commitment to
ontic structural realism. This is what I have done in this paper.

Another major difference between my account and ontic structural realist approaches
concerns the status of mathematical objects in the specification of the relevant metaphys-
ical claims. Structural realists have been forthright in their use of explicitly metaphysical
notions to capture the relationship between symmetry structure and elementary particles:
extant accounts deploy the language of necessitation,*” supervenience,*! determinables
and determinates,*? constitution,*? ontological dependence,** fundamentality,*® meta-
physical grounding,?0 and essence.*” However, the entities to which these notions are
applied are often straightforwardly mathematical. A few examples: French (2014, p. 283)
proposes that “the Poincaré group is a determinable”. Roberts (2011, p. 50) argues for
the claim that “the existing entities described by quantum theory are organized into a
hierarchy, in which a particular symmetry group occupies the top, most fundamental
position.” And McKenzie (2014a, pp. 21-2) entertains the hypothesis that “the Poincaré

39For example, (Psillos, 2001; Dorr, 2010; Wolff, 2011; Arenhart and Bueno, 2015); cf. (McKenzie,
2016).

4%(Berenstain and Ladyman, 2012).

#1(Ladyman and Ross, 2007; Wolff, 2011; Nounou, 2012).

42(French, 2014, Section 10.7-8).

43(Castellani, 1998).

41(Wolff, 2011; McKenzie, 2014b).
5(Ladyman, 1998; Ladyman and Ross, 2007; Roberts, 2011; McKenzie, 2014b,a; French, 2014).
46(French, 2014, pp. 169,283).
47 (McKenzie, 2014b).
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group |[...] forms part of [an elementary particle’s] essence” which implies “the dependence
of relativistic particles on the Poincaré group”. What these claims have in common is
that the subjects of the respective metaphysical attributes are mathematical entities
introduced as part of the mathematical language used to state claims about physical
reality.

As I explained in the introduction, it is far from obvious what such claims amount
to. At face value, the above structuralist theses have the implication that symmetry
groups—mathematical objects introduced as part of the mathematical apparatus of
physics—are themselves among the constituents of physical reality. If this is not the
claim these authors intend, we are owed a more transparent account of the ontological
content of claims involving symmetry groups, an account which clearly and rigorously
distinguishes between the underlying physical claims and the mathematical language
used to express them.

One important goal of this paper has been to respect this constraint, and the advan-
tages of this approach should now be clear. We elucidated the physical content of what is
perhaps one of the most important mathematical notions in elementary particle physics
and thereby provided a transparent ontological basis for a symmetry-based metaphysics
of modern physics. Moreover, our investigation demonstrates what we can achieve when
we look beyond the mathematical apparatus in our ontological theorizing. For example,
the fine-grained determinative relationship between the modal facts captured in terms
of symmetry groups and the level surface facts of physical quantities is something we
would likely have overlooked had we settled for the mathematical formalism of symmetry
groups and their generators.

Finally, the account presented in this paper creates conceptual space for a view
which makes precise sense of the suggestion that the essential properties of particles
are definable in terms of symmetries.*® According to this view, for every essential
property P of elementary particles, there is a continuous symmetry group G such
that ‘being a fine-grained G-invariant’ defines P.4? Applied to the classical-mechanical
context of this paper, the idea is that ‘being a fine-grained SO(3)-invariant’ defines the
magnitude of angular momentum.?® The notion of a fine-grained invariant developed in
this paper therefore promises a symmetry-based metaphysics of properties. Of course,
the structuralist credentials such a view can only be fully assessed once it has been
developed in detail. This is a task for another day.

48 This suggestion has been made, for example, by Kantorovich (2003), Roberts (2011), McKenzie
(2014a), French (2014), and Weinberg (1987, 1993). The original idea is based on a paper by Wigner
(1939).

49To be sure: the sense of ‘definition’ operative in this view must be metaphysical rather than nominal:
that is, the relevant definitions are definitions of properties, not of the predicates or concepts that refer
to these properties. There are various accounts of metaphysical definition: see (Fine, 1994a; Rosen, 2015)
for hyperintensional accounts and (Dorr, 2016) for an account in terms of higher-order identifications.

"OModifications to this strategy have to be made for group actions which, unlike SO(3), are linked to
more than one fine-grained invariant in the relevant sense. I take up this issue in future work.
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5 Conclusion

In this paper, I have done two things. First, I reviewed the standard mathematical
account of the link between properties and symmetries by introducing the notion of
a Casimir invariant. Second, I explained what is conveyed about a property by saying
that it is represented by a Casimir invariant under some group G. According to the
proposal developed in this paper, the answer consists in the notion of a fine-grained
G-invariant: that is, the notion of a property whose ordinary G-invariance is determined
by the G-variation facts.

I said earlier that the notion of symmetry operative in the hypothesized link between
quantities and symmetries is the notion of a state-space symmetry. I also noted that this
type of symmetry is not confined to the classical setting: a crucial feature of symmetries
in quantum theory is that they are symmetries of Hilbert space, the mathematical space
used to characterize the state spaces of quantum systems. Moreover, the theoretical
framework of quantum theory contains exact analogues of the mathematical features of
Hamiltonian mechanics that inspired the notion of fine-grained invariance. For example, in
quantum mechanics, self-adjoint operators on Hilbert space play the role of Hamiltonian
vector fields and unitary flows on Hilbert space play the role of Hamiltonian flows on
phase space. The work of the symplectic form is done by a theorem due to Marshall
Stone (1932) which ensures that every self-adjoint operator generates a unitary flow
which preserves this operator. Finally, the role of the Poisson bracket is played by the
commutator bracket on the space of self-adjoint operators. Quantum theory thus contains
all structural features we need to articulate the notion of a fine-grained invariant in this
framework. A detailed study of the notion of fine-grained invariance in the quantum
setting should be the subject of future work.
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