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they refer to current knowledge about X
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Abstract. Conditions (1)�(8) below concern sets X ⊆ N. (1) There are a
large number of elements of X and it is conjectured that X is infinite. (2) No
known algorithm decides the finiteness of X. (3) There is a known algorithm
that for every n ∈ N decides whether or not n ∈ X. (4) There is an explicitly
known integer n such that card(X) < ω =⇒ X ⊆ (−∞, n]. (5) X is widely
known in number theory. (6) There is no known equality X = X1 ∪ X2, where
X1 and X2 are defined simpler than X. (7) No known set Y is defined simpler
than X and satisfies (Y ⊆ X) ∧ (card(X \ Y) < ω). (8) No known set Y is
defined simpler than X and satisfies card((X \ Y) ∪ (Y \ X)) < ω. We do not
know any set X ⊆ N that satisfies conditions (1)�(4) and (5). The same is
true, if condition (5) is replaced by condition (6) or (7) or (8). For every
explicitly known integer n, some simply defined set X ⊆ N includes the set
(−∞, n]∩N and satisfies conditions (1)�(4). Let Pn2+1 denote the set of primes
of the form n2 +1. The setX = Pn2+1 satisfies conditions (1)�(3) and (5)�(8).
The set X = {k ∈ N : the number of digits of k belongs to Pn2+1} contains

1010450
consecutive integers and satisfies conditions (1)�(3) and (6)�(8).

Some hypothetical statement implies that these sets X satisfy condition (4).
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algorithm for every n ∈ N decides whether or not n ∈ X, large number of elements
ofX, n boundsX ifX is finite, no known algorithm decides the finiteness ofX, open
mathematical problem that cannot be formalized in ZFC.
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1. Basic definitions and lemmas
Definition 1. Let β = (((24!)!)!)!.

Lemma 1. β ≈ 1010101025.16114896940657
.

Proof. We ask Wolfram Alpha at http://wolframalpha.com. �

Lemma 2. ((7!)!)! ≈ 101016477.87280582041
.

Proof. We ask Wolfram Alpha about 0.0 + ((7!)!)!. �

Definition 2. We say that an integer n > −1 is a threshold number of a set X ⊆ N,
if card(X) < ω =⇒ X ⊆ (−∞, n], cf. [10] and [11].

Definition 3. We say that a non-negative integer n is a weak threshold number of a
set X ⊆ N, if card(X) < ω =⇒ card(X) 6 n.

If a set X ⊆ N is empty or infinite, then any integer n > −1 is a threshold
number of X. If a set X ⊆ N is non-empty and finite, then the all threshold numbers
of X form the set [max(X),∞) ∩ N. If a set X ⊆ N is empty or infinite, then any
non-negative integer n is a weak threshold number ofX. If a setX ⊆ N is non-empty
and finite, then the all weak threshold numbers of X form the set [card(X),∞) ∩ N.

Theorem 1. For every set X ⊆ N, if an integer n > −1 is a threshold number of X,
then n + 1 is a weak threshold number of X.

Proof. For every set X ⊆ N and for every integer n > −1, the inclusion X ⊆ (−∞, n]
implies that card(X) 6 n + 1. �

Let Pn2+1 denote the set of primes of the form n2 + 1. We do not know any
weak threshold number of Pn2+1. The same is true for the sets{

n ∈ N : 22n
+ 1 is composite

}
and

{n ∈ N : n! + 1 is a square}

Lemma 3. For every positive integers x and y, x! · y = y! if and only if

(x + 1 = y) ∨ (x = y = 1)

Lemma 4. (Wilson’s theorem, [1, p. 89]). For every integer x > 2, x is prime if and
only if x divides (x − 1)! + 1.

The conditions below concern sets X ⊆ N.
(1) There are a large number of elements ofX and it is conjectured thatX is infinite.
(2) No known algorithm decides the finiteness of X.
(3) There is a known algorithm that for every n ∈ N decides whether or not n ∈ X.
(4) There is an explicitly known integer n such that card(X) < ω =⇒ X ⊆ (−∞, n].
(5) X is widely known in number theory.

http://wolframalpha.com
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(6) There is no known equality X = X1 ∪X2, where X1 and X2 are defined simpler
than X.
(7) No known set Y is defined simpler than X and satisfies
(Y ⊆ X) ∧ (card(X \ Y) < ω).
(8) No known set Y is defined simpler than X and satisfies
card((X \ Y) ∪ (Y \ X)) < ω.
(4•) There is an explicitly known integer n such that card(X) < ω =⇒ card(X) 6 n.
(1�) There are a large number of elements of X and it is conjectured that X = N.
(2�) No known algorithm decides the equality X = N.
(1*) There are a large number of elements ofX and it is conjectured thatX is finite.

2. Open Problems 1 and 2
The following two open problems cannot be formalized in ZFC as they refer to
current knowledge about X.

Open Problem 1. Is there a set X ⊆ N that satisfies conditions (1)�(3), (4•),
and (5)?

Open Problem 2. Is there a set X ⊆ N that satisfies conditions (1)�(5)?

Theorem 2. Open Problem 2 claims more than Open Problem 1.

Proof. Condition (4) implies that card(X) < ω =⇒ X ⊆ (−∞, |n|]. Since |n| > −1,
Theorem 1 guarantees that condition (4) implies condition (4•). �

Open Problems 1 and 2 remain open, if condition (5) is replaced by condition (6)
or (7) or (8).

3. Partial solutions to Open Problem 2
Edmund Landau’s conjecture states that the set Pn2+1 is infinite, see [4, pp. 37–38]
and [7]. LetM denote the set of all positive multiples of elements of the set Pn2+1 ∩

(β,∞).

Theorem 3. The set X = {0, . . . , β} ∪M satisfies conditions (1)�(4).

Proof. Condition (1) holds as card(X) > β and the set Pn2+1 is conjecturally in-
finite. By Lemma 1, due to known physics we are not able to confirm by a direct
computation that some element of Pn2+1 is greater than β. Thus condition (2) holds.
Condition (3) holds trivially. Since the setM is empty or infinite, the integer β is a
threshold number of X. Thus condition (4) holds. �

Let [·] denote the integer part function.

Lemma 5. For every non-negative integer n,
[
3n − 3β + 3
3n − 3β + 2

]
equals 0 or 1. The first

case holds when n 6 β − 1. The second case holds when n > β.
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Lemma 6. The function

N ∩ [β,∞) 3 n
θ
−→ β + n −

[√
n
]2
∈ N ∩ [β,∞)

takes every integer value k > β infinitely many times.

Proof. Let t = k − β. The equality θ(n) = k holds for every

n ∈
{
(t + 0)2 + t, (t + 1)2 + t, (t + 2)2 + t, . . .

}
∩ [β,∞)

�

Theorem 4. The set

X =

{
n ∈ N : 2 +

[
3n − 3β + 3
3n − 3β + 2

]
·

((
β + n −

[√
n
]2
)2
− 1

)
is prime

}
satisfies conditions (1)�(4).

Proof. Condition (3) holds trivially. By Lemma 5, X = {0, . . . , β − 1} ∪ H , where

H =

{
n ∈ N ∩ [β,∞) :

(
β + n −

[√
n
]2
)2

+ 1 is prime
}

By Lemma 6, the setH is empty or infinite. The second case holds when

∃ k ∈ N ∩ [β,∞) k2 + 1 is prime (G)

The equality X = {0, . . . , β − 1} ∪ H and the last two sentences imply that β − 1 is
a threshold number of X and conditions (1) and (4) hold. Condition (2) holds
as due to known physics we are not able to confirm the statement (G) by a direct
computation. �

4. Number-theoretic statements Ψn

Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2. LetU1 de-
note the system of equations which consists of the equation x1! = x1. For an integer
n > 2, letUn denote the following system of equations:

x1! = x1
x1 · x1 = x2

∀i ∈ {2, . . . , n − 1} xi! = xi+1

The diagram in Figure 1 illustrates the construction of the systemUn.

!
x1

squaring x2 ! x3 . . . xn−1 ! xn

Fig. 1 Construction of the systemUn
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Lemma 7. For every positive integer n, the systemUn has exactly two solutions in
positive integers, namely (1, . . . , 1) and

(
f (1), . . . , f (n)

)
.

Let

Bn =
{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
For a positive integer n, let Ψn denote the following statement: if a system of equa-
tions S ⊆ Bn has at most finitely many solutions in positive integers x1, . . . , xn, then
each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 f (n). The statement Ψn says
that for subsystems of Bn with a finite number of solutions, the largest known so-
lution is indeed the largest possible. An elementary reasoning shows that the state-
ments Ψ1 and Ψ2 are true.

Theorem 5. For every statement Ψn, the bound f (n) cannot be decreased.

Proof. It follows from Lemma 7 becauseUn ⊆ Bn. �

Theorem 6. For every integer n > 2, the statement Ψn+1 implies the statement Ψn.

Proof. If a system S ⊆ Bn has at most finitely many solutions in positive integers
x1, . . . , xn, then for every integer i ∈ {1, . . . , n} the system S ∪ {xi! = xn+1} has at
most finitely many solutions in positive integers x1, . . . , xn+1. The statement Ψn+1
implies that xi! = xn+1 6 f (n + 1) = f (n)!. Hence, xi 6 f (n). �

Theorem 7. Every statement Ψn is true with an unknown integer bound that de-
pends on n.

Proof. For every positive integer n, the system Bn has a finite number of subsystems.
�

5. A conjectural solution to Open Problem 2
LetA denote the following system of equations:

x2! = x3
x3! = x4
x5! = x6
x8! = x9

x1 · x1 = x2
x3 · x5 = x6
x4 · x8 = x9
x5 · x7 = x8

Lemma 3 and the diagram in Figure 2 explain the construction of the systemA.
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x1
squaring x2 +1

or x2 = x5 = 1

x5

!

x6
!

x3

!

x4

+1
or x3 = x8 = 1

x8

!

x9

x5 · x7 = x8x3 · x5 = x6

x4 · x8 = x9

Fig. 2 Construction of the systemA

Lemma 8. For every integer x1 > 2, the system A is solvable in positive integers
x2, . . . , x9 if and only if x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are
uniquely determined by the following equalities:

x2 = x2
1

x3 = (x2
1)!

x4 = ((x2
1)!)!

x5 = x2
1 + 1

x6 = (x2
1 + 1)!

x7 =
(x2

1)! + 1
x2

1 + 1
x8 = (x2

1)! + 1
x9 = ((x2

1)! + 1)!

Proof. By Lemma 3, for every integer x1 > 2, the system A is solvable in posi-
tive integers x2, . . . , x9 if and only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of

Lemma 8 follows from Lemma 4. �

Lemma 9. There are only finitely many tuples (x1, . . . , x9) ∈ (N \ {0})9, which solve
the systemA and satisfy x1 = 1.

Proof. If a tuple (x1, . . . , x9) ∈ (N \ {0})9 solves the system A and x1 = 1, then
x1, . . . , x9 6 2. Indeed, x1 = 1 implies that x2 = x2

1 = 1. Hence, for example, x3 =

x2! = 1. Therefore, x8 = x3 + 1 = 2 or x8 = 1. Consequently, x9 = x8! 6 2. �

Let Φ9 denote the statement Ψ9 restricted to the systemA. Apoloniusz Tyszka
believes that the statement Φ9 is true.

Theorem 8. The statement Φ9 proves the following implication: if there exists an
integer x1 > 2 such that x2

1 + 1 is prime and greater than f (7), then the set Pn2+1 is
infinite.
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Proof. Suppose that the antecedent holds. By Lemma 8, there exists a unique tuple
(x2, . . . , x9) ∈ (N\{0})8 such that the tuple (x1, x2, . . . , x9) solves the systemA. Since
x2

1 + 1 > f (7), we obtain that x2
1 > f (7). Hence, (x2

1)! > f (7)! = f (8). Consequently,

x9 = ((x2
1)! + 1)! > ( f (8) + 1)! > f (8)! = f (9)

The statement Φ9 and the inequality x9 > f (9) imply that the system A has infin-
itely many solutions (x1, . . . , x9) ∈ (N \ {0})9. According to Lemmas 8 and 9, the set
Pn2+1 is infinite. �

Let K = {k ∈ N : the number of digits of k belongs to Pn2+1}.

Lemma 10. card(K) > 9 · 109 · 4747
≈ 1010450.6930560314272

.

Proof. The following PARI/GP ([6]) command

isprime(1+9*4^747,{flag=2})

returns %1 = 1. This command performs the APRCL primality test, the best deter-
ministic primality test algorithm ([9, p. 226]). It rigorously shows that the number(
3 · 2747

)2
+ 1 is prime. Since 9 · 109 · 4747

non-negative integers have 1 + 9 · 4747

digits, the desired inequality holds. To establish the approximate equality, we ask
Wolfram Alpha about 9 ∗ (10ˆ(9 ∗ 4ˆ747)). �

Theorem 9. The set X = Pn2+1 satisfies conditions (1)�(3) and (5)�(8). The set
X = K satisfies conditions (1)�(3) and (6)�(8). The statement Φ9 implies that
these sets X satisfy condition (4).

Proof. Since the setPn2+1 is conjecturally infinite, Lemma 10 implies condition (1)
for both sets X. Conditions (3) and (6)�(8) hold trivially for both sets X. By
Lemma 1, due to known physics we are not able to confirm by a direct computa-
tion that some element of Pn2+1 is greater than f (7) = (((24!)!)!)! = β. Thus condi-
tion (2) holds for both setsX. Suppose that the statement Φ9 is true. By Theorem 8,
f (7) is a threshold number ofX = Pn2+1. By Theorem 8, 9 . . . 9︸︷︷︸

f (7) digits

is a threshold num-

ber of X = K . Thus condition (4) holds for both sets X. �

6. Open Problems 3 and 4
The following two open problems cannot be formalized in ZFC as they refer to
current knowledge about X.

Open Problem 3. Is there a set X ⊆ N that satisfies conditions (1�)�(2�),
(2)�(3), (4•), and (5)?

Open Problem 3 claims more than Open Problem 1 as condition (1�) implies con-
dition (1).

Open Problem 4. Is there a set X ⊆ N that satisfies conditions (1�)�(2�) and
(2)�(5)?
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Open Problem 4 claims more than Open Problem 2 as condition (1�) implies con-
dition (1).

Theorem 10. Open Problem 4 claims more than Open Problem 3.

Proof. Condition (4) implies that card(X) < ω =⇒ X ⊆ (−∞, |n|]. Since |n| > −1,
Theorem 1 guarantees that condition (4) implies condition (4•). �

Open Problems 3 and 4 remain open, if condition (5) is replaced by condition (6)
or (7) or (8).

7. A partial solution to Open Problem 4
LetV denote the set of all positive multiples of elements of the set{

n ∈ [β + 1,∞) ∩ N : 22n
+ 1 is composite

}
Theorem 11. The set X = {0, . . . , β} ∪ V satisfies conditions (1�)�(2�) and
(2)�(4).

Proof. The inequality card(X) > β holds trivially. Most mathematicians believe that
22n

+ 1 is composite for every integer n > 5, see [2, p. 23]. These two facts imply
conditions (1�) and (2�). Condition (3) holds trivially. Since the set V is empty
or infinite, the integer β is a threshold number of X. Thus condition (4) holds. The
question of finiteness of the set{

n ∈ N : 22n
+ 1 is composite

}
remains open, see [3, p. 159]. By this and Lemma 1, the question of emptiness of
the set {

n ∈ [β + 1,∞) ∩ N : 22n
+ 1 is composite

}
remains open. Therefore, the question of finiteness of the setV remains open. Con-
sequently, the question of finiteness of the set X remains open and condition (2)
holds. �

8. Open Problems 5 and 6
The following two open problems cannot be formalized in ZFC as they refer to
current knowledge about X.

Open Problem 5. Is there a set X ⊆ N that satisfies conditions (1*), (2)�(3),
(4•), and (5)?

Open Problem 6. Is there a setX ⊆ N that satisfies conditions (1*) and (2)�(5)?

Theorem 12. Open Problem 6 claims more than Open Problem 5.

Proof. Condition (4) implies that card(X) < ω =⇒ X ⊆ (−∞, |n|]. Since |n| > −1,
Theorem 1 guarantees that condition (4) implies condition (4•). �

Open Problems 5 and 6 remain open, if condition (5) is replaced by condition (6)
or (7) or (8).
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9. Partial solutions to Open Problem 6
A weak form of Szpiro’s conjecture implies that there are only finitely many solu-
tions to the equation x! + 1 = y2, see [5].

Lemma 11. ([8, p. 297]). It is conjectured that x! + 1 is a square only for x ∈
{4, 5, 7}.

Let W denote the set of all integers x greater than β such that x! + 1 is a
square.

Theorem 13. The set

X = {0, . . . , β} ∪ {k · x : (k ∈ N \ {0}) ∧ (x ∈ W)}

satisfies conditions (1*) and (2)�(4).

Proof. Condition (1*) holds as card(X) > β and the setW is conjecturally empty
by Lemma 11. Condition (3) holds trivially. We do not know any algorithm that
decides the emptiness ofW and the set

Y = {k · x : (k ∈ N \ {0}) ∧ (x ∈ W)}

is empty or infinite. Thus condition (2) holds. Since the set Y is empty or infinite,
the integer β is a threshold number of X. Thus condition (4) holds. �

Let C denote the following system of equations:
x1! = x2
x2! = x3
x5! = x6

x4 · x4 = x5
x3 · x5 = x6

Lemma 3 and the diagram in Figure 3 explain the construction of the system C.

x1
! x2 x4

squaringx5+1
or x2 = x5 = 1

!

x3

!

x6x3 · x5 = x6

Fig. 3 Construction of the system C

Lemma 12. For every x1, x4 ∈ N \ {0, 1}, the system C is solvable in positive inte-
gers x2, x3, x5, x6 if and only if x1! + 1 = x2

4. In this case, the integers x2, x3, x5, x6
are uniquely determined by the following equalities:

x2 = x1!
x3 = (x1!)!
x5 = x1! + 1
x6 = (x1! + 1)!
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Proof. It follows from Lemma 3. �

Let Φ6 denote the statement Ψ6 restricted to the system C. Apoloniusz Tyszka
believes that the statement Φ6 is true.

Theorem 14. If the equation x1! + 1 = x2
4 has only finitely many solutions in posi-

tive integers, then the statement Φ6 guarantees that each such solution (x1, x4) sat-
isfies x1 < 24!.

Proof. Suppose that the antecedent holds. Let positive integers x1 and x4 satisfy
x1! + 1 = x2

4. Then, x1, x4 ∈ N \ {0, 1}. By Lemma 12, the system C is solvable in
positive integers x2, x3, x5, x6. The statement Φ6 implies that x6 = (x1! + 1)! 6
f (6) = f (5)!. Hence, x1! + 1 6 f (5) = f (4)!. Consequently, x1 < f (4) = 24!. �

Theorem 15. Let X denote the set of all non-negative integers n which have ((k!)!)!
digits for some k ∈ {m ∈ N : m! + 1 is a square}. We claim thatX satisfies conditions
(1*), (2)�(3), and (6)�(8). The statement Φ6 implies that X satisfies condi-
tion (4).

Proof. Let d = ((7!)!)!. Since 7! + 1 = 712, we obtain that {10d−1, . . . , 9 . . . 9︸︷︷︸
d digits

} ⊆ X.

Hence, card(X) > 9 · 10d−1. By this and Lemmas 2 and 11, condition (1*) holds.
Conditions (2)�(3) and (6)�(8) hold trivially. By Theorem 14, the statement Φ6
implies that 9 . . . 9︸︷︷︸

β digits

is a threshold number of X. Thus condition (4) holds. �
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