Open problems that concern computable sets
X C N and cannot be formalized in ZFC as
they refer to current knowledge about X
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Abstract. Conditions (1)-(8) below concern sets X C N. (1) There are a
large number of elements of X and it is conjectured that X is infinite. (2) No
known algorithm decides the finiteness of X. (3) There is a known algorithm
that for every n € N decides whether or not n € X. (4) There is an explicitly
known integer n such that card(X) < w = X C (—oo,n]. (5) X is widely
known in number theory. (6) There is no known equality X = X; U X,, where
X and X, are defined simpler than X. (7) No known set Y is defined simpler
than X and satisfies (¥ C X) A (card(X \ V) < w). (8) No known set VY is
defined simpler than X and satisfies card((X \ Y) U (¥ \ X)) < w. We do not
know any set X C N that satisfies conditions (1)-(4) and (5). The same is
true, if condition (5) is replaced by condition (6) or (7) or (8). For every
explicitly known integer n, some simply defined set X C N includes the set
(—oo,n] NN and satisfies conditions (1)-(4). Let P,2,, denote the set of primes
of the form n?+ 1. The set X = P, satisfies conditions (1)-(3) and (5)-(8).
The set X = {k € N : the number of digits of k£ belongs to #,2,,} contains

450
1010 consecutive integers and satisfies conditions (1)-(3) and (6)-(8).
Some hypothetical statement implies that these sets X satisfy condition (4).
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1. Basic definitions and lemmas
Definition 1. Let 3 = (24))))!.

1 1025.161 14896940657
Lemmal. 8= 1010

Proof. We ask Wolfram Alpha at http://wolframalpha.com. O

Lemma 2. ((7))})! ~ 101016477.87280582041'

Proof. We ask Wolfram Alpha about 0.0 + ((7)!)!. ]

Definition 2. We say that an integer n > —1 is a threshold number of a set X C N,
if card(X) < w = X C (—oo, 1], ¢f. [10] and [11]].

Definition 3. We say that a non-negative integer n is a weak threshold number of a
set X C N, if card(X) < w = card(X) < n.

If a set X C N is empty or infinite, then any integer n > —1 is a threshold
number of X. If a set X C N is non-empty and finite, then the all threshold numbers
of X form the set [max(X), o) N N. If a set X € N is empty or infinite, then any
non-negative integer n is a weak threshold number of X. If a set X € N is non-empty
and finite, then the all weak threshold numbers of X form the set [card(X), c0) N N.

Theorem 1. For every set X C N, if an integer n > —1 is a threshold number of X,
then n + 1 is a weak threshold number of X.

Proof. For every set X C N and for every integer n > —1, the inclusion X C (—oo, 1]
implies that card(X) < n + 1. O

Let P,2.; denote the set of primes of the form n? + 1. We do not know any
weak threshold number of #,2, ;. The same is true for the sets

{n eN:22 y1is composite}

and
{n e N:n!+1isasquare}

Lemma 3. For every positive integers x and y, x! -y = y! if and only if
x+l=yVvix=y=1

Lemma 4. (Wilson’s theorem, 1}, p. 89]). For every integer x > 2, x is prime if and
only if x divides (x — 1)! + 1.

The conditions below concern sets X € N.
(1) There are a large number of elements of X and it is conjectured that X is infinite.
(2) No known algorithm decides the finiteness of X.
(3) There is a known algorithm that for every n € N decides whether or not n € X.
(4) There is an explicitly known integer n such that card(X) < w = X C (—oo, n].
(5) X is widely known in number theory.
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(6) There is no known equality X = X| U X;, where X and X are defined simpler
than X.

(7) No known set Y is defined simpler than X and satisfies
(Y C X)A(card(X \ Y) < w).
(8) No known set Y is defined simpler than X and satisfies
card(X\ ) U WY\ X)) < w.

(4e) There is an explicitly known integer n such that card(X) < w = card(X) < n.
(10) There are a large number of elements of X and it is conjectured that X = N.
(2¢) No known algorithm decides the equality X = N.

(1%*) There are a large number of elements of X and it is conjectured that X is finite.

2. Open Problems|I|and 2|

The following two open problems cannot be formalized in ZFC as they refer to
current knowledge about X.

Open Problem 1. Is there a set X C N that satisfies conditions (1)-(3), (4e),
and (5)?

Open Problem 2. Is there a set X C N that satisfies conditions (1)-(5)?
Theorem 2. Open Problem[2| claims more than Open Problem

Proof. Condition (4) implies that card(X) < w = X C (—o0, |n[]. Since |n| > —1,
Theoremﬂ] guarantees that condition (4) implies condition (4e). O

Open Problems E] and[Z] remain open, if condition (5) is replaced by condition (6)
or (7) or (8).

3. Partial solutions to Open Problem 2]

Edmund Landau’s conjecture states that the set $,. is infinite, see [4} pp. 37-38]
and [7]]. Let M denote the set of all positive multiples of elements of the set £, N

(B, ).
Theorem 3. The set X = {0, ...,B} U M satisfies conditions (1)-(4).

Proof. Condition (1) holds as card(X) > 8 and the set 2, is conjecturally in-
finite. By Lemma [T} due to known physics we are not able to confirm by a direct
computation that some element of $,2,, is greater than 8. Thus condition (2) holds.
Condition (3) holds trivially. Since the set M is empty or infinite, the integer B is a
threshold number of X. Thus condition (4) holds. O

Let [-] denote the integer part function.

%] equals O or 1. The first

case holds when n < 8 — 1. The second case holds when n > .

Lemma 5. For every non-negative integer n, [
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Lemma 6. The function

0 2
NN[g.o)3n— f+n—[Vi| eNN[B )
takes every integer value k > B infinitely many times.
Proof. Lett = k — 8. The equality 8(n) = k holds for every

nelt+02+1, t+ 1) +1, (t+27 +1, ..} N[ o)

Theorem 4. The set

3n-38+3
3n-36+2
satisfies conditions (1) -(4).

X={n€N:2+[

: ((B +n— [\/ﬁ]z)2 - 1) is prime}

Proof. Condition (3) holds trivially. By Lemmal[5] X = {0,...,8— 1} UH, where
2 2
H = {neNﬂ [B, ) : (ﬁ+n— [\/ﬁ] ) +1 isprime}
By Lemmal6] the set H is empty or infinite. The second case holds when

EIkeNﬂ[,B,oo)k2+1isprime (®

The equality X = {0,...,8— 1} U H and the last two sentences imply that 8 — 1 is
a threshold number of X and conditions (1) and (4) hold. Condition (2) holds
as due to known physics we are not able to confirm the statement [(G)] by a direct
computation. O

4. Number-theoretic statements ¥,

Let f(1) =2, f(2) =4, and let f(n + 1) = f(n)! for every integer n > 2. Let U, de-
note the system of equations which consists of the equation x;! = x;. For an integer
n > 2, let U, denote the following system of equations:

)C]' = X
X=X = X2
Vi€{2,...,n—l}x,-! = Xi+1

The diagram in Figure 1 illustrates the construction of the system U,,.

squaring X ! X3 Xp_1 1 Xy
X > > e o o
1 > > —_-—

Fig. 1 Construction of the system U,
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Lemma 7. For every positive integer n, the system U, has exactly two solutions in
positive integers, namely (1,...,1) and (f(l), .. ,f(n)).
Let
By={x!=x:ike(l,...m}Ulxi-x;=x: ijke(l,....n)

For a positive integer n, let ¥,, denote the following statement: if a system of equa-
tions S C By, has at most finitely many solutions in positive integers xi, . . ., X, then
each such solution (xi,...,Xx,) satisfies xi,...,x, < f(n). The statement ¥, says
that for subsystems of B, with a finite number of solutions, the largest known so-
lution is indeed the largest possible. An elementary reasoning shows that the state-
ments ¥, and ¥, are true.

Theorem 5. For every statement P, the bound f(n) cannot be decreased.
Proof. 1t follows from Lemma |/|because U, C B,. O
Theorem 6. For every integer n > 2, the statement ¥, | implies the statement ..

Proof. If a system S C B, has at most finitely many solutions in positive integers

X1,...,Xy, then for every integer i € {1,...,n} the system S U {x;! = x,4} has at
most finitely many solutions in positive integers xi, ..., X,+;. The statement ¥,
implies that x;! = x,.1 < f(n + 1) = f(n)!. Hence, x; < f(n). O

Theorem 7. Every statement ¥, is true with an unknown integer bound that de-
pends on n.

Proof. For every positive integer n, the system B,, has a finite number of subsystems.
(]

5. A conjectural solution to Open Problem 2]

Let A denote the following system of equations:

le = X3
)C3! = X4
)C5! = X6
Xg! = Xo
X1 X1 = X2
X3+X5 = Xe
Xq4-Xg = X9
X5:X7 = X8

Lemma [3]and the diagram in Figure 2 explain the construction of the system A.
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squaring X +1 X5
X —m— e e e e e e e === =

or x3=xg=1

Fig. 2 Construction of the system A

Lemma 8. For every integer x| > 2, the system A is solvable in positive integers

X2, ..., X9 if and only ifxf + 1 is prime. In this case, the integers x,...,X9 are
uniquely determined by the following equalities:

X2 = X%

X3 = (x%)!

o= (@)

X5 = xf +1

X = (x% + 1)!

B (xf)! +1

o= x% +1

xXg = (x%)! +1

X9 = ((xf)! + 1)!
Proof. By Lemma [3] for every integer x; > 2, the system A is solvable in posi-
tive integers xp, ..., X9 if and only if x% + 1 divides (x%)! + 1. Hence, the claim of
Lemma 8] follows from Lemma 4] m]
Lemma 9. There are only finitely many tuples (x1, . .., x9) € (N'\ {0))°, which solve

the system A and satisfy x| = 1.

Proof. If a tuple (xq,...,x9) € (N'\ {0})° solves the system A and x; = 1, then
X1,...,X%9 < 2. Indeed, x; = 1 implies that x, = x% = 1. Hence, for example, x3 =
xp! = 1. Therefore, xg = x3 + 1 =2 or xg = 1. Consequently, xg = xg! < 2. O

Let @9 denote the statement Wy restricted to the system A. Apoloniusz Tyszka
believes that the statement @y is true.

Theorem 8. The statement ®qg proves the following implication: if there exists an
integer x| > 2 such that x% + 1 is prime and greater than f(7), then the set P2, is
infinite.
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Proof. Suppose that the antecedent holds. By Lemma ] there exists a unique tuple
(X2, ..., X9) € (N\{O})?® such that the tuple (x, X2, . . . , Xo) solves the system A. Since
x% + 1 > f(7), we obtain that x% > f(7). Hence, (x%)! > f(7)! = f(8). Consequently,

X9 = ((OD!+ D> (F®) + D! > () = £(9)
The statement @9 and the inequality xo > f(9) imply that the system A has infin-

itely many solutions (xi,...,x9) € (N'\ {0H°. According to Lemmasand@ the set
P,241 is infinite. O

Let K = {k € N : the number of digits of k belongs to P,2,}.

Lemma 10, card(K) > 9. 109477 ~ 1010%30-6930560314272

Proof. The following PARI/GP ([l6]) command
isprime(1+9%44747,{flag=2})

returns %1 = 1. This command performs the APRCL primality test, the best deter-
ministic primality test algorithm ([9, p. 226]). It rigorously shows that the number

2 747
(3 . 2747) +1is prime. Since 9-10° 4" non-negative integers have 1 +9 - 4747

digits, the desired inequality holds. To establish the approximate equality, we ask
Wolfram Alpha about 9 = (107°(9 * 47747)). m|

Theorem 9. The set X = P, satisfies conditions (1)-(3) and (5)-(8). The set
X = K satisfies conditions (1)-(3) and (6)-(8). The statement ®y implies that
these sets X satisfy condition (4).

Proof. Since the set P,2, is conjecturally infinite, Lemma[_ll)]implies condition (1)
for both sets X. Conditions (3) and (6)-(8) hold trivially for both sets X. By
Lemma [T} due to known physics we are not able to confirm by a direct computa-
tion that some element of 2, is greater than f(7) = (((24!))!D)! = B. Thus condi-
tion (2) holds for both sets X. Suppose that the statement @y is true. By Theorem 8]
f(7) is a threshold number of X = P,2,;. By Theoremﬁ 9...9 isathreshold num-

f(7) digits
ber of X = K. Thus condition (4) holds for both sets X. O

6. Open Problems [3 and {4

The following two open problems cannot be formalized in ZFC as they refer to
current knowledge about X.

Open Problem 3. Is there a set X C N that satisfies conditions (10)-(29),
(2)-(3), (4@), and (5)?

Open Problem 3| claims more than Open Problem [I] as condition (1¢) implies con-
dition (1).

Open Problem 4. Is there a set X C N that satisfies conditions (1¢)-(2¢) and
(2)-(5)?
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Open Problem [] claims more than Open Problem [2] as condition (1¢) implies con-
dition (1).

Theorem 10. Open Problem|claims more than Open Problem|3]
Proof. Condition (4) implies that card(X) < w = X C (-0, |n|]. Since |n| > -1,

Theoremﬂ] guarantees that condition (4) implies condition (4e). O

Open Problems E] and[z_f] remain open, if condition (5) is replaced by condition (6)
or (7) or (8).

7. A partial solution to Open Problem 4]

Let V denote the set of all positive multiples of elements of the set

{n e[B+1,00)NN: 22’1 +1is composite}
Theorem 11. The set X = {0,...,B} U V satisfies conditions (10)-(2¢) and
(2)-(D.
Proof. The inequality card(X) > £ holds trivially. Most mathematicians believe that
22" 4 1is composite for every integer n > 5, see [2, p. 23]. These two facts imply
conditions (1¢) and (2¢). Condition (3) holds trivially. Since the set V is empty

or infinite, the integer 3 is a threshold number of X. Thus condition (4) holds. The
question of finiteness of the set

{n eN:2%" 4 1is composite}

remains open, see [3 p. 159]. By this and Lemma [I] the question of emptiness of
the set

{n €[f+1,00)NN: 22"+ 1is composite}

remains open. Therefore, the question of finiteness of the set V remains open. Con-
sequently, the question of finiteness of the set X remains open and condition (2)
holds. O

8. Open Problems 5| and [6]

The following two open problems cannot be formalized in ZFC as they refer to
current knowledge about X.

Open Problem 5. Is there a set X C N that satisfies conditions (1*), (2)-(3),
(4e), and (5)?

Open Problem 6. Is there a set X C N that satisfies conditions (1*) and (2)-(5)?
Theorem 12. Open Problem 6] claims more than Open Problem|[3]

Proof. Condition (4) implies that card(X) < w = X C (-0, |n|]. Since |n| > -1,
Theorem guarantees that condition (4) implies condition (4e). O

Open Problems E] and@ remain open, if condition (5) is replaced by condition (6)
or (7) or (8).
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9. Partial solutions to Open Problem [6]
A weak form of Szpiro’s conjecture implies that there are only finitely many solu-
tions to the equation x! + 1 = y2, see [5].

Lemma 11. ([8 p. 297]). It is conjectured that x! + 1 is a square only for x €
{4,5,7}.

Let W denote the set of all integers x greater than 8 such that x! + 1 is a
square.

Theorem 13. The set
X={0,....8 U{k-x: (ke N\ {0} A (xe W)
satisfies conditions (1*) and (2)-(4).

Proof. Condition (1%) holds as card(X) > 8 and the set ‘W is conjecturally empty
by Lemma [TT] Condition (3) holds trivially. We do not know any algorithm that
decides the emptiness of W and the set

Y=1{k-x: (ke N\{O) A (x € W)}

is empty or infinite. Thus condition (2) holds. Since the set Y is empty or infinite,
the integer S is a threshold number of X. Thus condition (4) holds. O

Let C denote the following system of equations:

X1 1 = X2
.XTQ! = X3
x5! = Xp
X4°X4 = X5
X3+Xs5 =  Xg

Lemma [3]and the diagram in Figure 3 explain the construction of the system C.

! X +1 X5 squaring
X —— e e e e e e e e - - - X4
or Xp = X5 = 1

Fig. 3 Construction of the system C

Lemma 12. For every x1,x4 € N\ {0, 1}, the system C is solvable in positive inte-
gers xy, X3, Xs, X¢ if and only if x;!+1 = xﬁ. In this case, the integers x», X3, X5, Xg
are uniquely determined by the following equalities:

X2 = xp!
X3 = ()C]!)!
X5 = X1! +1

x¢ = (x!+ 1)
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Proof. Tt follows from Lemmal[3l O

Let ®¢ denote the statement W restricted to the system C. Apoloniusz Tyszka
believes that the statement ®g is true.

Theorem 14. [f the equation x;! + 1 = xﬁ has only finitely many solutions in posi-
tive integers, then the statement ®¢ guarantees that each such solution (xy, x4) sat-
isfies x; < 24\.

Proof. Suppose that the antecedent holds. Let positive integers x; and x4 satisfy
x!+1= xﬁ. Then, xi,x4 € N\ {0,1}. By Lemma[I2] the system C is solvable in
positive integers xp, X3, X5, X¢. The statement ®@¢ implies that x¢ = (x;! + 1)! <
f(6) = f(5)!. Hence, x1! + 1 < f(5) = f(4)!. Consequently, x; < f(4) = 24!. O

Theorem 15. Let X denote the set of all non-negative integers n which have ((k!)!)!
digits for some k € {m € N : m! + 1 is a square}. We claim that X satisfies conditions
(1%), (2)-(3), and (6)-(8). The statement Og implies that X satisfies condi-
tion (4).

Proof. Letd = ((7)")!. Since 7! + 1 = 712, we obtain that {10%"',...,9...9} C X.
~——
d digits
Hence, card(X) > 9 - 10", By this and Lemmas [2] and [11} condition (1*) holds.
Conditions (2)-(3) and (6)-(8) hold trivially. By Theorem [I4] the statement @
implies that 9...9 is a threshold number of X. Thus condition (4) holds. O

B digits
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